
Citation: Zheng, W.; Liu, Y.; Yang, X.;

Fan, W. Spatiotemporal Variations of

Forest Vegetation Phenology and Its

Response to Climate Change in

Northeast China. Remote Sens. 2022,

14, 2909. https://doi.org/10.3390/

rs14122909

Academic Editor: Luke Wallace

Received: 29 April 2022

Accepted: 16 June 2022

Published: 17 June 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

remote sensing  

Article

Spatiotemporal Variations of Forest Vegetation Phenology and
Its Response to Climate Change in Northeast China
Wenrui Zheng 1, Yuqi Liu 1, Xiguang Yang 1,2,* and Wenyi Fan 1,2

1 School of Forestry, Northeast Forestry University, Harbin 150040, China; apollo_r@nefu.edu.cn (W.Z.);
liuyq9713@nefu.edu.cn (Y.L.); fanwy@nefu.edu.cn (W.F.)

2 Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education,
Northeast Forestry University, Harbin 150040, China

* Correspondence: yangxiguang@nefu.edu.cn

Abstract: Vegetation phenology is an important indicator of vegetation dynamics. The boreal
forest ecosystem is the main part of terrestrial ecosystem in the Northern Hemisphere and plays
an important role in global carbon balance. In this study, the dynamic threshold method combined
with the ground-based phenology observation data was applied to extract the forest phenological
parameters from MODIS NDVI time-series. Then, the spatiotemporal variation of forest phenology
is discussed and the relationship between phenological change and climatic factors was concluded
in the northeast China from 2011 to 2020. The results indicated that the distribution of the optimal
extraction threshold has spatial heterogeneity, and the changing rate was 3% and 2% with 1◦ increase
in latitude for SOS (the start of the growing season) and EOS (the end of the growing season). This
research also notes that the SOS had an advanced trend at a rate of 0.29 d/a while the EOS was
delayed by 0.47 d/a. This variation of phenology varied from different forest types. We also found
that the preseason temperature played a major role in effecting the forest phenology. The temperature
in winter of the previous year had a significant effect on SOS in current year. Temperature in autumn
of the current year had a significant effect on EOS.

Keywords: phenology; climate change; dynamic threshold method; northeast China; TIMESAT

1. Introduction

Vegetation phenology is the subject which studies the cyclical events throughout the
whole life of plants and how these events respond to environmental changes [1]. Lots
of studies have clarified that global warming, with the consequence of greenhouse gases
increasing, has significantly shifted the vegetation phenology in terrestrial ecosystems
of the Northern Hemisphere [2,3], and the variation of vegetation phenology has greatly
impacted the terrestrial ecosystem functions and structures [4,5]. Previous researches have
concluded that the forest ecosystem is the main part of terrestrial ecosystem in the Northern
Hemisphere, such as in China [6], America [7], Canada [8], and Europe [9], and plays an
important role in the global carbon balance. Vegetation phenology may also feed back to
climate changes, for example, the prolonged length of growing season (LOS) could affect
the ability of forest carbon sequestration and mitigate the global temperature increase [10].
Therefore, studying the relationship of vegetation to climate is essential for enhancing the
vegetation productivity, carbon storage and carbon cycle of the terrestrial ecosystem.

Phenology research dates back to ancient agricultural times. People originally obtained
the timing of phenological events by observing and establishing phenology observation
networks, which has been occurring since the 18th century [11]. Previous studies indicate
that the spring phenological variation of most vegetation had an advanced trend proven by
ground-based observations during the past decades in Northern Hemisphere. Menzel et al.
concluded that the average advance of spring was 2.5 days per decade in 21 European
countries between 1921 and 2000 [12]. Keenan et al. found that the temperate forest over
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the eastern US had a strong trend of earlier springs over combined long-term ground
observations of phenology [13]. Rosbakh et al. analyzed the 67 common plant species
in Siberia and found that boreal forest springs advanced 2.2 days per decade, while leaf
senescence was delayed at a rate of 1.6 days per decade during 1976–2018 [14]. However,
ground-based observation only recorded the timing of phenological events for species,
so that it is difficult to clearly understand the seasonal changes of vegetation phenology
on a regional or global scale [1]. During the past few years, remote sensing technology
developed rapidly, which, as a new tool, overcomes the above limitations of ground-
based observation. Data obtained from satellite remote sensing could obtain the spatially
continuous information of surface, which had increasingly been used in the studying and
monitoring of vegetation phenology, such as vegetation index (VI), which is a combination
of two or more wavelength ranges of surface reflectance to enhance characters or details
of vegetation [15]. The more commonly used remote-sensing vegetation indices include
the normalized differential vegetation index (NDVI) [16], the enhanced vegetation index
(EVI) [17], and the leaf area index (LAI), which is a forest structure parameter and can also
be used to extract forest vegetation phenology [18].

Based on satellite data, the changes of vegetation dynamics can be studied using the
vegetation indices or biophysical variables time series [19]. The quality of long-term series
remote sensing data would make a big difference for the calculation of the surface vegeta-
tion phenology. Due to cloud contamination, atmospheric variability, and bi-directional
effects, the long-term series remote sensing data still have a lot of noise [20]. To extract
the spectral–temporal signatures accurately, many methods have been developed for re-
ducing noise to construct high-quality VI time-series, and these can be classified into three
categories: empirical methods, data transformations, and curve fitting methods [15]. The
empirical methods are easy to apply, but they are determined by empirical parameters,
such as the length of the sliding window. Data transformation methods use the mathe-
matical manipulation to decompose time-series curves into seasonal, cyclical, trend, and
irregular components [21], while the performance is poor in smoothing the irregular or
asymmetric data [15]. Curve fitting methods fit the VI time-series to a particular func-
tion by utilizing least squares, with the advantage of effectively reducing the noise and
no empirical constraints [15]. Logistic function, asymmetric Gaussian functions, and the
Savitzky–Golay (S-G) filter are commonly used methods. Lara et al. compared the three
smoothing methods included in TIMESAT software and concluded that the S-G filter had
better performances [22]. Once the time-series curves based on remote sensing data were
reconstructed, phenological parameters could be extracted.

