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Abstract: Debris flow risk comprehensively reflects the natural and social properties of debris flow
disasters and is composed of the risk of the disaster-causing body and the vulnerability of the carrier.
The Bailong River Basin (BRB) is a typical mountainous environment where regional debris flow
disasters occur frequently, seriously threatening the lives of residents, infrastructure, and regional
ecological security. However, there are few studies on the risk assessment of mountainous debris
flow disasters in the BRB. By considering a complete catchment, based on remote sensing and GIS
methods, we selected 17 influencing factors, such as area, average slope, lithology, NPP, average
annual precipitation, landslide density, river density, fault density, etc. and applied a machine
learning algorithm to establish a hazard assessment model. The analysis shows that the Extra Trees
model is the most effective for debris flow hazard assessments, with an accuracy rate of 88%. Based on
socio-economic data and debris flow disaster survey data, we established a vulnerability assessment
model by applying the Contributing Weight Superposition method. We used the product of debris
flow hazard and vulnerability to construct a debris flow risk assessment model. The catchments
at a very high-risk were distributed mainly in the urban area of Wudu District and the northern
part of Tanchang County, that is, areas with relatively dense economic activities and a high disaster
frequency. These findings indicate that the assessment results provide scientific support for planning
measures to prevent or reduce debris flow hazards. The proposed assessment methods can also
be used to provide relevant guidance for a regional risk assessment of debris flows in the BRB and
other regions.

Keywords: risk assessment; hazard; vulnerability; debris flows; Bailong River Basin

1. Introduction

Natural disasters can induce the loss of human life and economic activities [1]. World-
wide, debris flows are one of the most common and destructive disasters in mountainous
areas [2]. Recently, frequent earthquakes, extreme weather, and wildfires have significantly
increased the frequency and scale of debris flow activities [3]. In mountainous areas because
of geographical constraints, residential buildings and infrastructure are typically located in
the accumulation fan area at the outlet of valley watersheds, causing them to face a high
risk of debris flow [4–6]. With the rapid economic development and expansion of human
settlements and activities, the scale of buildings in mountainous areas in China continues
to expand [7]. The potential risk of losses from disasters has also increased dramatically
and continues to cause the loss of life, agricultural land, infrastructure, and buildings [8].
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To mitigate the adverse effects of debris flow hazards, risk assessment is an appropriate
quantitative method at the regional and national levels [9–12]. Debris flow risk assessment
is the process of evaluating and estimating the possibility of debris flows and the loss of
life, property, and economic activities. An effective scientific assessment of debris flow risk
can guide the effective implementation of disaster relief actions, provide a basis for disaster
prevention, mitigation planning and decision-making, and allow the assessment of disaster
prevention benefits [13]. Although debris flow risk assessments are a challenge for global
mountain hazard reduction [14], scholars have conducted research on debris flow risk
assessment [15–18]. Varnes (1984) [19] asserted that the debris flow risk can be calculated
by multiplying the hazard, vulnerability, and the number of debris flows; and based on GIS
technology and statistical analysis methods, debris flow disaster areas are easily delineated.
This method is widely used in debris flow risk assessment [20]. The United Nations (1991)
proposed a definition of geological disaster risk, stating that debris flow risk is the product
of the risk of debris flow and the vulnerability of the disaster-bearing bodies.

There are four steps in debris flow assessment: determination of assessment scope,
hazard assessment, vulnerability assessment, and risk calculation. The core parts are debris
flow hazard assessment and vulnerability assessment. Debris flow hazard is a measure
of the degree of threat of extreme events, which theoretically refers to the probability
of a certain size and type of debris flow, occurring in a certain area, during a certain
time [20]. The factors used in debris flow hazard assessments can be divided into topo-
graphic, geological, land use/land cover, and hydrological factors [21]. Many researchers
have developed qualitative and quantitative analytical methods for various debris flow
hazard assessments [22]. These methods include inventory analysis [23,24], logistic regres-
sion [21,25], and multivariate statistical analysis models based on GIS and remote sensing
techniques [26,27]. However, these methods cannot resolve the nonlinear relationships
between the considered variables. With the recent development of geographic informa-
tion science, data mining and machine learning algorithms (MLAs) are increasingly being
used to assess geological hazards [28]. These techniques include ANNs (Artificial Neural
Networks) [29,30], SVMs (Support Vector Machines) [31,32], GA (Genetic Algorithm), and
decision tree models [31,33]. Therefore, in this study, we used MLAs to evaluate the hazard
of regional debris flow [34].

Debris flow vulnerability is defined by the characteristics associated with debris
flow hazards [35,36], including losses for all aspects of individuals and communities,
with a significant interaction between society and nature [37]. Our understanding of
regional vulnerability has improved through research on a combination of indicators,
case studies, and stakeholder-driven processes and scenario-building approaches [13,38].
Most studies focus on exposed buildings, infrastructure, and lifelines [39], such as road
networks, all of which are applicable on a local scale [40]. Few studies have focused on
the vulnerability of the environment, agricultural land, or the economic vulnerability of
affected communities and businesses [41]. Moreover, there is a lack of studies that address
the multidimensional nature of vulnerability by using multiple data sources to calculate
region-scale vulnerability [20,42]. Contributing Weight Superposition (CWS) models are a
useful solution [43] when the number of evaluation dimensions available is insufficient.
It allows all natural, economic, and social vulnerability factors to be incorporated into an
assessment system. Additionally, individual factors and various combinations of factors
can be assigned different weights, facilitating the use of decision analysis to identify the
most vulnerable factors. The predicted weight of each indicator is completely determined
by objective data, overcoming the subjective defects in manual scoring. Therefore, it is
reasonable to use the CWS method to obtain information on regional vulnerability [43].
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Most researchers choose large watersheds as research objects for risk assessments
of debris flow hazards, and the practical significance of the assessment results should be
addressed [25,27]. Several catastrophic debris flows have occurred in Southwest China,
causing severe economic losses and casualties [44,45]. Among them, the density of debris
flow ditches in the Bailong River Basin (BRB) is among the highest in the country. The
Zhouqu debris flow disaster occurred in this watershed, resulting in 1557 deaths and
284 missing people [46]. Owing to the spatial superposition of densely populated and
disaster-prone areas, disaster risks will gradually increase as the hazard of debris flows and
the vulnerability of elements increases [8]. Therefore, assessing debris flow hazards and
areas at a high risk are crucial factors for disaster prevention and mitigation in mountainous
areas [47]. We established a database of debris flow disasters in the BRB by conducting
detailed surveys and collecting a large amount of data. We innovatively combined MLA
and CWS models to assess debris flow risk. Our research goals were as follows: (1) to select
appropriate influencing factors, and to assess the hazard of debris flow based on artificial
intelligence methods; (2) to establish an index system and use the CWS model to assess
the vulnerability of debris flow in the basin; (3) to carry out debris flow risk assessment
for catchment areas and on the systematic analysis of its influencing factors. Our research
results are not only conducive to enriching and perfecting the theory of debris flow research
and risk assessment methods but also have important practical guiding significance for the
construction of a harmonious society and the sustainable development of the ecology in
the study area.

