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Abstract: Ship detection with rotated bounding boxes in synthetic aperture radar (SAR) images is
now a hot spot. However, there are still some obstacles, such as multi-scale ships, misalignment
between rotated anchors and features, and the opposite requirements for spatial sensitivity of
regression tasks and classification tasks. In order to solve these problems, we propose a rotated
balanced feature-aligned network (RBFA-Net) where three targeted networks are designed. They
are, respectively, a balanced attention feature pyramid network (BAFPN), an anchor-guided feature
alignment network (AFAN) and a rotational detection network (RDN). BAFPN is an improved FPN,
with attention module for fusing and enhancing multi-level features, by which we can decrease the
negative impact of multi-scale ship feature differences. In AFAN, we adopt an alignment convolution
layer to adaptively align the convolution features according to rotated anchor boxes for solving the
misalignment problem. In RDN, we propose a task decoupling module (TDM) to adjust the feature
maps, respectively, for solving the conflict between the regression task and classification task. In
addition, we adopt a balanced L1 loss to balance the classification loss and regression loss. Based on
the SAR rotation ship detection dataset, we conduct extensive ablation experiments and compare
our RBFA-Net with eight other state-of-the-art rotated detection networks. The experiment results
show that among the eight state-of-the-art rotated detection networks, RBFA-Net makes a 7.19%
improvement with mean average precision compared to the second-best network.

Keywords: synthetic aperture radar (SAR); ship detection and classification; rotated bounding box;
deep learning (DL); attention; feature alignment

1. Introduction

Synthetic aperture radar (SAR) has the ability to work all day and in all weathers, so it
has a wide and important application in marine ship monitoring [1,2]. As a basic maritime
task, SAR ship detection is of great significance to marine transportation department,
fishery department and national defense department. In maritime traffic control, we need
to accurately identify the location and category information of the target ship, so that
the traffic management department can reasonably mobilize the ship route. For fisheries
management, correctly identifying target ships, such as fishing ships, from SAR images is
of great significance for rational management of fishery resources and combating illegal
fishing.

Many traditional SAR ship detection methods mainly rely on the manual design
of ship features. For example, the constant false alarm rate (CFAR) [3] estimates the
statistical data of background clutter, adaptively calculates the detection threshold and
maintains a constant false alarm probability. However, the determination of the detection
threshold depends on the distribution of sea clutter, which is not robust enough. There are
other traditional methods based on super-pixel and transform [4,5], but their algorithms
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are complex and not robust enough, resulting in limited migration applications. Many
traditional algorithms often use limited images for theoretical analysis to define ship
features However, these images are difficult for reflecting the characteristics of various ship
sizes under different backgrounds. This leads to low detection accuracy under multi-scale
scenes.

Recently, with the development of deep learning, target detection using convolutional
neural network (CNN) has been widely used in many fields. At present, the mainstream
object detection methods can be divided into two types: single-stage algorithms [6–13] and
two-stage algorithms [14–19]. One-stage algorithms, such as YOLO [6] and RetinaNet [13],
use a single convolutional network to directly predict the bounding boxes and correspond-
ing classes. Two-stage algorithms generate candidate regions of interests in the first stage
and then perform classification in these regions in the second stage. R-CNN [14] and Faster
R-CNN [16] are two typical two-stage algorithms.

SAR ship detection models based on convolutional neural network make up for the
defects of traditional methods in many aspects. Compared with traditional model-driven
methods, the methods based on deep learning have the advantages of full automation,
high speed and strong model migration ability [20]. On the basis of a large amount of data
training, the deep-learning method can mine features that cannot be mined by traditional
algorithms, so as to better realize SAR ship detection. Thus, many researchers in the SAR
ship detection community started to pay attention to CNN-based methods. In terms of
SAR datasets, Zhang et al. released the first dataset SSDD for SAR ship detection [21]. Lei
et al. released the dataset SRSDD for rotated SAR ship detection [22]. In terms of network
structure, Zhang et al. [23] proposed a quad feature pyramid network to extract multiple-
scale SAR ship features. Sun et al. [24] focused on reducing computation complexity and
proposed a lightweight densely connected sparsely activated detector. Wang et al. [25]
used RetinaNet to realize automatic ship detection. Based on Faster R-CNN, Jiao et al. [26]
proposed a densely connected multiscale neural network to handle multiscale SAR ship
images. So, SAR ship detection based on deep learning has broad development prospects.

Although there has been a lot of research on CNN in SAR ship detection, we still
face many problems. Firstly, the horizontal bounding boxes cannot fit the oriented ships
very well, which results in introducing more background interference [27]. Secondly, for
dense ships in SAR images, the densely arranged horizontal bounding boxes have high
intersection over union (IoU), which leads to missed inspections after non-maximum
suppression (NMS). As a response to these problems, these researchers [28–31] started to
use rotated bounding boxes to solve these problems. Figures 1 and 2 show the advantages
of using rotated bounding boxes. Many scholars have published research applying the
rotated bounding box in the field of SAR ship detection. Based on RetinaNet and rotated
bounding boxes, Yang et al. [28] proposed R-RetinaNet. Pan et al. [29] proposed a multi-
stage rotational region-based network in order to eliminate close false positive proposals
successively. Chen et al. [30] proposed a rotated refined feature alignment detector to
balance accuracy and speed.
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that horizontal bounding box leads to much overlap, while rotated bounding box does not.