The identify the method of the vegetation phenology from remote sensing time-series
included inflection points and relative thresholds [23,24]. The inflection point method uses
the inflection point of the VI time-series curve to identify the SOS (The start of the growing
season) or EOS (The end of the growing season). The inflection point phenology detection
algorithm usually uses a logistic function to fit the VI time-series and the results of the
inflection point method relied more on the shape of the VIs time-series and the accuracy of
the extracted phenology, which varied through the with and without filtering steps [25].
For the relative threshold method, the SOS or EOS was determined with a predefined
percentage of VI amplitude, such as 20%, 30%, or other values [26]. Therefore, determining
the relative thresholds was quite important to estimate vegetation phenological events.
Wang et al. took 50% of maximum NDVI value as the threshold to extract the SOS and EOS
and accessed the spatio-temporal trends of vegetation phenology, which showed dramatic
spatial heterogeneity with different rates during the 1982–2012 [27]. Ding et al. found that
the extraction of phenological events by using 20% of the annual NDVI amplitude was
highly consistent with ground-based observation data on the Tibetan Plateau from 1982
to 2012 [28]. Xu et al. first used the fixed threshold method to extract the phenology in
Tibet Plateau based on the remote sensing. The results showed that the SOS has an obvious
overestimation, with about 50% error of estimation (RMSE > 50). Combined with the EC
flux measurements, the SOS and EOS value of the threshold method were determined
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with the value of 0.17 and 0.2 in the grasslands of Inner Mongolia, while these were 0.14
and 0.29 in Tibet Plateau of China [29]. Yu studied the vegetation phenology changes of
northeast of China with a threshold method and threshold of 0.2 was used in this study [30].
However, a study of phenology in the same area with a threshold of 0.3 was used in Zhao’s
research [31]. Fu et al. studied the effect of autumn phenology in the Greater Khingan
Mountains of northeastern China, and a threshold of 0.3 was used [32]. This research area
was obviously smaller, but the same value was used to extract the SOS, EOS, and LOS
from the remote sensing data. Considering the spatial heterogeneity of the vegetation, the
extracted phenology of the vegetation across diverse ecosystems and at different scales
from satellite data might have significant differences using the fixed-threshold method. In
addition, the fixed-threshold method was sensitive to non-vegetation-related variations
in the VI time series, and it led to a considerable error in the phenology metrics by using
remote sensing data [15]. Furthermore, it might increase the uncertain error in phenology
research. Therefore, it is essential to develop a new method of threshold determination to
increase the accuracy of the extracted phenological parameters.

Plant growth has been associated with temperature and precipitation to implicate
climate trends in phenology shifts [33]. In turn, climate change has significantly affected
vegetation phenology, which further changes the carbon, water, and energy exchange be-
tween the terrestrial ecosystem and atmosphere. Wolf et al. found that a warmer spring and
earlier vegetation activity has a positive effect on the carbon cycle [34]. Xu et al. concluded
that warming induced earlier greening in the Northern Hemisphere during 1982–2011 [35].
The temperature changes the activity of enzymes, and the increase in temperature can
promote the activity of enzymes to accelerate vegetation phenology. Jeong et al. concluded
that the warming temperature enhances vegetation photosynthesis and prolongs the LOS
by advancing the SOS and delaying the EOS [36]. Liu et al. found that the warming climate
prolonged the LOS of plants in the Northern Hemisphere by using the GIMMS NDVI3g [37].
Zhao et al. pointed out that over the past decades, the EOS has been delayed by 0.13 days
each year in northeastern China [31]. Wang et al. discovered an advanced SOS and a
delayed EOS by utilizing remote-sensing data and climate data in the northeastern China
from 2011 to 2019 [38]. In addition, precipitation is also a factor which effects the phenology.
Piao et al. found that precipitation played a significant role in effecting the summer NDVI
in Eurasia [39]. Cong et al. found that increasing precipitation could result in the advanced
SOS of broad-leaf forests in northern China by using the GIMMS NDVI3g [40]. It is not dif-
ficult to conclude from the existing research that the vegetation growth environment varies
across the regions, and the response of phenology to meteorological factors is different [41].
Although the relationship between temperature and precipitation and vegetation phenol-
ogy has been discussed, these are complex responses that vary according to the spatial
heterogeneity of the vegetation. Therefore, it is necessary to demonstrate the relationship
between the phenology and the factors of preseason, interannual, and multi-climatic factors
and to conduct a comprehensive study on interactions that exist between the SOS and EOS.

In this study, we developed a dynamic thresholds method combining MODIS NDVI
time-series and ground-based observation data to extract the vegetation phenological
parameters in Northeast China from 2011–2020. We analyzed the changing characteristics
of phenology of different forest types in northeast China during the last decade. We aimed
to (1) develop a suitable dynamic threshold method to extract the SOS and EOS, combining
MODIS NDVI time-series and ground-based phenology observation data; (2) summarize
the spatial and temporal changing characteristics of the phenology of different forest types
in northeast China; (3) study the relationship and interaction between the phenology of
different forest types and climate factors on a regional scale.

We hope that this study can provide a reference to further clarify the relationship
between the phenology of the different forest vegetation types and climate factors and the
interaction against the backdrop of global warming.
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2. Materials and Methods
2.1. Study Area

The research area of this study is the Northeast China (NEC), which includes the
Heilongjiang, Jilin, and Liaoning provinces, is located from 118◦50′ E to 135◦09′ E and
38◦42′ N to 53◦35′ N (Figure 1) [42]. NEC has the considerable climatic and topographical
gradients, and the main topography of NEC is mountains and plains, with mountains in
the east, west and north, and plains in the middle and south [43]. Due to geographical
location NEC belongs to a temperate continental monsoon climate [44], which is divided
into a warm temperate zone, temperate zone, and cold temperate zone from south to north
and has obvious differences in humidity from east to west [45]. As a result, NEC has a
unique vegetation distribution and is one of the regions most sensitive to global change [46].
NEC has one of the largest natural forests in China, which are mainly scattered throughout
the Changbai Mountains, Lesser Khingan Mountains, and Greater Khingan Mountains.
The main vegetation types of NEC forests are cold-temperate deciduous coniferous forests,
deciduous broad-leaved forests, and mixed coniferous broad-leaved forests. Therefore,
as a main part of the boreal forest ecosystem, NEC is an ideal region for researching the
forest–climate relationships of northeastern Asia.

Figure 1. Forest types in northeast China and the locations of the eight phenological observation stations.

2.2. Materials
2.2.1. MODIS NDVI Dataset

The NDVI was obtained from a moderate-resolution imaging spectroradiometer
(MODIS) provided by the National Aeronautics and Space Administration (NASA). Avail-
able online: https://search.earthdata.nasa.gov (accessed on 23 April 2022). MOD13Q1
(MODIS/Terra Vegetation Indices 16-Day L3 Global 250 m SIN Grid) was used in this
study. The time span of the data is from 1 January 2011 to 31 December 2020. A total of
1150 images were downloaded. The spatial resolution of the NDVI data products is 250 m,
and the temporal resolution is 16 days [20]. The NDVI calculation is a combined operation
between the red spectral band (Red) and near-infrared spectral band (NIR) as follows [47]:

NDVI =
NIR− Red
NIR + Red

(1)

https://search.earthdata.nasa.gov
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where NIR is the reflectivity values in the near infrared band and Red is the reflectivity of
the red band. The value range of NDVI is from −1 to 1.

ArcGIS software and MRT (Modis Reprojection Tool) were used to process the down-
loaded images. Image preprocessing included reprojection, cutting, splicing, and so on.

The software TIMESAT, which contains a S-G filter, asymmetrical Gaussian (AG)
function fitting, and double logistic function fitting, was employed to reduce the noise and
smooth the NDVI time-series [48]. In this study, the S-G filter, which is a weighted moving
average filter proposed by Savitzky and Golay [49], was chosen for smoothing the NDVI
time-series because of its better performance.