2. Study Area

The BRB is between 32◦36′–34◦24′N, 103◦00′–105◦30′E, with a basin area of 18,324.8 km2,
including Zhouqu County, Diebu County, Tanchang County, Wudu District, and Wen
County. The topography of the basin is dominated by high mountains and deep valleys [48],
resulting in large fluctuations in altitude from 602 m to 5280 m (Figure 1). Affected by
the Asian monsoon, the precipitation presents an obvious uneven spatial and temporal
distribution. In terms of time, the precipitation is concentrated in June–September [49],
and most rainstorms have a high intensity, accounting for approximately 75% of the
annual precipitation. Spatially, the annual precipitation decreases from the southeast to
the northwest [7], and precipitation increases gradually with an increase in altitude. The
surface is mostly covered with Quaternary loess layers and thick, loose accumulation
materials. Affected by the Wenchuan earthquake in China on 12 May 2008, the stability
of the mountains and geotechnical structures in this area was severely damaged, which
provided sufficient material conditions for the occurrence of debris flows [50]. Debris flows
in the basin are densely distributed [7]. There are 206 debris flow trenches with an area of
more than 1 km2, which are distributed mainly below Zhouqu County along the banks of
the Bailong River fold belt.
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Figure 1. The location of Bailong River Basin and boundary extraction results of 1986 catchments.

3. Data and Methods

The basic data we used includes topographic data, remote sensing image, geological,
disaster, rainfall, soil, and socio-economic data. By considering a complete catchment, we
established a hazard and vulnerability assessment model and system by applying machine
learning algorithms (MLAs) and contributing weight superposition (CWS), respectively, to
evaluate the risk of debris flow based on the above data. We used the product of debris
flow hazard and vulnerability to construct a debris flow risk assessment model. Figure 2
shows a flowchart of this study.
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3.1. Data Source and Pre-Processing

We collected data on the BRB from multiple sources. Based on the ArcGIS platform,
we used zonal statistical tools to obtain catchment scale data (Table 1).
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Table 1. Factors for risk assessment.

Risk
Assessment Factors Sub-Factors Unit Description Scale/Resolution Soure

Indicators for
hazard

assessment

Geomorphological
conditions

Digital elevation model
(DEM) m The average elevation of

a catchment. 30 m
Chinese Geospatial Data Cloud

(https://www.gscloud.cn/ (accessed on
15 June 2022))

Catchment area (Area) km2 The total area of
a catchment. 30 m DEM

Relative height
difference (RED) km The elevation difference in

a catchment. 30 m DEM

Average slope (AS) ◦ The average slope of a
catchment. 30 m DEM

Relief ratio (Rr) ◦
The ratio of the elevation
difference to the length of

main channel length.
30 m DEM

Geological structure

Landslide density (LD) - The point density
of landslide. 30 m

The landslide distribution data were obtained
by the research team through remote sensing

image interpretation and field verification.

Lithology (Litho) - The hardness and interlayer
structure of rocks (Table 2). Shpfile 1:200,000 regional geological map

River density (RD) - The linear density of
the river. 30 m

National Gatalogue Service For Geographic
Information (https://www.webmap.cn/

commres.do?method=result100W (accessed on
15 June 2022)))

Fault density (DF) - The line density of faults. 30 m 1:200,000 regional geological map

Peak ground
acceleration (PGA) g The average PGA in

a catchment. Shpfile 1:200,000 regional geological map

https://www.gscloud.cn/
https://www.webmap.cn/commres.do?method=result100W
https://www.webmap.cn/commres.do?method=result100W


Remote Sens. 2022, 14, 2942 6 of 29

Table 1. Cont.

Risk
Assessment Factors Sub-Factors Unit Description Scale/Resolution Soure

Surface vegetation
and soil

Net primary
Productivity (NPP) kg cm−2a−1 The annual vegetation NPP

in a catchment. 500 m

The MOD17A2H data product from the
National Aeronautics and Space

Administration
(https://ladsweb.modaps.eosdis.nasa.gov

(accessed on 15 June 2022)).

Construction land
equivalent conversion

coefficients (CI)
- See Table 3 30 m Manual visual interpretation

using the ArcGIS platform

Sand content (Sand) g/kg The average percentage of
sand in the soil. 250 m

Soil Grids (https://soilgrids.org/ (accessed on
15 June 2022)).Soil depth (SD) cm The average soil depth 250 m

Soil bulk density (SBD) cg·cm− 3 The average soil
bulk density. 250 m

Rain conditions Annual rainfall (AR) mm Annual rainfall at
each catchment. 1000 m

National Earth System Science Data Center
(http://www.geodata.cn (accessed on 15 June

2022)).

