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Abstract: Global warming affects rice crop production, causing deterioration of rice grain quality. This
study used C-band microwave images taken by the Sentinel-1 satellites to monitor rice crop growth
with the aim to understand microwave backscatter behavior, focusing on decreases in panicle water
contents with ripening, which affect C-band backscatter. Time-series changes illustrated a similar
tendency across all four analysis years, showing that VV/VH ratio at an incidence angle of 45–46◦

stopped decreasing to be stable over the reproductive and ripening periods due to reductions in
the panicle water content that allowed for greater microwave penetration into the canopy, thereby
increasing panicle-related backscatter. Furthermore, multivariate regression analysis combined with
field observations showed that VV and VH with the shallow incidence angles were significantly
negatively correlated with panicle water content, which well demonstrated backscatter increases with
plant senescence. Furthermore, it was observed that backscatter behaviors were highly consistent
with changes in crop phenology and surface condition. Accordingly, Sentinel-1 images with shallow
incidence angles and high revisit observation capabilities offer a strong potential for estimating
panicle water content. Therefore, it seems reasonable to conclude that C-band SAR data is capable of
retrieving grain filling conditions to estimate proper harvesting time.

Keywords: rice growth; synthetic aperture radar; sentinel-1; crop phenology; canopy; panicle water
contents; microwave satellite

1. Introduction

Rice is a staple food and maintains the highest self-sufficiency rate among the other
agricultural products in Japan. In addition, it serves as a major food source for over half of
the world’s population [1].

The detrimental impacts of global warming on crop cultivation, including high-
temperature damages to plants known as heat stress, have become too large to ignore
and must be assessed concerning productivity and food security [2]. The Ministry of
Agriculture, Forestry and Fisheries of Japan pointed out the issue about 15 years ago, and
numerous local governments have issued a strong warning about the damage to farmers in
recent years [3]. Rice crops are particularly susceptible to heat, leading to stress and deteri-
orating grain quality primarily through cracked grains or white immature grains, which
are triggered by high temperatures during the early grain-filling period [1,4]. Accordingly,
harvesting should be conducted immediately after grain-filling to avoid exposing the plant
to heat stress. Particularly, it is well known that water content in paddy rice excessively
decreases by delayed harvest, which causes cracked grains. Thus, estimating the optimum
harvesting timing is an urgent issue that needs to be solved. In Japan, optimum harvesting
timing is traditionally determined via field observations by local or regional governments
and is calculated based on accumulated average daily air temperatures after the heading [5].

In general, the rice growing stage begins with the vegetative stage, which includes
transplanting and tillering, which refers to the development of several stems on one plant [6].
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After reaching maximum tiller number, the panicle initiation and heading, which indicates
panicle exsertion out of the end of the stem, start, followed by flowering and ripening
stages. In the process of grain filling, a grain first contains milky liquid, becomes sticky, and
then hardens during maturity. Thus, the panicle water content gradually decreases over
the ripening stage [7,8]. Indeed, a yellowing color and water content decrease in a panicle
are practical indicators of harvest maturity.

Satellite remote sensing is currently utilized for various agricultural monitoring pur-
poses [9,10]. Under current global conditions of rising temperatures, remote sensing
techniques offer an essential method for resolving harvest time estimates at the individual
paddy field level, particularly since spatial resolutions of satellite imagery data are getting
finer. Optical remote sensing and a vegetation index calculated from near infrared and
visible bands are utilized in retrieving crop and canopy water contents [11–13]. Radar
backscattering in microwave remote sensing is also used for the purpose (reviewed in detail
in the following paragraph) [14].

Among these techniques, synthetic aperture radar (SAR) is vital in monitoring the
Earth’s surface under cloud cover. Although the sensor maintains a solid capacity to
capture images without sunlight in almost all-weather conditions, high revisit capabilities
required for monitoring crops with shorter growth durations were not achieved until
the operation of Copernicus Sentinel-1 satellites. Sentinel-1A and -1B were launched in
2014 and 2016, respectively, carrying C-band SAR sensors operated at a high-frequency
equivalent to a wavelength of 5.5 cm for observation. Accordingly, many agricultural
studies have employed Sentinel-1 data for agricultural land mapping [10,15–17], as well as
yield estimation and crop growth monitoring [18–20]. The Sentinel-1 uses an interferometric
wide (IW) mode mostly with VV and VH dual polarizations in land observation, where
V and H refer to vertical and horizontal polarization, and the first and second characters
denote the transmitted and received polarization, respectively.

Various studies have monitored seasonal changes in SAR backscatter parameters and
compared them with in situ data, including vegetation structural parameters. Accordingly, the
general relationship between C-band polarimetric parameters and plant growth conditions
has been relatively well characterized; however, analyses targeting rice crops [15,20–22] should
be different from those assessing wheat and maize [16,18,19,23–28], as the inundated ground
surface in such irrigated systems creates a unique environment in signal backscatter.

