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Abstract: Total phosphorus (TP) is a significant indicator of water eutrophication. As a typical
macrophytic lake, Lake Baiyangdian is of considerable importance to the North China Plain’s ecosys-
tem. However, the lake’s eutrophication is severe, threatening the local ecological environment.
The correlation between chlorophyll and TP provides a mechanism for TP prediction. In view of
the absorption and reflection characteristics of the chlorophyll concentrations in inland water, we
propose a method to predict TP concentration in a macrophytic lake with spectral characteristics
dominated by chlorophyll. In this study, water spectra noise is removed by discrete wavelet transform
(DWT), and chlorophyll-sensitive bands are selected by gray correlation analysis (GRA). To verify
the effectiveness of the chlorophyll-sensitive bands for TP concentration prediction, three different
machine learning (ML) algorithms were used to build prediction models, including partial least
squares (PLS), random forest (RF) and adaptive boosting (AdaBoost). The results indicate that the
PLS model performs well in terms of TP concentration prediction, with the least time consumption:
the coefficient of determination (R2) and root mean square error (RMSE) are 0.821 and 0.028 mg/L in
the training dataset, and 0.741 and 0.029 mg/L in the testing dataset, respectively. Compared with
the empirical model, the method proposed herein considers the correlation between chlorophyll and
TP concentration, as well as a higher accuracy. The results indicate that chlorophyll-sensitive bands
are effective for predicting TP concentration.

Keywords: quantitative inversion; hyperspectral remote sensing; water quality parameters; total
phosphorus; machine learning

1. Introduction

Lakes are vital freshwater resources on land, fulfilling several key ecological func-
tions, such as providing water, purifying pollution, and maintaining biodiversity [1–3].
Owing to the influence of human activities and urbanization, many lakes face serious
ecological problems, including reduced water volume, declining aquatic biodiversity, and
water eutrophication. It is the premise and foundation of lake ecological environmental
management that accurate and rapid monitoring of lake water quality [4,5].

Phosphorus is an essential element for algae growth, and the monitoring of total
phosphorus (TP) is crucial for the monitoring and treating of water environments. However,
high-precision TP concentration prediction remains challenging [6–10]. The existing in
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situ TP monitoring techniques are primarily based on the chemical method, which has the
disadvantages of a long analysis period, chemical reagent consumption, and the generation
of secondary pollution. In recent decades, remote sensing technology has been widely used
to monitor the water quality of various inland lakes, due to its wide range of capabilities
and timeliness [11–14]; it could serve as a new tool for the monitoring of TP concentration.

As an optically inactive substance, the TP concentration is difficult to invert using
physical models [6,9]. The existing TP inversion models are broadly divided into direct and
indirect models. The direct models establish the relationship between remote sensing re-
flectance (Rrs) and the measured TP concentration, and have been widely applied for water
quality monitoring owing to their simplicity and feasibility. The direct models typically
use statistical methods to estimate the water quality parameters with less consideration of
the mechanism; therefore, these models’ applicability is limited, depending on the study
area and data [7–9]. Chlorophyll-a, total suspended matter (TSM), and colored dissolved
organic matter (CDOM) have optical properties and spectral responses, and TP concentra-
tion is correlated with the content of these optically active substances [6,15,16]. The indirect
methods typically establish the relationship between the TP and optically active substances,
and the TP concentration is subsequently indirectly retrieved, based on the inversion results
of optically active substances [17]. Unlike the direct models, the indirect models consider
the mechanism by which the TP is inverted. However, the inversion results of optically
active substances, as well as the correlation between the TP and optically active substances,
affect the accuracy of the TP inversion results. Earlier studies demonstrated a correlation
between chlorophyll-a and TP, as well as total nitrogen (TN) [18–23], which provides a
mechanism for TP concentration prediction through the chlorophyll-sensitive bands. Based
on the spectral responses of emergent plants to different TN concentrations, Wang et al.
and Liu et al. retrieved the concentration of TN through the sensitive bands of vegetation,
using unmanned aerial vehicle (UAV) hyperspectral data for Ebinur Lake, and obtained
high TN concentration prediction accuracy [24,25].