Days of rainstorm (ARD) day
Number of days of

precipitation greater than
50 mm within 24 h.

1100 m
Science Data Bank (http://www.doi.org/10.1

1922/sciencedb.j00001.00290 (accessed on
15 June 2022)).

Indicators for
vulnerability
assessment

Exposure

Population density (PD) persons/km2 Population per unit area in
a catchment. 1000 m WorldPop (www.worldpop.org (accessed on

15 June 2022)).

Farmland density (FD) % Percentage of farmland per
unit area in a catchment. 30 m

Land use data

Built-up land density
(BD) % Percentage of built-up land

per unit area in a catchment. 30 m

Distance to residents
(DR) km

The distance between the
catchment point

and resident.
30 m

National Gatalogue Service For Geographic
Information (https://www.webmap.cn/

commres.do?method=result100W (accessed on
15 June 2022)).

https://ladsweb.modaps.eosdis.nasa.gov
https://soilgrids.org/
http://www.geodata.cn
http://www.doi.org/10.11922/sciencedb.j00001.00290
http://www.doi.org/10.11922/sciencedb.j00001.00290
www.worldpop.org
https://www.webmap.cn/commres.do?method=result100W
https://www.webmap.cn/commres.do?method=result100W
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Table 1. Cont.

Risk
Assessment Factors Sub-Factors Unit Description Scale/Resolution Soure

Coping capacity

Hospital beds per
1000 inhabitants (HB)

beds/1000
persons

The average HB in a
catchment. Shpfile

County Statistical Yearbook
Doctors per

1000 inhabitants (Doct)
persons/1000

persons
The average Doct in a

catchment. Shpfile

Ecological carrying
capacity (EC) gha The average EC in a

catchment. 30 m Land use data

Distance to road (Droad) km The distance between the
catchment point and road. 30 m

National Gatalogue Service For Geographic
Information (https://www.webmap.cn/

commres.do?method=result100W (accessed on
15 June 2022)).

Resilience

Gross Domestic Product Yuan/km2 The average GDP in a
catchment. 1000 m

Resource and Environment Science and Data
Center (https://www.resdc.cn (accessed on

15 June 2022)).

Proportion of Labor -age
population (LAP) % The average LAP in a

catchment. Shpfile County Statistical Yearbook.

https://www.webmap.cn/commres.do?method=result100W
https://www.webmap.cn/commres.do?method=result100W
https://www.resdc.cn
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Table 2. Strata lithologic strength classification.

Intensity
Classification Intensity (Mpa) Strata Lithologic Value

extremely soft
Quaternary loose material, Neogene

detrital rocks, Paleogene detrital
rocks

5

soft <5 Cretaceous detrital rocks 4

middle 5–30

Jurassic detrital rocks, Permian
metamorphic rocks, Devonian

carbonate rocks, Silurian
metamorphic rocks

3

hard 30–60
Triassic and Permian carbonates,

Carboniferous carbonates
(limestones), Devonian carbonates

2

extremely hard >60 Triassic and Permian intrusive rocks 1

Table 3. Construction land equivalent conversion coefficients (CI) of various land use types in
the BRB.

Land
Use

Types
Farmland Shrubland Forestland Grassland Water

Bodies
Built-Up

Land
Bare
Land

CI 0.2 0 0 0 0.6 1 0

The topographic data included a 1:50,000 topographic map of the area and a 1:10,000
topographic map of key areas from the surveying and mapping department. These were
integrated with the Aster GDEM, with a resolution of 30 m for the entire watershed and used
for the extraction of terrain factors in the basin, the slope, height differences, valley range,
gradient, and water system in the small debris flow ditches. Remote sensing data includes
Aster, Landsat, ZY-3, and MODIS images. The Aster and Landsat images, with resolutions
of 30 m, were used for a visual interpretation of land use types. High spatial resolution
ZY-3 and unmanned aerial vehicle images were used to verify and correct the interpretation
results and identify the relevant attributes of debris flow gullies. Debris flow disaster data
and occurrence frequency data in BRB were collected from the geohazards census by Gansu
Institute of Geological Environment Monitoring and the literature data on soil properties,
including sand content, soil depth, and soil bulk density. Additionally, socio-economic data
including road and settlement data, population density, gross domestic product, labour
force population, hospital beds, and doctors were also collected. Obtaining data requires
a series of pre-processing steps, such as digitizing, splicing, projection transformation,
resampling and clipping of data products, and finally obtaining a dataset in the WGS84
coordinate system. The NPP, land use, DEM, and rainfall data we use has been validated in
the literature [51,52]. We also verified the disaster data through field surveys and interviews.
These data meet the research requirements.

In an evaluation model, a reasonable division of evaluation units makes the results
more meaningful. Grids are a commonly used unit for debris flow hazard assessments.
However, compared with grid units, catchments can adequately represent information on
topographic and hydrological factors, providing a sufficient basis for watershed model-
ing [8]. DEM-based data were used to extract the catchment using the hydrological analysis
software ArcSWAT. Combined with the actual field investigation and debris flow disaster
records, the divided watershed boundaries were manually merged or clipped for a second
time, and 1986 catchments that conformed to the actual situation were obtained (Figure 1).
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3.1.1. Indicators of Hazard Assessment

The factors that influence debris flow are complex, and the main factors that influence
debris flow at different regions and scales differ. We started with the topographic condi-
tions, geological structure, surface vegetation, climatic conditions, and other geographical
environments and selected multiple factors to analyse the hazard of debris flows at the
regional valley scale. We used Spearman’s correlation and variance inflation factor (VIF) to
test for multicollinearity issues between these variables, further considering only variables
with R < 0.8 and VIF < 10 [53] (Table 1).

