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Abstract: Atmospheric duct parameters inversion is an important aspect of microwave-band radar
and communication system performance evaluation. AIS (Automatic Identification System) is
one of the signal sources used for atmospheric duct parameters inversion. Before the inversion
of atmospheric duct parameters, determining the type of atmospheric duct plays an important
role in the inversion results, but the current inversion methods ignore this point. We outlined a
classifying-inversion method of atmospheric duct parameters using AIS signals combined with artifi-
cial intelligence. The method consists of an atmospheric duct classification model and a parameter
inversion model. The classification model judges the type of atmospheric duct, and the inversion
model inverts the atmospheric duct parameters according to the type of atmospheric duct. Our
findings demonstrated that the accuracy of the atmospheric duct classification model based on deep
neural network (DNN) even exceeds 97%, and the atmospheric duct parameters inversion model has
better inversion accuracy than that of the traditional method, thereby illustrating the effectiveness
and accuracy of this novel method.

Keywords: classifying-inversion method; AIS; atmospheric duct; artificial intelligence

1. Introduction

The atmospheric duct is an abnormal phenomenon in the tropospheric atmosphere
that includes evaporation, surface, and elevated ducts. Ducting occurs when a radio
ray originating at the Earth’s surface is sufficiently refracted so that it is either bent back
toward the Earth’s surface or travels in a path parallel to the Earth’s surface. These types
have different causes. Evaporation duct is caused by water surface evaporation, and it
mainly appears over the ocean, with an occurrence of over 85% [1]. Surface and elevated
ducts (low-altitude atmospheric ducts) are mainly caused by weather phenomena, such as
radiation-inversion, sinking-inversion, and advection-inversion. The occurrence of offshore
low-altitude atmospheric ducts is 20–60% [2]. The atmospheric duct has an important
impact on radio wave propagation. Figure 1 illustrates the comparison of the distribution
of electromagnetic wave propagation loss in a standard atmosphere and surface ducts.
From the diagram, when the surface duct appears, the distribution of electromagnetic wave
propagation loss changes significantly. Electromagnetic waves can propagate beyond the
visual range with small propagation loss, an event called the over-the-horizon phenomenon.

The atmospheric duct will cause the radar system to produce the detection blind area,
the clutter echo enhancement, the target-positioning error increase, and other adverse
effects, thereby affecting its performance [3]. Therefore, it is important to obtain the
atmospheric duct parameters when evaluating the radar performance.

The acquisition methods of atmospheric duct parameters include direct detection and
remote-sensing inversion. The direct detection method uses radiosondes or rocketsondes
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to measure the atmospheric duct parameters, though it is expensive and difficult to oper-
ate. However, remote-sensing inversion has a high spatial-temporal resolution and has
gained great attention recently. Ground-based Global Navigation Satellite System (GNSS)
occultation signal is one of the signal sources used for atmospheric remote-sensing [4,5].
Zuffada [6] realized that the use of ground-based occultation signal bending angles laid
a theoretical foundation for the inversion of the atmospheric duct. Wang [7] proposed a
method of retrieving atmospheric duct parameters using a ground-based GNSS occultation
signal and carried out experimental verification. Due to the fixed number of GNSS, the
number of occultation events received every day was limited (about 100 times) [7], which
leads to atmospheric ducts often being missed.
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Figure 1. Distribution diagram of radio wave propagation loss.

AIS system is a navigation aid system applied in maritime safety and communication
between ships and shore, and between ships [8,9]. The International Maritime Organization
stipulates that AIS systems should be installed on all international sailing ships of 300 tons
and above, and all non-international sailing ships of 500 gross tons and above. Therefore,
in offshore waters, there is a large amount of widely-distributed AIS information. E.R.
Bruin [10] analyzed the influence of different atmospheric duct environments on AIS signals.
Atmospheric ducts can increase the propagation distance of AIS signals. Zhang [11]
discussed the propagation characteristics of AIS signals in different atmospheric duct
environments and demonstrated that the low-altitude atmospheric duct (especially the
surface duct) had a significant influence on AIS signals at sea. From previous observations,
the AIS signal is affected by the atmospheric duct in the process of propagation and can be
used to invert atmospheric duct parameters.

