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Abstract: Urban flooding is increasing due to climate change and the expansion of impervious
land surfaces. Green roofs have recently been identified as effective solutions for mitigating urban
stormwater. However, discharge routes that involve receiving catchments of stormwater runoff
from roofs to mitigate high flows have been limited. Thus, a hydrological model was constructed
to investigate the effects of changing discharge routes on stormwater flow. Three hypothetical
scenarios were assessed using various combinations of discharge routes and roof types. The reduction
effects on outflow and overflow were identified and evaluated across six return periods of designed
rainstorms in the Tai Hung Tulip House community in Beijing. The results showed that green roofs,
together with the discharge routes connecting to pervious catchments, were effective in reducing peak
flow (13.9–17.3%), outflow volume (16.3–27.3%), drainage overflow frequency, and flood duration.
Although mitigation can be improved by considering discharge routes, it is limited compared to
that achieved by the effects of green roofs. However, integrating green roofs and discharge routes
can improve community resilience to rainstorms with longer return periods. These results provide
useful information for effective design of future stormwater mitigation and management strategies in
small-scale urban areas.

Keywords: stormwater reduction; green roofs; discharge routes; community scale; urban stormwa-
ter model

1. Introduction

Increased stormwater runoff volumes, owing to regional climate change and rapid
urbanization, have consistently resulted in severe urban flooding [1,2], which places con-
siderable pressure on municipal drainage in downstream watersheds. Stormwater that
exceeds drainage capacity is one of the leading causes of overflow and non-point source
pollution from roads, parking lots, and rooftops to local waterways [3,4]. This poses serious
threats to human life, property, health, and sustainable development [5,6]. Moreover, rain-
storm runoff affects drainage overflow volumes and duration, which increases the flood
risk in urban catchments [7,8]. The United Nations World Water Assessment Programme
(WWAP) reported that nearly 20% of the world’s population will be at risk of floods, espe-
cially in urban areas, by 2050 [9]. Consequently, a multitude of nature-based infrastructures
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have been developed in recent years to minimize stormwater runoff in urban areas with
a high-density distribution of buildings and roads [10–12]. Increasing attention has been
paid to ways in which to effectively cope with urban flooding and reasonably evaluate the
effects of different strategies for runoff mitigation.

A green roof is an adaptation strategy that decreases stormwater runoff by collecting
100% of rainfall within the building catchment area. A series of observational experiments
and hydrological models (e.g., Storm Water Management Model, SWMM) have been widely
applied in the runoff effect identification of green roofs in multi-scale (building to basin
scale) urban areas with varying climates [13–15]. Many case studies have shown that the
combination of green and gray infrastructure mitigates stormwater runoff, especially when
small-scale urban communities have a high density of impervious land surfaces that resist
extreme rainstorms [16,17]. As the resolution and accuracy of data increase, the capability
of green roofs to reduce runoff from typical urban zones with frequent human activities
(such as communities, campuses, and industrial parks) has become a crucial issue that
requires further study [18,19].

Researchers have shown that green roofs can slow the peak discharge [20], decrease
outflow volumes [21], and attenuate stormwater flow rates [22]. However, the amount
of captured runoff is difficult to quantify because of the varied conditions under which
the studies were performed (i.e., evaporation and transpiration potential, soil substrate
thickness, rainfall intensity, roof age, vegetation cover, and slope) [23,24]. Therefore, al-
though green roofs and modified gray infrastructure appear to be suitable practices to
address the need for flood prevention, anticipating the integrated impacts of green roofs
and discharge routes on outflow and overflow is not straightforward [25]. Multi-scale
studies that evaluated the effectiveness of green roofs observed considerable impacts as a
result of spatial components and flow pathways [26,27]. Investigations of various discharge
route scenarios, between traditional roofs and green roofs, can provide comprehensive
guidance for effective ways to improve community resilience.

In urbanized catchments, the comprehensive hydrological effects of downspouts
(vertical gutters) channeling rainwater from rooftops have not yet been fully investigated
in the design of green buildings. Hence, designing discharge routes not only determines
the roof runoff pathway but also affects the rate and volume of stormwater received by
the downstream sub-catchments [28]. Although traditional roofs constitute a substantial
portion of the impervious area, until recently, they have not received sufficient attention or
application in urban flood management in the northern cities of China [29]. In addition,
previous research indicates that green roofs can only effectively mitigate runoff in 24 h (or
less) designed rainstorms with a return period of 10 years (or less) [30]. These limitations
have increased interest in green and gray infrastructure combinations to enable further
understanding of the impacts of green roofs, rooftop disconnection, bio-retention cells, and
vegetative swales on the hydrological response [31]. These studies mainly focused on the
flow and volumes at outfalls, overflow of drainage nodes, and flooding duration to analyze
and quantify the retention impacts of green roofs [32,33].