1. Geomorphological Conditions

Watershed topography has a substantial impact on hydrological processes, landforms,
and biological activities [54] (Figure 3). We selected five factors: DEM, area, RED, AS, and
Rr. The larger the area, the better the hydrodynamic conditions, and the more abundant the
water source and loose solid matter gathered. The greater the RED, AS and Rr, the more
unstable the slope, and the more conducive the soil is to the collection of surface water
and the acceleration of channel run-off. The greater the kinetic energy of debris flow, the
stronger the damage.
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2. Geological Structure

We obtained LD data using the Point Density tool in ArcGIS (Figure 4). The lithology
of different types of rocks has different physicochemical properties and degrees of weather-
ing [55]. Unweathered rock is hard and not easy to break, and debris flows typically do
not occur in areas with unweathered rock. In areas with more easily weathered rock, the
production of weathered debris provides materials for the occurrence and development
of debris flow. We divided the stratigraphic lithology data into five grades according to
lithologic strength: extremely hard, hard, medium, soft, and extremely soft, and were
assigned values from 1 to 5, respectively (Table 2).
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We obtained river density (RD) and fault density (DF) data using the Line Density
tool in ArcGIS (Figure 4). Faults can break the rocks on both sides and produce a large
amount of detrital materials; therefore, the two sides of faults are often important areas for
the occurrence of debris flows [56]. In most areas of Wudu District and Zhouqu County in
the study area, the larger the DF, the denser the debris flow distribution.

The occurrence of earthquakes can cause severe damage to the surrounding rocks,
resulting in a large amount of loose materials, providing suitable conditions for the occur-
rence of debris flows [57]. The PGA shows a decreasing trend from southeast to northwest;
the centre of Wudu District and the northeast of Wen County showed the largest value
of 0.30 g. The PGA in Tanchang and Zhouqu is 0.20 g. The PGA in the northwest is the
smallest at 0.10 g. Therefore, the southeast of the study area is more strongly affected by
geological hazards than the northwest, and the rock stability in the corresponding area is
worse (Figure 4).

3. Surface Vegetation and Soil

In areas with lush vegetation, the stronger soil-fixing effects of rhizomes and the
interception of rainwater by branches and leaves are conducive to alleviating slope run-off
and improving slope stability. We used NPP to reflect the growth status of vegetation [12].
The higher the NPP value, the weaker the weathering of the surface, and the more stable
the rock. The lower the NPP value, the stronger the weathering of surface rocks, leading to
more favourable conditions for the formation of debris flow. According to past research,
debris flows in the study area are mainly concentrated in Wudu, Zhouqu, and northern
Tanchang, which have low NPP values [7] (Figure 5), accounting for 90.12% of the debris
flows in the entire area. Land use is often used to reflect the degree of disturbance to the
natural environment caused by human activities in the region [58] (Figure 5). This can
cause severe damage to the stability of regional geology and lead to geotechnical disasters,
particularly on construction land. Debris flows in the study area are mainly located in
areas with frequent human activities. Human activities have a significant impact on the
development of debris flows. We used the land-use type construction land equivalent
conversion coefficient proposed by Xu et al. [59] to characterise the intensity of human
activities in different categories (Table 3).

The Sand, SD, and SBD are important material sources of debris flow. The higher the
SD and SBD values, the more developed debris flow is, while Sand has an opposite effect
(Figure 5).
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4. Rain Conditions

Rainfall is the main factor that induces debris flow [60], and we chose AR and ARD to
represent this factor. Precipitation reflects the ability of rain to wash and erode the surface,
and the average annual precipitation can accurately indicate the spatial distribution of
precipitation in the region (Figure 6).

3.1.2. Indicators for Vulnerability Assessment

The value of debris flow vulnerability assessments is controlled by a combination of
factors that describe exposure, coping capacity, and resilience [43]. We selected 10 factors
to evaluate debris flow vulnerability in the BRB (Table 1). To avoid the limitations of
applying a single factor, comprehensive principles, including regional applicability, data
availability, and characterisation of the developed geohazards should be adopted. There are
four indicators that characterise exposure, four indicators that characterise coping capacity,
and two indicators that characterise resilience (Table 1).

1. Exposure

Generally, the vulnerability of debris flows is affected by the exposed objects. The
pressure on the living environment in the area with a high PD is relatively high, especially in
mountainous areas with a fragile ecological environment; the corresponding vulnerability
is high. FD and BD reflect the extent to which regional land is occupied. The larger the
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value, the stronger the vulnerability. The closer the distance to the settlement, the greater
the vulnerability (Figure 7).
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2. Coping Capacity

Coping capability and resilience reduce the vulnerability to debris flows. HB and Doct
are important manifestations of social medical security, and their value per thousand people
is a key factor in reducing the loss of life. EC is an important indicator of regional economic
development, resource utilisation, and sustainable development. The larger the EC, the
stronger the ability to provide material and energy to human society, the stronger the ability
of the region to maintain the existing balance and form a new ecological balance, and the
easier it is to decrease potential damage. Road construction is a prerequisite for economic
development, and road accessibility is crucial for disaster prevention and mitigation, in
addition to being important for social security in case of emergencies (Figure 8).
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3. Resilience

GDP mainly reflects the economic strength of the region. The higher the GDP, the
stronger the disaster recovery capability of a region. The higher the proportion of the
working-age population, the stronger the resilience of a region (Figure 9).
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3.2. Risk Assessment

According to the characteristics of debris flow disasters, the debris flow risk assess-
ment model can be constructed using the product of debris flow hazard and debris flow
vulnerability.

R = λ× (H×V) (1)

In the formula, R is the risk degree: H is the hazard degree; V is the vulnerability
degree; λ is the regional risk coefficient, referring to the risk assessment model [61]; and the
Wudu District risk coefficient is λ = 1.1.

As the dimensions of the hazard and vulnerability indices are different, it is necessary
to normalise the data to convert the original data into dimensionless index values for a
comprehensive evaluation:

H = (Hi −Hmin)/(Hmax −Hmin) (2)

V = (Vi −Vmin)/(Vmax −Vmin) (3)

where H is the normalised value of hazard; Hi is the index value of hazard; Hmax is the
maximum hazard value; Hmin is the minimum hazard value; V is the normalized value of
vulnerability; Vi is the index value of vulnerability; Vmax is the maximum vulnerability
value; Vmin is the minimum vulnerability value; and i is the evaluation unit number.

