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Abstract: Leaf angle distribution (LAD), or the leaf mean tilt angle (MTA) capturing its central value,
is used to quantify the direction of the leaf surface in a canopy and is one of the most important
canopy structuraltraits. Combined with the other important structure parameter, leaf area index
(LAI), LAD determines the light interception of a crop canopy. However, unlike LAI, only few
studies have addressed the direct retrieval of LAD or MTA from remote sensing data. Recently, it has
been shown that the red edge is a key spectral region where the effect of leaf angle on crop spectral
reflectance can be separated from that of other structural variables. The Multispectral imager (MSI)
onboard the Sentinel-2 (S2) satellite has two specially designed red-edge channels in this spectral
region and thus can potentially be used for large-scale mapping of MTA at high spatial and temporal
resolutions. Unfortunately, no field data on leaf angles at the scale of S2 pixel are available. Therefore,
we simulated 5000 observations of different crops using the PROSAIL canopy reflectance model.
Further, we used the MTA and LAI data of six crop species growing in 162 experimental plots in
Finland and simulated their reflectance signal in S2 bands by resampling AISA airborne imaging
spectroscopy data. Four common machine learning regression algorithms (random forest, support
vector machine, multilayer perceptron network and partial least squares regression) were examined
for retrieving canopy structure parameters, including leaf angle, from the simulated reflectances.
Further, we analyzed the utility of 12 vegetation indices (VIs) well known to be sensitive to canopy
structure for canopy structure estimation. Six of the studied indices used information from the visible
part of the spectrum and the near infrared (NIR) while another six were selected to also utilize the
red edge bands specific to S2. We found that S2 band 6 in the red edge had a strong correlation with
MTA (R2 = 0.79 in model simulation and R2 = 0.87 in field measurements) but a low correlation with
LAI (R2 = 0.07 in model simulation and R2= 0.06 in field measurements). Of the six red edge-based
VIs, four (NDVIRE, CIRE, WDRVIRE and MSRRE) depended less on MTA than the visible NIR-based
VIs and thus could be useful for estimating LAI for any LAD. The other two red edge-based VIs,
IRECI and S2REP, had stronger correlations with MTA (R2 = 0.67 and 0.52, respectively) than LAI
(R2 = 0.24 and 0.19, respectively). Additionally, MTA was accurately estimated (RMSE = 1.1–2.4◦ in
model simulations and RMSE = 2.2–3.9◦ in field measurements) using the four 10 m spatial resolution
bands with the RF, SVM and MLP algorithms, without information in the red edge. These promising
results indicate the capability of S2 in accurately mapping the MTA of field crops on a large scale.

Keywords: canopy structure; LAI; leaf angle distribution; Sentinel-2; vegetation indices; machine learning

1. Introduction

The structure of a plant canopy is determined by the amount and spatial organization
of plant elements above the ground. It directly affects the proportion of solar energy
intercepted by the canopy, its photosynthetic activity and ultimately productivity [1–3].
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Assuming the canopy to be spatially continuous and horizontally homogeneous—common
assumptions for field crops—its structure can be accurately described by the leaf area index
(LAI) and leaf inclination angle distribution (LAD) [4,5]. Vegetation LAI and LAD are
affected by biome, genotype and growth condition and jointly determine the fraction of
canopy cover (Fcover) of a continuous and horizontally homogeneous canopy.

LAI, the sum of single-sided vegetation leaf area per area unit of horizontal ground [6],
is one of the most important canopy structural traits. It is an essential indicator of crop
phonological status and is used widely in precision agriculture [7,8]. LAD quantifies the
angle between the leaf surface normal and nadir directions, and is closely associated with
canopy light interception. Steeper leaves (greater leaf inclination angle) in the topmost
canopy decrease light interception and cause more light to be transmitted into the lower
canopy layers and vice versa. LAD plays in important role in determining energy and mass
balance intra- and inter-canopy. Potentially, it could also be used to help mapping species
for which LAD intervals are most likely known, based on a geographic location or sensing
time, or to map local variations in crop health or productivity.

Canopy structural variables, as important canopy characteristics and factors influ-
encing canopy reflectance, have been in the focus of Earth observations [9,10]. Spectral
vegetation indices (VIs), combination functions of reflectance in two or more wavebands,
have been one of the most productive methods for monitoring the structure of field crops.
Traditionally, the bands used in VIs are situated in visible and near-infrared spectral re-
gions, making use of the absorption bands of the photosynthetic pigments. The purpose
of combining reflectance values into VIs is to strengthen the sensitivity of the spectral
signature to specific vegetation biophysical parameters and overcome the effects of other
factors, e.g., atmospheric conditions, observation geometry and soil reflectance [11,12].

The simplest way of using VIs to predict canopy biophysical properties is regress-
ing them against the VIs using least squares [13–15]. However, it has been reported that
machine learning (ML) methods, such as random forest (RF), artificial neural networks
(ANNs), support vector machine (SVM) or partial least squares regression (PLSR) can esti-
mate plant biophysical and biochemical parameters more accurately from remote sensing
data [16–20] compared with least squares regression. ML can also use all available spectral
bands or spectral features in establishing robust and nonlinear relationships.