Machine learning (ML) is a branch of computer science that has been widely used for
ecological and environmental remote sensing. Owing to their good computing performance
and nonlinear mapping capabilities, ML models have increasingly been adopted as effective
models for the inversion of water quality parameters in recent years, such as support vector
machines (SVM), random forest (RF), genetic algorithms (GA), extreme learning machines
(ELM), and artificial neural networks (ANN) [24,26–30]. Numerous researchers have
analyzed the relationship between the water quality parameters and spectral data, using
ML algorithms based on the measured water quality and spectral data, indicating that the
ML algorithms may be capable of handling the nonlinear relationships between reflectance
and water quality parameters [24,28,31].

Lake Baiyangdian is the largest freshwater wetland in the North China Plain, and the
largest lake in Hebei Province [32–34]. It is a typical plant-dominated shallow freshwater
lake; also a significant freshwater breeding base in northern China, with an extremely high
ecological and economic status [35–39]. Lake Baiyangdian is also instrumental in maintain-
ing the wetland ecosystem’s balance, regulating the climate, improving the temperature and
humidity, replenishing the groundwater, and protecting biodiversity and rare species [40].
The presence of industrial wastewater, domestic sewage, and domestic waste has negatively
impacted the ecological environment in some areas of Lake Baiyangdian [37,40,41], posing
a considerable threat to the water environment’s security. Lake Baiyangdian is facing
serious eutrophication, its water quality urgently requires monitoring, and several studies
have used remote sensing technology to assess the lake’s water quality [32,33,42]. How-
ever, as an important indicator of water eutrophication, Lake Baiyangdian’s TP remains
insufficiently investigated.

Consequently, the present study’s objectives are as follows: to explore the characteristic
bands for TP inversion of inland lakes with chlorophyll-dominated spectral characteristics;
to verify the effectiveness of the TP predictions based on chlorophyll-sensitive bands
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through different ML models; and to characterize the spatial distribution of water quality
at sampling points across Lake Baiyangdian.

2. Materials and Methods
2.1. Study Area

Lake Baiyangdian is a freshwater lake in the Haihe River Basin, located at 38◦43′–39◦02′N
and 115◦45′–116◦07′E in the Xiong’an New Area of Hebei Province, China (Figure 1). Lake
Baiyangdian is composed of 143 lakes of various sizes with a total area of 366 square kilometers
and an average annual water storage of 1.32 billion cubic meters. The river network in the
basin shows a fan-shaped distribution [34,43]. The climate in the Lake Baiyangdian area is
a typical temperate monsoon climate, with uneven distribution of precipitation throughout
the year [36]. More of the precipitation occurs during the spring, and less in the autumn,
while the precipitation between June and September accounts for 70–80% of the entire year’s
rainfall [44]. The lake has a semi-arid climate: the drought index is 2.98, the annual average
temperature is 7 ◦C, the average precipitation is 550 mm, and the annual average evaporation
is 1637 mm [44,45].
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Figure 1. (a) Baiyangdian’s location in China; (b) experimental site; and (c) water samples distribution.

Lake Baiyangdian is experiencing extreme water shortages. Its annual average water
resource is 3.118 billion m3, and the per capita water resource is 297 m3—a mere 1/10 of
the national per capita water resource. Owing to the occurrence of drying up incidents over
the last 30 years, the amount of water entering Lake Baiyangdian has decreased [46]. At
the same time, severe organic pollution and eutrophication affect most areas of the lake,
and the main pollutants are chemical oxygen demand (COD) and TP derived from the
rivers entering the lake from scenic spots and households [43,47–49]. Due to the domestic
sewage and agricultural non-point source pollution in the lake area, Lake Baiyangdian’s
water quality is poor (largely at the level of class IV–V) [46,48,50], and is deteriorating in
some areas, posing a serious threat to the ecological environment. The situation of Lake
Baiyangdian’s ecological environment is critical and must be addressed.
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2.2. Data Acquisition

Figure 2 presents the study flowchart. The overall TP prediction framework comprises
four steps, each of which is described in detail below. Owing to the rich spectral information,
hyperspectral remote sensing can capture the water’s weak spectral characteristics and has
been widely used in water quality monitoring [51–55]. In this study, a PSR-3500 portable
spectrometer was used to measure the water spectra. The PSR-3500 is widely used for
spectral measurement of ground objects. It has 1024 channels over a spectral range of
350–2500 nm, with spectral resolutions of 3.5, 10, and 7 nm at 700, 1500, and 2100 nm. A
fiber optic probe with a field of view of 25◦ was used for the measurements.
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Figure 2. Study flowchart.