The weight of the S-G filter depends on the polynomial least squares fit in the filter
window [50]. The general equation of the S-G filter for NDVI time-series smoothing can be
given as follows [51]:

Y∗j =
∑i=m

i=−m CiYj+i

2m + 1
(2)

where Yj+i represents the original value of the i-th NDVI at time j, Y∗j represents the
resultant NDVI value, Ci represents the coefficient for the i-th NDVI value of the filter, and
m represents the half-width of the smoothing window.

2.2.2. Meteorological Data

The meteorological data used in this study are the Global Summary of the Day data
provided by the National Oceanic and Atmospheric Administration (NOAA). Available
online: https://www.ncei.noaa.gov/data/global-summary-of-the-day (accessed on 23
April 2022). First, we downloaded the daily average temperature and daily cumulative
precipitation data from stations throughout the NEC and surrounding areas from 2011 to
2020. In order to maintain the continuity and effectiveness of the data, we downloaded the
data from the stations of research area and around research area and deleted the stations
with more than 5% of missing data and obtained 116 stations through quality control; the
statistical information can be found in Table 1. Subsequently, we converted the daily data
to annual data and seasonal data, that is, spring (March–May), summer (June–August),
autumn (September–November), and winter (December–February (of the next year)).
Finally, we obtained the interpolation grid, which had a consistent spatial resolution
with the spatial resolution of NDVI, by applying the simple kriging interpolation method.

Table 1. The statistical information of meteorological stations in the research area from 2011 to 2020.

Max Min Mean

annual average temperature (◦C) 12.9 −4.11 5.19

annual cumulative precipitation (mm) 1499.4 192.5 586.8

2.2.3. Land Cover Dataset

It is very crucial to distinguish between vegetation and non-vegetation by using land
cover data, specifically in the extraction of vegetation phenology. In this study, the land
cover data FROM-GLC (Finer Resolution Observation and Monitoring of Global Land
Cover, FROM-GLC), developed by group Pro. Peng Gong at Tsinghua University, was used.
FROM-GLC data is a global land cover map at 30 m resolution obtained by using Landsat
TM and ETM+ data with high accuracy. Available online: http://data.ess.tsinghua.edu.cn
(accessed on 23 April 2022). In this study, all forest types were reclassified into coniferous
forest (CF), broadleaf forest (BF), and mixed forest (MF).

2.2.4. Phenology Observation Data

In this study, we downloaded the phenology observation data from the Chinese
Phenological Observation Network (CPON). Available online: http://www.geodata.cn
(accessed on 23 April 2022). The phenology observation data were used to determine the

https://www.ncei.noaa.gov/data/global-summary-of-the-day
http://data.ess.tsinghua.edu.cn
http://www.geodata.cn
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threshold of the NDVI time-series and evaluate the accuracy of phenological parameters
extracted by using the NDVI time-series. Eight stations in NEC were selected; these
were Nenjiang, Dedu, Jiamusi, Harbin, Mudanjiang, Changchun, Shenyang, and Gaizhou
stations. Combined with the geographical location of the phenological observation sites,
the statistical information of the measured data after sorting can be found in Table 2.

Table 2. The mean forest phenological parameters of each station over the years.

Station Name Latitude Longitude Mean SOS/DOY Mean EOS/DOY

Gaizhou 40.4 122.5 105.5 308.9

Shenyang 41.8 123.6 115.8 305

Changchun 43.8 125.4 120.7 301.6

Mudanjiang 44.4 129.5 123.2 297

Harbin 45.7 126.7 127.3 291.3

Jiamusi 46.8 130.4 125.8 292.3

Dedu 48.5 126.8 138 282.3

Nengjiang 49.3 125.8 130.3 282.1

Descriptions of the datasets applied in our study are shown in Table 3.

Table 3. Detailed descriptions of research data.

Type Variables Dataset Resolution Source

Vegetation Index NDVI MODIS NDVI 250 m NASA

Meteorological Data Temperature,
Precipitation - - NOAA

Land Cover Type
Coniferous forest (CF),

Broadleaf forest (BF), Mixed
forest (MF).

FROM-GLC 30 m Pro. Peng Gong at
Tsinghua University

Phenology Observation Data

Nenjiang, Dedu,
Jiamusi, Harbin,

Mudanjiang, Changchun,
Shenyang, Gaizhou

- - Chinese Phenological
Observation Network

2.3. Method
2.3.1. Method of the Vegetation Phenology Extraction

In this study, the dynamic threshold method, also called the proportional threshold
method, was used to extract SOS and EOS from NDVI time-series processed by a S-G filter.
The point in time when NDVI increases to a certain percentage of the NDVI amplitude of
the year is defined as the SOS, and the time when NDVI decreases to a certain percentage
of the NDVI amplitude of the year is defined as the EOS (Figure 2). The threshold used in
this method is not a specific vegetation index value but a dynamic ratio form, compared
with the absolute threshold and difference threshold; the dynamic threshold method has
better applicability in both the time and space domain [48]. The principle of this method is
as follows:
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Figure 2. The principle of dynamic threshold method for extracting phenology based on vegetation
index time-series curve.

The calculation formula of vegetation phenology extracted by the dynamic threshold
method as follows [52]:

PS =
NDVISOS

NDVImax − NDVImin(le f t)
(3)

PE =
NDVIEOS

NDVImax − NDVImin(right)
(4)

where PS and PE represent the extraction threshold corresponding to the SOS and EOS,
respectively. NDVISOS and NDVIEOS are the corresponding NDVI values when SOS and
EOS occurred. NDVImax represents the maximum NDVI during the whole time-series,
NDVImin(left) is the minimum NDVI of the first half of the time-series, and NDVImin(right) is
the minimum NDVI of the second half of the time-series.

Firstly, we selected representative tree species in each phenological observation site
and calculated the mean DOY of leaf onset and leaf senescence as SOS and EOS, respectively.

Secondly, we extracted the corresponding remote-sensing pixels of the eight phe-
nology observation stations selected and calculated the mean NDVI of each pixel as the
phenological parameters to extract the original data. Then, we brought the NDVI corre-
sponding to the occurrence day of the observation-based phenological parameters into
Formulas (3) and (4), and thus the optimal extraction threshold of each station was able to
be calculated.

Thirdly, we assumed that the functional relationship between the optimal extraction
threshold P of the vegetation phenology at different latitudes and latitude L as follows:

P = AL + B (5)

where P = {P1, P2, · · · , Pn}, which represents the optimal extraction threshold set cor-
responding to the eight phenology observation stations; L = {L1, L2, · · · , Ln}, which
represents the latitude set of the eight phenology observation stations. The values of
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coefficients A and B were obtained by fitting with the least square method, and the func-
tional relationship between the optimum extraction threshold and latitude of vegetation
phenology was established.

Finally, the optimal extraction threshold for each pixel can be calculated based on the
central latitude value of each pixel by using the relationship established in Formula (5),
and the phenological parameter can be extracted using this threshold.