The inversion algorithm is an important aspect in the field of atmospheric duct re-
mote sensing. The common inversion algorithm used for remote-sensing of atmospheric
ducts was the global optimization algorithm, such as the genetic algorithm and particle
swarm optimization [12]. Gerstoft [12] proposed a method for inverting atmospheric duct
parameters using sea surface echo from the genetic algorithm called refraction-from-cluster
(RFC) technology. In 2007, Yardim [13] proposed a GA-MC hybrid algorithm, which can
ensure the inversion accuracy and improve the inversion speed. With the development of
artificial intelligence technology, the deep-learning theory has been applied to the inversion
of atmospheric duct parameters. Guo [14] outlined a method of inverting atmospheric
duct parameters using deep-learning network and sea clutter that greatly improved the
inversion speed of atmospheric duct parameters. Han [15] illustrated a method to pre-
dict the height of the evaporation duct using a recurrent neural network. Hilesit [16]
demonstrated a method to characterize the parameters of the evaporation duct in the ocean
boundary layer based on an artificial neural network. Han [17] outlined a cooperative
inversion model of atmospheric duct parameters using ground-based GNSS occultation
signals and a deep-learning network and established a weight loss function construction
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method. Tepecik [18] demonstrated an atmospheric duct inversion method using a genetic
algorithm and deep learning.

Wang [7] and Gerstoft [12] adopted a one-step inversion strategy and only one model is
established to judge the type of atmospheric duct and invert the parameters of atmospheric
duct. Hilaire [19] showed a two-step inversion strategy: the classification of atmospheric
duct types, and the inversion of atmospheric duct parameters. This effectively improved
the inversion accuracy of atmospheric duct parameters.

From previous findings, we adopted a classifying-inversion model of atmospheric
duct parameters based on AIS signals including two parts: classification of duct type and
inversion of duct parameters. Before the inversion of atmospheric duct parameters, the
types of atmospheric ducts were classified and judged. This model has higher inversion
accuracy than that of the traditional method.

The content of this manuscript is arranged as follows: In Section 2, using the AIS
signal simulation algorithm and data of the AIS signal power, we deduced the influence of
different atmospheric duct types on AIS signal power distribution. Section 3 introduces the
modeling methods of the classifying-inversion model, including the modeling methods of
the atmospheric duct classification model and duct parameters inversion model. Section 4
illustrates the analysis of test results. The conclusions are presented in Section 5.

2. The Effect of the Atmospheric Duct on the AIS Signal

The atmospheric duct includes evaporation, surface, and elevated ducts. We focused
on the effect of elevated and surface ducts on AIS signals as the evaporation duct has almost
no influence on AIS signals [20]. In this part, AIS power simulation and measurement
data were used to analyze the effect of different atmospheric duct types on AIS signals,
necessary for modeling the atmospheric duct classifying-inversion model.

2.1. Atmospheric Duct Model

The atmospheric duct structure is described by a modified refractive index that varies
with height. When the modified refractive index has a negative gradient, the atmospheric
duct phenomenon appears [21].

M = N +
h
re
× 106 (1)

N =
77.6

T
× (P +

4810e
T

) (2)

where re, P, T, and e are the average Earth radius, the atmospheric pressure, absolute
temperature, and water vapor partial pressure at height h from the ground. The units for P,
T, and e are kPa, K and kPa.