Microwaves are sensitive not only to the moisture content in vegetation and soil but also to
vegetation structures and surface roughness beneath the vegetation as well [25,29]. Moreover,
Henderson and Lewis [29] found that senescence and plant maturity reduce the water content,
thereby increasing microwave penetration into the plant body. Some studies have attempted
to define the precise relationships between vegetation water content and backscatter, as these
constitute critical components to understanding crop conditions [23,25,27,28]. Backscatter
parameters of VV and VH are important. Besides, several studies have utilized a polarization
ratio calculated using VV and VH, known as the cross-ratio, which reflects vegetation water
content [25,27,28,30]. However, little is known about the relationships between panicle water
content in rice crops and C-band backscatter. One essential feature of rice crops is that the plant
and panicle gradually dehydrate during the grain-filling period when caryopses develop [7].
To this end, herein, rice crop growth was monitored using C-band Sentinel-1 satellite data to
identify a definite relationship between C-band backscatter and panicle water content. The
result of this research will be helpful to estimates of panicle water content, which is crucial
information for obtaining proper harvest timing.

2. Datasets
2.1. Study Area

A rice paddy field in Saku city, Nagano prefecture, Japan, was used for analysis (Figure 1).
Notably, Nagano has been ranked in the top three prefectures of Japan over the past 12 years
in terms of yield per 10 acres and percentage of first-class rice in the nation. The rice plant
(Oryza sativa L. japonica “Koshihikari”), which is the most widely grown and popular cultivar
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in Japan, accounts for the 80–90% of all paddies in the study area, and “Akitakomachi” variety
with cold resistance mainly grows in a higher altitude region [30]. Furthermore, rice cultivation
is a major activity in Saku, with all paddy fields using irrigation systems.
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Figure 1. A rice paddy field in Saku city, Nagano Prefecture, Japan, was employed as the study area.
White lines show the paddy field; the background image is a color composite of Sentinel-1 data (R:
VV, G: VH, B: VV/VH).

Figure 2 depicts an average crop calendar of rice cultivation. In general, transplanting
commences from mid-May to early June, with a tillering stage in June and July, and the
maximum tiller number stage occurs around mid-July. The heading period generally
starts in early August, concluding by mid-August. Following a grain-filling period in
September, harvesting typically occurs between late September and early October and ends
in mid-October for all paddy fields.
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2.2. Satellite Remote Sensing Data and Data Processing

Here, Sentinel-1 C-band data were used, taken in both ascending and descending orbits
between 2017 and 2020 during the periods of rice crop cultivation (Table 1). Approximately
15 scenes were acquired in one orbit between May to mid-October. All data were Level-1
Single Look Complex (SLC) products, taken in IW mode with VV and VH dual polarizations.
The spatial resolution is 2.3 m (range direction) and 13.9 m (azimuth direction). Two orbit
datasets, relative orbit number 39 (orb 39; ascending) and 46 (orb 46; descending) were
used here (Table 1). Scene acquisition times were 17:41 and 05:43 JST (08:41 and 20:43 UTC)
for orb 39 and orb 46, respectively. Since the satellite in orb 39 did not acquire data for this
area during August 2018, orb 39 data for 2018 were excluded from the analysis.

Table 1. Field observation dates and Sentinel-1 data acquisition dates. Relative orbit 39 did not
acquire scenes in August 2018; hence, orbit 39 data were not analyzed for this year. For field
observations, leaf water content measurements were commenced on 2 July 2020, and panicle water
content measurements on 22 August 2020. IW1 and IW3 are the numbers of sub-swath. IW1 is the
closest to the satellite orbit, and IW3 is the furthest.

Field
Observation

Date

Ascending Descending
Rel_Orb39, Sub-Swath IW1 Rel_Orb46, Sub-Swath IW3

Incidence Angle 35–36◦ Incidence Angle 45–46◦

May 03, 2020 May 09, 2019 May 07, 2017 May 09, 2020 May 03, 2019 May 08, 2018 May 01, 2017
May 15, 2020 May 21, 2019 May 19, 2017 May 21, 2020 May 15, 2019 May 20, 2018 May 13, 2017
May 27, 2020 June 02, 2019 May 31, 2017 Jun. 02, 2020 May 27, 2019 Jun. 01, 2018 May 25, 2017

Jun. 08, 2020 Jun. 08, 2020 Jun. 14, 2019 Jun. 12, 2017 Jun. 14, 2020 Jun. 08, 2019 Jun. 13, 2018 Jun. 06, 2017
Jun. 20, 2020 Jun. 26, 2019 Jun. 24, 2017 Jun. 26, 2020 Jun. 20, 2019 Jun. 25, 2018 Jun. 28, 2017