Both LAI and LAD have a confounding influence on canopy reflectance. However,
most work has focused on the retrieval of the leaf area index while ignoring LAD due
to the absence of actual measurements of canopy leaf angles. In practical applications,
LAD is usually assumed to be spherical with the leaf mean tilt angle (MTA) fixed to 57◦.
A rare example of studies focusing on leaf angles, the species-specific MTA of six crop
species was retrieved from airborne imaging spectroscopy data using single spectral re-
flectance at 748 nm and two reflectance (663 and 445 nm) combinations, which produced
R2 = 0.60 between the true and estimated MTA values [21].

Imaging spectroscopy data can provide detailed spectral traits [22], giving it a theoret-
ical advantage over multispectral remote sensing for the detection of crop canopy features.
However, concerning the technical implementation and sensor costs to track the temporal
dynamics of canopy structure over large areas, especially global mapping, continuous
satellite-based multispectral monitoring may be a better alternative for practical applica-
tions. An increasing number of satellites with moderate and fine spatial resolutions have
become available in recent years, such as the Sentinel-2(S2) Multispectral Imager (MSI).The
MSI sensors with two strategically designed red edge channels opened up opportunities
for improving vegetation monitoring [23–25] and are very promising for the demand of
precision agriculture. The spatial resolution of the vegetation bands of S2 is 10 m while the
narrow red edge bands are provided at 20 m resolution. The current two S2 satellites were
launched in 2015 and 2017 with an average global revisit interval of 5 days, allowing for
operational detection of changes in crop structure.

The specific wavelength of 748 nm, which produced a strong relationship between
MTA and reflectance [26], is not measured by multispectral satellite instruments. Fortu-
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nately, the S2 has a red edge band at 740 nm, encouraging us to test its capability in canopy
MTA estimation. However, due to the lack of measurements of a wide range of crop struc-
ture variables, especially the leaf angle, at the scale of real S2 data, we could not test MTA
estimation with real S2 imagery. Instead, we used band simulation, a common approach
of resampling narrow-band reflectance [27,28], using the spectral response functions of a
broadband sensor to obtain broadband reflectance. We used two sources of narrowband
reflectance data: simulated using a well-tested physical vegetation reflectance model, and
obtained over small test fields using an airborne hyperspectral scanner. The simulated
dataset with a wide range of situations were used to evaluate the potential of S2 bands
for estimating canopy structure in a more general and robust manner, and the empirical
dataset was used to test the model simulated results.

We used the reflectance values in individual simulated bands as well as widely used
vegetation indices computable from S2 data to test the potential of S2 in canopy MTA
retrieval using ML algorithms. To test the spatial resolution achievable for leaf angle
mapping with S2, we separately tested the bands at 10 m resolution and the visible and
NIR bands with a resolution of 20 m or better.

2. Materials and Methods
2.1. Study Area and Field Measurements

We used the crop data from a test field (Figure 1) belonging to the University of
Helsinki, Finland (60◦13′26′ ′ N, 25◦1′16′ ′ E). The area of the test field is approximately
4 × 4 km. The mean elevation of this area is approximately 10 m above sea level. The mean
temperatures are 18 ◦C and 6 ◦C in July and throughout the year, respectively. Six crop
species with a total of 162 plots were included in the used dataset, including narrow-
leafed lupin (Lupinus angustifolius L. ‘HaagsBlaue’), faba bean (Vicia faba L. ‘Kontu’), wheat
(Triticum aestivum L. emend Thell. ‘Amaretto’), turnip rape (Brassica rapa L. ssp. oleifera
(DC.) Metzg. ‘Apollo’), barley (Hordeum vulgare L. ‘Streif’, ‘Chill’ and ‘Fairytale’) and oat
(Avenasativa L. ‘Ivory’ and ‘Mirella’). These crops are representative species grown in cool-
temperate regions. The sizes of the plots in the different agricultural experiments varied
between 10 × 2 and 50 × 12 m2. Six species were planted with different densities varying
between 55 and 700 m−2 and the fertilizer levels varied between 0 and 150 kg N m−2,
which resulted in the variation in the leaf area index.The plots are described in detail in a
previous study [26].

Figure 1. A map of the study site and airborne imagery of field plots.

The canopy LAD of six crop species was acquired by a digital camera imaging ap-
proach [26] on 6 July 2012. The measurements were conducted at the same crop develop-
ment stage one year after the canopy spectroscopic data acquisition. We also measured
MTA in 2013 in the same growing stages and found no significant differences between
the two years (data not shown). Images of the canopy were taken with a digital camera
(Nikon D1X, Tokyo, Japan), which was attached and leveled on a tripod when photographs
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were taken. All the photographs were acquired at a distance of approximately one meter
from the border of the plots. To ensure that the entire canopy was photographed, the
camera height was adjusted according to the actual height of the plant with a variation
between 30 and 50 cm. For each species, five to six photographs were acquired from one or
several plots. By means of ImageJ software (version 1.47), 75 to 100 leaves or measurable
leaf segment angles were measured from the photos for each species. The measurable
leaf segments refer to the segment orientation perpendicular to the imaging direction
and only for cereal crop species with long and narrow leaves. LAD or MTA is a highly
species-specific trait, that differs more between species than within species [4,29,30]. This
species-specific feature has been proved by remote sensing results [21]. In this study, we
followed the advice of Piseket et al. [31] to use species-specific LAD, determined from
actual leaf angle measurements.