The surface duct model is a two-parameter model:

M(z) =

{
M0 − Md

zt
z 0 ≤ z ≤ zt

M0 − Md
zt

z + 0.118z z ≥ zt
(3)

where zt is surface duct height, Md is surface duct strength, and M0 is the modified
refractive index of surface or sea surface. The elevated duct model is a four-parameter
model [22] expressed in Equation (4) as shown below:

M(z) = M0 +


kz 0 ≤ z ≤ zb

kzb − Md
zt
(z− zb) zb ≤ z ≤ zb + zt

kzb −Md + 0.118(z− zb − zt) z ≥ zb + zt

(4)
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where k is the foundation layer slope, M(z) is the modified refractive index at height z, zb is
the trapped layer bottom height, zt is the trapped layer thickness, and Md is elevated duct
strength. The structure diagram of the surface duct and elevated duct is shown in Figure 2.
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2.2. AIS Signal Power Simulation

The AIS signal power calculation formula is shown in Equation (5):

P = Pt + Gt + Gr − L1 − L (5)

where Pt is the transmission power of the AIS system, which is 41 dBm. Gt is the transmit
antenna gain, Gr is the receiving antenna gain, L is the propagation loss of AIS in an
atmospheric environment, and L1 is the cable transmission loss of AIS receiving equipment.

The propagation loss of the AIS signal in an atmospheric environment was obtained
using the parabolic equation method [23]. Parabolic equations are divided into the narrow-
angle parabolic equation and wide-angle parabolic equation. We employed the narrow-
angle parabolic equation, suitable for the calculation of radio wave propagation with an
elevation angle of less than 10 degrees. The expression of the narrow-angle parabolic
equation is shown in Equation (6).

∂2u(x, z)
∂z2 + 2ik

∂u(x, z)
∂x

+ k2(n2(x, z)− 1)u(x, z) = 0 (6)

where u(x, z) is the component of the electric or magnetic field, k0 is the wave number, and
n(x, z) is the atmospheric refractive index at different distances and heights. The Split-Step
Fourier Transform (SSFT) method is the main method for solving parabolic equations [24].
The SSFT solution of the narrow-angle parabolic equation is shown in Equation (7) [23].

u(x + ∆x, z) = e
ik(n2−1)∆x

2 =−1
{

e
−iπ2 p2∆x

2k =u(x, z)
}

(7)

where αe is the radius of the Earth, p is the transform domain variable, = and =−1 are
Fourier transform and inverse transform respectively. The equation of AIS signal path
propagation loss obtained from Equation (8) is:

L = 20lg f + 10lgr− 20lg|u(x, z)| − 27.6 (8)

where L is propagation loss, f is AIS signal frequency, and r is the propagation distance.
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2.3. AIS Signal Receiving Test

In June 2020, the China Research Institute of Radiowave Propagation carried out
an AIS signal receiving test in the coastal area of Nantong, China. AIS signal-receiving
equipment are often used to receive AIS signals in coastal areas and to collect meteorological
sounding data in the test area. The sounding data were obtained twice a day at 08:00 and
20:00 Beijing time respectively. The test area is shown in Figure 3. Parameters of AIS
signal-receiving equipment are shown in Table 1.
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Table 1. Parameters of AIS signal-receiving equipment.

Parameter Value Unit

Antenna frequency range 118~164 MHz
Receiving antenna height 25 meter
Receiving antenna gain 2 dB

Cable loss 16 dB

We selected three typical atmospheric environments: no atmospheric duct, surface
duct, and elevated duct. The corresponding atmospheric duct profile is illustrated in
Figure 4.

AIS signal data were selected at the same time as sounding data, and the signal position
and power distribution are shown in Figure 5. The x-axis is the longitude direction distance,
the y-axis is the latitude direction distance, and the AIS signal-receiving equipment is
located at point 0 of the y-axis. When there is no atmospheric duct, the AIS signal is
distributed within 100 km as seen in Figure 5. When the surface duct appeared, the
maximum distance of the AIS signal was over 500 km, and the signal power was strong.
The signal power beyond 100 km was about −80 dBm. When the elevated duct appeared,
the AIS signal was distributed within 200 km, and the signal power was weak (about
−100 dBm).