Jul. 02, 2020 Jul. 02, 2020 Jul. 08, 2019 Jul. 06, 2017 Jul. 08, 2020 Jul. 02, 2019 Jul. 07, 2018 Jun. 30, 2017
Jul. 14, 2020 Jul. 14, 2020 Jul. 20, 2019 Jul. 18, 2017 Jul. 20, 2020 Jul. 14, 2019 Jul. 19, 2018 Jul. 12, 2017

Jul. 26, 2020 Aug. 01, 2019 Jul. 30, 2017 Aug. 01, 2020 Jul. 26, 2019 Jul. 31, 2018 Jul. 24, 2017
Aug. 04, 2020 Aug. 07, 2020 Aug. 13, 2019 Aug. 11, 2017 Aug. 13, 2020 Aug. 07, 2019 Aug. 12, 2018 Aug. 05, 2017
Aug. 22, 2020 Aug. 19, 2020 Aug. 25, 2019 Aug. 23, 2017 Aug. 25, 2020 Aug. 19, 2019 Aug. 24, 2018 Aug. 17, 2017
Aug. 30, 2020 Aug. 31, 2020 Sep. 06, 2019 Sep. 04, 2017 Sep. 06, 2020 Aug. 31, 2019 Sep. 05, 2018 Aug. 29, 2017
Sep. 07, 2020 Sep. 12, 2020 Sep. 18, 2019 Sep. 16, 2017 Sep. 18, 2020 Sep. 12, 2019 Sep. 17, 2018 Sep. 10, 2017
Sep. 14, 2020 Sep. 24, 2020 Sep. 30, 2019 Sep. 28, 2017 Sep. 30, 2020 Sep. 24, 2019 Sep. 29, 2018 Sep. 22, 2017
Sep. 21, 2020 Oct. 06, 2020 Oct. 12, 2019 Oct. 10, 2017 Oct. 12, 2020 Oct. 06, 2019 Oct. 11, 2018 Oct. 04, 2017
Sep. 28, 2020 Oct. 18, 2020 Oct. 18, 2019 Oct. 22, 2017 Oct. 24, 2020 Oct. 18, 2019 Oct. 23, 2018 Oct. 16, 2017

Two orbit data taken via different incident angles were expected to be able to observe
surface conditions more precisely because of their differences in radar penetration. In orb
39, the scene covers all the paddy fields, and the incidence angle is 35–36◦, as the targeted
area position is at the end of IW1 sub-swath and close to the IW2 sub-swath. Meanwhile,
the orb 46 scene covers two-thirds of the eastern side of the area and is located at the end of
the IW3 sub-swath, with an incidence angle of 45–46◦.

Data processing was conducted according to the following procedures [31]: precise
orbit file and thermal noise corrections were applied for SAR calibration before sub-swath
images were merged. The concatenated image was utilized for geometric correction to
be projected as Japan Plane Rectangular coordinate system VIII with a pixel spacing of
5 m. Speckle filtering was not applied to preserve original information in the analysis
with a small target. Propriety of the filtering processing is application-dependent [32], and
previous research on targeted crop fields did not apply it [33,34]. This study disregarded
radiometric and geometric terrain corrections, as the paddy fields were situated in flat areas
for irrigation system use. Following the data pre-processing, VV and VH radar backscatter
powers were converted to sigma naught (σ0) in decibel units (dB). Hereafter, σ0

VV and
σ0

VH are referred to as VV and VH. A polarization ratio of VV/VH (cross-ratio) was then
calculated using VV and VH backscatter power rather than logarithmically-transformed
dB values.
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3. Methods
3.1. Field Observations

Ten paddy fields cultivating “Koshihikari” rice plant were selected to carry out field
observations between June and September 2020 (Figure 3a; Table 1, leftmost column). Trans-
planting was carried out on 14–15 May in six paddies out of 10, 24 May in three paddies,
7 July in one paddy, and harvesting was on 13–20 September in one paddy, 22–27 September
in one paddy, and 29 September–4 October in eight paddies. The targeted field maintained
an average area of 1835 m2 (range: 975–3175 m2). Four stationary observation points, with
a square size of 1 m × 1 m, were set at the four corners of each paddy field (Figure 3b).
Although these corner observations may not accurately reflect the remaining field sites, the
central part of the plots were inaccessible, as local farmers managed the area for production.
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Figure 3. (a) Black circles indicate the locations of the 10 sample plots in Saku. The black line depicts
the city boundary. Orange and blue solid lines indicate a swath width of orbit 39 and 46, respectively.
(b) Four observation points with square sizes of 1 m2 set in each paddy field of the sample plot.

