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Abstract: Urban expansion and ecological restoration policies can simultaneously affect land-cover
changes and further affect ecosystem services (ES). However, it is unclear whether and to what
extent the distribution and equity of urban ES are influenced by the stage of urban development and
government policies. This study aims to assess the quantity and equity of ES under different scenarios
in cites of China and Europe. Firstly, we used the Conversion of Land Use and its Effects at Small
regional extent (CLUE-S) model to simulate future land cover under three scenarios: business-as-
usual (BAU), a market-liberal scenario (MLS), and an ecological protection scenario (EPS). Then using
ecosystem service model approaches and the landscape analysis, the dynamics of green infrastructure
(GI) fraction and connectivity, carbon sequestration, and PM2.5 removal were further evaluated. The
results show that: (1) over the past 20 years, Chinese cities have experienced dramatic changes in
land cover and ES relative to European cities. (2) Two metropolises in China, Shanghai and Beijing
have experienced an increase in the fraction and connectivity of GI and ES in the long-term built-up
areas between 2010 and 2020. (3) EPS scenarios are not only effective in increasing the quantity of ES
but also in improving the equity of ES distribution. The proposed framework as well as the results
may provide important guidance for future urban planning and sustainable city development.

Keywords: CLUE-S; scenario analysis; equity; green infrastructure fraction; carbon stock; PM2.5 removal

1. Introduction

It is widely accepted that ecosystems provide multiple benefits for human well-being
via ecosystem services (ES). The higher the population density, the more important are
the supplies of services, and this is especially the case in urbanized regions. ES provided
by the hinterlands surrounding cities, and within cities by green and blue spaces, both
have benefits for the urban population [1]. However, rapid urbanization and population
growth can easily lead to the exploitation and degradation of ecosystems [2], witnessed by
findings of the Millennium Ecosystem Assessment [3,4], which showed most ES having
been in decline over the past years due to human activities [5]. Specifically, urbanization
processes continually shape the quantity and quality of urban blue-green space, determine
the location of nature reserves, or, alternatively, influence people’s desires and needs
for ES [6]. Meanwhile, economic growth drivers and policy decisions can also influence
management and decision making to change the distribution patterns of ES. The impacts of
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policies on ES are even more multifaceted and complex. First, policies directly influence
the direction of urban development and the balance between economic and ecological
priorities. Additionally, regions at different stages of development have different needs and
therefore set different priorities for planning. In this context, the mapping and modelling
of ES have become an important way to help scientists, managers, and policymakers better
understand and manage urban ecological resources, which will further contribute to the
restoration of urban ecosystems and the achievement of sustainable development goals
(SDGs), especially SDG 11 [7,8].

Interestingly, the way in which policies affect urban ES differ substantially between
China and Europe. China has experienced rapid urbanization over the past four decades,
with its urban population increasing from 170 million in 1978 to 837 million in 2018, and its
urbanization level (the proportion of the population living in urban areas) has increased
from 18% to 60% during this period [9]. According to the United Nations Development
Programme (UNDP), China’s urbanization level will reach 70% in 2030 [10,11]. In addition
to rapid urbanization, China has launched a myriad of sustainability initiatives to promote
the transition towards urban sustainable development [12]. For example, the Beijing Plains
Afforestation Program has done a great job of improving air quality, mitigating the urban
heat island effect, and preventing soil erosion [13]. Urban green space is also increasing,
with 65% of the 117 medium and large cities in China showing increased greening in their
urban centers between 2010 and 2019 [14]. All of the above studies demonstrate the efforts
and efficiency of Chinese policies to restore urban ES.

In Europe, the industrial revolution was the major driver for urbanization processes,
and urban agglomerations started as early as the 18th century and have mostly reached a
saturation stage. For this reason, Europe has been an urban-centered continent for centuries.
The urbanization level in Europe has risen at a much slower pace than in China during
the last decades, with World Bank statistics showing a rise from 70.8% in 2000 to 75%
in 2020 [15]. Across European regions, different historical and political contexts have
caused a high degree of heterogeneity in urbanization patterns, with a diversity of small
and medium-sized cities with low growth patterns and only very few megacities [16].
European cities have undergone a series of low-density discontinuous developments since
the 1950s [17]. Europe has also had active policies to limit urban sprawl, for example by
creating “green belts” around cities to protect urban growth or by defining a thirty-hectare
target for sealing surfaces to prevent extreme construction activity and promote urban
densification. Despite these policies, urban sprawl continues, and urbanization processes
intensify [18]. Different urban development patterns affect the distribution and dynamics
of ES at multiple scales. Therefore, comparing the dynamics of Chinese and European
urban ES can better reflect the impacts of different urbanization patterns and stages as well
as policy instruments on the development of ES, thus improving our understanding of the
coupled social–ecological system relationship. Unfortunately, such comparative studies are
sorely lacking.