Using sounding data and Equation (5), the AIS signal power variation with distance
was determined in three atmospheric environments and was compared with the actual
received AIS signal power, as shown in Figure 6. The red dotted line shows the sensitivity
of AIS signal-receiving equipment (−112 dBm); the solid green line is the simulated AIS
signal power variation curve with distance; the blue points are the distribution of measured
AIS signal power with distance. Figure 6 illustrates that the AIS simulation results are in
good agreement with the measured data, thereby revealing the effectiveness of the AIS
signal power simulation algorithm used in our study.
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Figure 4. Atmospheric duct profile calculated by sounding data.
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From the above analysis, we observed obvious differences in AIS signal distribution
in different atmospheric environments, mainly as follows:

(1) The maximum distances of signals that can be received were different. Without the
atmospheric duct, the maximum distance was about 80 km; when the surface duct
appeared, AIS signals beyond 500 km were received; when the elevated duct appeared,
the maximum distance was 200 km.

(2) The signal strength was different. In the surface duct environment, the signal power
was strong and was approximately −80 dBm within 100 km. The signal strength in
the elevated duct environment was weak and was within −110 dBm within 100 km.

These show that AIS signals can be used to invert atmospheric ducts, and the types
of atmospheric ducts can be distinguished since surface and elevated duct have different
influences on AIS.

3. Modeling of Duct Parameters Classifying-Inversion Model

In this section, we introduced two artificial intelligence methods: genetic algorithm
(GA) and DNN, as well as the modeling process of the classifying-inversion model of
atmospheric duct parameters using AIS data.

3.1. Artificial Intelligence Method for Atmospheric Duct Inversion

From previous studies, the main artificial intelligence methods used for atmospheric
duct parameter inversion were GA and DNN. DNN is a deep learning network structure.
GA is designed according to the evolution law of organisms in nature, and the optimal
solution is searched by simulating the natural evolution process. In this algorithm, the
problem-solving process is transformed into the evolutionary process of biological chromo-
some genes through mathematical means and computer simulation. GA has been widely
used in combinatorial optimization, machine-learning, signal processing, adaptive control,
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and artificial life [25]. GA consists of three steps: selection, crossover, and mutation. The
GA flow chart is shown in Figure 7.
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DNN is composed of input, hidden, and output layers. The hidden layer can have
multiple layers that enhance the expression ability of DNN. The neurons in the output
layer have multiple outputs that flexibly apply to classification regression, dimensionality
reduction, and clustering. The schematic diagram of DNN is shown in Figure 8. The
DNN layer is fully connected with the other layers, and any neuron in the i layer must be
connected with a neuron in the i + 1 layer.
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3.2. Classifying-Inversion Flow of Atmospheric Duct

In this study, we employed the idea of “classification before inversion” for atmo-
spheric duct parameters inversion. The first step was to establish a classification model
of atmospheric duct, use the received AIS signal to judge the occurrence of atmospheric
ducts, and distinguish the types of atmospheric duct occurrence. Secondly, the surface
duct parameter inversion model and the elevated duct parameter inversion model were
established respectively. The flow chart of atmospheric duct Classifying-inversion model is
shown in Figure 9.
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The atmospheric duct classification model adopted DNN, and the atmospheric duct
parameters inversion model adopted GA and DNN respectively, and two classifying-
inversion models were established as Model-1 and Model-2. In addition, we used GA to
establish the traditional atmospheric duct inversion model (Model-3) and compared it with
the aforementioned models. The model information is illustrated in Table 2.

Table 2. The model information.

Model Type Algorithm Combination
(Classify-Inversion)

Model-1 Proposed model DNN-DNN
Model-2 Proposed model DNN-GA
Model-3 Traditional model GA

3.3. Atmospheric Duct Classification Model

The atmospheric duct classification model adopted the DNN of three hidden layers,
and the nodes of each hidden layer were 512, 256 and 32. The input layer data involved
the AIS signal power data, and the output layer data involved the atmospheric duct type
data. The type of data consisted of three numbers, and the format and value are shown in
Table 3.

Table 3. Type data format.