2.3.2. Analysis Method

Statistical analysis is one of the most commonly used data analysis methods and is
widely used in empirical modeling and the accuracy assessment of remote sensing re-
search [53]. This parametric statistical technique requires that the data follows a continuous
and normal distribution [54]. Therefore, the normal distribution test should be performed
first. The data used in the study all followed the normal distribution. After that, a linear
relationship between the forest phenology of different forest types and the latitude, year,
and climatic factors were fitted by using the least squares method, and the changing rate of
forest phenology affected by latitude, year, and climatic factors was analyzed by comparing
the slope of the fitted linear function (Figure 3).

Figure 3. Schematic diagram of this method.

When x increases ∆x, y increases with the increase in x, but the changes in the ∆y are
varied, according to the fitting function. This difference was determined by the slope of the
linear function. So, when x increases ∆x, the ∆y2 is larger than ∆y1 in Figure 3. Therefore,
the slope of the linear function can satisfy the necessity of comparing the changing rate of
forest phenology affected by latitude, year, and climatic factors.

Then, the correlation coefficient was selected to explore the relationship between forest
phenology and climatic factors. The correlation coefficient was calculated as follows [55]:

R =
∑n

i=1(Xi − X)(Yi −Y)√
∑n

i=1 (Xi − X)
2
√

∑n
i=1 (Yi −Y)2

(6)

where R represents correlation coefficient between X and Y, n represents the number of
samples, X and Y represent the values in the i-th year, and X and Y represent the average
of values of all years, respectively. The values of |R| range from 0 to 1, which is larger,
meaning that the correlation relationship is stronger between two variables. In addition,
we used the p-value to test the significance of the correlation coefficient.

To analyze the association between the forest phenology and climatic factors and the
partial correlations of the forest phenology and monthly temperature, precipitation was
calculated as follows [56]:

rab[c] =
rab − rac × rbc√

(1 + r2ac)
√
(1 + r2

bc)
(7)

where rab[c] represents the partial correlation coefficient between phenological parameter a
and climatic variable b when climatic variable c was controlled; and rab, rac, and rbc represent
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the liner correlation coefficient between each other, respectively. n represents the number
of samples and m represents the number of independent variables.

2.3.3. Validation

In this study, the determination coefficient (R2), root mean squared error (RMSE), and
mean absolute percentage error (MAPE) were selected to evaluate model accuracy. The
equations are shown as follows [55]:

R2 = 1− ∑n
i=1(yi − ŷi)

2

∑n
i=1(yi − y)2 (8)

RMSE =

√
∑n

i=1(yi − ŷi)
2

n
(9)

MAPE =
1
n ∑n

i=1
|yi − ŷi|

yi
× 100% (10)

where yi is the measured values and ŷi is the predicted values for the sample i, y is the
average of all the samples, and n is the number of samples.

3. Results
3.1. Determination of the Dynamic Threshold for Vegetation Phenology

In this study, the relationship between the optimal extracted threshold and the latitude
of forest phenology remote-sensing based in northeast China was determined by using
the S-G filter and dynamic threshold method, which was combined with NDVI time-series
data and ground phenology observation data. Due to the lack of phenological observation
data from stations, only eight points in 2014 was simultaneous and available during the
research period. The scattering plot between the extracted threshold and latitude can be
found in Figure 4. This figure showed that there was a significant relationship between the
extracted threshold and latitude. Figure 4a showed the relationship between the optimal
extracted threshold of SOS (PS) and latitude. A least square method was used to fit the
function. The fitted function was defined as followed.

PS = 0.0286L − 0.963 (11)

where PS is the threshold to determine the SOS from NDVI time-series data. L is the latitude.
The R2, RMSE, and MAPE of the fitted model are 0.9589, 0.0245, and 6.617%, respectively.
The models and the coefficients all passed the significance test at a 95% level of significance.

Figure 4. The variation of the extraction threshold corresponding to the observed phenology at each
station with latitude (a) is the SOS and (b) is the EOS.

The linear relationship between the optimal extracted threshold of EOS (PE) and
latitude was also significant, and the fitting function is showed in Equation (12).

PE = 0.0212L− 0.6302 (12)
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where PE is the threshold to determinate the EOS from NDVI time-series data. L is the
latitude. The R2, RMSE, and MAPE of the fitted model are 0.9421, 0.0185, and 4.511%,
respectively. The model and the coefficient passed the significance test at a 95% level
of significance.

Then we evaluated the accuracy of the phenology extracted by using the fixed thresh-
olds of 20% [28], 30% [31], and 50% [27] used by other scholars and dynamic threshold
method developed in this study. The RMSE and MAPE between the estimated and mea-
sured SOS were calculated, and the results are shown in Table 4. The phenology extracted
by using the dynamic threshold method has a better accuracy than the fixed threshold
method with a RMSE and MAPE of 11.875 d and 7.623% for SOS and 9.012 d and 2.44% for
EOS, respectively. However, the fixed threshold method, with the values of 20%, 30%, and
50%, had lower accuracy. The fixed threshold with the value of 20% has the larger error
than other methods. The RMSE is 30.182 d for SOS and 34.846 d for EOS, and this brings
the estimated error to about one month. Followed by the fixed threshold with the value of
30% with the RMSE and MAPE of 26.716 d and 16.118% for SOS and 26.528 d and 8.373%
for EOS, respectively. Compared with other three methods, the fixed threshold with the
value of 50% has a middling level of error, but the error is about 19 d for SOS, and for EOS
and MAPE it is 14.723% and 6.118%, respectively.

Table 4. The accuracy comparation of the extracted phenology.

SOS EOS

RMSE (d) MAPE (%) RMSE (d) MAPE (%)

Dynamic threshold 11.875 7.623 9.012 2.440
Fixed threshold = 20% 30.182 22.269 34.846 11.577
Fixed threshold = 50% 19.607 14.723 19.015 6.118

The scattering plots between measured and extracted phenology using fixed and
dynamic threshold methods are shown in Figure 5. For SOS, the extracted SOS using
fixed threshold has an obvious bias from the measured SOS. SOS was underestimated for
the fixed threshold of 20%. By contrast, SOS was overestimated for the fixed threshold
of 30% and 50%. Extracted EOS using a fixed threshold had an obvious overestimating
phenomenon. It indicates that the fixed threshold method increases the estimating error
and increases the uncertain error in extracted phenology analysis.

Figure 5. The scattering plot between estimated and measured value. (a) is the SOS and (b) is the
EOS (black line is y = x).