This study aims to determine the integrated reduction effects of building roofs and
discharge routes on outfall flow and drainage overflow during 24 h designed rainstorms
with different return periods in a residential community in the Daxing District, China.
The specific objectives were to (1) design three scenarios with different roof types and
rooftop connections at a community scale and evaluate the mitigation effectiveness of
discharge routes; (2) identify the synergistic effects of discharge routes on the hydrological
performance of an urban community using ZY3-02 satellite data and SWMM; (3) compare
the mitigating effects of discharge routes on outfall flow and drainage overflow in 24 h
designed rainstorms of six return periods (5, 10, 20, 30, 50, and 100 years); and (4) discuss
whether and how the connection variability of rooftops affects the reduction performance
for outfall and drainage flow in small urbanized catchments. These issues are explored
using data from remote sensing, field observation, and hydrologic modeling, and the results
are intended to be useful to those working on similar small-scale catchments.
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2. Materials and Methods
2.1. Study Area

The Tai Hung Tulip House (THTH) residential community (Figure 1a) is located in the
Beijing Economic-Technological Development Area in the Daxing District, China (116.49◦N,
39.79◦E). This is a typical urban residential area in northern China. According to the results
of the site survey, investigation, and monitoring, severe waterlogging had frequently
occurred in the proximity of both the north and east gates of the THTH community during
historical rainstorm events. Therefore, the THTH community was selected as the study area.
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Figure 1. Study area position and Tai Hung Tulip House (THTH) community catchment as used in
the model. (a) Location of Beijing Economic-Technological Development Area; (b) digital elevation
model of THTH community; (c) land use and drainage networks of THTH community.

There are five types of land use within the community, covering an area of 14 ha
(Figure 1c), with a total impervious area of approximately 8.1 ha (Table 1). Smooth cement
roofs comprised approximately 39% of the total impervious area, that is, 3.14 ha. The
impervious areas of driveway, footway, and parking vary in size from 0.2–3.1 ha. Hardening
pavements with concrete or asphalt as the main material was common before 2016. The
green space holds the highest percentage of pervious area (100%) of all the land uses
included in this community, and approximately 85% of the green space is covered by
dense grass.

Table 1. Extent of land use types within the Tai Hung Tulip House (THTH) community.

Land Use Area (ha) Impervious Area (ha) Percent of Area (%)

Roof 3.1 3.1 22.4
Driveway 2.9 2.6 21.0
Footway 3.6 2.1 25.5
Parking 1.6 0.2 11.1

Green space 2.8 0.0 20.0
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The THTH community was serviced by conventional curb and underdrainage systems.
Drainage networks were approximately 1.36 km long and comprised 44 pipelines, 44 nodes,
and 2 outfalls (Figure 1). The sewerage system flow was gravity driven. The pipes
were designed considering rainstorms with return periods ranging from 3 to 10 years,
requiring diameters of 0.5–1.8 m. The population of the community was 565 in 2019
(http://tjj.beijing.gov.cn/, accessed on 2 May 2022).

2.2. Data Collection

Digital elevation model data (Figure 1b) and multispectral imagery data were obtained
from the ZY3-02 satellite of China (http://www.sasclouds.com/, accessed on 6 October
2018), with a 2.5 m spatial resolution and cloud cover of less than 20%. The available
ZY3-02 satellite imagery comprises a five-day, 2.5 m spatial resolution with four spectral
bands: band 1 (0.45–0.52 µm), band 2 (0.52–0.59 µm), band 3 (0.63–0.69 µm), and band
4 (0.77–0.89 µm). Land use data were acquired through remote sensing interpretation
from the National Geomatics Center of China (https://www.webmap.cn/, accessed on 20
December 2021) and GlobeLand30 land cover data product (http://www.globallandcover.
com/, accessed on 20 December 2021), with a spatial resolution of 30 m. Rainfall data were
collected from the Daxing precipitation station (ID: 54594, 39.72◦N, 116.35◦E, Figure 1a)
which is approximately 14 km away from the study site and assumed to be spatially
uniform. Soil type data at a scale of 1:1,000,000 were obtained from the Chinese soil dataset
which is based on the World Soil Database (http://www.ncdc.ac.cn/, 20 December 2021).
The acquisition and sources of other baseline data are listed in Table 2.

Table 2. Geographical and hydrological data acquisition and sources.