The 62 sampling points were evenly distributed throughout the intersection and
middle of the river in Lake Baiyangdian. The experiment was conducted on sunny days
between 10:00 a.m. and 14:00 p.m., from 22 to 29 September 2018. For each sampling site,
the radiances of water, sky, and the reference panel were measured, and water samples were
collected simultaneously. Special observation geometry was adopted to avoid any influence
of ships’ shadows and direct solar radiation [56]. All of the water samples were placed
in the incubator and then brought to the chemical laboratory to test the TP concentration
within 24 h. In this paper, the TP concentration was measured by the ammonium molybdate
spectrophotometric method (GB 11893-1989, issued by China). To reduce the influence of
random error, the spectra were measured five times at the same spot, and the final spectrum
was determined from the average of the five spectra for each sample site. Rrs was derived,
using the following Equation (1):

Rrs(λ) =
LSW − rLsky

Lp ∗ π
ρp

(1)

where LSW is the total radiance of the water; Lsky is the measured radiance of the sky; Lp is
the measured radiance of the reference panel; ρp is the reflectance of the reference panel
(30%); and r is the skylight reflectance at the air–water surface.

2.3. Spectral Preprocessing

Spectral dimension noise distorts the spectrum of ground objects, shifts the central
wavelength, and thus affects the inversion results of water quality parameters. Therefore,
the removal of spectral dimension noise is critical to improve the accuracy of water quality
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parameters. Owing to its good time-frequency resolution characteristics, wavelet transform
(WT) is widely used to remove noise from spectral data [57,58]. WT transforms the function
in time and space to determine the relationship between the time and frequency domains,
including continuous WT and discrete wavelet transform (DWT). For the discrete case, the
wavelet sequence is defined as follows:

Ψj,k(t) = |a0|−
j
2 Ψ
(

a−j
0 t− kτ0

)
(2)

where a and b are the zoom and translation factor, respectively; a, b ∈ R; and a 6= 0. For any
function f (t), the DWT is defined, using Equation (3):

W f (j, k) = 〈 f (t), Ψj,k(t)〉 = a−
j
2

0

∫ +∞

−∞
f (t)Ψ

(
a−j

0 t− kτ0

)
dt (3)

DWT decomposes the signal into detail and approximate coefficients. The signal S is
decomposed into three layers, and the decomposition relation is, S = A3 + D3 + D2 + D1,
as shown in Figure 3. A3 is the approximate coefficient of the original signal, which
is the low-frequency component; D1–D3 are the detail coefficients, which are the high-
frequency components.
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To evaluate the de-noising results, the normalized correlation coefficient (NCC), signal
to noise ratio (SNR), and peak signal to noise ratio (PSNR) were calculated, using the
following equations, respectively:

NCC =
∑N

i=1 xi x̂i√[
∑N

i=1 x2
i

]
·
[
∑N

i=1 x̂i
2
] (4)

SNR = 10× lg

[
∑N

i=1 x2
i

∑N
i=1 (xi − x̂i)

2

]
(5)

PSNR = 10× lg

[
(xi)

2
max × N

∑N
i=1 (xi − x̂i)

2

]
(6)
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where N is the total number of samples; xi is the spectral reflectance before de-noising; and
x̂i is the spectral reflectance after de-noising. The DWT de-noising method was performed
using MATLAB R2017a.

2.4. Gray Relation Analysis

The degree of relevance reflects the relevance of two sequences. The grey relation
analysis (GRA) is based on grey system theory, which reveals the characteristics and degree
of the relationship between factors [59,60]. Owing to its characteristics, such as the lower
sample size and calculation requirements, and the lack of need for typical distribution rules,
GRA is widely used for nonlinear feature selection. As a dimensionless quantity, GRA can
express the correlation between the TP concentration and hyperspectral reflectance of the
water samples. A more detailed description of GRA is provided by Kuo et al. [61]. The
GRA was written using Python 3.7.

2.5. Prediction Model Construction and Verification

To verify the effectiveness of predicting the TP concentration through the chlorophyll-
sensitive bands, and to better understand the nonlinear relationship between TP concentra-
tion and reflectance, three typical ML algorithms were used in this paper, including partial
least squares (PLS), random forest (RF), and adaptive boosting (AdaBoost).