3.2.1. Methods of Hazard Assessment

To find the most suitable model, we selected various widely-used machine learning
algorithms (MLAs). Typical algorithms were selected for each type, and 24 models were
finally selected for debris flow hazard assessment.

1. Ensemble Methods

Ensemble methods combine different parameters in an algorithm to improve the
performance of individual classifiers. For this study, AdaBoost, Gradient Tree Boosting
(GDBT), Bagging, Random Forest, and Extra Trees were selected.

2. Gaussian Processes

Gaussian Processes are generic, supervised learning methods designed to solve regres-
sion and probabilistic classification problems.

3. Generalized Linear Models (GLM)

GLM acts as a linking function to establish the relationship between the mathematical
expectation of a response variable and the linear combination of predictor variables. For
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this study, Logistic Regression (LR), Passive Aggressive, Ridge, Stochastic Gradient Descent
(SGD), and Perceptron were selected.

4. Navies Bayes (NB)

NB classification is based on the idea of Bayesian probability. The parameters therein
are assumed to be independent of each other, the probability of each feature is obtained,
and the parameter with the greatest probability is taken as the prediction result. In this
study, Gaussian Naive Bayes and Bernoulli Naive Bayes were selected.

5. Nearest Neighbours

The principle of the nearest neighbour method is to find a specified number of nearest
sample points, and then to predict new points based on these points.

6. Support Vector Machines (SVM)

The idea of SVM learning is to solve the separating hyperplane that correctly partitions
the training dataset and has the largest geometric separation. In this study, SVC, Linear
SVC, and Nu-SVC were selected.

7. Trees

Within a tree structure, each internal node represents a judgment for an attribute,
each branch represents the output of a judgment result, and each leaf node represents a
classification result. In this study, Decision Tree and Extra Tree were selected.

8. Discriminant Analysis

Discriminant analysis is a multivariate statistical analysis method that classifies the ob-
jects under study according to some observed indicators. In this study, Linear Discriminant
and Quadratic Discriminant were selected.

9. Extreme Gradient Boosting (XGBoost)

XGBoost is a type of boosting algorithm. It is a boosted tree model that integrates
many tree models to form a comparatively stronger classifier.

10. Multilayer Perceptron (MLP)

MLP, also called Artificial Neural Network, includes multiple layers and neuron
nodes, with interactions between nodes in adjacent layers. Each node represents a variety
of objects, such as object characteristics, influencing factors, and internal grouping of factors.
The relationship between nodes represents the mutual relationship between the objects
expressed by adjacent nodes.

We processed the data and then used cross-validation to construct a training dataset
comprising 70% of the data. The remaining 30% were used as a test set to evaluate the
model and were repeated 10 times. The models were then ranked according to the ACC of
the test data for the cross-validation dataset.

ACC = (TP + TN)/(TP + FN + FP + TN) (4)

Among them are, true positive (TP): the predicted class is positive and the prediction
agrees with the actual class; False positive (FP): the predicted class is positive while the
prediction disagrees with the actual class; True negative (TN): the predicted class is negative
while the prediction agrees with the actual class; False negative (FN): the predicted class is
negative and the prediction disagrees with the actual class.

3.2.2. Methods of Vulnerability Assessment

We used the Contributing Weight Superposition (CWS) model to determine the debris
flow vulnerability assessment model. The method used involved the calculation of the
contribution rate of debris disaster vulnerability factors during the development of debris
flow disasters, and the use of a weight conversion model to calculate the weight within (self-
weight) and between factors (mutual weight) [43]. The contribution rate, self-weight, and
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mutual weight of each factor were multiplied and superimposed, as shown in Equation (6),
to obtain the debris flow vulnerability zoning result. This method is characterised by a clear
physical meaning, reliable selected index factors, and data that can be obtained directly
from digital maps and field survey data.

X =
n

∑
i=1

Uoi·wi·w′i (5)

In the formula, X is the exposure (E), coping ability (C), or resilience (R), and Uoi is
the contribution rate of the i-th factor in factor O. wi is the self-weight of the debris flow
disaster factor i, w′i is the mutual weight of debris flow disaster factor i.

For the calculation of the contribution rate, the factors are first reclassified. We define
m into 5 levels according to: Ll(i) = {high, relatively high, medium, relatively low, low}.
The contribution rate of each class to the factor is calculated by applying the formula. The
contribution rate indicates the ratio of the number of debris flows to the total number of
occurrences of each factor i, as shown in Equation (7).

Uoi =
ni

n
(6)

where Uoi is the contribution rate of factor i, ni is the number of debris flows in factor i, and
n is the total number of debris flows in the area. The calculation of self-weight wi is shown
in the following Formula (8).

wi =
Uoi

∑ Uoi
(7)

wi is the self-weight of the debris flow disaster factor i, and Uoi is the contribution rate
of the i-th factor for factor O. Based on the self-weight, the mutual weight w′i was calculated
as shown in Equation (9).

w′i =
U′j

∑ U′j
(8)

In the formula,w′i is the mutual weight of debris flow disaster factors, and U′j is the
comprehensive contribution rate of each factor (U′j = ∑ Uoi, j = 1, 2, 3 · · · n).

Based on the vulnerability indicators (Table 1), the regional vulnerability is expressed
as Equation (9).

V = E(1−
√

C + R
2

)
(9)

where V is vulnerability, E is exposure, C is coping capacity, and R is resilience.