Data Source Accessed Date

Digital elevation model ZY3-02 satellite of China 6 October 2018
Multispectral imagery ZY3-02 satellite of China 6 October 2018

Land use National Geomatics Center of China 20 December 2021
Land cover GlobeLand30 2020 20 December 2021

Rainfall Daxing precipitation station July–September 2016
Soil type Chinese Soil Data Set 20 December 2021

Area boundary Geospatial Data Cloud 29 June 2021
Road networks ZY3-02 satellite of China 6 October 2018

Drainage networks Field investigation 3 August 2016

2.3. Data Analysis
2.3.1. Storm Water Management Model

The SWMM, developed by the United States Environmental Protection Agency (EPA),
has been applied in numerous studies on urban flood simulation and effectiveness assess-
ments worldwide [34,35]. In this study, the rainfall-runoff process and drainage pipe flow
were simulated using SWMM (version 5.1.015, EPA, Columbus, OH, USA). Additionally,
critical hydrological and hydrodynamic processes in both sub-catchments and green roof
practices were achieved using SWMM [36].

The dynamic wave method was selected along with the option to allow ponding for
flow routing in SWMM with dry weather, wet weather, and routing steps of 5 min, 1 min,
and 60 s, respectively. Evaporation from the study site was set to occur only during the
dry period because the effects on runoff were negligible in heavy rainfall. The infiltration
process was calculated using the Horton model [37]. The initial infiltration values were
defined based on the spatial distribution of the land cover types. The key parameters of
the green roofs in the SWMM comprising surface, soil, and drainage layers were used in
the scenario design (Table 3). The green roof parameter values were obtained directly from
local technical standards (http://www.bjdch.gov.cn/n2025399/n2513310/c4572799/part/

http://tjj.beijing.gov.cn/
http://www.sasclouds.com/
https://www.webmap.cn/
http://www.globallandcover.com/
http://www.globallandcover.com/
http://www.ncdc.ac.cn/
http://www.bjdch.gov.cn/n2025399/n2513310/c4572799/part/4572805.pdf
http://www.bjdch.gov.cn/n2025399/n2513310/c4572799/part/4572805.pdf
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4572805.pdf, accessed on 30 May 2022). The THTH community was divided into 760 sub-
catchments (Figure 1c) based on land cover and municipal boundaries. The hydrology and
hydraulics parameters were set based on field observations, laboratory experiments, other
studies [35,38], or reference values in the SWMM user manual [39].

Table 3. Parameters of green roofs in the THTH community.

Layers Properties Values

Surface

Berm height (mm) 150
Vegetation volume fraction 0
Roughness (Manning’s n) 0.15

Slope (%) 1.2

Soil

Thickness (mm) 300
Porosity 0.501

Field capacity 0.284
Wilting point 0.135

Conductivity (mm/h) 0.26

Drainage

Conductivity slope 30
Thickness (mm) 150

Void ratio 0.5
Roughness (Manning’s n) 0.015

2.3.2. Calibration and Validation

Calibration and validation of the parameters is an essential step for the accurate
simulation of the rainfall-runoff model. The calibration of the SWMM comprises two
steps. There were seven calibration parameters in each sub-catchment, namely k value for
width, Manning’s roughness pervious and impervious, depression storage pervious and
impervious, and Horton’s maximum and minimum infiltration rates.

Observation datasets during for historical rainfall events at the community scale are
very limited. Measuring the variation in pipeline flow of outlets is difficult owing to
inadequate monitoring stations. Therefore, the model parameters were calibrated and
validated against the available data from field observations. The observation node (J20)
is located at the end of the pipeline in the eastern catchment of the community. The
water depth at J20 (Figure 1c) was measured with a steel tape from 9:00 am to 1:00 pm on
20 July 2016, and from 10:00 pm to 3:00 am on 7 September 2016. The measurements were
compared with simulated data to complete the calibration and validation. The period of
the former event was used for calibration (Figure 2a), and the latter was used for validation
(Figure 2b).

Nash–Sutcliffe efficiency (NSE) is a common model performance indicator for evaluat-
ing the goodness of fit between the simulated and observed values [40] and is described
as follows:

NSE = 1 − ∑n
i=1(Si − Oi)

2

∑n
i=1

(
Oi − O

)2 (1)

where Si and Oi are the simulated and observed depths at the ith time step, respectively,
and O is the mean observed depth. When NSE > 0.5, the simulated data were considered to
be acceptable. The model performance improves as the NSE value increases (i.e., the closer
it is to 1) [41].

http://www.bjdch.gov.cn/n2025399/n2513310/c4572799/part/4572805.pdf
http://www.bjdch.gov.cn/n2025399/n2513310/c4572799/part/4572805.pdf
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2.3.3. Designed Rainstorm Events

The designed rainstorms of different return periods in past and future scenarios
were calculated based on the Beijing rainstorm intensity formula [31] published by the
Beijing Municipal Institute of City Planning and Design (http://ghzrzyw.beijing.gov.cn/
biaozhunguanli/bz/cxgh/202002/P020200220585267313257.pdf, accessed on 30 May 2022).
This formula has been widely used in Beijing [42] and is described as follows:

q =
591(1 + 0.893 log P)

(t + 1.859)0.436 (2)

where q is the rainstorm intensity [L/(s·ha)], t is the design duration of the rainfall (min),
and P is the return period (year). The scope of application was 1 min ≤ t ≤ 5 min.

q =
1602(1 + 1.037 log P)

(t + 11.593)0.681 (3)

where q is the rainstorm intensity [L/(s·ha)], t is the design duration of the rainfall (min),
and P is the return period (year). The scope of application was 5 min < t ≤ 1440 min.