Three tillers per observation point were randomly selected for measurement and
averaged within the sample plots; thus, each sample plot had 12-time observations
(3 tillers times × 4 sample points) on each observation date. Field observation parame-
ters contained plant height (cm), maximum leaf width (mm), stem number per hill, as
well as relative leaf and panicle water content (%). Plant height was measured from the
ground surface to the tip of the longest leaf or panicle [35,36]. The stem number in this
study refers to the number of several main culms and tillers that arise from the base
of the main culm. With regards to vegetation water content, leaves and panicles were
separately collected for measuring raw wet and dry weight [23]. Leaf water content was
measured from July at the end of a vegetative period, whereas panicle water content
measurement commenced in mid-August, when all paddy fields were nearly in the
ripening stage. The natural drying method (about six months) was used to calculate
relative water contents. Notably, this is the simplest drying method and does not require
special facilities [37]. However, it requires a long drying time (three to six months) and
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is affected by meteorological factors. This study used the simple method due to our
limited access to the facility.

For a more precise analysis, the boundaries of the observed paddy field were
digitized on Google Earth, which has a positioning accuracy of 4.7 m in flat areas of
Japan [38], so as to delineate the polygon line inside the actual boundary to reduce
positional errors and not to include paths between paddy fields. Paddy field boundaries
were projected to Japan Plane Rectangular coordinate system VIII in accordance with
Sentinel-1 data. Rainfall data were obtained from the Automated Meteorological Data
Acquisition System (AMEDAS), operated by the Japan Meteorological Agency. Notably,
Saku has one AMEDAS point.

3.2. Seasonal Change in C-Band Backscatter with Rice Crop Growth

The analysis was divided into two parts: monitoring changes in backscatter overall
rice crop fields in Saku and statistically investigating how vegetative components affect
C-band radar backscatter (discussed further in Section 3.3).

To delineate seasonal changes, a multi-temporal analysis was used to investigate
changes in a C-band radar backscatter over the paddy fields (area > 1600 m2). The
bottom limit of 1600 m2, or 40 m × 40 m, is probably effective to capture seasonal
fluctuations in the backscatter because the average area of all 24,500 paddies is 1650 m2.
There were 11,568 and 8900 paddies greater than 1600 m2 in orb 39 and 46 scenes,
respectively. Vector polygon data of paddy field boundaries covering the entire area
were provided by the Ministry of Agriculture, Japan. The polygon data is updated once
a year based on satellite information. A pixel value of VV, VH, and VV/VH within
the paddy field were extracted, and the Grubbs test was applied to eliminate outliers
for computing the average values of each radar parameter in each paddy field [39].
Changes in the backscatter were monitored for both orbits from one year to the next.
The transplant timing as well as harvest timing is different among paddies, ranging over
about a month (see Section 2.1). In addition, the same rice plant variety is not cultivated;
however, a variety of “Koshihikari” covers 80–90% of paddies. Although there is
a difference in the transplanting date, the considerable sample size can compensate for
the situation to demonstrate the general seasonal change.

3.3. Statistical Analysis between Field Observations and Satellite Remote Sensing Data

The second analysis intended to determine how vegetation and ground conditions
affected radar backscatter; multivariate linear regression was applied to analyze C-band
radar backscatter with field observation data, where field-observed vegetation metrics were
the explanatory variable and each radar’s parameters (VV, VH, and VV/VH) were the
response variable.

The parameters (VV, VH, VV/VH) were extracted on a pixel basis from each of the
10 paddies where field observation was carried out. Afterward, the Grubbs test was applied
to eliminate outliers [39] and to calculate the averaged value in each paddy. Before the
regression analyses, explanatory variables were converted to z-score values to assist with
comparisons between the calculated explanatory coefficients of the regression formula.
High correlative relationships between explanatory variables: (i.e., multicollinearity) were
tested before the multivariate regression analyses by calculating the diagnosis value of
the variance inflation factor (VIF). The explanatory variables which showed the highest
VIF values among them were excluded until all VIF values became less than 10 [40], and
multivariate analyses incorporated only those remaining variables. Furthermore, the
regression analyses employed a stepwise forward selection method to select explanatory
variable sets that showed the lowest Akaike’s Information Criterion (AIC) values. Finally,
multivariate regressions were conducted with the chosen explanatory variable selected
based on VIF criteria and AIC selection.
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The multivariate regression analyses were performed separately for: (1) tillering stages
before heading in June and July and (2) reproductive and ripening stages in August and
September (Figure 2). Orb 39 (ascending) and orb 46 (descending) data were analyzed
separately in each period, as their incidence angles were distinct. The three explanatory
variables of the regression analyses were plant height, maximum leaf width, and stem
number, as water content data were unavailable during the vegetative period. On the other
hand, the analysis in the ripening stage used all five-vegetation metrics, which contained
water content measurements in leaf and panicle in addition to the three parameters. Remote
sensing and field measurement observation dates were not perfectly aligned (Table 1).
Accordingly, the closest two remote sensing data before and after each field observation
date were used for comparison, the remote sensing dates with no or low rainfall were
then selected after assessing AMEDAS rainfall data. Given that the microwave signal is
extremely sensitive to water content, the approach was necessary to avoid the impacts of
water adhering to the plant surface on radar backscatter.