3.3. Redundancy Analysis (RDA)

Multivariate RDA is a direct gradient ranking method used to statistically analyse
the association of one set of variables with another. The advantage of RDA is that it
can calculate the contribution of each environmental variable to the response variable,
effectively performing statistical tests on multiple explanatory variables. We used the
risk value of 1986 catchments of BRB as the response variable and the corresponding
environmental factors as the explanatory variables to quantitatively analyse the influence
of different environmental factors on the spatial distribution of debris flow risk. In a biplot
of RDA ordination, the angle between arrows (alpha) indicates the sign of the correlation
between the environmental variables: the approximated correlation is positive when the
angle is sharp and negative when the angle is larger than 90 degrees. The canonical axis
explains the change in risk and all canonical axes explain the total change. We used the
Monte Carlo permutation test of significance for the eigenvalues of all canonical axes. The
above calculations were performed in R 3.6.3.
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4. Results
4.1. Hazard Analysis
4.1.1. Model Simulation and Optimisation

The 24 initial models were trained using the training data from the cross-validation
dataset, and then ranked according to the ACC. The results show that the overall fitting
effect of the Extra Trees Classifier model was better than that of other models (Figure 10).
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We selected the models with an accuracy score greater than 0.85 for optimisation in
Figure 11. The overall accuracy of all models improved after model optimisation, and the
Extra Trees classifier model proved to be the optimal model, with a validation set ACC of
0.88. We calculated the area under the receiver operating characteristic curve (ROC) based
on the predicted scores. The average area under the curve (AUC) after 10 cross-validations
was 0.94 (Figure 11). Regarding the time commitment, the Extra Tree model required the
least amount of time (5.63 s) to find the optimal hyperparameters. Therefore, the Extra
Trees classifier can ensure high efficiency and the highest validation accuracy.
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4.1.2. Results of the Hazard Assessment

The extreme high-hazard catchments of debris flow in the BRB are distributed mainly
along the main stream of the Bailong River in the Zhouqu-Wudu section, accounting
for 8.17% of the total catchments. High-hazard catchments accounted for 15.19% of all
catchments, distributed mainly in Tanchang County-Zhouqu along the Minjiang River and
Zhouqu, County-Wudu, District-Wen County along the Bailong River. Medium-hazard
catchments were distributed mainly in the southeastern part of the region, accounting
for 9.64% of the total catchments. Low-hazard catchments accounted for 29.67% of all
catchments, distributed mainly on both sides of the Bailong River in Diebu County. Very
low-hazard catchments accounted for the largest proportion (37.34%) of all catchments,
distributed mainly in the northern and southern parts of Diebu County, the western
part of Tanchang County, and southern part of Wen County. These research results also
indicate that Tanchang, Wudu, and Zhouqu County experience frequent debris flows
in the BRB (Figure 12). It is seen in Figure 13 that debris flow hazard is significantly
and positively correlated with landslide density (LD) and soil bulk density (SBD), and
negatively correlated with CI and DEM. There is a positive correlation between the spatial
distribution of landslides and debris flows in the study area. The valleys through which the
main stream and secondary tributaries flow in the BRB, areas which experience frequent
landslides, are areas with a dense distribution of debris flow, especially in places with
a landslide density greater than 0.06/km2, such as Zhouqu County and Wudu District
(Figure 4). These account for 71.67% of the area covered with debris flows in the entire basin.
The larger the LD value, the more abundant the loose material liberated by a landslide.
Rock and soil masses are the main sources of material for debris flow [62].
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4.2. Vulnerability Analysis

We obtained various indicator data based on the statistical yearbook of the five districts
and counties of the BRB and obtained the vulnerability at the BRB catchment scale using the
CWS model. Debris flow exposure is positively correlated with vulnerability. The higher
the exposure, the higher the vulnerability. In contrast, resilience and coping capabilities
reduce vulnerability to debris flows. The greater the contribution of exposure factors in
an area, the higher the vulnerability of the area to debris flows. As the values of resilience
and coping capacity increase, the vulnerability value of debris flows decreases. According
to the vulnerability evaluation results, the vulnerability was divided into five grades:
very high, high, moderate, low, and very low. The vulnerability partition map was also
obtained (Figure 14). The very high and high vulnerability areas were mainly distributed
along the main channel of Bailong River in Wudu District, both sides of the Beiyu River,
and the northern part of Tanchang County. The main reason for this was the presence of
several alluvial fans along the Bailong River and Beiyu River, which are the main areas
for human activities and living, with a high economic value and fixed asset value. The
low vulnerability area was widely distributed. The very low vulnerability area was mainly
distributed in the alpine area of Diebu County and the southwest of Wen County; this
area comprises a medium-high mountainous area with a sparse population of many ethnic
minorities. Population density (PD), farmland and built-up land density (FD and BD), and
GDP significantly contributed to debris flow vulnerability (Figure 13). In mountainous
areas with a fragile ecological environment, the pressure on human settlements in PD, FD,
and BD high regions is relatively high, and the corresponding vulnerability is high.
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4.3. Risk Analysis