The Standard of Rainstorm Runoff Calculation for Urban Storm Drainage System
Planning and Design (http://ghzrzyw.beijing.gov.cn/biaozhunguanli/bz/cxgh/202002
/P020200220585267313257.pdf, accessed on 30 May 2022) was applied to 24 h designed
rainstorms of six return periods (5, 10, 20, 30, 50, and 100 years). Because the designed
rainstorms were calculated using the same formula, the rainfall intensity distribution over
the entire catchment was assumed to be uniform. The calculated rainfall depths for each
duration and the return period are listed in Table 4.

Table 4. Rainfall depth of design duration in different return periods (RPs).

Rainfall Duration
(min)

Rainfall Depth (mm)

5 Years 10 Years 20 Years 30 Years 50 Years 100 Years

5 12.4 14.5 16.6 17.8 19.3 21.3
15 26.6 31.5 36.3 39.1 42.6 47.5
30 39.3 46.4 53.5 57.7 62.9 70.0
45 47.8 56.4 65.1 70.1 76.5 85.1
60 54.3 64.1 73.9 79.7 86.9 96.7

http://ghzrzyw.beijing.gov.cn/biaozhunguanli/bz/cxgh/202002/P020200220585267313257.pdf
http://ghzrzyw.beijing.gov.cn/biaozhunguanli/bz/cxgh/202002/P020200220585267313257.pdf
http://ghzrzyw.beijing.gov.cn/biaozhunguanli/bz/cxgh/202002/P020200220585267313257.pdf
http://ghzrzyw.beijing.gov.cn/biaozhunguanli/bz/cxgh/202002/P020200220585267313257.pdf
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Table 4. Cont.

Rainfall Duration
(min)

Rainfall Depth (mm)

5 Years 10 Years 20 Years 30 Years 50 Years 100 Years

90 64.1 75.7 87.4 94.1 102.7 114.3
120 71.7 84.7 97.7 105.3 114.8 127.8
150 77.9 92.0 106.1 114.4 124.8 138.9
180 83.3 98.4 113.4 122.2 133.3 148.4
240 92.2 108.9 125.6 135.4 147.7 164.4
360 106.1 125.3 144.5 155.7 169.9 189.1
720 133.8 158.0 182.2 196.3 214.2 238.4

1440 167.8 198.1 228.5 246.3 268.6 299.0

2.3.4. Green Roof and Discharge Route Implementation Scenarios

Previous studies have indicated that green roofs are becoming effective for moderating
stormwater runoff in urban areas [43]. In this study, to compare the impact of green roofs
with traditional roofs on hydrological performance at a community scale, the green roofs
were assumed to have 100% coverage (3.1 ha). As described in Section 2.3.1, the different
generic types and structures of green roofs can be explicitly modeled using the SWMM. The
soil layer depth (300 mm) and berm and drainage heights (both 150 cm) were assigned based
on previous study results [4,35] and technical standards for local roof greening in Beijing
(http://www.bjdch.gov.cn/n2025399/n2513310/c4572799/part/4572805.pdf, accessed on
30 May 2022). The design presented in the SWMM user manual was also applied to
assign values to the remaining green roof variables [39]. These values correspond to the
parameters for the green roofs described in Section 2.3.1. Table 5 illustrates the scenarios
designed for the different roof types and rooftop runoff routes in the THTH community.
The traditional and green roofs are reflected as the current scenarios S1 and S3, respectively.
To ensure building roof discharge to pervious areas (i.e., green space), S2 and S4 were
designed as discharge route scenarios for traditional and green roofs, respectively.

Table 5. Traditional roof, green roof, and discharge route implementation scenarios for rooftops.

Scenario Roof
Proportion of Land Cover (Area) Connected to Roof (%)

Driveway Footpath Parking Green Space

S1 Traditional
roof 18.1 47.3 7.3 27.3

S2 Traditional
roof 0.0 0.0 0.0 100.0

S3 Green roof 18.1 47.3 7.3 27.3
S4 Green roof 0.0 0.0 0.0 100.0

S1 and S3 without designed discharge routes, S2 and S4 with designed discharge routes.