The airborne hyperspectral data used in the study have been obtained using an AISA
Eagle II imaging spectrometer (Specim, Oulu, Finland) equipped on a twin-engine aircraft
on 25 July 2011, from approx. 600 m above ground, and reported in detail by Zou et al. [26]
together with the field data. Here, we only summarize the dataset. The hyperspectral
imagery contains 64 continuous bands in the visible to near infrared spectral regions,
between 400 and 1000 nm, with a spectral resolution between 9 and 10 nm. The data had
been georeferenced and processed to top-of-canopy hemispherical-directional reflectance
factors using atmospheric aerosol data from a nearby AERONET sun photometer. Leaf
area index data used in the study had been obtained using a SunScan SS1 device (Delta-T
Devices, Cambridge, UK) within five days of the airborne campaign. The SunScan canopy
analysis system measures radiation levels above and below a vegetation canopy, allowing
us to estimate the intercepting leaf area. We used the species-specific leaf angle information
determined from the photographs in converting the SunScan measurements of radiation
interceptance to LAI using the equations provided in the SunScan user manual [32]. The
LAI varied between 1.1 and 5 for the six crop species.The equations provided in the
manual, based on the Beer-Lamber law, were also used to convert the canopy interceptance
measured for the actual solar angle to zenith illumination, providing the canopy fractional
cover, Fcover. The plots of the species used in the study were identified in the hyperspectral
imagery using the agricultural field maps.

Soil reflectance was measured from four harvested plots using a handheld Analyt-
ical Spectral Device (ASD, Longmont, CO, USA) between 11:30 and 12:30 local time, on
7 October 2011. A white reference panel (Spectralon) was used to record reference spectra
before and after soil spectral measurements. The soil reflectance was calculated as the
ratio of the soil-reflected radiance to the reference radiance. The mean reflectance of the
four plots was used as the soil reflectance of all the studied plots. Finally, the measured
soil reflectance was calibrated using a bidirectional reflectance function model developed
by Walthall et al. [33] and modified by Nilson and Kuusk [34] to coincide with the solar
illumination conditions of airborne hyperspectral data acquisition. Due to the small study
area, the measured soil spectral reflectance was assumed to be the same for all plots.

2.2. PROSAIL Model Application

The PROSAIL model is designed for horizontally homogeneous vegetation canopies
and is suited for modeling the reflectance of field crops. It is a combination of PROSPECT-
5 [35] and SAILH [36,37] model. PROSPECT-5 is a leaf optical properties model consisting
of six input parameters: leaf structure parameter (N), leaf chlorophyll content (Cab), leaf
carotenoid content (Car), leaf water content (Cw), leaf brown pigment content (Cbp) and
leaf dry matter content (Cm). SAILH simulates the bidirectional reflectance of a homoge-
nous canopy as a function of LAI, MTA, hot spot parameter, soil reflectance (ρsoil), the
fraction of incident diffuse sky radiation(skyl) and three measurement geometry parame-
ters: solar zenith angle (SZA), observation zenith angle(OZA) and relative azimuth angle
(RAA). The range of model inputs was generalized from the measurements to represent the
typical range for the peak growing season. Values of variables, which were not measured,



Remote Sens. 2022, 14, 2849 5 of 20

were obtained from literature. The detailed description of the PROSAIL model inputs
are given in Table 1. LAI varied between 1 and 5, MTA between 15 and 70 degrees, Cab
between 25 and 100 µg cm−2 and Cw between 0.001 and 0.020. Car was linked to 20 percent
of the Cab value based on the LOPEX93 dataset [38]. The other model inputs were fixed:
Cbp = 0 (assuming no senescent leaves during field measurement), Cm = 0.005 g cm−2

(average value of the six crop species [39–42], N = 1.55 (average of various crop species [43],
hot spot parameter was set to 0.01, skyl was calculated using 6S atmosphere radiative
transfer model and ρsoil was acquired from actual ASD measurement. The three sun-senor
geometry parameters were set to be consistent with the scenario of airborne measurements
(SZA = 49.4◦, OZA = 9◦ and RAA = 90◦). All the flexible parameters were varied freely
within a uniform distribution bounded by the range of each value and resulting in 5000
combinations. For each combination, canopy reflectance was simulated with 1 nm spectral
resolution and resampled to S2 band reflectance (Section 2.3).

Table 1. The variable settings of the PROSAIL model.

Model Variable Symbol Value or Range Unit

PROSPECT

Leaf structure parameter N 1.55 -
Leaf chlorophyll a + b content Cab 25–100 µg cm−2

Equivalent water thickness Cw 0.001 cm
Leaf dry matter content Cm 0.005 g cm−2

Brown pigment content Cbp 0 µg cm−2

Leaf carotenoid content Car 0.2 × Cab µg cm−2

SAIL

Leaf area index LAI 1–5 -
Leaf mean tilt angle MTA 15–70 ◦

Hot spot parameter hspot 0.01 -
Solar zenith angle SZA 49.4 ◦

Observer zenith angle OZA 9 ◦

Relativeazimuth angle RAA 90 ◦

Fraction of incident diffuse
sky radiation skyl

Calculated from 6S
atmosphere radiative
transfer model

-

Soil reflectance ρsoil

ASD measurement,
corrected by soil
reflectance model

-

2.3. Simulation of Sentinel-2 Bands

To investigate the potential application of the widely used broadband satellite sensor
Sentinel-2, airborne imaging spectroscopy data were resampled to multispectral according
to the S2 sensor spectral response functions (Figure S1) with central wavelengths of 490,
560, 665, 705, 740, 783, 842 and 865 nm (Table 2). As we only had hyperspectral data in the
visible and NIR spectral regions, we ignored the shortwave infrared (SWIR) bands of S2.
The mean reflectance of the six crop species with S2 band central wavelengths is presented
in Figure 2.