Through the above analysis and calculation of the degree of risk and vulnerability of
debris flows, the risk assessment model was used to determine the degree of risk in the
BRB (Figure 15). The very high-risk catchments account for the smallest proportion (4.38%),
mainly located in the urban area of Wudu District and the northern part of Tanchang
County. The high-risk catchments accounted for 14.4% of all catchments, mainly located on
the north bank of Bailong River in Wudu District-Zhouqu County. The areas with very low
and low risk of debris flow disasters in the BRB are the most widely distributed, accounting
for 35.80% and 29.51% of the entire area, respectively, mainly in the southern parts of Diebu
County and Wen County. There are relatively few debris flow disaster points in this area,
which mainly in the middle and high mountains, with well-developed vegetation, mostly
forest coverage, a low population density, and very low vulnerability, resulting in very low
risk. There is a positive correlation between debris flow risk and ecological risk. Gong
et al. [63] showed that in the BRB, the high ecological risk areas were mainly located in
the north of the Bailong River section from Zhouqu to Wudu District and in the northwest
of Tanchang County. The low ecological risk areas were mainly distributed in the south
of Baishui River and most of Diebu County. In August 2020, a mass debris flow disaster
occurred in the BRB, and we carried out field investigations there. We verified the debris
flow through field investigations and obtained a debris flow risk map, and the assessment
results are consistent with the actual disaster situation. The survey shows that the two
banks of the central Bailong River are densely populated areas, with serious debris flow
hazards and high debris flow risks (Figure 15).
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Tanchang County has a high economic density (Figure 9) and medium disaster density,
but a high vulnerability value and high debris flow risk. On the contrary, the southern
part of Wudu, which had a low vulnerability value, had the characteristics of medium
risk although the distribution density of debris flow disasters was high. Therefore, it can
be clearly shown that hazard distribution alone does not lead to risk. In particular, socio-
economic development leads to relatively high-risk areas. In order to study the influence of
27 factors on the risk of debris flow, the RDA analysis of variables was carried out with
the 1986 catchments of the BRB (Figure 12). The eigenvalues of the first two axes were
0.7777 and 0.101, respectively. The first four axes explained 87.87% of the total change in
risk, and the Monte Carlo permutation test also showed that the risk reflected by all axes is
significantly correlated with the factors (p < 0.01). The most important factor for debris flow
risk is landslide density (LD), followed by relief ratio (Rr), river density (RD), construction
land equivalent conversion coefficients (CI), and soil bulk density (SBD). These factors are
all related to debris flow channel material. The most important triggering factor for debris
flows is average annual rainfall (AR). Topographical factors appear to have a lower control
over the BRB debris flow; the most important of which is the DEM. The factors related to
debris flow vulnerability are mainly population density (PD) and GDP (Figure 16).
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5. Discussion
5.1. Comparison of Evaluation Results of Different Models

At present, geological disaster risk assessment is a widely researched topic and plays
an extremely important role in disaster management. Based on remote sensing data and GIS
tools, we used the MLA and CWS algorithms to implement a debris flow risk assessment in
the BRB. The risk map shows distinct regional features. The north bank of the Bailong River
in Zhouqu-Wudu accounts for most of the high- and very high-risk catchment areas of
debris flows, where the topography varies greatly. Additionally, the region is connected to
dry-hot river valleys and fault zones. Frequent landslides provide abundant loose material
for debris flows. However, the area has a dense distribution of people and buildings,
which increases the risk of debris flow disasters. Through a comprehensive analysis of the
different factors, we identified high-risk areas and the main factors that are conducive to
disaster prevention. Previous studies show that the main cause of debris flow formation is
the gradual loss of strength of surface rocks and soils on steep slopes owing to earthquakes
or weather conditions, as well as the seepage force induced by rainfall that causes them to
slide [64]. This is similar to our findings; material conditions, rainfall, and topographical
conditions are important factors in debris flow risk.

With the continuation of research, a variety of evaluation methods have been pro-
posed for geological hazard risk assessment, which have gradually matured in the process.
Researchers typically choose evaluation models according to the characteristics of their
research area, and then evaluate the regional geological disaster risk. Liu et al. [65] con-
structed an index system based on the logistic regression model, including factors such
as elevation, lithology, slope, and aspect, and evaluated the landslide disaster risk in
Putian City. Their study provides an important scientific basis for local landslide disas-
ter prediction. Lin et al. [66] selected eight indicators, namely slope, elevation, soil type,
NDVI, lithology, average annual precipitation, and distance from main roads and geo-
logical disaster points. Using the principal component analysis method to evaluate the
sensitivity of geological hazards, they reveal the spatial characteristics of geological hazard
risks in the urban agglomeration of the Fujian Delta Region. Pham et al. [67] developed
a flood risk assessment map using a multi-criteria decision analysis method based on
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14 flood-influencing factors of topography, geology, hydrology, and environment in Quang
Nam Province, Vietnam. Lin et al. [10] selected eight of these factors: elevation, slope,
NDVI, lithology, land use type, average annual precipitation, distance from rivers, and
distance from faults, and used the information to evaluate the risk of geological disasters in
Fujian Province.

Scholars have carried out a large number of studies on the hazard assessment of debris
flow disasters in the BRB, but they mostly use a single evaluation method, such as the
information method [68], the analytic hierarchy process [69], the dimensional analysis
method [70], the fuzzy comprehensive evaluation method [71], and the logistic model [72].
For example, Ning et al. [68] selected seven factors (elevation, slope, lithology, land use
type, landslide density, cumulative distance from fault interface, NDVI), and used the
information quantity method to evaluate the hazard of debris flow in the BRB. Their
research results are similar to ours: the high and very high hazard areas were mainly
distributed in the main stream of Bailong River and both sides of Beiyu River; The low
and very low hazard areas were distributed in the northwestern Diebu county and the
high-altitude alpine area. It is rare to carry out a hazard assessment of debris flow based on
multiple MLAs in the BRB. EC is an important indicator in characterising regional economic
development. We innovatively took EC as an important factor affecting vulnerability
assessment and constructed a vulnerability assessment system for the BRB. In addition, the
high-hazard area of debris flow in the BRB is a densely populated area, so it is necessary
to assess the risk of debris flow. Debris flow risk studies highlight hazard, vulnerability,
and a combination of the two [73]. The debris flow risk assessment can help identify debris
flow hazards and estimate impacts on people, property, and the environment [74]. The
debris flow risk map provides residents with information on the likelihood and potential
damage of a debris flow [75]. On the scale of a single debris flow gully in the BRB, Ouyang
et al. [47] chose Niwan gully as the study object and carried out the risk assessment of
debris flow through a combination of vulnerability assessment and hazard assessment. The
results can be used for effective disaster prevention in the BRB. Wang et al. [76] evaluated
the risk of debris flow in Ganjiagou gully in the BRB. The debris flow risk assessment
has not yet been seen in the entire gully of the BRB. The density of debris flow gullies
in the BRB is among the highest in China [47]. Therefore, it is of great significance to
assess the debris flow risk in the BRB based the catchment unit. In the present study, we
combined MLA and CWS, selected 27 factors related to geological hazards to construct an
evaluation index system, and conducted a comprehensive evaluation of BRB debris flow
disaster risk, which effectively avoids the subjective randomness of artificial weighting.
Among them, the Extra Trees model was the most reliable and accurate model that was
suitable for constructing debris flow hazard maps. Each MLA has its advantages and
disadvantages, and one method may not always perform better than the others [77]. This
may be because of differences in factor selection and study area. Zhao et al. [2] applied
MLA to predict the occurrence frequency of BRB debris flows, and the Extra Trees classifier
achieved excellent performance in their study. Xiong et al. [77] compared the performance
of four machine learning methods (Logistic Regression, Support Vector Machine, Random
Forest, and Boosted Regression Tree) for debris flow susceptibility in Sichuan Province.
Among them, the Boosted Regression Tree method performed the best. Although advanced
MLAs perform slightly differently in various studies, they always have good predictive
power and are suitable for debris flow hazard studies. Therefore, we believe that the
present study is innovative to a certain extent, not only enriching the theoretical methods
of geological disaster risk management but also providing a scientific reference for the
effective prevention and control of BRB debris flow disasters.

