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Abstract: Validation of remotely sensed evapotranspiration (RS_ET) products is important because
their accuracy is critical for various scientific applications. In this study, an integrated validation
framework was proposed for evaluating RS_ET products with coarse spatial resolution extending
from homogenous to heterogeneous land surfaces. This framework was applied at the pixel and
river basin scales, using direct and indirect validation methods with multisource validation datasets,
which solved the spatial mismatch between ground measurements and remotely sensed products.
The accuracy, rationality of spatiotemporal variations, and error sources of RS_ET products and
uncertainties during the validation process were the focuses in the framework. The application of
this framework is exemplified by validating five widely used RS_ET products (i.e., GLEAM, DTD,
MOD16, ETMonitor, and GLASS) in the Heihe River Basin from 2012 to 2016. Combined with
the results from direct (as the priority method) and indirect validation (as the auxiliary method),
DTD showed the highest accuracy (1-MAPE) in the vegetation growing season (75%), followed
by ETMonitor (71%), GLASS (68%), GLEAM (54%), and MOD16 (44%). Each product reasonably
reflected the spatiotemporal variations in the validation dataset. ETMonitor exhibited the highest
consistency with the ground truth ET at the basin scale (ETMap) (R = 0.69), followed by GLASS (0.65),
DTD (0.63), MOD16 (0.62), and GLEAM (0.57). Error sources of these RS_ET products were mainly
due to the limitations of the algorithms and the coarse spatial resolution of the input data, while the
uncertainties in the validation process amounted to 15–28%. This work is proposed to effectively
validate and improve the RS_ET products over heterogeneous land surfaces.

Keywords: coarse remotely sensed evapotranspiration products; heterogeneous land surface;
validation framework; ground truth ET; uncertainty

1. Introduction

Evapotranspiration (ET) is a keystone variable linking the water, energy, and carbon
cycles [1]. Remotely sensed ET (RS_ET), which provides spatio-temporal continuous infor-
mation over the land surface, can be beneficial to understand the water and energy budgets
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over different scales [2–4]. Recently, many RS_ET products have been released, such as the
MODIS global ET (MOD16) [5], Global Land Evaporation Amsterdam Model (GLEAM)
ET [6], Energy Balance ET (ET-EB) [7], Breathing Earth System Simulator (BESS) ET [8],
Global LAnd Surface Satellite (GLASS) ET [9], Penman–Monteith–Leuning (PML_V2) [10],
Operational Simplified Surface Energy Balance (SSEBop) [11], and ETMonitor [12] at
the global scale, and the Satellite Application Facility on Land Surface Analysis (LSA-
SAF) [13], Atmosphere Land Exchange Inverse (ALEXI) [14], Complementary-Relationship
(CR-ET) [15], ETWatch [16], and Dual Temperature Difference (DTD) ET [17] at the re-
gional or basin scale. However, there are significant differences between these coarse
remotely sensed ET products from field to continent and global scales. The validation
results indicated that the mean absolute percentage errors (MAPE) of RS_ET products
can reach approximately 14–44, 9–35, and 5–21% at daily, monthly, and annual scales,
respectively [2,3,11,18–21].

Currently, two types of validation approaches, direct and indirect validation, are
widely used to assess the RS_ET products. The direct validation method can be conducted
using the ground measurements from the eddy covariance (EC) system and scintillometer
under homogeneous surfaces. The dearth of observations under heterogeneous surfaces
makes it difficult to evaluate the accuracy of the coarse RS_ET without spatial mismatch.
These complex surface conditions amplify the errors of the RS_ET products, validated by
the fact that they have very inconsistent values [22,23]. However, the issues of the spatial
mismatch between the satellite pixels and the measurement representation introduce
unpredicted uncertainty into the evaluation report for the coarse RS_ET, especially under
heterogeneous surfaces [24,25]. Therefore, it is essential to obtain the ground truth ET
values by upscaling the in situ measurements to align with the spatial resolutions of the
coarse satellite pixel [23,26–29].

The RS_ET products’ validation relies on comparison via a limited number of tower
flux measurements under a homogenous surface. Although the values calculated from the
water balance equation can assess this major element of the water cycle from river basin
to global scale [25,30–32], the terrestrial ET calculated from the water balance equation
provides only one value for a basin or hydrologic unit within a period, making it difficult
to assess the rationality of the spatiotemporal distribution under various land cover types.
The reliable spatial distribution of ET in a river basin could be estimated through upscal-
ing the abundance of tower flux measurements from the major land cover types within
it [33–35].

The indirect validation method includes the cross-validation of multiple ET prod-
ucts and evaluation of spatiotemporal consistency with ET-related variables. The cross-
validation method can determine the differences and similarities in the magnitudes among
ET products by inter-comparison with the ET from other RS_ET products, land surface
models and reanalysis data [32,36–38]. Moreover, the rationality of spatiotemporal trends
for RS_ET products can also be evaluated by characterizing the consistency with their
influence factors, such as vegetation factors including the leaf area index (LAI) and nor-
malized difference vegetation index (NDVI); meteorological factors including radiation, air
temperature, humidity and wind speed; and land surface status including soil moisture.

Although many regional and global RS_ET products have been validated before
release, the following are necessary for further improving their accuracy and helping
users in better applying the RS_ET products: (1) extending the validation conducted
from the homogenous to heterogeneous surface without the problem of spatial mismatch;
(2) improving the RS_ET products’ assessment by integrating the approaches into a frame-
work rather than being implemented individually; and (3) indicating the source of RS_ET
errors is essential to the producer, and uncertainty of the validation results is necessary
for users.
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Under this context, this study proposes an integrated framework for coarse RS_ET
products’ validation. The objectives are as follows: (1) to validate the RS_ET products
under various heterogeneous land surfaces using the ground truth ET at the pixel and
basin/regional scales; (2) to assess the RS_ET products using cross-validation and compare
the trends with their influence factors; and (3) to demonstrate the accuracy of RS_ET
products and their error sources, as well as the uncertainty of the validation process.

2. Study Area and Dataset
2.1. Study Area and Experiment

The Heihe River Basin (HRB), with an area of approximately 1.43 × 105 km2 and
located in the arid and semiarid regions of Northwest China, was selected as the study
area. The HRB is a complicated watershed system with the coexistence of cold and arid
regions and diverse landscapes [39] (shown in Figure 1). Over this basin, the mean
annual air temperatures are 0.4, 7.3 and 8.2 ◦C, and annual precipitation is 322, 130 and
30 mm in the upstream, midstream and downstream regions, respectively [17]. In the
upstream region, glaciers, permafrost, alpine meadows and forests are the dominant
surface types. The midstream region is characterized by an artificial oasis (including
farmland and shelter forests) and desert landscape. In the downstream region, the
landscape is a natural oasis surrounding a large desert area, and riparian ecosystems are
distributed along the river [40]. The HRB has diverse landscapes, which make it an ideal
study area for the validation of RS_ET products from homogeneous to heterogeneous
land surfaces.