2.4. Vegetation Indices

In this study, 12 commonly used canopy structure-sensitive VIs were calculated using
S2 bands (Table 3). Six VIs were calculated based on visible and NIR reflectance, including
the normalized different vegetation index (NDVI) [44], the enhanced vegetation index
(EVI) [45] and its two-band version (EVI2) [46], the second modified triangular vegetation
index (MTVI2) incorporating a soil adjustment factor [43], the optimized soil adjusted veg-
etation index (OSAVI) [47] and the wide dynamic range vegetation index (WDRVI) [48,49].
These indices can be computed at 10 m spatial resolution. The other six indices, using both
NIR and the red edge (available at 20 m resolution) reflectance include the red edge nor-
malized difference vegetation index (NDVIRE) [50], chlorophyll index red-edge (CIRE) [51],
modified simple ratio red-edge(MSRRE) [52–54], red-edge wide dynamic range vegetation
index (WDRVIRE) [49], inverted red-edge chlorophyll index (IRECI) [55] and Sentinel-2
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red-edge position (S2REP) [55]. The actual bands used for VI calculation are specified
in Table 3.

Figure 2. Spectral reflectance of the six crop species used in the study.

Table 2. Eight Sentinel-2 bands invisible and NIR spectral regions. The band name refers to the
names used in Table 3.

Number Central Wavelength (nm) Name Width (nm) Spatial
Resolution (m)

2 490 Blue 65 10
3 560 Green 50 10
4 665 Red 30 10
5 705 RE1 15 20
6 740 RE2 15 20
7 783 NIR 20 20
8 842 115 10

8A 865 20 20

2.5. Machine Learning Algorithms and Statistical Analysis
2.5.1. Implementation and Optimization

Four popular ML regression algorithms, Random Forest (RF), Support Vector Machine
(SVM), multilayer perceptron(MLP) and Partial Least Squares Regression (PLSR), were
compared and evaluated to predict three crop canopy structure parameters (LAI, MTA
and Fcover) from either individual band reflectance or vegetation indices. When using
reflectance data as ML input, two sets of input bands were used: (i) bands with a resolution
of 10 m in S2 imagery, and (ii) bands with a resolution of 10 m or 20 m. To optimize the
number of input VIs, vegetation indices were used in the model based on their ranks of R2

with the variable of interest (LAI, MTA or Fcover). In the first step, all twelve VIs were used
as input features, and afterwards, the VIs which had less correlation with the variable of
interest were progressively removed one by one until two VIs with the largest R2 remained.
For empirical measurements, a leave-one-out approach was used for cross-validation to
select the optimal tuning parameters for model optimization. In this method, only one
sample is selected for verification and all other samples are taken as training samples [56].
A model was fitted repeatedly to a dataset containing n-1 observations (the number of
observations, n = 162). For model simulation, 5-fold was used for cross-validation. In this
method, all the data were partitioned into 5 sub samples with equal sizes and each sub
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sample was used for validation, and the other samples were used for training once, which
means that the process was repeated 5 times.

Table 3. Vegetation indices used in this study.

Index(Abbreviation) Original Equation References

Visible–NIR reflectance based VIs

NDVI
NIR−Red
NIR+Red [44]

EVI
2.5(NIR−Red)

NIR+6Red−7.5Blue+1 [45]

EVI2
2.5(NIR−Red)
1+NIR+2.4Red [46]

MTVI2
1.5[1.2(NIR−Green)−2.5(Red−Green)]√

(2NIR+1)2−(6Red−5
√

Red)−0.5 [43]

OSAVI
NIR−Red

NIR+Red+0.16 [47]

WDRVI
αNIR−Red
αNIR+Red + 1−α

1+α , α = 0.1 [48,49]
Red-edge reflectance based VIs

NDVIRE
NIR−RE1
NIR+RE1 [50]

CIRE
NIR
RE1−1 [51]

WDRVIRE
αNIR−RE1
αNIR+RE1 + 1−α

1+α , α = 0.01 [49]

MSRRE
( NIR

RE1 − 1)/
√

NIR
RE1 + 1 [52–54]

IRECI (NIR− Red)/( RE1
RE2 ) [55]

S2REP 705 + 35
(

NIR+Red
2 −RE1

RE2−RE1

)
[55]

A grid search method was employed to identify optimal configurations of tuning
parameters for RF and SVM, which have two tuning parameters. The optimal evaluation
is based on the cross-validated correlation between estimated and measured variables.
The regression algorithm implementation was performed using the package scikit-learn in
Python 3.5.

2.5.2. Random Forest (RF)

RF regression is a nonparametric and ensemble ML algorithm that comprises a large
number (ntree) of decision trees without correlation between them [57]. In RF regression,
a certain number of samples are randomly selected from the training set as the root node
samples of each tree, and a regression tree is constructed to reduce the prediction error [58].
The optimal combination of tuning parameters (ntree and mtry) were determined using
a grid search cross validation to identify the best settings for canopy structure parameter
prediction. In this study, the tested combination values of ntree were set as 20, 50, 100, 200,
500, 1000 and 2000 and mtry was set between 2 and 8 with an interval of 1.