(a) Partial least squares

PLS is a typical parametric regression method, which has been widely used in studies
owing to the good performance [62,63]. It is applicable to the case where the amount of
highly collinear data and variables significantly exceeds the number of available samples.
The PLS method selects successive orthogonal factors that maximize the covariance between
the predictor and response variables to predict the variables. It takes advantage of the
correlation between the TP concentration and reflectance spectra, and derives quantitative
information from the spectra data.

(b) Random forest

RF is a decision tree algorithm, based on ensemble learning algorithms. It has higher
accuracy when used to solve nonlinear problems for regression and classification. As such,
it has been widely used in remote sensing studies [64,65]. The RF algorithm uses multiple
models when the samples are input, and the algorithm then integrates all of the models’
results to derive a single model. The performance of the RF models is usually evaluated
based on the out-of-bag (OOB) error. A detailed illustration of the RF method is available
in the paper of Genuer et al. [66].

(c) Adaptive boosting

The AdaBoost algorithm is an integrated learning algorithm, based on the boosting
algorithm framework. As an effective statistical learning algorithm, the AdaBoost algorithm
is not susceptible to overfitting issues and is widely used in classification and regression
problems [27,28,67,68]. It serially constructs a strong learner, with a weak learner that
is continuously used to make up for the previous weak learner’s shortcomings. The
training samples are weighted in each iteration, and the weight is adjusted according to
the error [26]. When the weight of the learner with the larger error is reduced and the
weight of the learner with the smaller error is increased, the final weighted set becomes
a strong learner. AdaBoost is also an iterative optimal search strategy. By searching the
learner or function space, it constructs a perfect learner to ensure a sufficiently small
objective function.

To evaluate the predictions of the TP concentration, four parameters were calculated,
namely the coefficient of determination (R2), root mean square error (RMSE), ratio of
performance to deviation (RPD), and explained variance score (EVS). The RPD is the ratio
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between the standard deviation (SD) and the RMSE. These parameters were determined
using Equations (7)–(10), respectively:

R2 =
∑N

i=1(ŷi − y)2

∑N
i=1(yi − y)2 (7)

RMSE =

√√√√ 1
N

N

∑
i=1

(yi − ŷi)
2 (8)

RPD =
SD

RMSE
(9)

EVS = 1− Var{yi − ŷi}
Var{yi}

(10)

where N is the total number of samples; ŷi is the predicted value; yi is the measured value;
and y is the mean of the measured value. Generally, a robust model has a high R2, RPD,
and EVS, and a low RMSE. The PLS, RF, AdaBoost method, and four evaluating indicators
were performed and implemented using Python 3.7.

3. Results
3.1. Statistical Analysis

Based on the in situ data, the water samples were sorted, according to the TP con-
centration. Every third sample was included in the testing dataset; the rest of the data
were included in the training dataset. The 62 water samples collected from Lake Baiyang-
dian were divided into 42 training datasets and 20 testing datasets. The training and
testing datasets were representative of the entire water sample dataset in terms of the
minimum, maximum, mean, and SD values. The coefficient of variation (CV) was used to
complement the SD. Table 1 presents the statistics for the water samples’ TP concentrations.
The minimum TP concentration was 0.05 mg/L, and the maximum concentration was
0.31 mg/L.

Table 1. TP concentrations (mg/L) of measured water samples in Lake Baiyangdian.

Group Max Min Mean SD CV

Entire dataset (n = 62) 0.31 0.05 0.136 0.065 0.482
Training dataset (n = 42) 0.31 0.05 0.137 0.07 0.514
Testing dataset (n = 20) 0.27 0.07 0.134 0.055 0.413

3.2. DWT Denoising

In the DWT analysis, we decomposed the spectral data into three layers after several
tests. The spectral de-noising filter, based on WT, includes hard and soft thresholds. In
this paper, the detailed information of each layer is filtered by threshold selection, and
the filtered spectra data are reconstructed by inverse WT. Table 2 compares the de-noising
effects among different mother wavelet functions (db, sym, and coif). NCC was used to
evaluate the spectra before and after de-noising; SNR and PSNR were used to evaluate
the information reconstruction quality of the spectra. Generally, the better the information
quality of the spectra, the greater that of the NCC, SNR, and PSNR. As Table 2 illustrates,
the NCC values show little difference between the different functions, demonstrating
that good waveform similarity can be maintained after de-noising with different wavelet
functions. The SNR and PSNR of the spectra de-noised by db4 were 45.6378 and 51.5475 dB,
respectively—higher than those of the other wavelet functions. The water spectra de-noised
by db4 are shown in Figure 4a.
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Table 2. Comparison of the de-noising effects of different wavelet functions.