Despite current research on rotated SAR ship detection, there are still some problems
to be solved. Firstly, using rotated anchor boxes leads to the dislocation between the rotated
anchor boxes and feature maps, which reduces the accuracy of the regression network [31].
Secondly, many researchers [32,33] pay less attention to the huge difference of ship scales
in the existing SAR datasets, which is negative for the detection accuracy [23]. Thirdly,
some SAR detection models [29] ignore the fact that classification tasks and localization
tasks have different requirements for the spatial sensitivity of features [34]. Fourthly, few
researchers focus on both SAR ship detection and SAR ship classification. For example,
Zhang et al., He et al. and Zeng et al. [35–39] conducted SAR ship classification, but their
networks were not able to achieve SAR ship detection.

Therefore, aiming at the above problems, we propose a rotated balanced feature-
aligned network (RBFA-Net). The main goal of RBFA-Net is to accurately realize the
recognition of SAR ships, that is, the detection and classification of SAR ships. Firstly,
RBFA-Net uses the rotated bounding box, which greatly reduces the impact of redundant
background noise. Secondly, we improve FPN into a balanced-attention FPN, which can
better fuse and enhance multi-scale feature maps. Thirdly, we adopt alignment convolution
in AFAM to adaptively align the convolution features according to rotated anchor boxes.
Finally, in the rotational detection network (RDN), the input feature maps are adjusted,
respectively, for regression task and classification task.

The main contributions are as follows:

1. Balanced rotated feature-aligned network (RBFA-Net) is proposed for SAR ship recog-
nition.

2. A balanced-attention FPN is used for fusing multi-scale features and reducing the
negative impact of the imbalance of different scale ships.

3. A rotational detection module is used for fixing the position of ships with rotated
bounding boxes and classifying the categories of ships.

The rest of this paper is arranged as follows. Section 2 introduces the methodology.
Experiments are described in Section 3. Results and ablation studies are shown in Section 4.
Finally, a summary of this paper is put forward in Section 5.

2. Proposed Methods

RBFA-Net is designed on the basis of RetinaNet [13], which consists of FPN and
detection subnets. First, we improve the detection subnets with rotated anchors where
RetinaNet uses horizontal anchors. Then, we use the BAFPN instead of the FPN originally
used by RetinaNet to enhance feature extraction ability. In addition, we add an anchor-
guided feature alignment network after FPN to solve the misalignment between the features
and rotated anchors. Finally, unlike RetinaNet directly inputting the features into the
classification and regression subnets, we add TDN to solve the conflict problem before
inputting the features into the classification and regression subnets.



Remote Sens. 2022, 14, 3345 4 of 23

The whole framework of RBFA-Net is divided into three parts: (1) a balanced-attention
FPN (BAFPN), (2) an anchor-guided feature alignment network (AFAN) and (3) a rotational
detection network (RDN). BAFPN is used for feature extraction, fusion and enhancement.
AFAM is used for decreasing the dislocation between the rotated anchor boxes and feature
maps. RDN is used for fixing the position of ships with rotated bounding boxes and
classifying the categories of ships. The architecture of RBFA-Net is shown in Figure 3.

In this section, we will first introduce BAFPN, and then, we will explain AFAM. Finally,
we will introduce RDN in detail. At the end of this section, we will introduce our loss
function.
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2.1. Balanced-Attention FPN

Previous works [40–44] tended to use the feature pyramid network (FPN) [45] as the
backbone because the low-level feature maps with higher resolution are suitable for small-
scale ship detection, while the high-level feature maps with more semantic information
are very suitable for large-scale objects. However, using horizontal connection to integrate
multi-level information makes the network pay more attention to the feature maps of
adjacent layers, and the semantic information of non-adjacent layers will be diluted many
times in the network. In SAR ship datasets [21,46,47], the scale span of the SAR ship
target tends to be very large, which makes the ship features exhibit significant difference.
In order to solve this problem, inspired by Ref. [48], we use a balanced-attention FPN
(BAFPN) to balance and enhance the feature maps of different scales. As shown in Figure 3,
BAFPN mainly consists of three parts: (1) feature extraction and fusion, (2) self-attention
enhancement module, (3) feature pyramid recovery.

2.1.1. Feature Extraction and Fusion

Considering the feature dilution caused by multi-level horizontal connection structure
in traditional FPN, we adopt another way for feature fusion. First, we use ResNet-50
to extract feature maps of different scales. As shown in Figure 4, the extracted feature
maps of five levels are denoted by {C1, C2, C3, C4, C5}. Since C3 is in the middle of the
pyramid, we recognize that C3 can synthesize top semantic information and bottom spatial
information better [48]. So, we resize {C1, C2, C4, C5} to the C3 resolution with up-sampling
and max-pooling. The rescaled feature maps are denoted by {C1′, C2′, C3′, C4′, C5′}.
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Then, we fuse these rescaled feature maps by averaging, and the result is executed by

F =
5

∑
i=1

C′i (1)

where i represents the i-th detection.
During averaging, the fused feature map obtains information from all resolutions.

By using feature fusion, the impact of different ship scales on detection and classification
performance can be reduced.