3. Results
3.1. Model Performance Evaluation

The observed depth of the J20 node was compared with the measured data in terms
of NSE, which is defined in Formula (1). The value of NSE was 0.82 for the 20 July 2016
event and 0.79 for the 7 September 2016 event, and the root mean square error was 1.86%
and 2.56%, respectively, which improved the credibility of the rainfall-runoff simulation.
The variation trend of the simulated depth was consistent with the observed depth. In
particular, the validation performed better, with a relative error range of 2.3% to 18.8%.
The calibrated and validated values of the primary parameters of the SWMM are listed in
Table 6.

http://www.bjdch.gov.cn/n2025399/n2513310/c4572799/part/4572805.pdf
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Table 6. Values selected for SWMM parameters in the THTH community.

Parameter Description Reference
Value

Calibration
Value

Validation
Value

Width (k value) Flow width coefficient for sub-catchment 0.2–5 1.5 3.0
Manning’s roughness pervious Manning coefficient for pervious area 0.02–0.8 0.06 0.24

Manning’s roughness impervious Manning coefficient for impervious area 0.011–0.024 0.02 0.012
Depression storage pervious (mm) Depression storage depth for pervious area 2.5–10.2 6 6

Depression storage impervious (mm) Depression storage depth for impervious area 1.3–2.5 2 1.8
Horton’s maximum infiltration rate (mm/h) Maximum infiltration rate 50–200 75 55
Horton’s minimum infiltration rate (mm/h) Minimum infiltration rate 0–20 1.5 1.2

3.2. Outfall Flow Reduction
3.2.1. Peak Flow

The peak flow outfall is likely to increase the burden on downstream drainage net-
works, which indirectly increases the latent risk of flooding in neighboring districts. The
flow variation at O1 (Figure 3a–f) and O2 (Figure 3g–l) in four scenarios (S1, S2, S3, and
S4) showed that each outfall had two distinct peak flows during the 24 h rainstorm events,
which was due to the bimodal pattern of these events. The peak flows of the outfalls oc-
curred between 6 and 7 and 18 and 19 h after the onset of the rainstorm event, respectively.
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The change in peak flow varied between 25.8 and 145.5 L/s for traditional and green
roof scenarios, respectively (S3 vs. S1, S4 vs. S2) with all rainstorms (Figure 3). The peak
flow reductions of outfalls were significantly different among all green roof scenarios
(S3 and S4) and traditional roof scenarios (S1 and S2), whereas no significant difference
was detected in the peak flow of outfalls among all scenarios with (S2 and S4) or without
(S1 and S3) discharge route scenarios. For traditional roofs, when comparing the S2 and S1
scenarios, a slight decrease (less than 32 L/s) in peak flows was detected (Table 7), with the
highest peak flow reduction corresponding to the 20-year return period event for S2. For
green roofs, the reduction effects were almost non-existent and even showed an overall
increasing trend, but the change in peak flow did not exceed 10 L/s (Table 7). The peak
flow reduction did not vary linearly with the rainstorm depth. Furthermore, the difference
in peak flow reduction could be related to the bimodal pattern of rainstorms and spatial
distribution of buildings.

Table 7. Peak flow reduction of outfalls (O1 and O2) for the discharge route scenarios (S2 and S4)
compared to traditional roof scenario (S1) and green roof scenario (S3).

Outfall Scenario Time
(h)

Peak Flow Reduction (L/s)

5 Years 10 Years 20 Years 30 Years 50 Years 100 Years

O1 S2 vs. S1 6–7 12.83 11.42 9.72 10.18 9.92 13.33
O2 S2 vs. S1 6–7 5.65 4.65 3.05 3.23 1.53 1.16
O1 S2 vs. S1 18–19 11.45 12.25 22.15 4.21 18.66 20.24
O2 S2 vs. S1 18–19 −6.71 −8.56 −9.39 −9.90 −9.64 −9.78

Sum S2 vs. S1 24.29 23.70 31.86 14.33 28.63 30.90
O1 S4 vs. S3 6–7 0.00 0.00 0.00 0.00 0.00 0.00
O2 S4 vs. S3 6–7 0.00 0.00 0.00 0.00 0.00 0.00
O1 S4 vs. S3 18–19 0.01 0.03 −0.01 −0.06 0.05 −2.67
O2 S4 vs. S3 18–19 −0.38 −0.02 −0.02 0.00 0.00 0.05

Sum S4 vs. S3 −1.44 −3.93 −6.36 −6.67 −8.11 −8.57

Negative value, increasing effect.

3.2.2. Total Outfall Flow

Figure 3 shows the flow variation at the outfall of the community catchment for
all design scenarios. Overall, the total outfall flow increased with the return period of
rainstorms and decreased with the application of the discharge route and green roof. The
change in total outfall flow varied between 4.5 × 103 and 5.6 × 103 m3 for traditional
roof and green roof scenarios, respectively, (S3 vs. S1, S4 vs. S2) in all rainstorm events
(Figure 3).