Duct Type First Number Second Number Third Number

No Duct 1 0 0
Surface Duct 0 1 0
Elevated duct 0 0 1

The hidden layer activation function is tanh, and the expression is:

tanh(x) =
1 + e−2x

1− e−2x (9)

The output layer activation function is softmax, which is one of the most common
activation functions. The expression is:

S(x) =
1

1 + e−x (10)

The Stochastic Gradient Descent Method was selected for optimization; it splits the
dataset into batches and randomly selects a batch to calculate and update the parameters.
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3.4. Atmospheric Duct Parameters Inversion Model
3.4.1. Solution Based on DNN

The atmospheric duct parameter inversion model based on DNN consists of four
hidden layers, and the nodes of each hidden layer were 1024, 512, 256 and 32. The input
data was the AIS signal power data, and the output data was the surface or elevated duct
parameters. Surface duct parameters consisted of duct height and strength, and elevated
duct parameters consisted of atmospheric duct top height, the slope of the base layer, and
duct layer thickness and strength. The hidden layer activation function was Rectified Linear
Unit (ReLU), and the expression is:

f (x) = max(x, 0) (11)

The adaptive moment estimation method is used for optimization, and can dynami-
cally adjust the learning rate in the process of training to adapt to different weight parame-
ters and achieve better optimization results.

3.4.2. Solution Based on GA

The steps of atmospheric duct parameters inversion based on GA were as follows:

(1) AIS power data processing, using the actual received AIS signal power data, and the
power sequence Pobs obtained through median filtering.

(2) Determine the search range of atmospheric duct parameters as shown in Table 4.
(3) AIS signal power forward simulation. From Table 4, the atmospheric duct parameters

are initialized, and the simulated power sequence Psim corresponding to each profile
was calculated using Equations (3)–(5).

(4) Objective function. The objective function was used to evaluate the coincidence
between AIS measured power and AIS simulated power. It adopted the following
format:

φ(m) = eTe (12)

e = Pobs − Psin − T̂ (13)

T̂ = Pobs − Psim (14)

where Pobs and Psim are the average values of Pobs and Psim, respectively.
(5) Optimize. There is a very complicated non-linear relationship between AIS signal

power and atmospheric duct parameters. Once the objective function and model
parameter space are determined, the whole inversion problem is transformed into a
minimum optimization problem. In this paper, GA is used for iterative optimization
to find the optimal solution.

Table 4. The search range of atmospheric duct parameters.

Duct Type Parameter Minimum Value Maximum Value

Elevated duct

Foundation layer slope 0.03 0.19
Duct layer bottom height 400 2500

Duct strength 1 80
Duct layer thickness 50 400

Surface Duct
Duct height 100 1000

Duct strength 1 80

4. Test and Analysis
4.1. Dataset

Three types of data were used for DNN modeling: AIS signal power data, atmospheric
duct parameters data, and type data. Among them, AIS signal power data and type data
were used to establish the atmospheric duct classification model. AIS signal power data
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and atmospheric duct parameters data were used to establish the inversion model of
atmospheric duct parameters.

The data were mainly obtained from (1) AIS data receiving test introduced in Section 2.3,
including the measured AIS power and atmospheric duct parameters calculated using
sounding data; (2) simulation data, including the simulation data of atmospheric duct
parameters and AIS power. The sample size was about 5900 groups; 800 groups of no
atmospheric duct data, 1300 groups of surface duct data, and 3800 groups of elevated
duct data.

We divided the dataset into training, verification, and test sets, among which the
training set accounted for 80%, the verification set for 17.5%, and the test set for 2.5%.

4.2. Comparison of Atmospheric Duct Classification Results

The accuracy of the atmospheric duct classification model was compared using the
test set data, and the results are shown in Figure 10. In Figure 10, the red asterisk indicated
the type of atmospheric duct in the test set (0 indicates no duct; 1 indicates a surface duct;
2 indicates elevated duct), and the blue circle indicated the prediction result of the model.
The prediction accuracy of the classification model attained 97%.
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Figure 10. Comparison of atmospheric duct classification results.

From Figure 10, the classification of the surface duct was correct, because when the
surface duct appeared, AIS signal power increased. The wrong samples mainly occurred
when there was either no duct or an elevated duct. When the elevated duct strength was
relatively small, it exerted little influence on the AIS signal, similar to that without an
atmospheric duct.