2.1.2. Attention Module

In order to enhance the global response ability of receptive field and avoid the more
complex network structure caused by stacking convolution, we use the non-local [49]
module to enhance the fused feature map. Through the module based on a self-attention
mechanism, the network can pay more attention to the more important global information.
The non-local module establishes the correlation between the global information and the
local information without stacking the convolution kernels. This is equivalent to expanding
the field of vision, so that the network can better integrate the global information of the
image. The expression of the non-local attention formula is as follows:

Hi =
1

C(F) ∑
∀j

f
(
Fi, Fj

)
g
(
Fj
)

(2)

where Fi represents the i-th location of the input feature map. C(·) represents the normalized
coefficient. Function f (·) is used for calculating the similarity between Fi and Fj. Function
g(·) is used for calculating the representation of the input feature map at j-th location.
Coefficient 1

C(F) is used for normalization.
In order to express it concisely, the function g(·) can be regarded as a linear embedding,

i.e.,
g
(
Fj
)
= WgFj (3)

where Wg is the weight matrix.
In this module, we use the embedded Gaussian as the function f (·). Embedded

Gaussian is a simple extension of Gaussian and calculates the similarity of embedded
space.

f
(
Fi, Fj

)
= eθ(Fi)

T ϕ(Fj)

θ(Fi) = WθFi

ϕ
(
Fj
)
= WϕFj

(4)

where θ(·) and ϕ(·) is the weight matrix. Wθ and Wθ are the weight matrices.
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In addition, the normalized coefficient C(·) is

C(F) = ∑
∀j

f
(
Fi, Fj

)
(5)

Therefore, through the above formula, we can deduce that the output expression is

Hi = (∑
∀j

eθ(Fi)
T ϕ(Fj) ×WgFj)/ ∑

∀j
f (Fi, Fj) (6)

Figure 5 shows the architecture of the non-local module. We put the input feature
maps F into three 1× 1 convolutional layers at the same time to calculate ϕ, θ and g. Then,
we flatten the H and W dimensions of ϕ and θ. With the flattened layers, we can calculate
the similarity f by matrix multiplication. Finally, the similarity f is normalized by a soft-
max function, and the result is multiplied by the flattened feature maps g. The output is
also processed by a 1× 1 convolution layer to make it match the size of the input feature
map. Apart from that, a skip connect is added into the architecture. So, the final output
refined feature map H′ is

H′ = WHH + F (7)

where WH is the weight matrix.
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For example, for the input feature map F, the following operations are performed in
the non-local module:

1. Use 1× 1 convolution for down-sampling to obtain three variants: ϕ, θ and g.
2. ϕ and θ perform channel merging and transposing, respectively, and then perform

matrix multiplication to gain similarity f .
3. The similarity f is normalized by a soft-max function, and then multiply f with the

channel-merged g.
4. The obtained results first restore the original size and then restore the number of

channels through 1× 1 convolution.
5. Finally, add it to the original input F to form a complete residual non-local module.

2.1.3. Feature Pyramid Recovery

As shown in Figure 6, the fused feature maps are restored to a feature pyramid through
up-sampling and max-pooling. This part can be regarded as the reverse operation of feature
fusion. As shown in Figure 6, the enhanced feature maps H′ from the non-local module
are restored to a feature pyramid consisting of five levels {F1, F2, F3, F4, F5}. Among them,



Remote Sens. 2022, 14, 3345 7 of 23

{F1, F2} are obtained from H′ through max-pooling. {F4, F5} are obtained from H′ through
up-sampling. Feature maps H′ are retained as F3 in the recovered feature pyramid. In the
recovered feature pyramid, each level contains more multi-scale features and balanced
information from all resolutions. To conclude, the BAFPN enables RBFA-Net to better focus
on multi-scale ship features while integrating global features.
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2.2. Anchor-Guided Feature Alignment Network

In networks using horizontal anchors, the convolution features are aligned with
anchors, so the convolution features can reflect the anchor representations [30]. However,
in the network using rotating anchor, solving the misalignment between rotated anchors
and convolution features is an important problem. To solve this problem, we introduce
an anchor-guided feature alignment network. With the guidance of rotated anchors, the
feature map will be adjusted to align with rotated anchors in the next rotational detection
network. In this section, we will first introduce the basic information about the rotated
bounding box and then introduce the anchor-guided feature alignment network.

2.2.1. Introduction to Rotated Bounding Box

In this paper, we use the geometric definition of the rotated bounding box used
by MMRotate [50]. The rotated bounding box can be represented by five parameters
(x, y, w, h, θ). The two tuples (x, y) represtent the location of the center point of the rotated
bounding box. The two tuples (w, h) represent the length and width of the rotated bounding
box. θ is the rotation angle of the rotated bounding box, and its value range is [−45◦, 135◦).
Figure 7 shows more details about the geometric definition of the rotated bounding box.
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2.2.2. Anchor-Guided Feature Alignment Network

Generally, many existing networks with a rotated bounding box use heuristically
defined anchors with different scales and aspect ratios. As a result, these networks tend to
suffer from misalignment between the rotated anchor boxes and axis-aligned convolution
features. Previous works [30,51] have proved that this misalignment will lead to the
decline of detection accuracy. In order to solve this problem, we introduce the alignment
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convolution layer to establish the anchor-guided feature alignment network (AFAN) to
extract the adaptive features according to the predicted shape of the refined anchor.