2.5.3. Support Vector Machine (SVM)

SVM has initially been developed for classification. The method was later extended
for regression of nonlinear and high-dimensional samples [59] of continuous variables.
The fundamental aspect of this algorithm is a statistical learning theory of structural risk
minimization. The benefit of SVM regression is that it allows the construction of nonlinear
models without changing explanatory variables, so it can better explain the generated
models. By employing a kernel function, the initial multidimensional space with linear,
nonseparable problems was projected to a higher dimensional feature space with a linear,
separable feature space [60]. Based on this high-dimensional feature space where the
original input data are mapped from a nonlinear function, support vector regression
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becomes a linear regression function. In this research, a commonly used radial basis
function kernel was utilized for regression. Two tuning parameters in the kernel function
were optimized to calibrate the model: one is the cost of constraint violation (C), and the
other is the coefficient gamma (γ). The trade-off between the relaxation variable penalty
and the width of the margin was determined by the parameter C, while the influence of a
single training sample was determined by the parameter γ. The parameter C has a positive
relationship with penalties for estimation error and overfitting of the model. The parameter
γ determines the kernel function and overall estimation accuracy. In this study, the optimal
configuration was determined using a grid search method. The tested combination values
of C were set as 0.1, 0.3, 0.5, 0.8 and 1.0 and the coefficient gamma γ values were set as 0.05,
0.10, 0.15, 0.2, 0.25, 0.3, 0.5, 0.75 and 1.

2.5.4. Multilayer Perceptron (MLP)

The MLP is an artificial neural network, consisting of a large number of connected
artificial neurons which propagate the signal in the system. MLP consists of three layers of
nonlinear active nodes, including input, hidden and output layers. In the MLP model, the
settings of the hidden layer were tuned which consisted of the number of hidden layers
and perceptrons contained in each hidden layer. The tested node numbers were set to 2, 5,
10, 20, 50 and 100 for the single-layer mode, and the tested node combinations were (2, 2),
(5, 5), (10, 10), (20, 20), (50, 50) and (100, 100) for the two-layer mode.

2.5.5. Partial Least Squares Regression (PLSR)

PLSR is a statistical method with multivariate analysis that combines the advantages of
three analyses including multiple linear regression analysis, canonical correlation analysis
and principal component analysis. It can deal with multidimensional and collinear datasets.
When a linear relationship was established from multiple independent variables, it could
efficiently evaluate their effects on a dependent variable [61]. The dimensionality of high-
dimensional data could be reduced using principal component analysis. In this study, the
number of tested principal components varied between 2 and 6.

2.5.6. Statistical Analysis

The coefficient of determination (R2), the root mean square error (RMSE), and the
relative root mean square error (RRMSE) were used to evaluate the accuracy of each
approach. The R2 value can explain the variation and predictive ability of the model.
The RMSE and RRMSE indicate the difference and the relative differences between the
measured and estimated values. They were calculated as follows:

R2 = 1− ∑n
i=1(yi − xi)

2

∑n
i=1(yi − y)2 (1)

RMSE =

√
∑n

i=1(yi − xi)
2

n
(2)

RRMSE =
RMSE

y
(3)

where xi indicates the model output value, yi is the measured value, y indicates the mean
and n indicates the number of samples in the dataset.

3. Results
3.1. Correlations between Canopy Structural Characteristics and Remotely Sensed Data

The coefficients of determination between the S2 bands and canopy structure parame-
ters are given in Table 4. S2 bands 2 and 4 (blue and red, respectively) had medium-strength
correlations with LAI for both model simulations and empirical dataset. In AISA data, the
correlations of these bands with MTA were very weak, but in model-simulated data, mod-
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erate correlations were found. S2 band 6 (RE2, 740 nm) produced the strongest correlation
with MTA (R2 = 0.79 in PROSAIL simulations, 0.87 in AISA data in Figure 3) and little
correlation with LAI (R2 = 0.07 in PROSAIL simulations, 0.06 in AISA data). The correlation
with MTA was strong also in NIR (bands 7 and 8, R2 = 0.77–0.78), but in this spectral region,
the effect of LAI was higher than in the red edge (band 6). In AISA data, band 5 showed
no correlation with LAI and a strong correlation with MTA, but this was not the case in
PROSAIL simulations which produced no correlation with MTA and a moderate correlation
with LAI. Both LAI and MTA presented stronger correlations with bands 2–4 for model
simulation than field measurements, which led to much stronger correlations between
Fcover and these bands in model simulations than in field measurements. S2 NIR bands
(7, 8 and 8A) had strong correlations with Fcover. In PROSAIL simulations, band 4 had
the strongest correlation with Fover, but only a medium-strength correlation was found
between this band and Fcover in AISA data. The coefficients of determination between the
tested VIs and canopy structure parameters are presented in Table 5.

Table 4. The coefficients of determination, R2, between canopy structure parameters and simulated
Sentinel-2 bands.

Band Number
Model Simulation Field Measurements

LAI MTA (◦) Fcover LAI MTA (◦) Fcover

2 0.47 0.20 0.86 0.34 0.00 0.22
3 0.33 0.07 0.50 0.18 0.05 0.06
4 0.43 0.31 0.91 0.40 0.08 0.47
5 0.26 0.00 0.30 0.00 0.77 0.18
6 0.07 0.79 0.47 0.06 0.87 0.44
7 0.21 0.77 0.69 0.15 0.78 0.57
8 0.20 0.77 0.68 0.15 0.77 0.57

8A 0.20 0.78 0.67 0.16 0.76 0.57

Table 5. The coefficient of determination, R2, between three structural parameters and vegetation indices.