In one field, transplanting was on 7 June 2020, and Sentinel-1 acquired data on 8 June
2020, when VV and VH were relatively extremely high. Thus, paddy fields within 2–3 days
after transplanting are likely to cause remarkably higher backscatter; parcels relevant to the
condition were excluded from the analysis.

4. Results
4.1. Overall Growth Monitoring Analysis
4.1.1. Field Observational Data

Figure 4 shows the plant structural parameters (plant height, leaf width, and stem
number; Figure 4a), and vegetation water contents in leaves and panicles (Figure 4b). All
plot values were averages of the 10 sample plots (Figure 3a) for each parameter. Plant
height steadily increased from May to mid-August up to ~110 cm, slightly decreasing after
that due to grasshoppers feeding on leaf tips after September. Intensive feeding usually
takes place near the end of the harvesting period. Maximum leaf width widened until June
up to a relatively constant size of 10–11 mm. Stem number per hill constantly increased
up to ~30 stems, during the vegetative period, somewhat decreasing after mid-July before
stabilizing (Figure 4a).

Notably, water contents decreased in both leaves and panicles (Figure 4b). Specif-
ically, leaf water content decreased from 80% to 65%, whereas panicle water con-
tent sharply declined from 60% to <30% over the grain-filling period. The results
of water content data on 30 August 2020, were deemed invalid (e.g., >100%), and
were thus excluded from the analysis. This may have been due to heavy rains on
this date (36.5 mm·day−1, compared to a 30-year average monthly precipitation of
106 mm·month−1 based on AMEDAS data archives). Furthermore, the sudden rise
in water content, or large dispersion in leaf and panicle water contents observed on
7 September 2020, were also likely related to rainwater adhering to the vegetation sur-
face, as the weather data recorded for 5–6 September 2020, showed daily precipitation
values of 15.5 mm and 24.5 mm, respectively.

As shown in Figure 4b, a large dispersion was found on 7 September 2020. However,
we included it in further analysis. The reason was as follows. The panicle water contents
were measured starting from 22 August. Unfortunately, the second observation on 30 Au-
gust had no validity, showing >100% of the water contents, and was disregarded from the
analysis. If we further excluded the data on 7 September, about 3 weeks were left between
the first and second observations. Therefore, to maintain statistical validity, we included
the data on 7 September to prioritize keeping the sample size.
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Figure 4. Field observation data for: (a) plant height (cm), maximum leaf width (mm), stem number
per hill, and (b) water contents of leaves and panicles.
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4.1.2. Changes in Sentinel-1 Radar Backscattering

Figure 5 shows time-series changes in VV (σ0
VV), VH (σ0

VH), and VV/VH for 2020
(Figure 5a), 2019 (Figure 5b), 2018 (Figure 5c), and 2017 (Figure 5d).
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Seasonal changes in radar backscatter showed similar tendencies among analysis
years. All three parameters sharply decreased in early June during the middle of the
transplanting period, followed by a steady increase during the first stages of the vegetative
period in June (Figure 2). In July, VV/VH significantly decreased, whereas VV and VH
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increased continuously. Over August and September, VV and VH in orb 46 fluctuated
substantially, whereas orb 39 data seemed to slightly increase; whereas VV/VH in orb 46
appeared stable, they continually decreased in orb 39. Post-harvest in October, VV and VH
slightly increased.

4.2. Multivariate Regression Analysis

The results of multivariate linear regression analysis for each vegetative and ripening
period are in Tables 2 and 3.

Table 2. Results of the multivariate linear regression analysis. Selected variables are shown with
coefficients and p-values in parenthesis, a hyphen “-” indicates that the variable is not selected by the
AIC method. The overall accuracy of the selected model was evaluated with Adj. R2 and p-value are
shown in parenthesis. Data in orb 39 (ascending) and 46 (descending) were analyzed separately for
the vegetative period (June and July). Leaf and panicle water contents were not observed during the
vegetative period.

Vegetative Period
(June and July)

Coefficients and p-Value (in Parentheses)
of AIC Selected Explanatory Variables (x)

Height Leaf
Width

Stem
Number Adj. R2

R
es

po
ns

e
va

ri
ab

le
s(

y) Orb 39

VH 2.276
(0.001) - - 0.397

(0.001)

VV - - 0.853
(0.051)

0.136
(0.051)

VV/VH - - - -

Orb 46

VH - - 0.628
(0.002)

0.507
(0.002)

VV −3.823
(0.134) - 2.398

(0.073)
0.126

(0.177)

VV/VH −5.786
(0.113) - 2.755

(0.139)
0.062

(0.270)

Table 3. Results of the multivariate linear regression analysis. Selected variables are shown with
coefficients and p-values in parenthesis; a hyphen “-” indicates that the variable is not selected by the
AIC method. The overall accuracy of the selected model was evaluated with Adj. R2 and p-value are
shown in parenthesis. Data in orb 39 (ascending) and 46 (descending) were analyzed separately for
the reproductive and ripening periods (August and September).