The core idea of AFAN is that we use the alignment convolution layer to reset the
sampling locations according to the roughly generated rotated bounding box. As shown in
Figure 8, the extracted feature maps are sent into a rough regression subnet consisting of
two convolution layers. The subnet roughly generates rotated bounding boxes in this part.
Then, through these roughly generated bounding boxes, we can calculate their offset from
the bounding boxes. Finally, these offsets and the original feature maps are put into the
alignment convolution layer to reset the sampling locations.
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For the feature maps extracted through BAFPN, firstly, they will be input into a
regression network to preliminarily locate the anchors and adjust their directions. From
this, we obtain the feature maps of H ×W × 5. For each 5-dimensional anchor box, we
sample 9 points to obtain the 18-dimension offset field O. The calculation formula of the
offset field O is as follows:

Lpk
p0 =

1
S
((x, y) +

1
k
(w, h)pk)RT(θ) (8)

O =
{

Lpk
p0 − po − pk

}
pk∈R

(9)

where Lpk
p0 represents the sampling location. S represents the stride of the feature maps. k

represents the kernel size. p0 represents each location on the feature map XA. pk repre-
sents the pk-th location in XA. R(θ) = (cosθ,−sinθ; sinθ, cosθ)T is the rotation matrix. O
represents the offset field.

Finally, the offset field and feature maps extracted with BAFPN are input into the
alignment convolution layer. By alignment convolution, we align the feature maps with
the rotated bounding boxes. These aligned feature maps will be input into RDN for ship
target detection and classification.

The alignment convolution is established by adding the offset field o to the ordinary
convolution. The alignment convolution can be defined as follows:

XA(po) = ∑
pk∈R,o∈O

w(pk)X(po + pk + o) (10)

o represents the offset in the offset field O.

2.3. Rotational Detection Network

In this section, we propose a rotational detection network (RDN) to realize ship detec-
tion and classification. RDN is designed on the basis of RetinaNet [13], where the feature
maps are sent to the regression subnet and classification subnet, respectively. However,
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the features used for classification should remain invariant, while for the regression task,
the features should represent the changes of the target position, size and rotation angle.
The opposite requirements bring negative impact on detection accuracy. In order to solve
this conflict, we propose a task decoupling module. Recent studies [52] have shown that
decoupling the classification task and regression task in the spatial dimension of the feature
maps can relieve this conflict. Therefore, we add a task decoupling module consisting
of two squeeze-and-excitation (SE) modules [53]. Figure 9 shows the architecture of the
rotational detection network.

As shown in Figure 9, a global average pooling layer, a full connection layer and a
ReLU activation function form the encoder of the task decoupling module. For the feature
maps from AFAN, their dimension is H ×W × C. Firstly, these feature maps are put
into the global average pooling layer to extract the global feature information. Then, we
send the output feature maps of the global pooling layer to a full connection layer and a
ReLU activation function [54]. According to the design of SENet, the size of the output
feature map is compressed to 1× 1× C/8. Then, the output of the encoder will be input
into two decoders composed of a full connection layer and a sigmoid activation function,
respectively, and the size will be restored to 1× 1× C in this process. Finally, the feature
maps are multiplied by the corresponding elements in the decoder output vector to adjust
the feature maps to adapt to different learning tasks. The output feature maps are sent to
the classification subnet and regression subnet, respectively.
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2.4. Loss Function

The loss function of RBFA-Net is composed of two parts: the loss of AFAN and
the loss of RDN. Each part consists of classification loss and regression loss. The loss of
AFAN is similar to that of RDN. Both of them are obtained by adding regression loss and
classification loss. The formulae are as follows:

L = 1
NA

LAFAN + λ
ND

LRDN

LAFAN =
N
∑

i=1
Lcls
(

pA
i , p∗i

)
+

N
∑

i=1
p∗i Lreg

(
ti, t∗i

)
LRDN =

N
∑

i=1
Lcls
(

pi, p∗i
)
+

N
∑

i=1
p∗i Lreg

(
tD

i , t∗i
) (11)

where pi represents the predictive class probability, p∗i represents the ground-truth category.
p∗i = 1 when sample I is a positive one, else p∗i = 0. pA

i indicates that the prediction
probability is obtained by AFAN. λ is a hyper-parameter to balance the loss of the alignment
network and that of the detection network. t∗i represents the offset between the i-th sample
and ground truth. ti represents the offset between the i-th prediction and ground truth. tD

i
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indicates that the offset is obtained by RDN. We use focal loss [13] and balanced L1 loss [48]
as the classification loss Lcls and regression loss Lreg.

The main purpose of the regression subnet is predicting the location, size and angle of
the rotated bounding boxes. According to the definition of the rotated bounding box, the
regression offset t∗i and ti can be denoted by

t∗x = Gx−Ax
Aw

, t∗y =
Gy−Ay

Ah

t∗w = log Gw
Aw

, t∗h = log Gh
Ah

t∗θ = tan(Gθ − Aθ)

tx = Bx−Ax
Aw

, ty =
By−Ay

Ah

tw = log Bw
Aw

, th = log Bh
Ah

tθ = tan(Bθ − Aθ)

(12)

where Gi, Ai and Bi represent the five-tuple coordinate i ∈ (x, y, w, h, θ) of ground truth,
anchor box and predicted bounding box. t∗i represents the regression offset between the
ground truth and anchor box. ti represents the regression offset between the predicted
bounding box and anchor box.