Function NCC SNR (dB) PSNR (dB)

Daubechies
db4 0.999986 45.6378 51.5475
db5 0.999981 44.1852 50.0514
db6 0.999979 43.7034 49.6225

Symlets
sym4 0.999978 43.5734 49.4839
sym5 0.999978 43.5775 49.4516
sym6 0.99998 43.9002 49.8099

Coiflet
coif3 0.999979 43.8615 49.7811
coif4 0.999982 44.3825 50.2567
coif5 0.999981 44.2161 50.0769
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3.3. Feature Band Selection

The water spectral data were acquired in the range of 400~1000 nm, which is generally
used in water color remote sensing. Figure 4a shows the 62 water reflectance spectra col-
lected in Lake Baiyangdian. The reflectance spectra exhibit obvious chlorophyll-dominated
characteristics. The absorption characteristics close to 440 and 675 nm are caused by
chlorophyll absorption, and the absorption characteristic close to 620 nm is caused by
phycocyanin. The absorption characteristic close to 440 nm is significantly affected by
the suspended matter and CDOM, while the absorption characteristic close to 675 nm
is less affected by the other water elements. Lake Baiyangdian’s water spectra exhibit a
clear reflection peak close to 700 nm, which is one of the most important spectral bands of
chlorophyll concentration in inland water.

Figure 4b shows the results of GRA between the spectral reflectance and the TP
concentration. The GRA degree of all of the bands is >0.8, and the band with a higher GRA
degree is close to 700 nm, consistent with the chlorophyll-sensitive bands. We selected
the 37 characteristic bands from 674.4~736.3 nm to predict the TP concentration. These
bands include the most important spectral characteristic chlorophyll bands, including the
absorption valley at 675 nm and reflection peak at 700 nm. The GRA degrees of these
bands are all >0.86, and their reflectance values were used as the model input to predict
TP concentration.

3.4. Prediction of TP Concentration

A total of 37 chlorophyll-associated spectral bands were used to predict Lake Baiyang-
dian’s TP concentration, with all the visible-near infrared (VNIR) bands used for com-
parison. To verify the chlorophyll-sensitive bands’ applicability to the TP concentration
inversion, three different ML algorithms (PLS, RF, and AdaBoost) were used to construct
the prediction model.
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Figure 5 reveals the TP concentration prediction performance of the different ML
models, using chlorophyll-sensitive bands. The R2 is >0.8 in the training dataset and >0.5 in
the testing dataset for all ML models. The PLS model performs well for both of the training
and testing datasets, and the R2 values for the training and testing datasets are 0.821 and
0.741, respectively. The R2 value of the RF model in the training dataset is 0.882, but only
0.523 in the testing dataset. The RF model’s scatter plots in the testing dataset are discrete,
indicating that the testing dataset’s TP concentration could not be accurately predicted. The
AdaBoost model shows the best performance for the training dataset (R2 = 0.923). However,
its R2 value is only 0.608 for the testing dataset, possibly due to overfitting. Although
the PLS model accuracy is not the highest for the training dataset, it exhibits the highest
accuracy for the testing dataset. Compared with the other two ML models, the R2 of the
PLS model is >0.7 for both the training and testing datasets, demonstrating that the PLS
model performs well in terms of the TP concentration prediction.

Remote Sens. 2022, 14, x FOR PEER REVIEW 10 of 17 
 

 

 

Figure 5. Scatter plots of measured and predicted TP concentrations in Lake Baiyangdian using 

chlorophyll-sensitive bands (note: the red line is the 1:1 line), (a) PLS model in the training dataset; 

(b) PLS model in the testing dataset; (c) RF model in the training dataset; (d) RF model in the testing 

dataset; (e) AdaBoost model in the training dataset; (f) AdaBoost model in the testing dataset. 
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dataset; (e) AdaBoost model in the training dataset; (f) AdaBoost model in the testing dataset.