Vegetation Indices
Model Simulation Field Measurement

LAI MTA (◦) Fcover LAI MTA (◦) Fcover

NDVI 0.35 0.43 0.90 0.45 0.25 0.67
EVI 0.27 0.71 0.83 0.26 0.65 0.67

EVI2 0.30 0.68 0.85 0.28 0.63 0.69
OSAVI 0.32 0.58 0.90 0.37 0.46 0.72
WDRVI 0.43 0.46 0.92 0.41 0.31 0.64
MTVI2 0.28 0.66 0.86 0.28 0.62 0.70

NDVIRE 0.36 0.28 0.75 0.55 0.07 0.57
CIRE 0.32 0.21 0.55 0.57 0.05 0.54

WDRVIRE 0.35 0.25 0.65 0.56 0.06 0.55
IRECI 0.31 0.47 0.68 0.24 0.67 0.66
S2REP 0.21 0.00 0.14 0.19 0.52 0.00
MSRRE 0.35 0.25 0.64 0.56 0.06 0.55

All the visible NIR-based VIs had medium strong correlations with LAI. Four red
edge-based Vis—NDVIRE, CIRE, WDRVIRE and MSRRE—had similar correlations with
LAI. CIRE had the largest positive correlation with LAI (Figure 2, R2 = 0.57) but a low
correlation with MTA (R2 = 0.05). These four VIs had moderate correlation with MTA in
model simulation but little correlation with MTA in field measurements, and presented
less dependence on MTA than visible-NIR based VIs. Fcover had strong correlations with
these four VIs and had less dependence than visible-NIR based VIs. Except for S2REP, all
the other VIs had strong correlations with Fcover.
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Figure 3. Correlations between simulated Sentinel-2 band 6 (740 nm) and the vegetation index CIRE

with MTA and LAI in field-measured data.

3.2. Performance of Machine Learning Algorithms with Individual Band Combinations

Individual band combinations were used as inputs to the algorithms for predicting
canopy structure parameters based on their spatial resolution (10 and 20 m or better).
Using only the bands which have 10 m resolution (Figures S2 and 4), RF, SVM and MLP
presented similar performance for LAI estimation in both model simulation and field-
measured data. RF provided the best performance with R2 = 0.99 and RRMSE = 0.04
in PROSAIL simulation. In field-measured data, RF presented second best performance
with R2 = 0.61 and RRMSE = 0.18, which was slightly worse than MLP. PLSR produced the
weakest results in both model simulation and field-measured data. In MTA predictions,
RF, SVM and MLP performed similarly in both model simulation and field-measured data.
RF had the best performance with R2 = 1.00 and RMSE = 1.1◦ in model simulation. In
field-measured data, RF presented the second best performance, which was slightly worse
than MLP. PLSR performed the weakest. Statistics of all the estimated MTA data using 10 m
resolution bands in AISA data are presented in Table S1. All the algorithms had similar
performance for Fcover prediction, in both model simulation and field-measured data. RF
had the best performance with R2 = 1.00 and RRMSE = 0.01 in model simulation and with
R2 = 0.72 and RRMSE = 0.09 in field-measured data.

Using the bands which have 20 m resolution or better (Figures S3 and 5), four ML
algorithms had similar performance for canopy structure parameter estimation. In LAI
prediction, RF had the best performance, with R2 = 0.99 and RRMSE = 0.05 in model
simulation. In the field-measured data, RF performed slightly worse than MLP. In MTA
estimation, the four MLs had similar performance in both PROSAIL simulation and field-
measured data. In Fcover estimation, generally, RF had the best performance for the three
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variable predictions (R2 = 0.99–1.00 and RMSE = 0.01–0.05) in model simulations but the
best algorithm found in field measurements was MLP.

Figure 4. Canopy structure parameters estimated using simulated Sentinel-2 bands which have 10 m
resolution in field-measured data.
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Figure 5. Canopy structure parameters estimated using simulated Sentinel-2 bands which have a
resolution of 20 m or better in field-measured data.
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Figure 6. Effects of input vegetation indices on themodel accuracy in field-measured data.

3.3. Performance of Machine Learning Algorithms with Vegetation Indices

In LAI estimation, the prediction accuracies generally improved when more VIs
were used in the models (Figures S4 and 6). A significant improvement appeared for all
the algorithms when seven VIs were used for both model simulations and AISA data
(Figures S5 and 7). However, the accuracies no longer improved much when more VIs
were included. In LAI estimation, all the algorithms had similar accuracies using the
optimal set of VIs as inputs. All the algorithms had similar accuracies using optimized
VIs as inputs for MTA estimation. In Fcover estimation, all the algorithms had similar
accuracies using the optimal set of VIs as inputs. Fcover could be accurately estimated
even using two VIs as inputs (R2 > 0.90 and RRMSE < 0.06 in model simulation, R2 > 0.67
and RRMSE < 0.10 in field-measured data). Generally, compared with model inputs with
individual bands which have 20 m or better resolution, all the algorithms had similar
performance when using the optimal set of VIs as inputs.
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Figure 7. Performance of machine learning algorithms combined with optimized input indices.