Like Refs [13,55,56], we use focal loss as the classification loss Lcls. However, previous
work proved that the imbalance of classification loss and regression loss has negative
impact on the detection accuracy. Directly adjusting the weight to increase the regression
loss will make the network more sensitive to outliers, which is unfavorable for SAR images
with much speckle noise. So, we use balanced L1 loss as the regression loss Lreg instead of
the widely used smooth L1 loss.

Researchers usually balance the regression loss and classification loss by adjusting the
loss weight. However, directly increasing the weight of regression loss will make the model
more sensitive to the noise in the image. Moreover, SAR images are often disturbed by
much background noise and speckle noise, which seriously affects the detection accuracy.
Therefore, to solve this problem, we use balanced L1 loss instead of the commonly used
smooth L1 loss as the regression loss. The formula of balanced L1 loss is as follows:

Lb(x) =

{ a
b (b|x|+ 1)ln(b|x|+ 1)− a|x|, i f |x| < 1

γ|x|+ C , otherwise
(13)

where a, b and γ are hyper-parameters and meet aln(b + 1) = γ. According to the configu-
ration in Ref. [48], we set a = 0.5, γ = 1.5. x is the difference between the predicted value
and the ground truth.

As Ref. [48] points out, compared with smooth L1 loss, balanced L1 loss can increase
more gradient for accurate samples, reducing the contribution of outliers to loss. For
example, compared with the contribution of outliers, the contribution of inliers to loss is
only 30%, which makes the network very sensitive to outliers. Using balanced l1loss can
improve the contribution of normal values to loss and reduce the sensitivity of the network
to outliers. Therefore, using balanced L1 loss is helpful for ship detection, especially for
ship detection in inshore scenes.

3. Experiments

Our experiments are run on a personal computer with i9-9900K CPU and RTX2080Ti
GPU based on Pytorch. Our experiments are under the MMDetection toolbox [57] to ensure
comparison fairness.
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3.1. Experimental Datasets

One of the main reasons for the lack of research on SAR ship recognition in the past
has been insufficient data. Now, thanks to the SAR rotation ship detection dataset (SRSDD)
released by Lei et al. [22] in 2021, the research on SAR ship detection and classification can
be further developed. The images in SRSDD all come from China’s GF-3 satellite, which
photographed more than 30 ports from five locations. The size of each slice is 1024× 1024.
Table 1 shows more details about SRSDD.

Table 1. The basic parameters of SRSDD.

Parameter Value

Number of images 666
Waveband C
Image Size 1024 ×1024

Image Mode Spotlight Mode
Polarization HH, VV

Resolution(m) 1
Ship Classes 6

Position Nanjing, Hongkong, Zhoushan, Macao, Yokohama

The ships in SRSDD are marked by the rotated bounding box and are divided into six
categories, including ore–oil ships, bulk cargo ships, fishing boats, law enforcement ships,
dredger ships and container ships. The rotated bounding box and the category of each ship
target are given by experts after checking the corresponding SAR image and corresponding
optical image. This ensures their authenticity and accuracy. Table 2 shows the number of
each category. It can be seen from the table that the number of bulk cargo accounts for most
of the total, while the number of law enforcement is almost one tenth of that of bulk cargo.

In addition, considering the problem that the number of offshore scenes is larger
than that of inshore scenes in the existing SAR dataset, such as SSDD [21,46] and Gaofen-
SSDD [47], SRSDD focuses on taking nearshore scenes during sampling. In SRSDD, inshore
scenes account for 63.1%, and offshore scenes account for 36.9%. In order to ensure fairness
of the experimental results, our experiment is completely consistent with Ref. [22], that is,
532 pictures are used for training, and 134 pictures are used for testing.

Table 2. The number of each ship category in SRSDD.

Category Train Number Test Number Total Number

Ore–oil ships 132 34 166
Bulk cargo ships 1603 450 2053

Fishing boats 206 82 288
Law enforcement 20 5 25

Dredger ships 217 46 263
Container ships 67 22 89

Total 2245 639 2884

3.2. Experimental Details

We refer to the work of Pang et al. [48] and use Resnet-50 [58] pretrained on Image-
net as the backbone of RBFAN. A large number of images in Image-net can better train
Resnet-50 to extract underlying features. Limited by GPU, we set the batch size to 4. Similar
to Ref. [59], we use stochastic gradient descent (SGD) [60] as the optimizer, with a 0.005
learning rate, 0.9 momentum and 0.0001 weight. In addition, the learning rate is reduced
from 130 epochs to 140 epochs, and each epoch is reduced by 10 times to ensure sufficient
loss reduction. In addition, the intersection of union (IOU) threshold in the experiment
is set to 0.5. According to the configuration in Ref. [48], we set a = 0.5, γ = 1.5. The
hyper-parameter λ in loss function is set to 1. The hyper-parameter C in balanced L1 loss is
set to 0.5.



Remote Sens. 2022, 14, 3345 12 of 23

According to Refs [13,30,48], we set the following parameters. In BAFPN, the reso-
lution of each layer is [512× 512, 256× 256, 128× 128, 64× 64, 32× 32]. The size of the
fused feature map is 128× 128× 256. The resolution of the restored feature pyramid is
[512× 512, 256× 256, 128× 128, 64× 64, 32× 32]. In AFAN, the convolution kernel size
is 3× 3. In RDN, the size of the used convolution kernels is 3× 3 for all. The number of
convolution layers stacked in the classification subnet and the regression subnet is 2.