Remote Sens. 2022, 14, 3077 10 of 16

Figure 6 further illustrates the TP concentration prediction performance of the different
models using all VNIR bands. The R2 values for the training dataset were 0.817, 0.877, and
0.962 for the PLS, RF, and AdaBoost models, respectively. The R2 values for the testing
dataset were 0.585, 0.508, and 0.596, respectively. Compared with the models established
using the chlorophyll-sensitive bands, the prediction accuracy of the PLS and RF models
established using all VNIR bands was lower, while the AdaBoost model’s prediction
accuracy was higher for the training dataset. For the testing dataset, the accuracy of the
three ML models established using all VNIR bands was lower than that of those established
using the chlorophyll-sensitive bands. Although the accuracy of the AdaBoost model
established using all VNIR bands was higher for the training dataset than that using the
chlorophyll-sensitive bands, it performed poorly with the testing dataset, possibly as a
result of overfitting in the training dataset. The verification results of the three different ML
models demonstrate the feasibility of inverting the TP concentration, using chlorophyll-
sensitive bands.
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Figure 6. Scatter plots of measured and predicted TP concentrations in Lake Baiyangdian using the
entire VNIR band (note: the red line is the 1:1 line), (a) PLS model in the training dataset; (b) PLS
model in the testing dataset; (c) RF model in the training dataset; (d) RF model in the testing dataset;
(e) AdaBoost model in the training dataset; (f) AdaBoost model in the testing dataset.
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4. Discussion
4.1. Analysis of Time Efficiency

Figure 7 illustrates the running times of different ML models predicting TP using
all VNIR spectra and chlorophyll-sensitive bands. Compared with all VNIR bands, the
running time for predicting TP using the chlorophyll-sensitive bands is lower, indicating
that selection of the chlorophyll-sensitive bands could reduce the running time while
maintaining prediction accuracy. The PLS method shows the shortest running time among
the three ML models, at <0.2 s in both the chlorophyll-sensitive and VNIR bands. The
RF model has the longest running time, of >0.5 s for both the chlorophyll-sensitive and
VNIR bands. The RF algorithm creates a decision tree for each sample, and then obtains
the prediction results for each decision tree. The final prediction result was then selected
according to the vote results, which consumes a lot of time [26]. The AdaBoost model is
weighted and iterated in the training process, and the weight is adjusted according to the
error; thus, it also consumes more time [26,28,68]. The time difference of the AdaBoost
model between the entire VNIR and chlorophyll-sensitive bands is the greatest between
the three models.
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Although the AdaBoost method shows the highest accuracy in the training datasets,
its time consumption is also high. By contrast, the PLS method shows high accuracy and
minimal time consumption. In practical application, when substantial amounts of data
must be obtained in real time, the PLS models may be used to predict the TP concentration
more accurately and quickly.

4.2. Effectiveness Analysis of Chlorophyll-Sensitive Bands

To verify the accuracy of the TP predictions using the chlorophyll-sensitive bands, sev-
eral empirical and semi-empirical models were compared, using single band, logarithmic,
ratio, difference, first- and second-order differential, and three- and four-band methods.
The dataset division rules are the same as those detailed in Section 3.1. The character-
istic bands selected based on the empirical and semi-empirical method and prediction
accuracy are shown in Table 3. Only the results for R2 and RMSE are shown, owing to
space constraints.
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Table 3. Prediction accuracy of other models.

Characteristic Bands (nm)
R2 RMSE

Training Dataset Testing Dataset Training Dataset Testing Dataset

Single band 713.7 0.065 0.066 0.065 0.056
Logarithmic 712.4 0.102 0.113 0.064 0.055

Ratio 703, 655 0.618 0.754 0.042 76.974
Difference 694.9, 657.8 0.662 0.701 0.039 0.035

First-order differential 675.7 0.537 0.602 0.046 0.04
Second-order differential 641 0.16 0.003 0.131 0.061

Three-band 667.5, 690.8, 745.5 0.291 0.655 0.056 0.034
Four-band 667.5, 690.8, 727, 744.2 0.002 0.006 0.067 0.058