4. Discussion

We found strong correlations between two of the studied structural variables, MTA
and Fcover, and reflectances in Sentinel-2 bands in both AISA-derived and PROSAIL-
simulated data. The best correlations with LAI were of moderate strength. The strongest
correlations by a clear margin were obtained with Fcover, a function of both LAI and MTA.
It may be somewhat surprising that MTA showed stronger correlations with reflectance,
especially in NIR, than the LAI. This is explained by the ranges of MTA and LAI used in
the study, and the fact that the driver of reflectance on the NIR plateau is Fcover. At all but
the smallest LAI values used here, varying MTA from horizontal to vertical corresponds to
having near-complete leaf cover to full soil visibility. Thus, we found that both LAI and
MTA showed clear and spectrally different effects on canopy reflectance, which allows
them to be retrieved from S2 imagery.

In line with previous studies, S2 band 6 (740 nm) would be the most suitable for
retrieving MTA. In both PROSAIL-simulated data and empirical measurements, band
reflectance in the NIR domain was mostly affected by MTA, which agreed with the previ-
ous findings from global sensitivity analysis by De Graveet al. [62] using SCOPE model
simulations. However, different findings were reported in a study by Bergeret al. [63] using
PROSPECT-D coupled with the SAIL model, which demonstrated that LAI had a larger
influence on reflectance than MTA in NIR. A possible explanation is that the range of MTA
used for model simulations (30–60◦ or 40–70◦) was smaller than that in our study (15–70◦),
and the range of LAI (0–6.1) was larger than that in our study (1–5). In our empirical
dataset, consisting of field-measured MTA and AISA hyperspectral reflectance, simulated
band 5 produced a good correlation, but these results were not corroborated by the more
general PROSAIL-simulated dataset. Hence, we believe that individual case studies may
show even better correlations between leaf angles and reflectance at other wavelengths,
but these results would likely be not transferable.
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In our study, LAI was most strongly correlated with reflectance in blue and red (bands
2 and 4), which agreed with previous studies by De Grave et al. and Berger et al. [62,63].
In NIR, where there is a strong correlation between reflectance and Fcover, the correlation
with LAI was not very strong. As discussed above, this is likely due to the large variation
of MTA both in the measured and modeled datasets. The situation may be different if
different datasets are studied. Kaplan et al. [64] reported that the band with the strongest
correlation with LAI was band 8 in a single species analysis for cotton, tomato and wheat.
However, the average R2 between S2 band 4 and the LAI of the three species in [64] was
0.49, which agreed with our study.

The coefficients of determination in Table 4 clearly demonstrate the different canopy
structural information visible in the different bands: for the studied plots, LAI had the
largest direct effect in red (band 4) and MTA in the red edge (band 6) for field measure-
ments and relatively large effects for model simulations. However, the coefficients of
determination also show the statistical and mathematical connections between the three
variables—LAI, MTA and Fcover. LAI and MTA seem disconnected with the R2 values
having the maximum values for the former in bands 2–4 and for the latter, in bands 5–8A.
Similar findings were presented in PROSAIL simulations (except for band 5). Large R2

values for Fcover, however, are obtained for bands which have at least moderate correlation
with both LAI and MTA (bands 7 – 8A for field measurements and bands 2, 4 and 7–8A) for
model simulations. Indeed, Fcover, determined as the gap fraction in the nadir direction, is
a direct outcome of the number of leaves per unit area and their orientation. The structure
of the field data is visible in the R2 values for the near infrared bands: in the data, these
bands are more highly correlated with MTA than either LAI or Fcover. This is similar to
the model simulations. According to Figures 4 and 5, the Fcover values for most crops
(with the exception of wheat) are larger than 0.8, indicating very small variation in both
LAI and Fcover, causing an inevitably low R2. These mathematical and similar biological
characteristics of the variables will be present in most field croplands which managed to
obtain a closed canopy. Hence, to establish a robust LAD estimation algorithm for different
geographic areas, a theoretical understanding of the phenomena is needed in addition to
searching for the strongest correlations in empirical data.

Leaf inclination angle had large effects on red NIR-based vegetation indices for LAI
or leaf chlorophyll content estimation [65–67]. The statistical relationships between LAI
and S2 VIs for single species have been assessed in previous studies, and the R2 for NDVI
has been found to differ largely between wheat, maize and alfalfa (R2 = 0.14–0.72) [68], and
between tomato, cotton and wheat (R2 = 0.05–0.83) [64]. In this study, this coefficient of
determination was 0.45 for field measurements and 0.35 for PROSAIL simulation, which
are within the variation of previous reports. However, we found EVI to produce R2 = 0.26
and 0.27 with LAI for field measurements and model simulations in our study, respectively,
lower than the average value (R2 = 0.66) of the three species (tomato, cotton and wheat)
reported by Kaplan et al. [64]. Again, this can be attributed to the larger variation in MTA
and partly attributed to soil spectral properties used in the current study.

Compared with the indices using only visible and NIR bands, the correlation be-
tween LAI and several VIs including red-edge channels—NDVIRE, CIRE, WDRVIRE and
MSRRE—was stronger for field-measured data (Table 5). This confirmed the findings re-
ported by Xie et al. [69] and Dong et al. [70], who demonstrated the value of red edge-based
VIs in characterizing crop LAI. In the measured data, these VIs had a weak correlation
(R2 = 0.05–0.07) with MTA. However, in the PROSAIL-simulated data, the red edge indices
did not have a stronger correlation with LAI, and had a moderately weak correlation with
MTA. Thus, the behavior of the indices may be species-specific (i.e., dependent on the actual
distribution of MTA and LAI in the study sample). Nevertheless, four out of the six red
edge-based indices (NDVIRE, CIRE, WDRVIRE and MSRRE) had a decreased dependence
on MTA compared with the studied visible-NIR VIs and can thus be recommended for
estimating LAI for a variety of species (exhibiting different MTAs). The other two red
edge-based indices used in the study, IRECI and S2REP, were not particularly good at
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estimating any of the structural variables studied here and behaved inconsistently in the
field-measured and model-simulated datasets indicating a lack of robustness with respect
to variation in LAD.