3.3. Training Process

RBFA-Net is a single-stage network, so we refer to the training method of single-stage
network in MMDetection [57] during training.

The specific training process is as follows:

1. Obtain the SAR image dataset preprocessed by SRSDD publisher.
2. Input the SAR image data into RBFA-Net for forward propagation to obtain the

regression score and classification score.
3. Input the regression score and classification score and the ground truth into the loss

function to obtain loss value.
4. Determine the gradient vector by back propagation.
5. Adjust each weight to make the loss value tend to zero or converge. We use the

stochastic gradient descent (SGD) method for adjustment.
6. Repeat the above process until the set number of training times (training epoch) or

loss value does not decrease.

3.4. Evaluation Indices

In this paper, we use mean average precision (mAP) as the evaluation index. The
larger the mAP, the higher the network detection accuracy. To calculate mAP, we need to
calculate recall and precision first. The recall and precision can be calculated as

Recall =
TP

TP + FN
(14)

Precision =
TP

TP + FP
(15)

where TP represents the number of true positives, FN represents the number of false
negatives, FP represents the number of false positives. Then, we can obtain the precision–
recall curve and calculate mAP.

AP =
∫ 1

0
P(R)dR (16)

mAP =
1
k

k

∑
i=1

APi (17)

where R represents recall, and P represents precision. P(R) represents the precision–recall
curve.

4. Results
4.1. Qualitative and Quantitative Analyses of Results

Table 3 shows the comparison of the detection results with the other eight rotated
detectors on SRSDD. In Table 3, labels C1–C6 correspond to ore–oil ships, fishing boats,
law enforcement ships, dredger ships, bulk cargo ships and container ships. The detection
results of the other methods are from Ref. [22]. It can be seen from the results that the
performance of our network is better than the eight state-of-the-art methods. In addition,
our RBFA-Net achieves the highest mAP with a small model size, which proves the excellent
performance of our RBFA-Net. Our RBFA-Net is only half the size of BBAVectors [61].
Moreover, the size of RBFA-Net is smaller than the second-best O-RCNN [62].
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For each category, except for fishing boat and dredger, our model obtains optimal or
suboptimal results. For fishing boat and dredger, our detection accuracy is also above the
average level. For the largest number of categories (bulk cargo) and the lowest number of
categories (law enforcement) in SRSDD, our detection accuracy reaches the best, which
proves that our network can not only focus on small samples but also ensure the accuracy
of large sample targets. It is worth noting that the detection accuracy of our network in law
enforcement category is much higher than that of other models. Because law enforcement
often appears in a fixed position, it is more sensitive to spatial information. With BAFPN,
our network integrates global information, so it is helpful for the detection of such spatial
sensitive targets.

Table 3. Quantitative evaluation comparison with the eight state-of-the-art detectors. Labels C1–C6
correspond to ore–oil ships, fishing boats, law enforcement ships, dredger ships, bulk cargo ships
and container ships.

Models C1 C2 C3 C4 C5 C6 mAP Model Size

FR-O [16] 55.62 30.86 27.27 77.78 46.71 85.33 53.93 315 MB
R-RetinaNet [13] 30.37 11.47 2.07 67.71 35.79 48.94 32.73 277 MB

ROI [31] 61.43 32.89 27.27 79.41 48.89 76.41 54.38 421 MB
R3Det [55] 44.61 18.32 1.09 54.27 42.98 73.48 39.12 468 MB

BBAVectors [61] 54.33 21.03 1.09 82.21 34.84 78.51 45.33 829 MB
R-FCOS [40] 54.88 25.12 5.45 83.00 47.36 81.11 49.49 244 MB

Glid Vertex [63] 43.41 34.63 27.27 71.25 52.80 79.63 51.50 315 MB
O-RCNN [62] 63.55 35.35 27.27 77.50 57.56 76.14 56.23 315 MB

RBFA-Net (Ours) 59.39 41.51 73.48 77.17 57.36 71.62 63.42 302 MB

The best detector is in bold and the second best is underlined.

We also draw the confusion matrix showing the classification results of our network
in more detail. The confusion matrix evaluates the classification accuracy of the network.
As shown in Figure 10, the abscissa is the prediction category, and the ordinate is the real
category. In the confusion matrix, the diagonal is the correct classification probability,
and the others are the wrong classification probability. The confusion matrix is composed
of ore–oil ships, fishing boats, law enforcement ships, dredger ships, bulk cargo ships,
container ships and other class. Among them, the other class includes ships not in the
dataset and other sea targets, such as oil platforms.
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Limited by space, Figure 11 shows the qualitative comparison of second-best method
O-RCNN [62] and our RBFA-Net in detail. In order to observe the detection results of
densely arranged ships near the shore, we compare the sliced and enlarged SAR images.
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From the experimental results, we can draw the following conclusions:

1. RBFA-Net net can avoid some missing inspection of some densely arranged inshore
small ships. As shown in Figure 11, RBFA-Net detects more fishing boats and bulk
cargo than O-RCNN. This is because RBFA-Net uses AGFAN to align the feature
map with the rotating anchor boxes, which reduces the negative impact of densely
arranged ships and background interference.

2. For inshore ship detection, RBFA-Net has better detection accuracy, as shown in Fig-
ure 11. In the same SAR image, RBFA-Net can detect and correctly classify the inshore
ships and the complex coastal background. This is because RBFA-Net uses FAFPN
to fuse and enhance multi-scale features, which enhances the ability of focusing on
global information of SAR images.