To further evaluate the impacts of discharge route on the total outfall flow, the results
associated with and without design discharge route are summarized in Table 8. The total
outfall flow reduction varied widely, ranging from 5 to 271 m3 (Table 8). The reduction
response of the total outfall flow was similar to that of the peak flow for the different
scenario combinations. The impact of discharge route on total outfall flow was consistently
positive (reduced volume), and the reduced volume of S2 to S1 was much greater than
that of S4 to S3 (Table 8). With S1 as the target for S2, the reduction volumes at O1 and O2
exceeded 125 m3. However, the volume reduction of the green roof (S4 to S3) scenarios
did not exceed 80 m3. The results of the green roof scenarios revealed a linear relationship
between the total outfall flow reduction and return period (or rainfall depth). However, a
non-linear relationship was observed in the traditional roof scenario.
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Table 8. Reduction volume of total outfall flow for the discharge route scenarios (S2 and S4) compared
to traditional roof scenario (S1) and green roof scenario (S3).

Outfall Scenario
Reduction Volume (m3)

5 Years 10 Years 20 Years 30 Years 50 Years 100 Years

O1 S2 vs. S1 441 476 450 540 573 632
O2 S2 vs. S1 −170 −233 −325 −328 −368 −415

Total S2 vs. S1 271 243 125 212 205 217
O1 S4 vs. S3 4 58 111 143 180 233
O2 S4 vs. S3 1 6 −41 −69 −105 −157

Total S4 vs. S3 5 64 70 74 75 76

Negative value, increasing effect.

3.3. Drainage Overflow Mitigation
3.3.1. Overflow Volume

As demonstrated in previous studies, the outfall hydrological characteristics of green
and gray infrastructure are becoming increasingly important [13]. Recently, an increasing
number of researchers have focused on the impacts of multiple comprehensive strategies
on drainage networks, especially overflow at stormwater nodes during rainfall events [44].
The frequency distribution of the overflow volume of drainage nodes for the combination
scenarios (S1, S2, S3, and S4) during the 24 h designed rainstorms is presented in Figure 4.
The two most effective scenarios for overflow volume mitigation were S3 and S4, compared
to S1. The green roofs on their own and the combination of green roofs and discharge
routes could considerably reduce the overflow volume at drainage nodes, with the total
flood volume being less than 100 m3 at more than 60% of the nodes. In particular, for the
designed rainstorm events with the return period of over 20 years, as shown in Figure 4c–f,
the overflow volume at each node showed a downward trend from S1 to S4. Moreover,
there were fewer nodes without overflow and with an overflow volume of less than 20 m3 in
S3 and S4. The improved effect over S1 shows that the connection between discharge routes
and the differences in imperviousness between catchments can also affect the overflow
distribution to some extent.

In Table 9, the overflow volume of the junction nodes for the discharge route scenarios
(S2 and S4) is compared with the results from the traditional roof (S1) and green roof
scenarios (S3). Figure 4 indicates that discharge route optimization mitigated the frequency
of overflowing drainage nodes and the specific reduction volumes of the discharge route
scenarios in six return period rainstorms were compared (Table 9). For traditional roofs, the
overflow volume reduction decreased from 44.0 to 1.0 m3 with the increase in return period
from 5 to 100 years. However, the overflow volume reduction in the green roof scenarios
(S3 and S4) showed an opposite trend to that of the return period of rainstorms. For green
roofs, the reduction volume increased with an increase in rainstorm return period, with the
highest overflow volume reduction value (70.0 m3) corresponding to the 100-year event.

Table 9. Reduction in overflow volume of junction nodes for the discharge route scenarios (S2 and
S4) compared to traditional roof scenario (S1) and green roof scenario (S3).

Scenario Value
Reduction Volume (m3)

5 Years 10 Years 20 Years 30 Years 50 Years 100 Years

S2 vs. S1 Total 44.0 15.0 5.0 13.0 5.0 1.0
S2 vs. S1 Mean 1.00 0.34 0.11 0.30 0.11 0.02
S4 vs. S3 Total 1.0 1.0 3.0 3.0 14.0 70.0
S4 vs. S3 Mean 0.02 0.02 0.07 0.07 0.32 1.59
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3.3.2. Flooding Duration