The Heihe integrated observatory network was established in the HRB from 2007,
during the WATER (Watershed Allied Telemetry Experimental Research) experiment
(2007–2011 [41]), and was completed in 2013 during the HiWATER (Heihe Watershed
Allied Telemetry Experimental Research) experiment (2012–2015 [39,42]). This network
includes a maximum of 23 observation stations and it currently has 11 operating stations
(three superstations and eight ordinary stations). Additionally, one other flux tower site
(Linze site [43]) was used in the study. Figure 1a shows the flux tower site locations used
in this study (site 1–15). From 3 May to 21 September 2012, the Multi-Scale Observation
Experiment on Evapotranspiration over Heterogeneous Land Surfaces (MUSOEXE)
was successfully conducted in the midstream of the HRB [23,44]. Two nested flux
observation matrices were involved in HiWATER-MUSOEXE, including a large matrix
(30 km × 30 km) and a kernel matrix (5.5 km × 5.5 km). The kernel matrix was initially
divided into 17 sample plots (shown in Figure 1b) in the oasis. There was one EC
system and one automatic weather station (AWS) in each plot to observe surface heat
fluxes and meteorological elements [23]. There were four groups of large-aperture
scintillometers (LAS) installed in the kernel matrix (the footprints of the LAS systems
can cover three pairs of 3 × 1 MODIS pixels, named LAS1, LAS2 and LAS3 from west
to east, respectively; one group covers one pair 2 × 1 MODIS pixels, named LAS4).
Moreover, in the Ejina Oasis over the downstream region of the HRB, a flux observation
matrix (3 km × 2 km) comprising five observation sites operated from 2013 to 2015.
Two groups of LAS systems were installed in one pair of 2 × 2 MODIS pixels (LAS
5 and LAS6, shown in Figure 1c), which operated from 2013 to 2014, but the group
of LAS located in one pair of 2 ×1 MODIS pixels (LAS7, shown in Figure 1c) left
after 2015. In the upstream, there is one group of LAS and its footprint can cover one
pair of 2 × 1 MODIS pixels (LAS 8, shown in Figure 1(a1)). Details of the observation
instruments can be found in [23,39].
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Arou, (2) Guantan, (3) Dashalong, (4) Daman, (5) Zhangye Wetland, (6) Bajitan Gobi, (7) Huazhaizi 
Desert steppe, (8) Yingke, (9). Shenshawo, (10) Linze, (11) Sidaoqiao, (12) Populus euphratica, (13) 
mixed forest, (14) barren land, (15) desert. 
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derived from the surface energy balance; the second group included MOD16 [5] and 
ETMonitor [12], which were produced based on the eco-physiological processes of 
vegetation; the third group included GLASS [9], which was produced based on the 
integration of multiple algorithms. Details of the coarse RS_ET products are listed in Table 
1. The DTD, ETMonitor and GLEAM ET products were aggregated to 8-day temporal 
resolution, while the GLEAM was resampled to 1-km spatial resolution. 

  

Figure 1. Land cover map with spatial resolution of 30 m and flux observation sites (a), flux obser-
vation matrices in the midstream (b) and downstream (c) of the Heihe River Basin (HRB). (1) Arou,
(2) Guantan, (3) Dashalong, (4) Daman, (5) Zhangye Wetland, (6) Bajitan Gobi, (7) Huazhaizi Desert
steppe, (8) Yingke, (9). Shenshawo, (10) Linze, (11) Sidaoqiao, (12) Populus euphratica, (13) mixed
forest, (14) barren land, (15) desert.

2.2. Remotely Sensed Evapotranspiration Products

In this study, five widely used coarse RS_ET products were evaluated according to
the proposed ET validation framework. These ET products were grouped based on their
intrinsic mechanisms: the first group included GLEAM [6] and DTD [17], which were
derived from the surface energy balance; the second group included MOD16 [5] and ET-
Monitor [12], which were produced based on the eco-physiological processes of vegetation;
the third group included GLASS [9], which was produced based on the integration of
multiple algorithms. Details of the coarse RS_ET products are listed in Table 1. The DTD,
ETMonitor and GLEAM ET products were aggregated to 8-day temporal resolution, while
the GLEAM was resampled to 1-km spatial resolution.
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Table 1. Specific characteristics of the coarse RS_ET products used in this study.

Product
Category

ET
Products

Retrieval
Method

Temporal
Extent

Spatial
Coverage

Temporal
Resolution

Spatial
Resolution References

Surface Energy
Balance

GLEAM Priestley–
Taylor 1980–2021 Global daily 0.25◦ [6]

DTD Two-source energy
balance model

2010–2016
(6–9) HBR daily 1 km [17]

Vegetation Eco-
Physiological

Process

MOD16 Penman–
Monteith 2000–2021 Global 8 days 1 km/500 m [5]

ETMonitor Shuttleworth–
Wallace 2000–2020 Global daily 1 km [12]

Integrated
Method GLASS-ET Bayesian model

averaging
1983, 1993, 2003,

2010–2018 Global 8 days 1 km [9]

2.3. Validation Dataset
2.3.1. Ground Truth ET

The ground truth ET at the satellite pixel scale will help to solve the spatial mismatch
between ground measurements and RS_ET products. Depending on the heterogeneity
of the land surface, the most appropriate methods were selected to acquire the ground
truth ET at the satellite pixel scale using multiple flux tower measurements from June
to September in the flux observation matrix of the midstream (LAS1-LAS4) during 2012
and the flux observation matrix of the downstream (LAS5-LAS7) during 2014–2015 in the
HRB [26]. The dataset (daily, 1 km) can be downloaded from the National Tibetan Plateau
Data Center (http://data.tpdc.ac.cn/ (accessed on 1 June 2018)).

Additionally, the satellite pixel-scale ground truth ET of the flux tower-located satellite
pixels was also derived using the single flux tower measurements. The flux towers included
three superstations (AR (Figure 1(a1)), DM (Figure 1(a4)) and SDQ (Figure 1(a11))) and
twelve ordinary stations (GT (Figure 1(a2)), DSL (Figure 1(a3)), WD (Figure 1(a5)), BJT
(Figure 1(a6)), HZZ (Figure 1(a7)), YK (Figure 1(a8)), SSW (Figure 1(a9)), LZ (Figure 1(a10)),
PE (Figure 1(a12)), MF (Figure 1(a13)), BL (Figure 1(a14))) and DS (Figure 1(a15)) over
typical underlying surfaces in the HRB [27]. The dataset (daily, 1 km) can be downloaded
from the National Tibetan Plateau Data Center (http://data.tpdc.ac.cn/ (accessed on
10 December 2018)). The details of the ground truth ET at pixel scale are summarized in
Table 2.