4.3. Comparison of Inversion Results of Surface Duct Parameters

We selected three surface duct samples and used Model-1, Model-2, and Model-3 to
invert the surface duct parameters. The inversion results are shown in Table 5. The bold
figures in the table are the inversion results with the smallest error from the true value.

From Table 5, the inversion results of the atmospheric duct inversion models (Model-1
and Model-2) established using the classifying-inversion idea proposed in our study are
much closer to the true values than those of the traditional inversion model (Model-3).
Especially for Sample 1 and Sample 2, the inversion results of the traditional model are
quite different from the true values.



Remote Sens. 2022, 14, 3197 12 of 14

Table 5. Inversion results of surface duct parameters.

Sample Model Duct Height (m) Duct Strength (M)

1

True value 305 41
Model-1 362 29
Model-2 413 32
Model-3 115 73

2

True value 368 28
Model-1 429 39
Model-2 446 46
Model-3 469 55

3

True value 302 47
Model-1 383 48
Model-2 281 42
Model-3 125 64

The bold are the closest to the true value

4.4. Comparison of Inversion Results of Elevated Duct Parameters

We selected three elevated duct samples and used Model-1, Model-2, and Model-3
to invert the parameters. The inversion results are shown in Table 6. The bold part in the
table is the inversion result with the smallest error from the true value.

Table 6. Inversion results of elevated duct parameters.

Sample Model Foundation
Layer Slope

Duct Layer
Bottom
Height

Duct Layer
Thickness

Duct
Strength

1

True value 0.055 725 113 8.8
Model-1 0.094 704 154 9.1
Model-2 0.12 560 149 35.0
Model-3 0.17 279 76 45

2

True value 0.108 845 163 28.1
Model-1 0.105 949 109 32.2
Model-2 0.11 576 77 18.0
Model-3 0.13 325 89 46

3

True value 0.038 632 48 9.7
Model-1 0.091 625 133 9.6
Model-2 0.085 974 70 44
Model-3 0.14 152 83 42

The bold are the closest to the true value

Table 6 illustrates that the inversion results of the traditional method (Model-3) have a
big deviation from the true value, similar to the surface duct inversion result. In the model
established in this paper, the error between the result of Model-1 inversion and the real
value was smaller. For example, consider Sample 2 with a comparison diagram of the
atmospheric duct profile illustrated in Figure 11. The red line is the true value calculated
by sounding data, the blue line is the inversion result by Model-1, and the green line is
the inversion result by Model-2. Model-1 inversion of atmospheric duct layer height was
consistent with the true value, while Model-2 inversion of atmospheric duct layer height
was lower than the true value.

Figure 12 is a comparison diagram of AIS signal power. The black asterisks are the
measured AIS signals’ power, the red line is the AIS signal power distribution determined
from the sounding data, the blue line is the AIS signal power distribution obtained using
Model-1 inversion results, and the green line is the AIS signal power distribution deter-
mined using Model-2 inversion results. We observed that the AIS signal power distribution
obtained using Model-1 was closer to the actual AIS signal power distribution than Model-2
in the range of 80–200 km (the range affected by atmospheric ducts).
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5. Conclusions

In the present study, we designed an inversion model of an offshore atmospheric
duct using an AIS signal. The model adopted the idea of classification before inversion:
Firstly, the classification model of the atmospheric duct was established to judge the type
of atmospheric duct. Secondly, the inversion models of the surface and elevated duct
parameters were established, and the atmospheric duct parameters were obtained. In this
study, the atmospheric duct classification model was established using DNN, and the duct
parameters inversion model was established using DNN and GA respectively. Through
experimental comparison, the inversion result of atmospheric duct parameters based on
the model in our study was better than that of the traditional model. The atmospheric duct
classification model in our study attained a classification accuracy of 97%. Comparing the
inversion results of the atmospheric duct parameter inversion model established by DNN
and GA, we found that the DNN method is more advantageous than the GA method in
inverting the elevated duct. Thus, more AIS measured power should be included in the
data set, and the model parameters must be optimized in future studies, to improve the
inversion accuracy of atmospheric duct parameters.
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