The frequency variation of the overflow cumulative duration during rainstorm events
is also an essential factor for identifying areas with a high flood risk [45]. The frequency
distribution of the node overflow duration for the four scenarios was compared with return
period rainstorms of 5, 10, 20, 30, 50, and 100 years (Figure 5). A common response of
scenarios S3 and S4 was the frequency distribution of the overflow cumulative duration
slide in the shorter-duration direction. Compared to the results of S1, both S3 and S4 can
considerably reduce the overflow duration at a node. In the S1 scenario, approximately
39–60% of the junction nodes overflowed for less than 60 min during the 5–30-year return
period events, with a higher probability (36–38%) that the overflow cumulative duration is
greater than or equal to 1.0 h. However, the implementation of green roofs and discharge
routes (S4) seemed to improve in conjunction with overflow cumulative duration reduction.
The results presented in Figure 5 show that the S4 scenario led to more effective reduction
for the overflow cumulative duration ranging between 0.5 and 1.0 h in rainstorm events
with a return period of 5 years and over 1.0 h for 10–100 years. More efficient mitigation
between S3 and S4 was observed, and the latter implementation (S4) could be more than
2% to 3% higher than the former (S3), decreasing the frequency of overflow occurring for
more than 1.0 h in the designed rainstorm of 50- and 100-year return periods, respectively.

In Table 10, the overflow cumulative duration of the junction nodes for the discharge
route scenarios (S2 and S4) are compared with the results from the traditional (S1) and green
roof scenarios (S3). Within the six designed rainstorms across discharge route scenarios
(S2 and S4), the variation in flooding duration of drainage nodes was similar to that of the
overflow (Figure 4 and Table 9). Across all traditional roof scenario results (S2 vs. S1), the
maximum and minimum overflow cumulative duration reductions occurred during the
20-year and 50-year rainstorms, respectively. For the green roof scenarios, the maximum
and minimum overflow cumulative duration reductions occurred in the 50-year and 5-year
rainstorms, respectively. However, these results revealed a non-linear relationship between
overflow cumulative duration reduction and return period. Furthermore, the overflow
cumulative duration reduction of S2 is more effective for rainstorms with a return period of
less than 30 years, whereas the effect of discharge route optimization together with green
roofs could play a greater role in the 50-year and 100-year return period events.

Table 10. Reduction in flooding duration of junction nodes for the discharge route scenarios (S2 and
S4) compared to traditional roof scenario (S1) and green roof scenario (S3).

Scenario Value
Reduction Duration (min)

5 Years 10 Years 20 Years 30 Years 50 Years 100 Years

S2 vs. S1 Total 50.4 49.8 63.6 54.6 3.6 14.4
S2 vs. S1 Mean 1.15 1.13 1.45 1.24 0.08 0.33
S4 vs. S3 Total 0.6 1.2 7.8 27.6 50.4 48.6
S4 vs. S3 Mean 0.01 0.03 0.18 0.63 1.15 1.10
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Figure 5. Frequency distribution of overflow cumulative duration of junction nodes for the various
scenarios (S1, S2, S3 and S4) and rainfall events with return period of (a1–a4) 5, (b1–b4) 10, (c1–c4) 20,
(d1–d4) 30, (e1–e4) 50, and (f1–f4) 100 years.
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4. Discussion

Figure 6a shows the peak flow reduction rate for three scenarios (S2, S3, and S4) and
six designed rainstorms for the corresponding condition (S1). In terms of the outfalls (O1
and O2), the reduction rates of the S3 and S4 scenarios (13.9–17.4%) were higher than that
of S2 (0.4–1.5%). This result demonstrates the different mitigation effects of green roofs and
discharge routes in the reduction in peak flows of outfalls. In addition, the results from
S3 and S4 suggest that the reduction rate (14.2–24.2%) of O2 was always greater than O1
(13.1–15.1%). The integrated reduction rate of peak flows in S4 shows that as the return
period (5–100 years) and associated rainstorm depth increase and the ability to mitigate
peak flow decreases. This is consistent with previous studies that evaluated green roof
and other green infrastructures and showed that these are more effective for lower rainfall
events [46]. For the green roof scenarios, only slight differences were found before and after
discharge route application, suggesting a negligible contribution to peak flow reduction
at the community scale. Differences between the results of scenarios S3 and S4, which
show the effects of green roofs and discharge routes connected to pervious or impervious
catchments in response to different rainfall events, were not observed. A possible reason
could be that the dimensions or structures of green roofs are sufficiently large that runoff
retention exceeds the requirement for specially designed discharge routes [17]. However,
when comparing the S2 scenario relating to traditional roofs with the S1 scenario, a slight
increase (less than 3.0%) in peak flows was detected (Figure 6a), with the highest reduction
rate of 2.7% corresponding to the 5-year return period event for S2, reflected at the initial
peak flows of O1. Accordingly, designing the discharge routes for rooftop runoff from
traditional roofs is expected to improve the reduction effectiveness of green roofs for
rainstorms with higher return periods.