Regional ET at the watershed scale can be estimated by the water balance method,
expressed as

ET = P− R− ∆S (1)

where P is precipitation, R is runoff and ∆S is the change in terrestrial water storage.
In this study, R was the difference in the water inflow and outflow, and ∆S was derived
from the groundwater and reservoir storages. The water balance-based ET over the HRB
during 2012–2016 was calculated according to these data with Equation (1) over the up-
stream, midstream and downstream, respectively. The results can be used as ground truth
ET at the basin scale to validate RS_ET products. All the hydrologic data used in the
water balance calculation were collected from the National Tibetan Plateau Data Center
(http://data.tpdc.ac.cn/ (accessed on 10 December 2018)), which records data from hydro-
logical observations over the HRB. Detailed information about the water balance calculation
can be found in [45].

http://data.tpdc.ac.cn/
http://data.tpdc.ac.cn/
http://data.tpdc.ac.cn/
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Table 2. Information on the ground truth ET at pixel scale in the HRB.

Region Number/
Matrix Site Landscape Observation

Instrument Longitude (E) Latitude
(N) Elevation (m) Corresponding

MODIS Pixel
Spatial Het-
erogeneity

Time Period of
Data Used

Up-
stream

1
Arou
(AR)

(LAS8)
Subalpine meadow EC + AWS

+ LAS 100.46 38.04 3033 2 × 1 Homogeneity January 2013–
December 2016

2 Guantan
(GT) Qinghai spruce EC + AWS 100.25 38.53 2835 2 × 1

Homogeneity/
Moderate

heterogeneity

January 2010–
December 2011

3 Dashalong
(DSL)

Marsh
alpine meadow EC + AWS 98.94 38.84 3739 1 × 1 Homogeneity August 2013–

December 2016

Mid-
stream

4 Daman
(DM)

Maize/
orchard/village

EC + AWS
+ LAS 100.37 38.85 1556 2 × 1

Homogeneity/
Moderate

heterogeneity

October 2012–
December 2016

5
Zhangye
Wetland

(WD)
Reed/water EC + AWS 100.44 38.97 1460 1 × 1 Moderate

heterogeneity
June 2012–

December 2016

6 Bajitan Gobi
(BJT) Reaumuria desert EC + AWS 100.30 38.91 1562 1 × 1 Homogeneity May 2012–

April 2015

7
Huazhaizi

Desert steppe
(HZZ)

Kalidium
foliatum desert EC + AWS 100.31 38.76 1731 2 × 1 Homogeneity June 2012–

December 2016

8 Yingke
(YK) Maize EC + AWS 100.41 38.85 1519 1 × 1

Homogeneity/
Moderate

heterogeneity

January 2010–
December 2011

9 Shenshawo
(SSW) Sandy desert EC + AWS 100.49 38.78 1594 1 × 1 Homogeneity June 2012–

April 2015

10 Linze
(LZ) Maize EC + AWS 100.14 39.32 1252 1 × 1

Homogeneity/
Moderate

heterogeneity

January 2013–
December 2014

Flux observation
matrix

(LAS1-LAS4)

Maize/
orchard/village

EC + AWS
+ LAS(1-4) 100.34–100.38 38.84–38.88 1556 Three 3 × 1

+ one 2 × 1

Homogeneity/
Moderate

heterogeneity

June 2012–
September 2012
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Table 2. Cont.

Region Number/
Matrix Site Landscape Observation

Instrument Longitude (E) Latitude
(N) Elevation (m) Corresponding

MODIS Pixel
Spatial Het-
erogeneity

Time Period of
Data Used

Down-
stream

11 Sidaoqiao
(SDQ) Tamarix EC + AWS LAS 101.13 42.00 873 2 × 1 Highly

heterogeneity
January 2016–

December 2016

12
Populus

euphratica
(PE)

Populus euphratica EC + AWS 101.12 41.99 876 1 × 1

Moderate het-
erogeneity/

Highly
heterogeneity

July 2013–
April 2016

13 Mixed forest
(MF)

Populus euphratica
and Tamarix EC + AWS 101.13 41.99 874 1 × 1 Highly

heterogeneity
July 2013–

December 2016

14 Barren land
(BL) Bare land EC + AWS 101.13 41.99 878 1 × 1 Homogeneity July 2013–

March 2016

15 Desert
(DS) Reaumuria desert EC + AWS 100.98 42.11 1054 1 × 1 Homogeneity April 2015–

December 2016

Flux observation
matrix

(LAS5-LAS7)

Populus euphratica
/Tamarix/
Croplands/
Bare land

EC + AWS
+ LAS 101.11–101.15 41.98–42.00 873 Two 2 × 2

+ one 2 × 1

Moderate het-
erogeneity/

Highly
heterogeneity

January 2014–
December 2015
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The ETMap was used as ground truth ET at the river basin scale to evaluate the RS_ET
products under various land surfaces. The ETMap was obtained by applying the random
forest method to train the daily ET and its explanatory variables over 36 flux tower sites
(65 site years), and then we extended the results to the whole HRB. The variables related to
ET, including leaf area index, solar radiation, precipitation, air temperature and relative
humidity, were considered. The ETMap has spatial and temporal resolutions of 1 km and
daily, respectively, from 2012 to 2016 [35], which can be downloaded from the National
Tibetan Plateau Data Center (http://data.tpdc.ac.cn/ (accessed on 10 December 2018)).

2.3.2. ET Influence Factor Data and Auxiliary Dataset

The land cover map had a resolution of 30 m and high accuracy of over 90% [46].
Precipitation and air temperature datasets were used as influencing factors of ET to analyze
the spatiotemporal trends of the RS_ET products. The 5 km/1 h atmospheric forcing
dataset generated by Weather Research and Forecasting (WRF) [47] was used as the input
of the hydrological-scale model in the HRB. The dataset of groundwater level was acquired
by a downstream automatic water gauge in 2015. These datasets can be downloaded
from the National Tibetan Plateau Data Center (http://data.tpdc.ac.cn/ (accessed on
10 December 2018)) [39].

3. Methodology
3.1. Validation Framework

The proposed validation framework has three progressive types of content, including
the analysis of the accuracy and spatiotemporal variation trends of the RS_ET products,
discussion of the error sources of the RS_ET products and assessment of the uncertainty in
the validation process (Figure 2).
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Figure 2. Validation framework for the coarse RS_ET products over a heterogeneous land surface.