3. For the problem of difficult target ship detection, RBFA-Net has a higher detection
effect, as shown in Figure 11. RBFA-Net can successfully classify the fishing boat,
which has similar features with bulk cargo ships. This is because RBFA-Net uses the
task decoupling module to adaptively enhance the feature map, making it better in
the classification network.

4. Nevertheless, there are still some problems in our network. For example, there is still
the problem of missing inspection when there are too many nearshore ships. For some
ships whose characteristics are not obvious, there will also be classification errors.
Finally, for some ships in specific directions, there is also the problem of dislocation of
detection frame.

In addition, to better demonstrate the performance of our network, we compare the
ground truth, the detection results of the third-best method RoI Transformer (ROI) [31],
the detection results of the second-best method O-RCNN [62] and the detection results
of RBFA-Net. Figures 12–14 show more detection results. For the ground truth, we show
the correct category of each ship. For the test results, the category information and its
confidence are displayed in the green label box. The higher the confidence, the greater the
possibility that the test result is of this category. In order to display the SAR images more
clearly, we increased the brightness of all displayed images.
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posed RBFA-Net. 

Figure 11. Detailed detection results. (a) Ground truth; (b) Result of O-RCNN; (c) Result of the
proposed RBFA-Net.

Figure 12 shows the detection and classification results of the offshore ship. As can be
seen from the SAR image, RBFA-Net successfully suppresses the false alarm in the SAR
image. ROI and O-RCNN mistakenly identify the interference noise in the SAR image as a
bulk cargo target. The detection result shows that RBFA-Net has better scene adaptability.
Because our network uses BAFPN, it can fuse and enhance the global information to make
RBFA-Net more robust, so as to reduce the impact of noise on the network detection and
classification results to a certain extent.
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Figure 13 shows the detection and classification results of the inshore ship. It can be
seen from the picture that when the complex background occupies most part of the picture,
our RBFA-Net successfully detects and classifies the bulk cargo target. O-RCNN and ROI
fail to detect the ship targets. This is because our network adopts the alignment module to
adjust the sampling position and improve the accuracy of ship detection.



Remote Sens. 2022, 14, 3345 17 of 23Remote Sens. 2022, 14, 3345 17 of 23 
 

 

 

(a) (b) 

 

(c) (d) 

Figure 13. Detection results in inshore scenes. (a) Ground truth; (b) Result of ROI; (c) Result of O-
RCNN; (d) Result of RBFA-Net. 

Figure 13 shows the detection and classification results of the inshore ship. It can be 
seen from the picture that when the complex background occupies most part of the pic-
ture, our RBFA-Net successfully detects and classifies the bulk cargo target. O-RCNN and 
ROI fail to detect the ship targets. This is because our network adopts the alignment mod-
ule to adjust the sampling position and improve the accuracy of ship detection. 
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Figure 14 shows the detection and classification results of densely arranged ship
scenes. Generally, due to the complex background, false alarm often occurs in the detection
results of inshore ships. In addition, the dense arrangement of inshore ships also brings
challenges in detection and classification. From the detection results, we can see that our
network not only correctly detects and classifies the densely arranged ships in the nearshore
scene but also suppresses the false alarms in inshore scenes. Meanwhile, in the detection
results of ROI and O-RCNN, these two networks mistakenly detect the coastal background
as bulk cargo targets. This is because we introduce a task decoupling module, which
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can adjust the feature maps, respectively, for solving the conflict between the regression
task and classification task. This adjustment also enhances RBFA-Net’s ability to identify
background and ship targets.
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4.2. Ablation Study

In this section, we conduct a series of experiments to verify the effectiveness of impor-
tant improvements in RBFA-Net. They are a balanced-attention feature pyramid network
(BAFPN), an anchor-guided feature alignment network (AFAN) and a task decoupling



Remote Sens. 2022, 14, 3345 19 of 23

module (TDM). In addition, we also qualitatively explain the improvement brought about
by each import module combined with the test results.

Table 4 quantitatively shows the impact of each important improvement on detection
accuracy. The ‘4’ Table 4 means with the module, and the ‘- -’ means without the module.
in Our RBFA-Net is designed on the basis of RetinaNet. It can be seen from the results that
with the addition of these improvements, the detection accuracy of the network gradually
improves.

Table 4. Effectiveness of each improvement in RBFA-Net.

BAFPN AGFAN TDM mAP (%)

- - - - - - 41.26
4 45.74
4 4 59.08
4 4 4 63.42

4.2.1. Effect of BAFPN

Table 5 shows the ablation study results on BAFPN. We compare the detection results
using FPN. The two networks used in the experiment are completely consistent, except
for the FPN part. One network uses FPN, the other uses BAFPN to extract feature maps.
Both networks contain AGFAN and task decoupling module in RDN. The results show
that using BAFPN can improve the detection and classification accuracy. By using BAFPN,
we can fuse multi-scale ship features and pay attention to the global information, so as to
improve our detection and classification accuracy.

Table 5. Effectiveness of Balanced-FPN.