Chlorophyll-sensitive bands 674.4~736.3 0.821 0.741 0.028 0.029

As Table 3 demonstrates, although the positions of the characteristic bands selected
differ, depending on the empirical and semi-empirical method, they are all between 600 and
750 nm. These bands are also chlorophyll-sensitive, indicating that the chlorophyll-sensitive
band reflectance has a strong correlation with TP concentration. With the exception of
the ratio and difference models, which have a higher prediction accuracy (R2 > 0.6), the
models established using other empirical methods failed to predict the TP concentration in
Lake Baiyangdian. Although the ratio model’s R2 was high in both the training and testing
datasets, the testing dataset’s RMSE was also high. This indicates that the ratio model
could only predict the relative TP concentration accurately; the prediction error is large for
the absolute value. The characteristic bands of the empirical models were selected using
statistical methods, and only one or two bands were used to predict the TP concentration.
The empirical models ignore the mechanisms of TP inversion and do not make full use of
the rich spectral information provided by hyperspectral data, so that their applicability is
low [6,8]. As a commonly used semi-empirical model, the three- and four-band methods
also performed poorly in predicting the TP concentration of Lake Baiyangdian, which may
be caused by an insufficient utilization of the spectral information.

In this study, we selected chlorophyll-sensitive bands ranging from 674.4 to 736.3 nm,
including the strong reflection and absorption chlorophyll bands in inland water [69–71]. The
methodology proposed herein considers the mechanism for TP inversion, and makes full
use of spectral information, thus avoiding the low applicability associated with the band
combinations that ignore TP inversion mechanisms. Compared with the entire VNIR model,
the model established using chlorophyll-sensitive bands as input not only shows a higher
accuracy for both the training and testing datasets, but also reduces the running time, which
has an advantage when substantial amounts of data need to be obtained in real time.

4.3. Spatial Distribution Characteristics of Water Samples

The Environmental Quality Standards for Surface Water of China (EQSSWC; standard
number: GB3838-2002) categorize the water quality into five classes, which may be used
to objectively evaluate water pollution. Class I water, which is the best quality, is used for
source water and national nature reserves; class V has the worst quality and is applicable
to areas with agricultural and landscape requirements. In light of the ecological function of
Lake Baiyangdian, its TP concentration should be in the range of 0.02~0.2 mg/L; however, the
concentrations at some of the sampling points exceeded the standard. Based on the EQSSWC,
the water quality of each class was determined according to the TP concentration, and the TP
concentration of water samples in Lake Baiyangdian is categorized into classes II–V (Figure 1).

As Figure 1 illustrates, most of the sampling points contained class III water; class V
water was the least prevalent. The sampling points containing class II water are distributed in
the north and east of Lake Baiyangdian; class III water is mainly distributed in the middle of
the lake; and class IV and V water are mainly distributed in the west. The sampling points
with serious water pollution (containing class IV and V water) are distributed in the west
of Lake Baiyangdian, close to residential areas. By contrast, the sampling points containing
class II water are mainly distributed close to the large area of water bodies. The main sources
of pollution in Lake Baiyangdian include tourism, agriculture, aquaculture, and domestic
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wastewater [37,46,49]. Copious amounts of domestic sewage are discharged into the river,
leading to more severe pollution in residential areas than elsewhere [39,46]. The lake’s water
quality impacts local residents’ health and plays a key role in the local ecosystem. It is thus a
matter of some urgency to mitigate local domestic sewage discharge, improve water quality,
and conserve the ecological environment of Lake Baiyangdian.

5. Conclusions

TP monitoring is of great significance to monitor and treat water environments. However,
as an optically inactive substance, TP concentration is difficult to invert using physical models.
In this paper, Lake Baiyangdian was taken as the study area, and the WT de-noising method
was used to remove background noise and extract the water’s weak spectral information.
Considering the correlation between TP and chlorophyll, the chlorophyll-sensitive bands were
selected by GRA, and the TP concentration prediction model was constructed based on three
ML algorithms (PLS, RF, and AdaBoost). The results demonstrate that the PLS model shows
the best performance among the three ML algorithms in the testing dataset, with the least time
consumption: the R2 and RMSE are 0.741 and 0.029 mg/L, respectively. Compared with the
empirical model, the method proposed herein has a higher prediction accuracy. Future studies
will investigate the correlation between the chlorophyll and TP in other lakes, and verify the
method proposed in this paper.
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Abbreviation Description
AdaBoost adaptive boosting
CDOM colored dissolved organic matter
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GRA grey relation analysis
ML machine learning
PLS partial least squares
RF random forest
Rrs remote sensing reflectance
SD ratio of standard
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VNIR visible-near infrared
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