The first aspect of the framework is implemented to derive the accuracy of the RS_ET
products using a direct validation method and indirect validation method. Specifically, in

http://data.tpdc.ac.cn/
http://data.tpdc.ac.cn/
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the direct validation method, the ground truth ET at the pixel and basin scales can be used
to assess the accuracy and spatiotemporal trends of the RS_ET products. Meanwhile, in the
indirect validation method, the three-cornered hat (TCH) approach is applied to obtain the
relative accuracy among the RS_ET products at the basin scale, and the rationality of the
spatiotemporal variations of the RS_ET products is explained by the ET impact factors. The
second aspect involves tracking the error sources of the RS_ET products, which may be
associated with the algorithms and the input datasets. Finally, the third aspect is to assess
the uncertainty in the validation process using the generalized polynomial chaos (gPC)
method [48].

3.2. Accuracy Evaluation Method

The Taylor diagram [49] was used to quantify the performance of the RS_ET products
at the pixel scale. The Taylor diagram provides a suitable overview of the performance
of different products in a single diagram by considering three statistics: the correlation
coefficient (R), centered root mean square error (RMSE) and standard deviation (SD).
Moreover, the mean absolute percentage error (MAPE) was utilized to quantify the accuracy
of the RS_ET products. When validated by ETMap at the basin scale, the MAPE, BIAS and
R were utilized to synthetically analyze the accuracy of the RS_ET products pixel by pixel
in the HRB. The calculation methods for these evaluation indexes are listed in Appendix A.

For indirect validation, the TCH method was employed to evaluate the relative accu-
racy among these RS_ET products. This method is effective for characterizing the relative
accuracy of more than three products. The TCH method relies on the removal of common
signals from the RS_ET products and subsequently provides the relative errors [37,50].
The calculation result (variance) of TCH was squared and then divided by the average
value of each product to obtain the relative error [27]. This is important to confirm the
relative accuracy of the RS_ET products without ground truth ET. In this study, this method
was employed to estimate the relative accuracy of five RS_ET products without any prior
knowledge. The details of the TCH method are explained in Appendix C. Moreover, based
on the ET impact factor data, such as the land cover type, air temperature and precipitation,
the latitudinal profiles between RS_ET products and these factors were used to analyze the
rationality of the spatiotemporal variation trend of the RS_ET products.

3.3. Uncertainty Evaluation Method

Quantitative evaluation of the uncertainty is an important part of the RS_ ET products’
validation. The EC measurements can represent the ground truth ET value at the pixel
scale when the land surface is relatively homogeneous. Here, the uncertainty of ground
truth ET is mainly determined by the ET observation error. In the method proposed by
Beyrich [51], the maximum difference between LAS observations and EC observations, or
the error of the EC measurements, is used to quantitatively evaluate the uncertainty of the
ground truth ET at the pixel scale on a homogeneous underlying surface. When the land
surface is moderately or highly heterogeneous, the uncertainty of the upscaled ground
truth ET is mainly introduced from the errors of ET observation, auxiliary data and the
upscaling method. In this study, the gPC method [48] was used to obtain the uncertainty
introduced to the upscaled ground truth ET at the pixel scale [26,27]. The gPC method
involves representing the inputs and outputs of a system under consideration through
series approximations using standard random variables, thereby resulting in a computa-
tionally efficient means of uncertainty propagation through complex numerical models [52].
The gPC calculation result (variance) was squared and then was divided by the average
value of ground truth ET at the pixel scale to obtain the uncertainty [27]. In this study, the
input data, parameters and output data generated in the upscaling method are used to
construct the polynomial chaos expansion model when calculating the uncertainty of the
ground truth ET. The stochastic collocation method (SCM) is selected and treats the original
model as a black box, and the coefficients of the polynomial chaos expansion terms are
finally obtained by iteratively solving for selected collocation points in the input variables.
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Finally, the mean and variance output from the gPC method are used to calculate the
uncertainty of the ground truth ET [27]. More details about the uncertainty quantification
methods are given in Appendix D. For the ground truth ET at the basin scale (ETMap), the
difference between ETMap values and LAS observations is calculated and then divided by
the LAS observation [35], which can be used to determine the uncertainty of ground truth
ET at the regional scale.

4. Validation Results of Coarse RS_ET Products
4.1. Direct Validation
4.1.1. Validation at the Pixel Scale

The performance of the RS_ET products at the pixel scale was analyzed over six
typical underlying land cover types, namely grassland, Qinghai spruce, cropland, wetland,
riparian forest and desert, in the HRB. Grassland includes subalpine (represented by the AR
site) and marsh alpine meadows (represented by the DSL site). Qinghai spruce (represented
by the GT site) is an evergreen needle leaf forest and is the dominant land cover of forests
in the HRB. The land cover of the cropland includes the DM and flux observation matrix
in the midstream, YK and LZ sites. Wetland is represented by the WD site. In this study,
barren land or sparsely vegetated areas belong to deserts (represented by the HZZ, BJT,
SSW, DS and BL sites). Populus euphratica and Tamarix (belonging to deciduous broadleaf
forest and shrub, respectively) in the downstream region are collectively called riparian
forests (represented by the downstream flux observation matrix, SDQ, MF and PE sites).
Figures 3 and 4 show the Taylor diagrams and time series of the RS_ET products against
the ground truth ET at the pixel scale, respectively. Table 3 presents the accuracy of the
RS_ET products at the pixel scale, assessed by the MAPE during the vegetation growing
season (from June to September) and the entire year.
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Figure 3. Taylor diagram showing the normalized root mean square error (RMSE), standard deviation
(SD), and correlation (R) between RS_ET products and ground truth ET at the pixel scale (the spatial
resolution is 1 km) during the vegetation growing season (June to September) from 2012 to 2016.
(Qinghai spruce from 2010 to 2011; MOD16 data are unavailable in desert areas).
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Figure 4. Temporal variability between ground truth ET at the pixel scale (the spatial resolution is
1 km) and five RS_ET products (MOD16 data were unavailable in desert areas).

Table 3. MAPE (%) between RS_ET products and ground truth ET at the spatial resolution of 1 km
under different land cover types. (Qinghai spruce from 2010 to 2011; MOD16 data are unavailable in
desert areas).