Scenario analysis can provide a more meaningful theoretical basis and decision refer-
ence for balancing economic development and ecological conservation and, therefore, has
received increasing attention in urban research [19]. For example, Liu, et al. [20] constructed
several scenarios covering policy and climate change, including the one-child policy and
carbon tax policy, and projected the land use distribution under various scenarios, which
evaluated impacts on carbon sequestration, soil conservation, and water yields. Based on
the aesthetic value and the recreation value of nature reserves, Qin, et al. [21] combine
social and natural factors from the perspective of ES and select priority protected areas
by comparing conservation efficiency under multiple scenarios. Gao, et al. [22] used a
CA-Markov model to analyze the land use and ecosystem service values of Shijiazhuang,
China in 2030 under a natural development scenario, farmland protection scenario, and
an ecological protection scenario. These studies provide an important reference for future
urban land cover and ecosystem service estimation.
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In this paper, our central goal is to understand future urbanization patterns and their
effects on ES quantity and equity under a range of policy scenarios. To achieve this goal,
the decisive steps towards this are as follows: (1) Predict ES distribution patterns over
the next decade under three scenarios. (2) Analyze the differences and characteristics
of ES dynamics provided by different phases of development. (3) Explore changes in
environmental equity of ES distribution due to urbanization. (4) Assess how land-cover
dynamics have led to differences in green infrastructure (GI) and ES changes.

2. Dataset and Materials
2.1. Study Area

Our analysis comprises three Chinese cities (Beijing, Shanghai, and Ningbo) as well
as three European Cities (Paris region—France, Aarhus—Denmark, and Velika Gorica—
Croatia) (Figure 1). Among the three Chinese cities, Beijing is the capital of China, with
an area of 16,410 km2 and a population of 21.7 mio. Between 2000 and 2020, Beijing
experienced significant urbanization with an increase in the built-up area from 1640 km2 to
2859 km2. Much larger in terms of population is Shanghai, with a total area of 6340 km2

and a population of 24.2 mio. It has also experienced significant urban expansion over
the past 20 years, with the built-up area increasing from 1414 km2 to 2793 km2 by 2020.
While Ningbo is smaller than Beijing and Shanghai in population (5.7 mio.), it is also
rapidly gaining built-up area, growing from 1023 km2 in 2000 to 1857 km2 in 2020. These
cities represent typical Chinese urbanization patterns of megacities and cities with over
a million inhabitants. Amongst the European study sites, the Paris region is the biggest
urban agglomeration, and one of the few megacities in this continent. It is France’s capital
and home to 18.2% of the country’s population (12 mio.) in which the built-up area grew
from 1680.4 km2 to 1884.7 km2 between 2000 and 2020. With 273,000 inhabitants, Aarhus,
Denmark, has experienced slow urbanization over the past 20 years, changing its built-up
area from 77 km2 to 85 km2. In Croatia, Velika Gorica has 64,000 residents, with an average
population density of 272 people per km2, and its built-up area has been decreasing from
23 km2 to 17 km2 during the past twenty years [23]. So, the European study sites cover the
types of a megacity, a typical mid-sized city, and a town.
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2.2. Data Source and Processing
2.2.1. Refined Land-Cover Maps

Europe and China Refined Land Cover (ECRLC) is a 30-m Landsat-based land-cover
database spanning 3 decades (2000, 2010, and 2020) for Aarhus, Paris region, and Velika
Gorica in Europe and Beijing, Shanghai, and Ningbo in China. The overall classification
accuracies range between 73% and 95% for different points in time and cities [23]. These
ECRLC products were utilized for future land-cover simulation in 2030 (see Section 3.1)
and also as the land cover input for GI and ES evaluation.