3.2. Characteristics of Forest Phenology in the Northeast China
3.2.1. Spatial Distribution of the Forest Phenology

The characteristics of forest phenological variation in the northeast China from 2011 to
2020 were analyzed. The spatial pattern of the mean forest SOS in NEC from 2011 to 2020 is
shown in Figure 6. The variation of the forest SOS showed significant spatial heterogeneity
in the study area. The spatial distribution of the mean SOS exhibited a correlation with
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the latitude as the southern part was earlier than the northern part. The mean SOS in the
NEC primarily occurred between 95th and 135th day, which accounted for 83.46% of the
study area, and the average of the SOS in the whole research area was 116 days. The forest
located 45 degrees south of the northern latitude had an earlier SOS, between the 95th and
105th day, whereas the area with an average SOS later than 135 days was mostly located
in the northernmost Greater Khingan Mountains, which principally distributed in the CF
and had a lower temperature. Factors leading to this spatial distribution of SOS were not
only related to temperature but also to the type of tree species, because the south of NEC
was dominated by broadleaf and mixed forest, while the north of NEC was dominated by
coniferous and mixed forests (see Figure 1).

Figure 6. The spatial distribution of the average SOS (start of the growing season) from 2011 to 2020
in the northeastern China.

The mean EOS were mainly in ranges of 300 days to 330 days, which is late October and
late November, and the average EOS was 315th days in the northeastern China (Figure 7).
The characteristics of the forest EOS in the northeastern China from 2011 to 2020 also had
obvious heterogeneity. From the northwest to the southeast of the study area, the average
of the EOS was gradually delayed, which showed significantly variation according to the
latitude. The forest in the southeastern Changbai Mountains, near the coast, had relatively
late EOS dates, while the EOS in the northernmost Greater Khingan Mountains were earlier.

The average LOS gradually lengthened from north to south (Figure 8). The average
of the LOS was mainly in ranges of 150 days to 230 days with the counting of pixels for
85.28%. The average LOS in the study area was 199 days. The LOS was longer in coastal
areas at low latitudes in the east of Liaoning Province. The regions with the LOS greater
than 230 days were mainly distributed in the south of 43◦ N and east of 122◦ E, accounting
for 9.84% of the research area. The shortest LOS was less than 150 days in the middle of the
Greater Khingan Mountains in the Heilongjiang Province.

Long-term variations of phenology could reflect the state of vegetation grown. In
order to explore the relationship between forest phenological changes and latitudes in
NEC from 2011 to 2020, we divided the study area into 15 parts by 1 degree latitude and
calculated the average forest phenological parameters for each part. The results can be
found in Figure 9. The results indicated that the SOS of the forest was sightly delayed with
the increase of latitude, and the SOS was delayed by 2.33 days per latitude with the increase
in latitude. The event of forest EOS would shift to an earlier time with the increase of
latitude, and EOS increased by 2.22 days per latitude with the increase of latitude. The LOS
of forest decreased with increasing latitude, and LOS decreased by 4.55 days per latitude
with increase in latitude.



Remote Sens. 2022, 14, 2909 12 of 28

Figure 7. The spatial distribution of the average EOS (end of the growing season) from 2011 to 2020
in the northeast China.

Figure 8. The spatial distribution of the average LOS (length of growing season) from 2011 to 2020 in
the northeast China.
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Figure 9. The trends of phenological parameters in northeast China from 2011 to 2020.

3.2.2. The Interannual Variability and Trends of Forest Phenology

Forest phenology fluctuated significantly in NEC from 2011 to 2020 and the interannual
variation trend was obvious (Figure 10). The SOS of forest phenology showed a weak
advancing trend of approximately 0.29 d/a. The EOS showed a weak delayed trend with a
rate of 0.47 d/a. Figure 10 also showed that the variation range of LOS was larger, followed
by the EOS and SOS. Overall, the LOS displayed sizeable increases of approximately
0.76 d/a. These trends may be related to global warming because the rising temperature
advanced the spring and the cooling temperature trend delayed in the autumn.

Figure 10. Interannual changes of forest phenology in northeast China from 2011 to 2020.

3.3. The Variation and Trends of Phenology in Different Forest Types
3.3.1. The Spatial Distribution of Phenology in Different Forest Types

In order to investigate whether the phenological characteristics of the different for-
est types changed with latitudes, we calculated the average phenological parameters of
three forest types at different latitudes and analyzed and compared the results. The results
showed that all three parameters of different forest types showed fluctuations with different
ranges. As per the findings, the following can be discerned (Figure 11): as the latitude
increased, the SOS tended to delay. It can clearly be seen that the sensitivity of BF and MF
to latitude changes were significantly higher than CF. The SOS of the MF was delayed by
approximately 2.51 days per latitude, while the SOS of CF delayed 1.70 days per latitude.
The SOS of BF was showed a largest delaying trend with a rate of 2.68 days per latitude.
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Figure 11. The variation trend of SOS in different forest types in northeast China.

The EOS of different forest types showed a significant delayed trend with the increase
in the latitude (Figure 12). The EOS of BF was the greatest significant with a rate of 2.65 days
per latitude. Followed by MF, the changing rate of the EOS of MF was 2.47 days per latitude.
The CF had the smallest changing rate of 2.0 days per latitude, compared with other two
forest types.

Figure 12. The variation trend of EOS in different forest types in northeast China.

The variation range of LOS was affected by the EOS and SOS. The LOS of different
forest types showed a significant decreasing trend with the increase of latitude (Figure 13).
The LOS of BF had the greatest changing rate of 5.33 days per latitude. The LOS of MF was
4.98 days per latitude, and the CF had the smallest changing rate of 3.69 days per latitude,
compared with other two forest types.
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Figure 13. The variation trend of LOS in different forest types in Northeast China.

3.3.2. The Interannual Variation and Trends of Forest Phenology in Different Forest Type

The annual variation of phenology in different types of forest from 2011 to 2020 can be
found in Figure 14. The SOS of all three forest types demonstrated an advancing trend year
by year in the study area. The MF had the most obvious trend of advance with the rate
0.45 days per year and changing rate of BF was 0.28 days per year. While the CF changed
weakly with 0.20 days per year.

Figure 14. The interannual changes of SOS in different forest types from 2011 to 2020.

All forest types had delayed EOS, whereas MF exhibited the most considerable EOS
of all with the rate of 0.58 days per year (Figure 15). The interannual changing rate of EOS
of the CF was 0.46 days per year. The EOS changing rate of MS was weaker than other
two forest types with a rate of 0.32 days per year.

The variation of LOS displayed an extended trend due to the combined effect of SOS
and EOS, and the annual change rate of all was greater than 0.6 days per year, with the
most specific change range was BF, followed by MF and CF (Figure 16). The interannual
changing rate was 0.86, 0.77 and 0.66 days per year.
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Figure 15. The annual changes of EOS in different forest types from 2011 to 2020.

Figure 16. Interannual changes of LOS in different forest types from 2011 to 2020.

3.4. Effects of Climate Factors on Forest Phenology in the Northeast China
3.4.1. Effects of Precipitation on the Forest Phenology

Affected by geographical and climatic factors, there are significant differences in the
precipitation and temperature in different regions of the NEC from 2011 to 2020. The maxi-
mum difference in the annual cumulative precipitation is 500 mm. As shown in Figure 17,
the SOS had a significant correlation with the annual cumulative precipitation (P < 0.01).
With the increase of precipitation, the phenology of forests showed a trend of advanced
SOS and delayed EOS, which extended the LOS. The response of the three phenological
parameters to the annual cumulative precipitation from large to small was LOS, EOS, and
SOS. The SOS advanced 2.9 days per 100 mm, while the EOS and LOS delayed 4.3 days per
100 mm and 7.1 days per 100 mm, respectively.
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Figure 17. Response of Forest Phenology to Annual Cumulative Precipitation in northeast China
from 2011 to 2020.