Reproductive &
Ripening Periods

(August and September)

Coefficients and p-Value (in Parentheses)
of AIC Selected Explanatory Variables (x)

Height Leaf
Width

Stem
Number

Leaf
Water

Panicle
Water Adj. R2

R
es

po
ns

e
va

ri
ab

le
s

(y
)

Orb 39

VH −2.425
(0.160) - - - - 0.042

(0.160)

VV - - - - 0.828
(0.027)

0.155
(0.027)

VV/VH - - 1.381
(0.106) - 2.128

(<0.001)
0.405

(<0.001)

Orb 46

VH - −3.656
(0.219) - 0.869

(0.089)
−1.402
(0.002)

0.607
(0.002)

VV 4.232
(0.109) - - - −3.352

(<0.001)
0.741

(<0.001)

VV/VH - - - - −1.892
(0.021)

0.277
(0.021)
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The coefficients and p-values for each explanatory variable selected based on AIC
values and adjusted R2 value (Adj. R2) calculated with the selected variables are also shown.
Scatterplots display the relationships between vegetation and microwave backscatter pa-
rameters and are shown separately for the vegetative periods of orb 39 (Figure 6) and orb
46 (Figure 7), as well as the ripening periods of orb 39 (Figure 8) and orb 46 (Figure 9).
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Figure 7. Scatterplots of field-observed biophysical parameters in the vegetative stage and mi-
crowave backscatter values from orb 46. Plant height (cm), maximum leaf width (mm), and stem
number were measured in the tillering stage. The leftmost column depicts VH, the center shows VV,
and the rightmost presents VV/VH. (a–c) plant height, (d–f) maximum leaf width, and (g–i) stem
number, respectively.
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Figure 8. Scatterplots of biophysical parameters during reproduction and ripening periods and
microwave backscatter values from orb 39. Plant height (cm), maximum leaf width (mm), stem
number, and water content in leaves and panicles (%) are field measurement data. The leftmost
column depicts VH, the center shows VV, and the rightmost presents VV/VH. (a–c) plant height,
(d–f) maximum leaf width, (g–i) stem number, (j–l) leaf water content, and (m–o) panicle water
content respectively.
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content respectively.
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In the vegetative period (Table 2), the VIF values were 6.05, 7.75, and 9.15 for plant
height, leaf width, and stem number, respectively. Notably, no multicollinearity was
observed. Accordingly, all three variables were used in the regression analysis. VH in
orbs 39 and 46 showed significantly positive correlations with height (Adj. R2 = 0.397,
p = 0.001; Figure 6a), and stem number (Adj. R2 = 0.507, p = 0.002; Figure 7g), respectively;
by contrast, the other parameters of VV and VV/VH showed no significant correlations
with vegetation parameters (p > 0.05).

During the reproductive and ripening periods (Table 3), the VIF values were 2.68,
1.46, 1.98, 1.70, and 1.34 for plant height, leaf width, stem number, leaf water content,
and panicle water content, respectively, with no multicollinearity observed between them.
Accordingly, all five variables were used in the regression analysis. In orb 39, VH showed
no significant correlation; whereas VV displayed a relatively weak positive correlation with
only panicle water content (Adj. R2 = 0.155, p = 0.027; Figure 8n), VV/VH showed strong
positive correlations (Adj. R2 = 0.405, p < 0.001) with panicle water content (p < 0.001;
Figure 8o) and stem number (p = 0.106; Figure 8i). In orb 46, all polarimetric values
showed high correlations with vegetation parameters; VH maintained a strong correlation
(Adj. R2 = 0.607, p = 0.002) with panicle water content (p = 0.002, Figure 9m), leaf water
content (p = 0.089; Figure 9j), and leaf width (p = 0.219; Figure 9d), whereas VV had
a significant correlation (Adj. R2 = 0.741, p < 0.001) with panicle water content (p < 0.001;
Figure 9n) and height (p = 0.109; Figure 9b). VV/VH maintained a higher correlation only
with panicle water content (Adj. R2 = 0.277, p = 0.021; Figure 9o). In particular, panicle
water content showed significant negative correlations with all the C-band backscatter
parameters in orb 46 (Table 3).

5. Discussion
5.1. Rice Crop Growth

The observation data of biophysical parameters (Figure 4) showed consistency with
the previous works [8,41]. It is well established that plant height undergoes a sharp
increase during the vegetative stage and continues to increase even during the reproductive
stage due to culm elongation [8]. Growth stops after the heading, which occurs between
early to mid-August in the study area. As seen in the present study, the stem number
steadily increased until ~60 days after transplanting, slightly decreasing thereafter before
approaching quasi-stability. As a native plant characteristic, a tiller that is not eared is dried
to transfer water and nutrients into the panicles; thus, the number after the maximum
tillering period and during the booting stage is consequently decreased. Therefore, stem
number decreases after early July when the maximum tiller number is reached, as stems
without their heads wither.