2.2.2. Driving Factors of Land-Cover Spatial Distribution

In order to simulate land cover in the future, several driving factors including natural
geographical, location, and socio-economic factors were considered spatial distribution
drivers. Table 1 shows the year of acquisition of the data used, the spatial resolution, and
the data source references. Among them, the vector data of primary road, second class
road, and river were obtained from OpenStreetMap [24]. The Euclidean distance algorithm
in ArcGIS (Version 10.8) was used to calculate the distance of each pixel from the primary
roads, the second level roads, and the rivers. The night light intensity was available from
the Defense Meteorological Program (DMSP) and was also normalized based on the annual
maximum normalized difference vegetation index (NDVI) to eliminate the oversaturation
phenomenon [14]. Finally, all data were resampled to 60 m using the nearest neighbor
algorithm in ArcGIS (Version 10.8) for further land cover simulation.

Table 1. Variable system for evaluation land suitability.

Variables Year Resolution Reference

Altitude (m) 2010
30 m [25]Slope (◦) 2010

Population 2010
100 m [26]Population growth (%) 2010–2020

Distance to primary road (km) 2010
vector data [24]Distance to second level road (km) 2010

Distance to river (km) 2010
Night light intensity 2010 300 m [27]

2.2.3. Nature Reserve Area

Nature reserves were treated as protected areas, and the land cover of the area did not
change when simulating future land cover. In this study, nature reserves in Europe were
tracked using the World Database on Protected Areas (WDPA) [28], while nature reserves
for the three Chinese cities were derived from the Specimen Resource Sharing Platform of
China Nature Reserve [29]. All nature reserve data were vector data, and when used as
input data for the CLUE-S model, we converted the vector data to raster data with a spatial
resolution of 60 m for land cover simulation.

3. Method

In this study, a comprehensive framework was constructed to evaluate GI and ES
in the past and future. The procedure is shown in Figure 2 and consists of three main
parts, including (i) the simulation of land cover for 2030 under three different development
scenarios using the CLUE-S model; (ii) evaluating the ES based on several ES evaluation
models; and (iii) evaluating the spatio-temporal dynamics and distribution equity of ES.
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3.1. Future Land Cover Simulation
3.1.1. CLUE-S Model

The CLUE-S model has been widely used for future land cover/use simulation in
previous research [30–32]. It is a dynamic, spatially explicit LULC model, which can
consider location characteristics of land cover distribution; the demand of requirements,
spatial policies, and restrictions of land-cover changes; and also land cover conversion
settings. In addition, various scenarios could also be considered during the simulation.
In this study, the spatial resolution of 60 × 60 m2 was used for the simulation. It was
carried out based on the R package “lulcc” [33]. The parameter settings for each part of the
simulation are described below.

For the location characteristics, random forest machine learning methods were used to
quantify the relationships between land-cover pattern and explanatory factors, including
terrain and socioeconomic factors (Table 1), to determine the probabilities of the distribution
of each land cover type [30]. All of the factors were normalized to the range 0 to 1 by
minimum–maximum linear transformation. The relative operational characteristics (ROC)
reflects the goodness of fit, with ROC values ranging from 0.5 to 1. When the ROC is greater
than 0.7, the goodness of fit is acceptable [34].

Spatial policies and restricted zones were considered as regions where it cannot
be changed [35]. In this research, this includes nature reserves. Finally, the land cover
conversion was calculated based on the transition matrix of land cover during 2010 to 2020;
the conversion matrix means the conversion direction between land cover types, which
ranges from 0 (prohibit conversion) to 1 (allowed conversion).

3.1.2. Simulation Scenarios Setting

To estimate different development patterns for the year 2030, three different scenarios
were created. The first is the so-called business-as-usual (BAU) that predicts land-cover
change progressing in a linear way following the current trend without new policies
influencing changes neither towards environmental protection nor towards economic
growth and built expansions. The second is market-driven by economic prosperity (MLS)
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in which urbanization continues to expand, at the cost of environmental protection. The
third is set towards environmental protection (EPS), which assumes a less extreme growth
rate with the target of a gain or at least maintaining of ES for urban dwellers.

In this study, the land cover demands were calculated based on three different sce-
narios. Specifically, under the BAU, the demand areas of land cover were consistent with
the land-cover change trend based on land cover maps from 2010 to 2020. Under the MLS,
the change trend of built-up area was increased by 50% compared with BAU [36]. Finally,
under EPS, the demand of ecological lands was increased by 50% when it was increasing
during 2010 to 2020; otherwise, the decrease rate was slowed down by 50%.