Generally, using bands which have different spatial resolutions (10 m and 20 m better)
as inputs for RF, SVM and MLP algorithms yielded similar prediction accuracies in both
model simulation and field-measured data. A similar finding was reported in previous
studies performed by Verrelst et al. [71] using the Gaussian processes regression (GPR)
algorithm and simulated S2 bands. Generally, RF had the best performance for estimating
the three canopy structural parameters in PROSAIL simulations, but MLP performed best
in field-measured data. The performance of ML algorithms is dependent on the amount
and distribution of samples, RF is more suitable for the whole growth period, and the
neural network method is more appropriate for a specific growth period of field crops [72].
In this study, the accuracies of LAI estimation in AISA data (R2 = 0.58–0.66) agreed with
previous studies performed by Kganyago et al. [72] using sparse partial least squares, RF
and gradient-boosting machine algorithms and S2 data (R2 = 0.49–0.76) but were lower
than those reported in [71] (R2 = 0.91 – 0.92). However, the RRMSE values reported in [71]
were 0.23–0.24, which were higher than those in our study (RRMSE = 0.17–0.18). Similar
to LAI, the Fover estimation accuracy (R2 = 0.71–0.73) in field-measured data was lower
than the value in [71] (R2 = 0.95), but the RRMSE values (0.09–0.10) were lower than that
(RRMSE = 0.17) reported in [71]. In both model-simulated and field measured data, MTA
could be accurately predicted (RMSE < 4◦ and RRMSE < 0.1) except for PLSR using only
four bands which have 10 m resolution, which explored the potential of ML algorithms to
estimate MTA of field crops from satellite remote sensing with satisfactory accuracy. The
R2 values in Table 5 are generally larger than those in Table 4, indicating that vegetation
indices indeed react to changes in vegetation structure. Nevertheless, vegetation indices
used as ML model input features did not significantly improve canopy structure estimation.

To our knowledge, this is one of the first trials to evaluate the potential of S2 data
for MTA estimation. According to our results, for both PROSAIL simulations and field
measurements, using only four bands which have 10 m resolution could accurately predict
MTA based on data-driven methods. This promising result implies that crop MTA could
be mapped accurately at 10 m resolution globally using S2 data. The strong correlation
between S2 band 6 and MTA provided a great opportunity to track MTA dynamics without
data training. The biggest shortcoming today is a lack of proper validation data. The
SAIL canopy reflectance model is only valid for horizontally homogeneous canopies with
a constant LAD. We have shown that the general conclusions drawn on the PROSAIL
simulations hold for six species growing in Finland at peak growing season with a closed
canopy (LAI > 1), but a true validation of an operational algorithm of MTA retrieval requires
availability of representative field data at the scale of the S2 red-edge bands, i.e., 20 m. We
hope that these data will be available soon and the promise of S2 demonstrated here will
be validated.

5. Conclusions

The PROSAIL canopy reflectance model simulated- and airborne imaging spectroscopy
dataresampled-S2 bands were tested for estimating the canopy structure of field crops
with a wide range of canopy structures using individual bands, vegetation indices and
their combinations with four machine learning algorithms. The results show that S2 band
6 has a strong correlation with MTA (R2 = 0.79 in PROSAIL simulation and R2 = 0.87 in
field-measured data) but none with LAI (R2 = 0.07 in model simulation and R2 = 0.06).
On the other hand, four red edge-based VIs (NDVIRE, CIRE, WDRVIRE and MSRRE) de-
pended less on MTA (R2 = 0.25–0.28 in PROSAIL simulation and R2 = 0.05–0.07 in field
measurements) than the visible NIR-based VIs used in the study (R2 = 0.43–0.71 in model
simulation and R2 = 0.25–0.65 in field measurements) and presented an advantage for LAI
estimation (R2 = 0.55–0.57 in field measurements) for crops with unknown and diverse
MTA values. Our results show that MTA was accurately estimated with the combination
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of four bands which have 10 m resolution and RF, SVM and MLP (RMSE =1.1–2.4◦ in
PROSAIL simulations and RMSE = 2.2–3.9◦ in field measured data).

Our case study showed promising results, but more empirical and theoretical under-
standing is needed before global mapping of leaf angles from space will be a reality.
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//www.mdpi.com/article/10.3390/rs14122849/s1, Figure S1: Eight Sentinel-2 spectral response
functions used in this study; Figure S2: Canopy structure parameters estimated using the PROSAIL
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ters estimated using the PROSAIL model simulated Sentinel-2 bands which have 20 m resolution;
Figure S4: Effects of input vegetation indices on the model accuracy using the PROSAIL model
simulation; Figure S5: Performance of machine learning algorithms combined with optimized input
indices using the PROSIAL model simulations; Table S1: Statistics of estimated MTA data using
simulated Sentinel-2 bands which have 10 m resolution; Table S2: Statistics of estimated MTA data
using simulated Sentinel-2 bands which have 20 m resolution; Table S3: Statistics of estimated MTA
data using machine learning algorithms combined with optimized input indices.
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