MAPE Vegetation Growing Season (June to September) The Whole Year

Typical
Underlying

Surface
GLEAM DTD MOD16 ETMonitor GLASS GLEAM MOD16 ETMonitor GLASS

Grassland 16.35 39.46 21.39 20.28 21.86 19.26 25.35 22.54 22.76

Qinghai spruce 14.95 28.12 29.63 23.74 26.04 28.72 28.08 22.03 29.23

Cropland 44.09 18.8 34.25 15.23 23.09 41.56 32.88 20.13 28.78

Wetland 50.13 23.61 44.85 19.33 37.38 42.24 41.8 22.54 35.68

Desert 28.37 25.76 – 26.98 32.46 20.58 – 29.27 33.76

Riparian forest 75.33 27.01 71.07 37.53 55.48 77.15 70.01 39.86 58.42

At the pixel scale, the five RS_ET products exhibit differences in performance, espe-
cially during the growing season (Figure 3). The MAPE values of the whole year and the
growing season were consistent (Table 3). Among these RS_ET products, ETMonitor and
DTD performed better for most land cover types in the HRB, while GLEAM, MOD16 and
GLASS performed well on Qinghai spruce, croplands or grasslands, respectively. Accord-
ing to the validation results, the MAPE value of the RS_ET products is relatively low on
grassland, approximately ranging from 16.35 to 21.86% (in the growing season). In contrast,
the RS_ET products had high MAPE values in the riparian forest, which ranged from
27.01 to 70.07% (in the growing season). The potential reason for this result might be that
the grasslands are relatively uniform, while in the riparian forest, the land surface is more
heterogeneous, and the RS_ET models would yield large errors.
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Figure 4 shows the seasonal and inter-annual performance of the RS_ET products
over typical land cover types. The five RS_ET products generally show similar seasonal
and inter-annual variations and agree well with the ground truth ET, but the consistency
is variable and associated with the land surface type. DTD and ETMonitor remained
consistently better with ground truth ET in variation trends and magnitude over most
land cover types. In general, the best agreement with ground truth ET at the pixel scale
was found over the grassland, Qinghai spruce, and desert. Over the cropland, wetland,
and riparian forest, their differences from the ground truth ET were obvious. Within a
year, ET reaches its maximum value in July and August, and decreases to the minimum
in winter. The variation trend of the DTD product has higher ET values in grasslands
and it reached its peak in 2015 (50 mm/8 day), which was significantly higher than the
ground truth ET. The MOD16 product overestimated the ET values in the non-growing
season of 2010–2011 over Qinghai spruce, and the ET values in December and January
were overestimated by approximately 8 mm/8 day. The seasonal variation amplitudes of
GLEAM, MOD16, and GLASS over wetlands were significantly lower than the ground
truth ET. For instance, in July and August, the values of these RS_ET products reached
their peak of approximately 30 mm/8 day, while those of the ground truth ET reached
50 mm/mon. GLEAM and MOD16 showed significant underestimation; they are unable
to accurately reflect the seasonal and inter-annual variation of ET over riparian forest.
The value of GLEAM and MOD16 was approximately 10 mm/8 day during 2014–2016,
while the ground truth ET could reach a peak value of 35 mm/8 day.

4.1.2. Validation at the Basin Scale

In the previous sections, differences in the magnitude of the RS_ET products at the
pixel scale were observed. However, over heterogeneous surfaces, the pixel-scale validation
results at limited sites may not represent the accuracy and spatiotemporal distribution
pattern of the RS_ET products over the whole HRB. Therefore, it is necessary to conduct
validation at the basin scale. The validation at the basin scale can be divided into two parts.
First, the RS_ET products were validated using the watershed ET calculated by the water
balance equation in the upstream, midstream, and downstream regions over the whole
HRB, respectively. Second, the ground truth ET at the basin scale (ETMap) was used for
the pixel-wise validation of the RS_ET products over the whole HRB.

Based on the ET calculated by the water balance equation in the upstream, mid-
stream, and downstream regions, the validation results of GLEAM, GLASS, MOD16
(upstream), and ETMonitor are shown in Figure 5. All of the four RS_ET products per-
formed best in the upstream region, with MAPE values less than 22%. In the midstream
region, the MAPE values among these products are quite different, ranging from 24%
for ETMonitor to 70% for GLEAM. In the downstream, the RS_ET products showed
poor performance. ETMonitor, with a MAPE value of 28%, performed better than the
other RS_ET products, and the MAPE values of GLASS and GLEAM were higher than
40%. Overall, ETMonitor exhibited better performance than other RS_ET products across
the basin.

To analyze the pixel-wise product performance, further investigation was conducted
by directly comparing each product with ETMap pixel by pixel over the whole basin. The
spatial distributions of MAPE, BIAS (RS_ET—ETMap), and R of the RS_ET products are
shown in Figure 6. We found that some conclusions were consistent with the above valida-
tion results. Over grassland areas, some pixels from DTD showed values of MAPE and
BIAS higher than 30% and 20 mm/mon, respectively. DTD showed relatively low values of
MAPE and BIAS in most cropland and riparian forest pixels. In contrast, the MAPE and
BIAS of GLEAM showed relatively low values in most grassland and Qinghai spruce pixels,
while these values increased over cropland and riparian forest. For MOD16, GLASS, and
ETMonitor, values of MAPE and BIAS increased from upstream to downstream in most
regions. Overall, each RS_ET product maintained good consistency with ETMap according
to the high correlation coefficient values. The DTD had the lowest value of MAPE in the
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vegetation growing season (25%), followed by ETMonitor (29%), GLASS (32%), GLEAM
(46%), and MOD16 (56%). ETMonintor tended to show certain underestimation (BIAS
= −20 mm/mon), leading to a relatively high MAPE (MAPE > 30%) over the grassland.
GLASS overestimated the ET in midstream desert regions (BIAS > 23 mm/mon). On the
whole, DTD and ETMonitor exhibited better performance than other RS_ET products, with
relatively low MAPE and BIAS values and high correlation coefficients in most pixels over
the whole HRB.
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The seasonal variation of ET values in typical land cover classes was compared
between the RS_ET products and ETMap over the HRB, as shown in Figure 7. These
comparisons show that all RS_ET products have captured the seasonal and inter-annual
trends of ET relatively well against ETMap during most of the study period (2012–2016).
DTD and ETMonitor have better consistency with ETMap in terms of magnitude and
variation trend over most of the land cover types.

The largest inconsistencies were obtained over high-heterogeneity land surfaces such
as riparian forest, especially for GLEAM, MOD16, and GLASS, and yielded negative bias.
They produced peak ET values that were underestimated by nearly two times compared
to the values of ETMap during the growing season. In 2012 and 2014, the peak value
of DTD products was higher than that of ETMap over grassland, which was consistent
with the results of the validation at the pixel scale. The ET values of GLASS had a certain
overestimation in the desert during the non-growing season, while the GLEAM and MOD16
products underestimated the peak values over the cropland.
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Figure 7. Time series of RS_ET products and ETMap in typical land cover classes in the HRB from
2012 to 2016 at the spatial resolution of 1 km.