5.2. Development Strategies for Key Regions of Debris Flow Disasters

It is scientific to divide a basin according to the catchment’s basic geomorphologi-
cal unit. However, the catchment area is consistent with the geological conditions, gully
characteristics, and topography of the debris flow, evidently reflecting the disaster-prone
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conditions in the area. We took the catchment as the evaluation unit and considered the dy-
namic mechanism of debris flows in the evaluation process, which led to reliable evaluation
results [8]. The tributary basins of the BRB can be divided into three categories according to
their spatial extent: large (>100 km2), medium (10–100 km2) and small (<10 km2) (Table 4).
The catchment areas of the BRB are mainly small- and medium-sized (accounting for 99%
of the total). The occurrence frequency of small- and medium-sized debris flow valleys is
greater than that of large ones. However, the risks for large catchment areas are greater
than those for small- and medium-sized ones.

Table 4. Debris flow risk and frequency for each type of catchment.

Classification Large (>100 km2)
Medium

(10–100 km2) Small (<10 km2)

Number of
catchments 5 384 1597

Average risk value 0.488 0.406 0.307
Occurrence frequency

(times/a) 1 2.67 2.14

The BRB is a typical mountain environment. Owing to its special geographical loca-
tion, regional geological disasters have occurred frequently in recent years [2], seriously
threatening the economy and life of residents in this area as well as regional ecological
security. We identified the spatial extent of the Bailong River debris flows to provide a
scientific basis for formulating disaster prevention strategies. Analysing regional debris
flow risk can increase the risk awareness of potential disasters and can allow disaster reduc-
tion. In the future, local governments should focus on core areas that experience frequent
geological hazards, using the following factors to identify high-risk areas: landslide density,
terrain relief, and land use. Therefore, decision makers should pay attention to these
factors through regular status records and assessments. It is especially necessary to monitor
the factors that can change dynamically, such as rainfall. It is important to move toward
development and protection at the same time, while ensuring the rapid development of
regional economy. To achieve this, attention should be paid to ecological security issues
to avoid the occurrence of geological disasters caused by excessive land development.
Considering this, debris flows in small- and medium-sized river valleys that have a high
incidence should be carefully monitored. Government agencies should also improve the
level of regional disaster prevention and control, set up emergency shelters, strengthen the
knowledge of residents in key risk areas, increase the frequency of emergency drills, and
improve awareness for geological disaster emergency responses. The impact of human
activities on regional geological disasters should also be considered. In the process of future
urban construction, ecological protection should be the guiding principle to minimise the
damage to the stability of the original ecosystem. Land development and utilisation should
try to avoid areas with high ecological vulnerability to geological disasters. For areas that
meet the conditions for the occurrence of debris flows, development-prohibition zones
should be set up to protect the ecological environment and avoid aggravating regional
environmental deterioration and inducing geological disasters. In areas with a high risk of
geological disasters, ecological restoration could also be implemented to restore and rebuild
the stability of regional ecosystems. New technologies, such as unmanned aerial vehicle,
big data, and MLA should be utilised, the deployment of real-time monitoring networks
should be accelerated, the efficiency of remote sensing monitoring for geological disasters
should be improved, and forecasting and early warning of geological disasters should
be realised. These steps may reduce the possible harm caused by geological disasters,
effectively protecting the life and property of residents.
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6. Conclusions

Accurately determining the disaster risk of debris flows in a basin has important
guiding significance for the local government to formulate targeted prevention strategies.
We considered a catchment with reference to the terrain relief watershed as a risk assessment
unit, which enabled us to fully describe the comprehensive impacts of debris flow-related
topography and disaster-causing factors. The main conclusions are as follows: (1) The
Extra Trees model (ACC = 0.88, AUC = 0.94) has excellent spatial prediction ability and
strong robustness, outperforming other models, and is an ideal choice for effective debris
flow hazard assessment. The catchments with a very high hazard of debris flows in the
BRB were distributed mainly in Tanchang–Zhouqu County along the Minjiang River and
Zhouqu County-Wudu District-Wen County along the Bailong River; (2) We used the
CWS method to establish an evaluation model to evaluate vulnerability to debris flow.
The high vulnerability areas are concentrated along the main channel of Bailong River
in Wudu District, the banks of Beiyu River, and the northern part of Tanchang County;
(3) The debris flow disaster risk in the BRB presents evident “band” and spatial aggregation
characteristics. The high- and very high-risk catchments were mainly located on both sides
of the main stream of the Bailong River, and low-risk areas were mainly distributed in
the northwest and south. The overall risk of debris flow disasters in the BRB is relatively
high, with medium- and high-risk areas accounting for 34.69% of the total catchment area.
Landslide density, river density and soil bulk density are the main factors affecting the risk
of debris flow in the Bailong River Basin.
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