Leaf water contents gradually decreased after the maximum tillering stage and contin-
ued to decrease until the harvest period; however, these decreases were relatively small
compared with those in the panicle. One previous study [42] also observed a slight reduc-
tion in leaf water content throughout the growth period. Conversely, panicle water content
suddenly decreased from ~60% to 25% during the ripening stage. We utilized the simple
natural drying method to obtain relative water contents; however, the value is consistent
with the previous works. Iwaya and Yamamoto [43] conducted experiments in Japan’s rice
paddies to show a similar decreasing tendency, with results in the water content decreasing
from 59% to 18%. They also indicated that the panicle water content at the harvest time
ranged from ~20% to 25%. Furthermore, Yoshida [8] showed that changes in the grain
water content varied from 58% in the initial grain-filling period to 20% during maturity.

5.2. Seasonal Changes in Backscattered Microwave according to Rice Crop Growth

The temporal behavior of backscatter over rice crops observed here (Figure 5) was
very similar to that seen in previous studies [15,44]. Bazzi et al. [15] demonstrated that
the behavior of VV/VH showed a Gaussian bell shape between rice transplanting and
harvesting periods and was markedly different from other crops, such as maize and wheat.
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Moreover, compared to VV and VH, the ratio parameter (VV/VH) in both orbs 39 and
46 appeared to mitigate the impacts of atmospheric water vapor to lessen backscatter
fluctuation and derive smoother line graphs. Veloso et al. [27] also indicated that the ratio
can reduce the influence of some environmental factors (e.g., soil moisture), to achieve
more stable results. Consequently, using the VV/VH ratio makes it easier to observe the
seasonal changes in microwave backscatters.

Backscatter behavior for each of the growing stages analyzed can be summarized
as follows:

• Transplanting period: Backscatters in both VV and VH showed a clear decrease in
early June, at the end of the transplanting period. The low backscatter values here are
most likely related to the specular reflection of the irrigated water surface [45]. After
the transplanting, a water depth of about 3–4 cm is kept until the seedling takes root,
and the tips of the seedling leaves can only be seen on the water surface. Therefore,
the surface condition immediately after planting is similar to a flat-water surface,
which generates low backscattered signals. However, paddy fields within 2 or 3 days
after transplanting showed markedly high backscatter values, likely caused by a ridge
appearing on the water surface created by the rice transplanting machine. Accordingly,
the C-band SAR data taken in the days following transplantation should be excluded
from the analysis.

• Vegetative period: The results uniquely demonstrated that VV/VH increased in the
early tillering stage before suddenly decreasing in the latter tillering stage. This finding
indicates that VV in the early stage increased more rapidly than VH because of the
steady increase in plant height (Figure 4a). As a basic scattering mechanism, a vertically
polarized microwave is transmitted toward the ground both in VV and VH polariza-
tion. When the surface has a vertical component, the received signal becomes stronger
in a vertical direction and consists of surface and double-bounce scatterings [46]. Part
of the transmitted signal is depolarized by multiple scatterers, such as vegetation, to
be received in the orthogonal plane of H [29,47]. The sensitivity of VV to vegetation
growth is due to double bounce scattering between plant and water surfaces [48], with
the backscatter increasing with larger canopy gaps [49]. Next, the sudden decrease in
VV/VH can be explained by the increased stem number and panicle initiation through
active tillering. The increased tillers and randomly shaped panicles induce canopy
growth to generate backscatter signals in cross-polarization [29] while suppressing
the like-polarization backscatter because of microwave attenuation by vertical plant
structures [27,29]; thus, the substantial increase in VH leads to the decrease in VV/VH.
Previous studies have also illustrated that vegetation growth, as the main scatterer,
strongly increases VH and slightly increases VV during the vegetative phase [15,21,22].
The results here showed a similar tendency, additionally revealing a clear inflection
point in VV/VH in the middle of the vegetative stage due to the accompanying
apparent morphological transformation.

Reproductive and Ripening period: This study demonstrated clear differences in
backscatter behavior resulting from different incidence angles, exclusively in this after-
heading period. The investigation implies that VV/VH derived at a shallow incidence angle
is a superior indicator for diagnosing ripening conditions, which is one of the essential
pieces of information for estimating optimal harvest timing. VV/VH in orb 46 is with
a shallow incidence angle stopped decreasing during the ripening period; the phenomenon
likely related to the following factors: (1) Orb 46 has a shallow incidence angle (>45◦),
indicating that the scattering is strongly affected by crop canopy and panicle condition [27].
Henderson and Lewis [29] specified that shallow incidence angles >40◦ increased the
response from agricultural vegetation; (2) after heading, which ends by the mid-August,
the ripening stage begins and results in the small morphological changes, and then the
spikelet dries out as it approaches the grain-filling period. These minor structural changes
and drying lead to a more gradual backscatter increase in VV and VH to stabilize VV/VH.