4.2. Indirect Validation
4.2.1. Cross-Validation

The cross-validation is implemented by using the TCH method to obtain the relative
error among the five RS_ET products. The distribution of the relative error value for the
RS_ET products is shown in Figure 8. The overall relative error variations can be generally
listed as follows: grassland < Qinghai spruce < desert < cropland< wetland < riparian
forest. The validation results of TCH were generally consistent with the results of the direct
validation. Among the five RS_ET products, DTD exhibited better performance, achieving
a low relative error value (lower than 22%) over the HRB, except for some grassland and
Qinghai spruce pixels. Then, it was followed by ETMonitor (26%), which had relatively low
relative error values in grasslands, Qinghai spruce, and croplands, but high relative error
values in deserts and riparian forests. GLASS presented a moderate level of relative error
in most pixels (approximately 30%) and had a high relative error in desert and riparian
forests. GLEAM had a low relative error value in grassland and Qinghai spruce pixels
(approximately 15%), while it had a high relative error value in cropland, desert regions,
and riparian areas. MOD16 yielded a higher relative error in the HRB and it increased from
upstream to downstream (greater than 35%).
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4.2.2. Spatiotemporal Variation Analysis

In this study, latitudinal profiles were adopted to analyze the rationality of the spatial–
temporal changes among these products. The latitudinal profiles (Figure 9b) were drawn for
the five RS_ET products along with the air temperature and precipitation. From upstream
to downstream, with increasing latitude, the surface types changed from snow and ice,
grassland/Qinghai spruce, cropland, and wetland/desert to riparian forest and crop-
land/desert. The air temperature values rose gradually and the precipitation and ET values
decreased gradually, but high ET values were observed in the midstream and downstream
oasis areas. The upstream region generates the runoff of the HRB; there is abundant precip-
itation over this area that results in greater precipitation than the ET. The midstream region
consumed most of the water resources to irrigate the crops and yielded a higher ET than
precipitation. There was rarely precipitation and low vegetation cover in the downstream
region; thus, there were very low ET values over the broad desert but a slightly higher ET
in the nature oases. All RS_ET products reasonably reflected the spatial changes in the ET
values from upstream to downstream regions. The results also showed that MOD16 un-
derestimated while DTD overestimated the ET values in the upstream region, respectively.
GLEAM underestimated the ET in the downstream region, and it yielded an unreasonable
result in which the rainfall was greater than the ET, even over the frequently irrigated
agricultural areas.
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5. Discussion
5.1. Error Sources of the RS_ET Products

The error sources of the RS_ET products are introduced in terms of two aspects:
the limitations of the algorithm and errors of input data. For RS_ET products yielded
based on the surface energy balance model, the largest limitation is the accuracy of the
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satellite-based land surface temperature (LST) data. Based on the validation results of DTD
in the HRB, it exhibited obvious overestimation in the upstream region. A potential reason
is that the suspected LST data were used in this model under cloudy and rainy weather
conditions in the upstream region.

The validation of GLEAM showed an underestimation over the cropland and riparian
forest (P. euphratica and Tamarix) in the downstream region, and it had a low correlation with
ETMap over the cropland. In the GLEAM algorithm, a constant value of α = 0.8 was used
to parameterize the tall canopy fraction, and a value of α = 1.26 was applied in both the
short vegetation and bare soil fractions. However, previous studies have highlighted that
α varies greatly over the growing season and with crop species, soil moisture availability,
and climate conditions [53]. Here, we re-calculated the P-T coefficient values using the
ground measurements at cropland (DM sites) and riparian forest (SDQ in the downstream)
sites during the growing season (Figure 10). The results showed that the value of α varied
with the land surface characteristics of different sites and was influenced by the seasonal
variation. The value of α ranged from 1.2 to 1.8 at the DM site and from 0.2 to 0.6 at the
SDQ site. The unreliable setting of the α value may potentially cause the discrepancy in
GLEAM products over cropland and riparian forest pixels.
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The eco-physiological process models often have difficulties in the parameterization
of soil–plant–atmosphere interactions and other bio-physiological constraints [19]. MOD16
shows underestimation in most regions of the HRB. The parameterization of the MOD16
model is vital in controlling the ET; in particular, the surface resistance parameterization
is essential to the model [4,54–56]. The application of VPD or relative humidity (RH) to
represent the surface soil moisture status may be questionable. The VPD (or RH) is highly
influenced by large-scale atmospheric conditions, while the soil moisture conditions over a
large region are variable due to differences in precipitation, irrigation, underground water
level, soil texture types, vegetation cover, and topography. Thus, the spatial variability of
soil moisture can be stronger than that of VPD (or RH) [57].

ETMonitor is based on the physiological and ecological processes of vegetation, and it
performed well over most land cover types in the HRB. However, it showed relatively low
accuracy in the downstream region. This may due to the model having no corresponding
mechanism to reflect the absorption of deep groundwater by vegetation, thus causing the
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underestimation of ETMonitor over riparian forests (such as P. euphratica and Tamarix).
Figure 11 displays the groundwater table level and ET of the PE, SDQ, and MF sites in
2015. The groundwater level changes significantly within the range of 2–3 m and decreases
immediately at the start of the growing season (June), due to the water consumed by the
plants, along with increased ET values. This indicates that groundwater provides water for
the ET over riparian forests (such as P. euphratica and Tamarix).
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Figure 11. Variation curves of (a) ET and (b) groundwater table level of Populus euphratica, Sidaoqiao,
and mixed forest sites in 2015.

Relatively low accuracy was found in some desert and riparian forest pixels (P. euphratica
and Tamarix) in the downstream. The ET accuracy of individual algorithms has a significant
impact on the accuracy of the BMA method used in the production of GLASS. In the down-
stream region with sparse vegetation, each algorithm used in GLASS may not guarantee
relatively high accuracy, thus affecting the overall integration accuracy. Moreover, using
normal densities to calculate weights for the ET algorithms for different land cover types,
without considering the weight differences for different growing seasons and climates, can
also result in low accuracy [9].