In this study, we analyzed the response of different forest phenological parameters to
annual cumulative precipitation (Figure 18). The SOS in the BF area was obviously corre-
lated with annual cumulative precipitation at a rate of advanced 3.7 d/100 mm (P < 0.05).
With the increase in annual cumulative precipitation, the EOS of all forest types tended
to delay, and the greatest change in MF area was approximately 4.6 d/100 mm, while the
CF delayed at a rate of 3.4 d/100 mm (P < 0.01). The annual cumulative precipitation had
significant effects on LOS of all forest types (P < 0.01). With the increase in precipitation, the
LOS of each forest type was extended. The sensitivity of the LOS of different forest types to
annual cumulative precipitation is, from high to low, BF, MF, and CF. Specifically, the LOS
of BF, MF, and CF at rates of 8.5 d/100 mm, 7.5 d/100 mm, and 4.8 d/100 mm, respectively.

Figure 18. Cont.
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Figure 18. Responses of phenology to precipitation of different forest types in northeast China from
2011 to 2020. (A) SOS of different forest types; (B) EOS of different forest types; (C) LOS of different
forest types.

3.4.2. Effects of Temperature on Forest Phenology

Climate change has been more evident in NEC over the past few decades [57].
Figure 19 shows the response of forest phenology to temperature in northeast China from
2011 to 2020. Compared with the annual accumulated precipitation, the impact of annual
average temperature on forest phenology was more significant (P < 0.01). With the increase
in temperature, the northeast forest showed a trend of early advanced SOS, delayed EOS,
and prolonged LOS. The responses of the three phenological parameters to the annual
average temperature from large to small were LOS, SOS, and EOS. With the average annual
temperature increasing by 1 ◦C, the SOS was 2.76 days early, the EOS was delayed by
2.6 days, and the LOS was extended by 5.36 days.

Figure 19. Responses of forest phenology to the annual mean temperature in different forest types in
northeast China from 2011 to 2020.

The response of the phenological parameters to the annual average temperature
changes in different forest areas are shown in Figure 20. Overall, the annual average
temperature had significant effects on the three phenological parameters in all forest types
(P < 0.01). The models and the coefficients shown in the figure passed the significance test
at the 95% level of significance by using SPSS. The response of BF to the annual average
temperature was the most evident, followed by MF, both of which were significantly
higher than those of CF. With the increase in annual average temperature, the phenology of
different forest types was characterized by early SOS, delayed EOS, and prolonged LOS.
In terms of the SOS, when the temperature increases by 1 ◦C, BF advanced 4.03 days, MF



Remote Sens. 2022, 14, 2909 19 of 28

advanced 3.59 days, CF advanced 1.69 days. The LOS, affected by the variation of SOS and
EOS, had the most obvious response to the annual average temperature. When the average
annual temperature increased by 1 ◦C, the EOS of BF was delayed by 3.51 days, the EOS of
MF was delayed by 3.50 days, and the EOS of CF was delayed by 1.76 days. The lengthening
of the growing season of BF is most obvious with a rate of 7.53 days when the temperature
increased 1 ◦C. The LOS of MF extended 7.09 days with the temperature increasing by 1 ◦C,
while the LOS of CF area was prolonged at a rate of 3.45 d per 1 ◦C increase.

Figure 20. Responses of phenology to temperature in different forest types in northeast China from
2011 to 2020. (A) SOS of different forest types; (B) EOS of different forest types; (C) LOS of different
forest types.

The response of the SOS and EOS to the pre-season temperature changes are shown in
Figure 21. An average temperature of the past December to the current May was linearly
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related to the current SOS with a rate of −2.23 d/1 ◦C (P < 0.01). This means that when the
pre-season temperature increases by 1 ◦C, the SOS was 2.23 days earlier. Similar results can
be found for EOS. The EOS was obviously correlated with the average temperature of the
current June to November at a rate of advance of 3.083 d/1 ◦C (P < 0.01). With the increase
in the average temperature of the current June to November, the EOS of the forest tended to
delay, and the EOS was delayed by 3.083 days. This result was similar to the results of the
annual temperature with the SOS beginning 2.76 days earlier and EOS delayed by 2.6 days
when the average annual temperature increased by 1 ◦C.

Figure 21. Responses of phenology to pre-season temperature in northeast China from 2011 to 2020.
(A) is SOS; (B) is EOS.

3.5. Time-Lag Effect of Climatic Change on the Forest Phenology

Over the past decades, far more studies have found that the response of vegetation
phenology to climatic factors have time-lag effects [58], that the phenology of vegetation
could occur and change only after a period of cumulative transformation under specific
climatic conditions. In addition, many scholars have demonstrated that the variation of
vegetation was correlative with the preseason climatic changes. In order to study the
response mechanism of forest vegetation phenology to climate change, we analyzed the
correlation between the forest phenological parameters, monthly mean temperature, and
the monthly accumulative precipitation of preseason. Compared with the simple linear
correlation coefficient, the partial correlation coefficient can better reflect the relationship
between the two variables. In this study, we investigated the correlations between the
SOS and temperature and the precipitation from November of the previous year to May
of the current year. The correlations between the EOS and temperature and precipitation
from May to November of the current year. In order to avoid the impact of climate change
in non-forest areas, monthly temperature and precipitation were extracted from areas
consistent with forest distribution.

3.5.1. Time-Lag Effect of Climatic Change on Forest Phenology

The partial correlation coefficients between the SOS of forest and temperature were
calculated and the results are shown in Figure 22A. The SOS of the forest had a significant
negative correlation with pre-season temperature measured from the December of the
previous year (P < 0.01); the temperature in December of the previous year and January
of the current year had the greatest correlation with SOS. It could be concluded that the
temperature in the winter of the previous year largely affected the SOS, which was more
significant than the spring temperature. In addition, the SOS had a significantly negative
correlation with precipitation in the November of the previous year and April and May
of the current year. The SOS had a strongly negative correlation with precipitation in the
November of the previous year (r = −0.36, P < 0.01) and April of the same year (r = −0.29,
P < 0.01). However, this relationship was not significant for other months. It was notable
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that the SOS had a weakly positive correlation with precipitation in January of the current
year, indicating that increased precipitation at the beginning of year may delay the SOS.

Figure 22. Partial correlation coefficient between forest phenological parameters and temperature
and precipitation. (A) is SOS; (B) is EOS. Note: * p < 0.05, ** p < 0.01.