Remote Sens. 2022, 14, 3254 17 of 20

Meanwhile, VV/VH with a steeper incidence angle (35–36◦) continually decreased
from the late vegetative period until harvesting (although a small peak was observed in
early August), presumably due to shifting surface conditions from water to soil following
water drainage from paddy fields. Changes in surface conditions make VV weaker than
VH, as the former is more substantially affected by the surface [27]. Drainage usually
commences 30–40 days after heading and 10 days before harvesting (late September in this
area). In summary, over the grain-filling period, VV/VH with a shallow incidence angle
stopped decreasing due to senescence, whereas it continued decreasing at a steep angle
due to water drainage application.

5.3. Statistical Analysis between Ground Observation and C-Band Backscattering

The multivariate linear regression analysis revealed the more robust capacity for
panicle water content estimation from C-band imagery taken at a shallow incidence angle.
Polarimetric parameters in orb 46, especially VV and VH, showed significant negative
correlations to panicle water content (Table 3), indicating that backscatter in VV (Figure 9n)
and VH (Figure 9m) increased with senescence—in other words, decreased panicle water
content. VV/VH also shows a negative correlation, meaning that VV substantially increased
rather than VH. From August to September, the panicle water contents decreased suddenly
from 60% to <30%. This lower water content increased microwave penetration into the
vegetation [28,29], resulting in increased backscatter values from panicles at shallower
incidence angles. Similarly, Khabbazan et al. [25] concluded the VV markedly increased
and VH/VV decreased during the senescence stage.

Alternatively, although both VV and VV/VH at a steep incidence angle showed strong
positive correlations with the panicle water content (Figure 8n,o; Table 3), the backscatter
likely did not reflect vegetation water content, as it is primarily affected by the surface
conditions. Microwave signals with steep incidence angles can easily reach the ground by
penetrating the plant canopy; thus, penetration levels increase during plant senescence. In
August (the heading period), VV scattering was high and tended to decrease in September
approaching harvesting (Figure 8n) due to surface drainage, which commences 30–40 days
after heading. As it is pointed by the previous research [46], the inundated surface below
the canopy behaves as a strong reflecting surface to produce a double-bounce scattering
component. Accordingly, surface drainage time beginning in September changed the
surface from water to muddy soil, reducing both VV and VV/VH (Figure 8o). Notably,
panicle water content likely synchronizes more closely with surface water content than
leaf water content, which did not decrease during the ripening stage (Figure 4b). Previous
studies observed a remarkable decrease by 15–20% in soil moisture contents of rice paddies
during the ripening stage [50]. The panicle water content showed pseudo-correlations with
backscatter values in orb 39.

The results here identified different backscatter behavior between two orbits and were
primarily aligned with the findings of Veloso et al. [27], who mentioned that shallow inci-
dence angles (>30–40◦) enhanced the impact of vegetation on backscatter values, whereas
steeper incidence angles (<30◦) were susceptible to ground conditions owing to deeper
microwave penetration.

6. Conclusions

In recent years, global warming has impacted agricultural practices and production.
Rice crop production also suffers from temperature rise, which causes deterioration of
the grain quality. Remote sensing technology is expected to monitor an extensive area
of agricultural land to retrieve a biophysical crop parameter. Here, rice crop growth was
monitored using Sentinel-1 C-band imagery with high-frequency observations of under-
standing microwave backscatter behavior as it corresponds to changes in crop phenology,
water contents, and surface conditions.

The temporal changes analyses illustrated a similar tendency across all four notable
years, although unique variation trends were delineated for each different incidence angle.
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The VV/VH ratio at a shallow incidence angle delineated special temporal behavior, no
longer decreasing after the heading period and thus becoming stable over the reproductive
and ripening periods. The phenomenon is due to both minor morphological changes in
crops and the reduction in the panicle water content during the period. The senescent
particularly allowed for greater microwave penetration into the canopy, thereby increasing
panicle-related backscatter. Furthermore, multivariate regression analysis demonstrated
that VV and VH with shallow incidence angles were strongly negatively correlated with
panicle water content, demonstrating backscattering increases with decreases in the water
contents via senescence.

Thus, it was observed that backscatter behaviors were highly consistent with crop
phenological changes, and microwave backscatter information enabled the retrieval of
rice crop conditions. Accordingly, data with shallow incidence angles indicated a strong
potential for estimating panicle water content. Therefore, it seems reasonable to conclude
that C-band SAR data is capable of using for proper harvesting time estimation. The
relationship is likely sustained because the backscattered signal with a shallow incidence
angle is not greatly affected by the surface to reflect panicle condition. However, further
investigation in other areas is essential to generalize the relationship.
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