5.2. Uncertainties in the Validation Process

The RS_ET products have been validated using ground measurements, which are
derived from the eddy covariance observations under a homogenous surface. However,
this ignores the issue of spatial mismatch between the spatial representatives of the eddy
covariance system and the image grid. Here, the ETmonitor with a spatial resolution of
1 km was assessed using the ground observation and ground truth ET, respectively, over a
land surface ranging from homogenous to heterogeneous. This showed that they yielded
very similar results under a homogenous surface, but their difference increased by as much
as 10% when the land surface tended to be heterogeneous (Figure 12). This means that the
ground truth ET urgently requires coarse RS_ET validation, especially for GLEAM. It has
a spatial resolution of 0.25◦ but there are no ground measurements that possess a spatial
representative to align with this coarse resolution. Hence, the GLEAM ET was resampled
to 1 km and then validated using ground measurements and other RS_ET, which could
have yielded unpredicted uncertainties during the validation.
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Figure 12. The divergence for the remotely sensed ET validation results using the ground truth ET
vs. ground observation ET from homogeneous to heterogeneous surfaces at the spatial resolution of
1 km.

Uncertainties associated with the validation process always exist but they have rarely
been reported. The accuracy of the ground truth ET is primarily affected by the quantity,
quality, and representativeness of the ET observation datasets [58]. EC measurements
are important training data for ground truth ET [26,35]. It has been reported that the ET
observation error from EC measurements ranges from 10 to 30 W/m2, and different EC
data processing software show differences of 5 and 10% during flux data processing [59].
There are also errors yielded from ground observation-based ET upscaling, which is mainly
related to the upscaling methods and their inputs. For example, in research by Li et al. [26]
and Xu et al. [35], upscaling methods’ inputs, such as LST, LAI, and net radiation, were
closely related to the accuracy of the upscaling results.

In this study, the method proposed by Beyrich et al. [51] was used to quantitatively
evaluate the uncertainty of ground truth ET at the pixel scale under a homogeneous surface,
while the gPC method was used for heterogeneous surfaces [26,27]. The uncertainty for
ground truth ET at the pixel and regional scales is shown in Figure 13. We found that the
uncertainty could be associated with the spatial heterogeneity of the land surface, which is
consistent with recent studies [23,27]. EC measurements and ground observation-based ET
upscaling methods tend to have relatively high accuracy in relatively homogeneous land
cover types, such as grasslands and deserts, which had lower uncertainties in our study
(15–18%). Over heterogeneous land cover types, such as wetlands and riparian forests, the
error of EC measurements and upscaling methods tends to increase, reaching values as
high as 22% to 28%. Moreover, the uncertainty (MAPE) of ETMap throughout the basin is
approximately 20.69% when compared with LAS observations, which can represent the
ground truth ET at satellite pixels [35].
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6. Conclusions

In this study, a validation framework was established to evaluate RS_ET products
extending over homogenous to heterogeneous land surfaces. The validation framework
was applied to assess the GLEAM, DTD, MOD16, ETMonitor, and GLASS products from
2012 to 2016 in the HRB. The main conclusions are summarized as follows.

First, a validation framework was proposed for evaluating coarse RS_ET products over
heterogeneous land surfaces with multisource validation datasets (ground truth ET at the
pixel and basin scales, other RS_ET products, and ET impact factors), multiple validation
methods (direct and indirect validation methods), and multiple scales (pixel and basin
scales). In this validation framework, we report the accuracy and the rationality of the
spatiotemporal variations of the RS_ET products, the error sources of the products, and the
uncertainty of the validation process.

Second, the validation results were consistent among the direct and indirect methods
at different scales. The DTD had the highest accuracy (1-MAPE) in the vegetation growing
season (75%), followed by ETMonitor (71%), GLASS (68%), GLEAM (54%), and MOD16
(43.59%). All RS_ET products had the capability to maintain the consistency of the spa-
tiotemporal trends of ET and its impact factors. ETMonitor and DTD performed relatively
well (with R values higher than 0.66), followed by MOD16 (0.62) and GLASS (0.65), and,
finally, GLEAM (0.57). These validation results could also be affected by the accuracy of
the ground truth ET dataset. The results showed that the uncertainty of the ground truth
ET at the pixel scale was approximately 15% over relatively homogeneous land surfaces,
while it can be up to 28% over highly heterogeneous land surfaces.

Validating coarse RS_ET products over heterogeneous surfaces is still a critical research
issue. The validation framework proposed in this study could contribute to understanding
the accuracy and rationality of spatiotemporal variations in the RS_ET products over
heterogeneous surfaces, promoting their application. In the future, we could apply this
validation framework and ground truth ET acquisition method at the pixel/basin scale
over more climates, surface types, and regions.
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Appendix A

The mean absolute percent error (MAPE), root mean square error (RMSE), bias, and
correlation coefficient (R) were used to show the accuracy and the rationality of the spa-
tiotemporal trends of the RS_ET products. They are expressed as follows:

MAPE =
100
n

n

∑
i=1

|Pi −Oi|
O

(A1)

http://data.tpdc.ac.cn
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RMSE =

√√√√√ n

∑
i=1

(Pi −Oi)
2/n (A2)

BIAS =

n

∑
i=1

(Pi −Oi)/n (A3)

R =

n

∑
i=1

(
Pi − P

)(
Oi −O

)
/

 n

∑
i=1

(
Pi − P

)2
n

∑
i=1

(
Oi −O

)2

1/2

(A4)

where Pi represents the RS_ET product, Oi is the ground truth ET at the pixel or regional
scale, P is the mean RS_ET value, O is the mean ground truth ET, and n is the number
of samples.

Appendix B

The input data of the coarse RS_ET products used in this study are presented in
Table A1.

Table A1. Summary of the coarse RS_ET product inputs.

RS_ET Product Type Variable Dataset Spatial
Resolution

Temporal
Resolution

GLEAM

Atmospheric
forcing data

Precipitation TMPA 3B42v7 0.25◦ 1 day

Ta AIRS L3RetStdv6.0 1◦ 3 h

Remote
sensing data

Radiation CERES L3SYN1DEG 1◦ 1 day

Snow–water
equivalent

GLOBSNOW L3av2+
NSIDC V0.1 0.25◦ 1 day

VOD SMOS-LPRM 25 km 1 day

Soil moisture SMOS L3 25 km 1 day

Cover fractions MOD44B 250 m 1 year

Soil properties IGBP-DIS 0.25◦ 1 year

Lightning frequency LIS/OTD 5 km 1 month

DTD

Atmospheric
forcing data Ta/Ws/q/Radiation

The atmospheric
forcing data in the
Heihe River Basin

5 km 1 h

Remote
sensing data

LST MODIS 1 km 1 day

Albedo MODIS 1 km 1 day

LAI MODIS/GLASS 1 km 8 days

MOD16

Atmospheric
forcing data

Ta/Tmin/
FPAR/q

GMAO/
MERRA GMAO

0.5◦ × 0.6◦/
1.00◦ × 1.25◦ 1 day

Remote
sensing data

FPAR/LAI

MODIS

500 m 8 days

Albedo 500 m 8 days

Land cover 500 m 1 year
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Table A1. Cont.