The calculated results of the partial correlation between the EOS and temperature and
precipitation can be found in Figure 22B. The EOS had a significant positive correlation with
temperature in seven months of the current year, which meant that the higher temperature
would delay the EOS. The temperature from August to October of the current year had
stronger correlation with EOS than the summer. Aside from September of the current year,
other monthly precipitation had positive correlation with EOS, but only the relationship
between EOS and precipitation in May, June, and August passed significance test, which
indicated that more precipitation in summer would lengthen the time of the growing season
of forest and lead to the delay of the event of EOS.

3.5.2. Time-Lag Effect of Climatic Change on the Phenology of Different Forest Types

We further discussed the relationship between the phenology of different forest types
and climatic factors. Figure 23 demonstrated the relationship between the SOS of different
forest types and temperature and precipitation. For the three forest types, there was a
significant negative correlation with the pre-seasonal temperature, while the correlation
coefficients between the SOS of all forest types and monthly precipitation did not pass the
significance test. These results imply that the temperature increase in winter and spring,
could contribute to the advanced SOS of all three forest types. BF is more sensitive to
the variation of temperature than others. Compared with the temperature, precipitation
also had a negative relationship with the SOS of three tree types, but this trend was not
significant and did not pass the significance test. However, a very interesting fact is that
the precipitation of January and March of the current year had a passive effect on the SOS.
It meant that more rain in these two months would delay the beginning of the growing
season of forest. A possible reason for this is that such early precipitation can slow down
warm weather and thus lead to a delay in plant growth.

Figure 23. Partial correlation coefficient between the SOS of different forest types and temperature and
precipitation. (A) Broadleaf Forest, (B) Coniferous Forest, (C) Mixed Forest. Note: * p < 0.05, ** p < 0.01.
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Figure 24 shows the response of the EOS in different forest types to the monthly
temperature and precipitation. We found that the EOS of all three types had a significant
positive correlation with temperature from May to November of the current year. In
particular, the higher temperature in autumn could result in the prolonged EOS of all. In
terms of precipitation, the EOS of BF had a positive correlation with precipitation in May,
June, and August (P < 0.01), while the EOS of CF had positive correlation with precipitation
only in May. The results may indicate that increased precipitation in spring and summer
could delay the EOS of BF. Similarly, it can also be found that the precipitation in September
of current year had a negative effect on the EOS. This meant that more rain in this month
would speed up the end of the growing season of the forest. This may be related to the
impact of precipitation on temperature.

Figure 24. Partial correlation coefficient between EOS of different forest types and temperature and
precipitation. (A) Broadleaf Forest, (B) Coniferous Forest, (C) Mixed Forest. Note: * p < 0.05, ** p < 0.01.

4. Discussion
4.1. Variation of Forest Phenology in the NEC

Vegetation phenology is an important indicator of monitoring the vegetation dynamics
and changes in the climate and natural environment. More and more research on phenology
by using remote sensing are emerging. The normalized difference vegetation index (NDVI)
derived from remote-sensing has been widely used to detect the SOS and EOS by using
NDVI time-series data. In this study, we used the MODIS NDVI products to extract the
SOS and EOS of northeast China. Compared with other results, the SOS and EOS extracted
results are consistent with other research. Zhao et al. extracted the SOS and EOS by using
GIMMS NDVI3g dataset and concluded that the SOS ranged from 110 days to 150 days
and EOS ranged from 270 days to 320 days [31]. Yu et al. concluded that the SOS in
northeast China from 1982 to 2015 ranged from the 100th DOY to the 140th DOY of the
year, the EOS in northeast China from 1982 to 2015 ranged from the 280th DOY to the
320th DOY [30]. These results coincide with the results of this study, which shows that the
extracted phenology has a certain reference value and reliability.

Most previous studies chose fixed thresholds to extract vegetation phenology, which
might result in some deviations. Li et al. defined SOS and EOS as 20% of annual LAI
amplitude by using the dynamic method and found that the selection of the threshold
itself has certain experience, which would affect the accuracy of phenology extraction to
a certain extent in the northeast China [59]. You et al. selected the 50% as the threshold
to determine the SOS and EOS of vegetation and concluded that the average of LOS
was 135.2 days and significantly increased with a slope of 2.94 days per decade in the
Upper Amur (Heilongjiang) River Basin in northeast Asia [60]. In this research, we mainly
discussed the spatiotemporal variation of forest phenology in northeastern China from
2011 to 2020. The results of the variation of forest phenology were described in this study,
which showed the varying degrees of fluctuation in the NEC from 2011 to 2020. Generally,
our results demonstrated that the average SOS of the forest was primarily distributed from
90th to 135th DOY with an early trend, which is consistent with numerous former studies.
Zhao et al. discovered that the mean SOS dates ranged from 115th to 140th DOY in the
Changbai Mountains, Lesser Khingan Mountains, and Greater Khingan Mountains [31].
Guo et al. concluded that early SOS was distributed between 100th and 130th DOY in forest
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areas in the NEC from 1982 to 2014 [61]. Tang et al. found that the SOS of forests ranged
between 105th to 130th DOY in Greater Khingan Mountains [62]. The EOS of forest largely
displayed from 300th to 330th DOY. Qiu et al. found that EOS occurred between DOY 260
and 270 in the Greater Khingan Mountains, while the EOS of BF in southern Lesser Khingan
Mountains and Changbai Mountains occurred between 280th and 300th DOY [63]. Liu
et al. found that the EOS of deciduous needle-leaf forest was earlier than other vegetations
in temperate China [64]. However, different studies used different datasets and methods,
which resulted in differences from each other. In spite of this, all studies concluded that
the EOS was advancing earlier in the Greater Khingan Mountains, while the forest in
the southwestern Changbai Mountains near the coast had relatively late EOS dates. The
possible reason could be that there are relatively high temperatures at lower latitude, which
is beneficial for delaying leaf senescence.

From a spatial point of view, the phenology of all three forest types displayed sig-
nificant spatial heterogeneity as well as differences between each other with increasing
latitude in the NEC. From southeast to northwest in the study area, the multiyear average
SOS advanced at a rate of 2.33 days per latitude and the multiyear mean EOS was delayed
at a rate of 2.22 days per latitude, respectively, which mainly resulted in the difference of
LOS. As a whole, the LOS of forests was illustrated to be longer along coastal areas at low
latitude and shorter in inland areas at high latitude.

Many previous studies concentrated on the variation of mean phenology at a regional
scale, while ignoring the spatial heterogeneity among different forest types. In this study,
we also analyzed the changes of phenological parameters in three forest types in NEC and
demonstrated that the variations of forest phenology were varied across different forest
types. We fitted the relationship between phenology parameters and climate factors by
using the least squares method and the slope of the linear function can be used to indicate
the changing rate. Then, we compared the slope between the latitude, annual average
temperature, and annual cumulative precipitation and phenology parameters of different
forest types. Overall, it was pointed out that all three types of forest displayed the sightly
advanced SOS and delayed EOS. Yu et al. found that the SOS of deciduous needle-leaf
forests was advanced by 0.24 d/a, while the EOS was delayed at a rate of 0.36 d/a from
1982 to 2015 [30]. Zhao et al. concluded that the EOS of BF in eastern Liaoning was delayed
0.23 d/a from 1982 to 2012 [31]. Our findings were in line with previous studies. With
the influence of SOS and EOS, the LOS of all forests showed a prolonged trend, with the
changing rates of 0.76 d/a. To be more specific, the changing range of BF was the largest,
followed by MF and CF.