Models C1 (%) C2 (%) C3 (%) C4 (%) C5 (%) C6 (%) mAP (%)

FPN 60.01 60.85 35.07 43.80 73.43 76.50 58.28
Balanced-FPN (Ours) 59.39 57.36 41.51 73.48 77.17 71.62 63.42

4.2.2. Effect of AGFAN

Table 6 shows the ablation study results on AGFAN. In this experiment, we compare
the detection results in the network with and without alignment module, respectively. The
two networks used in the experiment are completely consistent, except for the alignment
module. One network contains AGFAN, while the other does not. Both networks contain
BAFPN and the task decoupling module in RDN. As can be seen from Table 6, the network
with the alignment module has a higher detection accuracy. This is because the alignment
module adjusts the sampling points of the network according to the rotated anchors. This
enables the network to extract features according to the guidance of the anchor and reduces
the dislocation caused by the use of rotated anchors. The ‘4’ Table 6 means with AGFAN,
and the ‘- -’ means without AGFAN.

Table 6. Effectiveness of AGFAN.

Models C1 (%) C2 (%) C3 (%) C4 (%) C5 (%) C6 (%) mAP (%)

× 35.77 43.98 33.03 27.27 75.87 49.67 44.27
4 59.39 57.36 41.51 73.48 77.17 71.62 63.42

4.2.3. Effect of TDM

Table 7 shows the ablation study results on the task decoupling module (TDM). In
this experiment, we compare the detection results in the network with and without the
alignment module, respectively. The two networks used in the experiment are completely
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consistent, except for the task decoupling module. One network contains the task decou-
pling module, while the other does not. Both networks contain BAFPN and AGFAN. As
can be seen from Table 7, the network with the alignment module has a higher detection
accuracy. This is because the alignment module adjusts the sampling points of the network
according to the rotated anchor. This enables the network to extract features according
to the guidance of the anchor and reduces the dislocation caused by the use of rotating
anchors. The ‘4’ Table 7 means with TDM, and the ‘- -’ means without TDM.

Table 7. Effectiveness of TDM.

Models C1 (%) C2 (%) C3 (%) C4 (%) C5 (%) C6 (%) mAP (%)

× 62.20 57.15 36.87 48.25 73.68 82.91 60.17
4 59.39 57.36 41.51 73.48 77.17 71.62 63.42

4.2.4. Effect of Balanced L1 Loss

Table 8 shows the ablation study results on balanced L1 loss. In this experiment,
we test the smooth L1 used by most networks [25,28,29] as the control. In this ablation
experiment, the networks used in the two experiments are exactly same, that is, BAFPN
and decoupling module are used. The only difference is that one network uses balance L1
loss as the regression loss, and the other uses smooth L1 loss as the regression loss.

Table 8. Different types of regression loss.

Regression Loss Types C1 (%) C2 (%) C3 (%) C4 (%) C5 (%) C6 (%) mAP (%)

Smooth L1 58.12 55.11 36.45 63.64 73.71 71.00 60.16
Balanced L1 loss (Ours) 59.39 57.36 41.51 73.48 77.17 71.62 63.42

5. Discussion

From the experimental results, it can be seen that compared with the other networks,
our RBFA-Net achieves better performance indicators, in particular, the highest mAP.
However, like other current networks, our RBFA-Net also has some similar problems. For
example, the false alarm rate is still high. The classification accuracy of small sample ships,
such as dredger ships and fishing ships, is still low. The rotation angle accuracy is not high
enough, and alignment errors exist. These are the problems that we need to further study
in the next stage. From the ablation study results, it can be seen that anchor-guided feature
alignment network plays an important role in SAR ship detection with rotated bounding
boxes. Therefore, it is very important to study how to better align the feature maps with
the rotated anchors in the future.

6. Conclusions

In this paper, a balanced rotated feature-aligned network (RBFA-Net) is proposed for
SAR ship recognition. Firstly, a balanced-attention FPN can better integrate multi-scale
image information and reduce the impact of multi-scale ship feature differences. In the
balanced-attention FPN, non-local module can effectively enhance the network’s response
to global information. Secondly, rotated anchors can effectively reduce the interference of
complex background in SAR ship recognition. At the same time, they can also reduce the
problem of true-value suppression caused by NMS for densely gathered ships. In addition,
the feature alignment module aligns the feature map with the anchor boxes, which reduces
the misalignment between the rotation anchor and the feature map. Furthermore, in the
rotational detection network, we add a task decoupling module to adjust the feature maps
and recalibrate them for the classification task and regression task. Lastly, we use balanced
L1 loss to reduce the imbalance between regression loss and classification loss. We conduct
extensive ablation experiments and confirm the effectiveness of each improvement. The
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experimental results show that RBFA-Net has the best performance compared with the
other eight methods on the SRSDD dataset.

SAR ship detection methods based on deep learning have the advantages of full
automation, high speed and strong model migration ability. On the basis of a large amount
of data training, the deep-learning method can mine features that cannot be mined by
traditional algorithms, so as to better realize SAR ship detection. The key advantage of
SAR ship detection based on deep learning lies in the large amount of high-quality data
and appropriate network models. In the future, there will be more high-quality datasets
and more networks that can better mine SAR image features.

Our future works are as follows:

1. We will improve the detection accuracy of rotation angle of the rotated bounding
boxes. The structure of the regression network is relatively simple, which may not
meet the requirements of rotation detection.

2. We will improve the detection and classification accuracy of small sample ships, such
as fishing boats and law enforcement ships. We suppose that BAFPN does not fully
mine the unobvious features of small samples of ships. Ship segmentation can also be
considered in the future.
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