RS_ET Product Type Variable Dataset Spatial
Resolution

Temporal
Resolution

ETMonitor

Atmospheric
forcing data Ta/q/Ws/Radiation

The atmospheric
forcing data in the
Heihe River Basin

5 km 1 h

Remote
sensing data

LAI/NDVI

MODIS

1 km 16 days

Albedo 1 km 8 days

LST 1 km 1 day

Land cover MICLCover 1 km 1 year

Precipitation TRMM 0.25◦ 1 day

Soil properties China dataset of soil
hydraulic parameters 1 km

Soil moisture CCI 25 km 1 day

GLASS

Atmospheric
forcing data

Ta/Tmin/
Tmax/q/WS/Radiation GMAO-MERRA 0.5◦ × 0.667◦ 1 day

Remote
sensing data

LAI/FPAR
MODIS/
AVHRR

1 km 8 days

NDVI/EVI 0.05◦ 16 days

Albedo 500 m 1 day

Land cover UMD Land
Cover Classification 1 km 1 year

Note: Ta refers to the air temperature, Tmax refers to the maximum temperature, Tmin refers to the minimum
temperature, q refers to the atmosphere-specific humidity, WS refers to the wind speed, LST refers to the land
surface temperature, LAI refers to the leaf area index, NDVI refers to the normalized vegetation index, FPAR refers
to the fraction of absorbed photosynthetically active radiation, and VOD refers to the vegetation optical depth.

Appendix C

In the three-cornered hat (TCH) method, five RS_ET products were stored in the array
{Xi}i=1,2,...,N , where N (N = 5) is the number of RS_ET products, and i is the ith RS_ET
products. Any RS_ET product can be expressed as

Xi = Xt + εi, ∀i = 1, 2, . . . , N (A5)

where Xt is the true value and εi is the error of the ith time series. The symbol ∀ is called
the universal quantifier. As no true estimate of Xt is available, any single time series is
arbitrarily chosen as the reference. The series of differences matrix can be obtained by
calculating the difference between each time series and the reference. The corresponding
covariance matrix S of the series of difference matrices is thus obtained. Notably, the
valuation of uncertainties is not related to the selection of the reference series.

The unknown N × N covariance matrix of the individual noise R is introduced, and R
is related to S as follows:

S = J·R·JT (A6)

where J is described as follows:

JN−1,N =


1 0
0 1
...

...

. . . 0 −1

. . . 0 −1
...

...
...

0 0 0 . . . −1

 (A7)

Equation (A6) cannot be solved as the number of equations is less than the number of
unknowns (when N is greater than 3). Therefore, the remaining free parameters require a
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reasonable method to obtain a unique solution. Galindo and Palacio (1999) [60] proposed a
constraint function to meet |R| > 0 as follows:

H(r1N,..., rNN) = −
|R|
|S|·K < 0 (A8)

where r1N,..., rNN are the elements of the corresponding R and K = N−1
√
|S| is introduced to

better obtain a numerical solution.
This constraint function constrains the free parameters within the solution domain

but is insufficient to determine a unique solution for the free parameters. The following
objective function is also used to provide the optimal selected criterion to obtain the unique
parameter solution as follows:

F(r1N ,...,rNN) =
1

K2 ·
N

∑
i<j

r2
ij (A9)

R is calculated using the objective function under the constraint condition by com-
bining it with Equation (A6). The uncertainty of the time series {Xi}i=1,2,...,N , denoted
{σi}i=1,2,...,N , can be obtained by calculating the square root of the diagonal values in R
(i.e., {rii}i=1,2,...,N). The relative uncertainty is the ratio of σi to the mean Xi.

Appendix D

According to the method of Beyrich et al. [23], the uncertainty of the ground truth ET
over a homogeneous underlying surface is calculated via

∆ET = max(σr, abs(ET_EC− ETLAS)) (A10)

where ∆ET represents the uncertainty of the ground truth ET, ET_EC represents the ET
observed by EC, ETLAS represents the LAS observed value, and σr represents the error
of the EC observation, which can be obtained from the EC data processing software
(EddyPro). However, uncertainty introduced from the eddy covariance instrument mea-
surements must also be considered as the uncertainty of ground truth ET due to the dearth
of LAS observations.

In this study, we adopted the generalized polynomial chaos (gPC) method to quantita-
tively evaluate the uncertainty of ground truth ET over moderately and highly heteroge-
neous underlying surfaces. The gPC method involves representing the inputs and outputs
of a system under consideration through series approximations using standard random
variables, thereby resulting in a computationally efficient means of uncertainty propagation
through complex numerical models [52].

In this approach, the same set of random variables used to represent the input stochas-
ticity is used for representing the output(s). For uniformly distributed random inputs, an
equivalent reduced model for the output can be expressed in the form of a series expansion
comprising multidimensional Legendre polynomials of uniform random variables as

y = α0 +

n

∑
i1=1

αi1 Γ1
(
ξi1
)
+

n

∑
i1=1

i1

∑
i2=1

αi1i2 Γ2
(
ξi1 , ξi2

)
+ . . . (A11)

where y refers to an output metric, ξi1 , ξi2 , . . . are i.i.d. uniform random variables,
Γq

(
ξi1 , ξi2 , . . . , ξiq

)
is the Legendre polynomial of degree q, and αi1 , αi1i2 , . . . are the corre-

sponding coefficients.
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For notational simplicity, the series can be written as

y =

Nq

∑
j=0

yiΦj(ζ) (A12)

where the series is truncated to a finite number of terms and there exists a correspondence
between Γq

(
ξi1 , ξi2 , . . . , ξiq

)
, Φ(ξ), and their corresponding coefficients. The unknown

coefficients can be determined by projecting each state variable onto the polynomial chaos
basis (i.e., the Galerkin projection method). Once the reduced-order model is formulated
(using orthonormal basis functions), the mean and variance can be directly obtained as

E[Ỹ] = c0 (A13)

Var[Ỹ] = ∑p−1
i=1 ci

2E[Φi
2] (A14)

The uncertainty obtained by the gPC method is the variance of the polynomial chaotic
coefficients. In order to ensure the unity of units, the standard deviation is derived to
express the final uncertainty. In addition, in order to evaluate the uncertainty of the ground
truth ET, we can adopt the following formula:(

U
ETgt

)
× 100% (A15)

where U is the uncertainty of the ground truth ET obtained by the uncertainty analysis
method, gt represents the abbreviation of the name of the ground truth ET, and ETgt is the
mean value of the ground truth ET.
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