4.2. The Relationship between Forest Phenology and Climatic Factors

With the increasing concern of global climate change, many studies have proposed
that climate change has a substantial impact on vegetation phenology, and the variation
of vegetation phenology may also feed back to climatic factors, such as temperature and
precipitation. Previous research has proven that the temperature is the most important
factor for the growth of vegetation. It is noteworthy that warming temperatures in spring
may have an impact on the advance of SOS, especially in the Northern Hemisphere [12].
In this study, we analyzed the three phenological parameters of forest responses to the
temperature and found that the SOS of forests had negative correlations with temperature,
as the SOS was advanced by 2.76 days with an increase of 1 ◦C. It can be concluded that the
warmer temperatures in spring would stimulate an early emergence from winter dormancy,
resulting in an advanced phenology in the forest [13]. In addition, the average EOS of
forests in NEC were delayed at a rate of 2.60 d/1 ◦C, which is consistent with other research.
Allison et al. demonstrated that air temperature could reasonably predict the timing of leaf
senescence for deciduous forests throughout the Northern Hemisphere [65]. In addition to
air temperature, precipitation also contributes to the timing of forest phenological events.
The SOS was advanced 2.90 d if the annual cultivate precipitation increased by 100 mm,
while the EOS showed a significant positive correlation with precipitation and the LOS of
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forests was prolonged by 7.10 d. Tang et al. studied the relationship between the phenology
and climatic factors, and concluded that the changes of both temperature and precipitation
resulted in extended LOS in forest region in the Greater Khingan Mountain Area [62].

We further explored the responses of the phenology in different forest types to varia-
tions on precipitation and temperature. As a whole, BF were largely sensitive to precipita-
tion and temperature changes, followed by MF and CF. The reason for this phenomenon
may be that BF are widely distributed in the southwestern Changbai Mountains near the
coast, where the temperature is warmer and humidity is higher, contributing to a higher
demand for photosynthesis and water transpiration [58]. Generally, the ecosystems at high
latitudes display significant correlation with temperature, while temperate areas are more
correlated with precipitation [33]. Liu et al. concluded that evergreen needle-leaf forests
had a later EOS due to increased temperature and precipitation based on the time-series
GIMMS NDVI records from 1982 to 2011 [64].

4.3. Partial Correlation Analysis between Forest Phenology and Climatic Factors

Over the past decades, many researchers have revealed the time-lag effect while
studying the responses of vegetation phenology to climatic factors [33,66]. Wu et al.
proposed that the time-lag effects of different vegetation types significantly varied from the
same climatic factor and that the same vegetation type also had different responses to the
different climatic factors [58]. The results in this study show that the increased temperature
was the main factor in delaying the SOS and EOS, and the warmer temperature in winter
had a greater impact on SOS than in the spring. Fu et al. discussed the spatial correlation
between the growing degree days (GDD) requirement of different vegetation types and
temperature and precipitation in the winter of previous year and concluded that cold winter
temperatures mainly effected the GDD, which was largely determined by the SOS [67]. Hou
et al. analyzed the partial correlation between the temperature and vegetation phenology
adding precipitation as a control variable and concluded that the SOS had a negative
relationship with the spring temperature, and an increasing daytime temperature ensured
the heat required for vegetation growth advanced the SOS [68]. In addition, compared with
the summer, the warmer autumn seems to have a greater impact on the EOS. It could be
concluded that the warmer temperature would result in the later autumn, which would
prolong the time of both respiration and photosynthesis and delay leaf senescence [13].
Tang et al. discussed the time-lag effect of climatic factors on the forest phenology in the
Greater Khingan Mountain Area and confirmed that less precipitation and warmer springs
result in advanced SOS, while cumulative summer temperatures played a major role in
prolonged EOS [62]. The reason that this phenomenon occurred was that the CF, largely
distributed in the middle and high latitudes in the Northern Hemisphere, has a strong
demand for water, while temperature and solar radiation largely affected their growth [58].

The variation of monthly precipitation weakly affected forest phenology, and while
the impact of precipitation on phenology varied from month to month, the increased precip-
itation in summer led to delayed EOS. Huang et al. studied the effects of rain-use efficiency
on vegetation phenology of the Songnen Plain and concluded that increasing precipitation
would delay the EOS, particularly in the forest areas in the north, where the vegetation
in arid and semiarid areas would be more sensitive to precipitation [69]. Yun et al. con-
cluded that the increase in precipitation in winter affects the trends of vegetation growth
in the spring, even in temperature-limited ecosystems [70]. The phenological variation of
different forest types has a similar response to climatic factors, but BF was more sensitive
to climate change. Clinton et al. studied the association of vegetation phenology with
precipitation and temperature on a global scale and proposed that the boreal forest had
the lowest correlations with precipitation, indicating that pre-season humidity may have
stronger correlations with boreal forest than the precipitation of the same season [33].
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5. Conclusions

In this study, we used the dynamic threshold method combined with ground-based
data to extract the phenology of forests, using MODIS NDVI time-series data, reconstructed
with the S-G filter, in the northeast China from 2011 to 2020. The results concluded that
there was a relationship between threshold and latitudes, and the suitable threshold of SOS
increased at a rate of 3%/1 ◦C, while the suitable threshold of EOS increased 2%/1 ◦C. The
suitable threshold for detecting phenology occurred in spatial heterogeneity and varied
between latitudes. Then, the spatio-temporal variations of forest phenology were discussed.
The SOS of forest in northeast China was mainly concentrated between early April to
mid-May and showed the spatial characteristics of occurring earlier in the south and later
in the north. The EOS of forests was generally later than the end of October and showed
the spatial characteristics of occurring earlier in the north and later in the south. The LOS
of forests mainly ranged between 170th to 210th DOY, whereas the a longer LOS was seen
in the coastal areas at low latitudes and a shorter LOS was seen in inland areas at high
latitudes. In addition, the SOS of forests were advanced at a rate of 0.29 d/a, while the EOS
were delayed at a rate of 0.47 d/a, so the LOS of forests had a significant extension during
the past decade. Finally, the responding mechanism between the phenological change and
climatic factors was considered. It was found that all forest types were significantly sensitive
to the variation of temperature. Pre-seasonal temperature, especially during the previous
winter had a significant effect on the SOS of the current year. The autumn temperatures of
the current year were the main climatic factors affecting EOS. As a whole, the broadleaf
forests and mixed forests were the most sensitive to climatic factors, followed by the
conifer forest. This research can provide a reference for understanding the phenological
change characteristics of the boreal forest ecosystem and reveal the phenological response
mechanism of the boreal forest ecosystem against the backdrop of global warming.
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