In terms of the total outfall flow, as shown in Figure 6b, with the condition of S1
as the target, the most effective scenario for volume reduction during the 24 h designed
rainstorms at O1 and O2 was observed in S4 (14.2–27.9%). A general decrease in the total
outfall flow reduction rate was observed when the return period (5–100 years) or rainstorm
depth increased. Similar studies have also suggested that the implementation of green
infrastructures is more effective in decreasing total outfall flow than peak flow [7,25]. The
reduction response of the total outfall flow was similar to that of the peak flow for the
different scenario combinations. The impact of the discharge routes on the total outfall flow
was consistently positive (reduced volume), and the reduced volume from S2 to S1 was
much greater than that from S4 to S3 (Table 8). Although the reduction rates of S3 and S4
are approximate, the combination of green roofs and discharge routes relieves the burden
on the downstream drainage networks. By implementing green roofs and discharge routes
and including as many permeable areas as possible, the total outfall flow can be reduced
by 0.03–0.3% when compared with using only a single strategy.

In Figure 6c,d, the reduction rates of overflow volume and overflow cumulative
duration are compared with the current condition of S1. For traditional roofs, the effect
of discharge route on drainage overflow was recognizable but not significant, and the
corresponding reduction rate did not exceed 3.5%. For green roofs, there was a difference in
the impact on the overflow volume and flooding duration after the application of discharge
route, and it mainly occurred in the 50- and 100-year return periods. Specifically, the
reduction rates of the overflow volume and overflow cumulative duration increased by
nearly 1.0% in heavy rainstorms. The mitigation effects on drainage overflow confirmed
that considering discharge routes and storage capacity strategies significantly reduced and
delayed overflow events.
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5. Conclusions

The main findings based on the evaluation of the impacts of green roofs and discharge
routes on outfall flow and drainage network overflow at a small urban community scale
are summarized below.

Roofs and rooftop runoff routes directly affected not only the peak flow and total
outfall flow but also the overflow volume and cumulative duration of drainage nodes.
The mitigation performance of discharge routes connected to pervious catchments was
identified as an important aspect of mitigating outfall and drainage flow but was smaller
relative to the increased effects of green roofs at the community scale. These results indicate
that the combination of green roofs and discharge routes connecting permeable catchments
has the potential to increase community resilience to rainstorms with larger magnitudes
and longer return periods.
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1. The reduction in the first peak flow was higher than that in the second peak flow at
outfalls experiencing a bimodal rainfall pattern in various return periods (5–100 years).
In addition, the total outfall flow where green roofs and discharge routes were imple-
mented in the upper catchment was considerably lower than the total outfall flow
that were connected to impervious upper catchments.

2. Green roofs have a large impact on drainage node overflow, and the mitigation effects
on overflow volume and overflow cumulative duration may be further improved by
routing rooftop runoff onto pervious areas.

3. This study confirms that it is feasible to adopt a distributed hydrological model (SWMM)
by evaluating the integrated mitigation effects of green roofs and discharge routes on
outfalls and drainage networks. At the community scale, the retention capability of
rainfall runoff is linked to roof types and downspout runoff route characteristics.

The results of the outfall flow reduction in peak flow and total outfall flow demonstrate
that the discharge routes connected to pervious catchments can improve resilience to heavy
rainstorms. The hydrological effects of discharge routes can be further improved in the
future by adjusting the infiltration characteristics of the receiving catchments. Despite
the results of the scenario combinations related to green roofs, the overflow volumes
observed in scenarios S3 and S4 were 31.7–62.7% lower than that in scenario S1 (Table 8).
An improvement of total outfall flow reduction was not observed during the short return
period (over 50 years) rainstorms, but the reduction ratio could be improved by 0.5%
in the 5–30-year return periods. The results suggest that stormwater management can
be improved by conducting further studies that comprehensively consider catchment
infiltration and focus on changes to discharge routes.

In this study, three scenarios (S2, S3, and S4) were artificially modeled to analyze the
effect of different roof types (green roofs and traditional roofs) and discharge routes on
rainfall runoff in a community catchment. However, a cost–benefit analysis needs to be
performed to establish the optimal combination of alternative green and gray infrastructure.
Therefore, the effective optimization and applicability of multiple means for stormwater
control should be investigated in the future.

Moreover, the frequency distribution of the overflow volume and duration tend to be
balanced for long-term return period designed rainstorms, which also shows that green
roof and discharge route designed infrastructure mitigates stormwater in networks that
experience overflow. This study suggests that a combination of green roofs and discharge
routes will contribute positively to future urban stormwater management. Future studies
should comprehensively examine the hydrological effects of green and gray infrastructure
to further optimize and improve the infiltration and retention capabilities in urban catch-
ments. The identification of the mitigation and response capabilities of multiple types of
infrastructure can inform future stormwater management in the urban areas of China.
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