3.1.3. Land-Cover Simulation Accuracy Evaluation

To evaluate the rationality and accuracy of the land cover simulation framework, we
validated the allocation model in two steps; firstly, we could obtain the accuracy of each
GLR model, and secondly, we could verify the rationality of the model by comparing the
simulation results of change over the period 2010 to 2020, with observations of land cover
in 2020. The receiver operator characteristic (ROC) measures the degree of fitting of the
GLR model. This index can be used to assess the accuracy of the model. Specifically, ROC
values vary from 0.5 to 1, where 0.5 indicates a completely random model and 1.0 indicates
a perfect fit [37]. GLR models with ROC values above 0.7 are considered good [38,39].
Based on land cover data in 2010, we simulated land cover distribution in 2020 for all of the
six cities and further compared them with the observations; then the overall accuracy (OA)
and Kappa indices [40] were used to quantify the accuracy between the simulation and the
observation maps. The overall accuracy and Kappa coefficients are calculated as follows:

Overall accuracy =
Number o f correct pixels
Total number o f pixels

× 100 (1)

Kappa =
N ∑r

i=1 xii −∑r
i=1(xi+ × x+i)

N2 −∑r
i=1(xii × x+i)

(2)

where N represents the number of validation samples, xii represents the number of samples
in row i and column i in the confusion matrix, xi+ represents the sum of all samples in row
i, and x+i represents the sum of all samples in column i in the confusion matrix.

3.2. Spatially Explicit Indicators for GI and ES
3.2.1. GI Fraction

In this study, the GI fraction (GIF) is used as an important indicator of ES in a
1-km × 1-km unit during urban development. In this study, GI comprises green spaces and
cropland because both categories support ES significantly. The specific calculation method
is shown as below

GIF =
AGI

Atotal
(3)

where AGI represents the GI area, and Atotal represents the area of each unit, which is set as
1 km2 in this study.

3.2.2. GI Connectivity

Our study examines GI connectivity (GIC) within a 1 km × 1 km unit based on land
cover observations and simulations. The patch cohesion index was calculated to evaluate
natural land cover connectivity using package “landscapemetric” in R version 4.0.2 [41].
The index takes values between 0 and 100, with larger GIC values indicating better land-
scape connectivity.

GIC = 1−
(

∑n
j=1 pij

∑n
j=1 pij√aij

)
·
(

1− 1√
Z

)−1
· 100 (4)
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where pij and aij are the perimeter and area of each patch, respectively, and Z is the number
of GI pixels.

3.2.3. Carbon Stock

To quantify the amount of carbon stock in the six cities, we estimated it using carbon
density in different land use types and their area through the carbon stock module of the
Integrated Valuation of Environmental Services and Tradeoffs (InVEST) model [42]. In
this module, carbon stock contains four carbon pools, including aboveground carbon pool,
belowground carbon pool, soil organic carbon pool, and dead matter organic carbon pool.

CS = ΣCDi · Ai (5)

where CS is the total amount of carbon stock in a year (t), ΣCDi is the total carbon density
of four carbon pools in land use type i (t/ha), and Ai is the acreage of land use type i (ha).

Considering the differences of vegetation composition and structure and management
mode in urban green space between Chinese cities and European cities, the appropriate
parameters were selected. The carbon densities of the four carbon pools in various land
cover types of Chinese cities and European cities were derived from the previous literature
by considering the characteristics of our land cover categories [43–46]. The carbon densities
used in this study are detailed in Table A1.

3.2.4. Air Pollutant Removal

To quantify the amount of PM2.5 removal by urban vegetation, we gathered the data
for PM2.5 concentration derived from the Global Estimates of Fine Particulate Matter [47]
and then applied the method developed by [48,49] to quantify the PM2.5 removal for the six
cities. In addition, to simulate the air pollutant removal service in the future under different
scenarios, we took the average PM2.5 concentration of the latest five years to calculate the
removal rate.

PMr = α · PMc + β (6)

where PMr is the quantity of PM2.5 removed per unit area of forest and grassland per year
(kg ha−1 yr−1), PMc is the annual concentration of PM2.5 (µg m−3), and α and β are the
regression coefficients, where their values are 1.1664 and 0.4837 ([48,49]), respectively.

TR = PMr · A (7)

where TR is the total amount of PM2.5 removed by woodland in a year (kg), and A is the
area of forest and grassland (ha).

3.3. Spatial Distribution Characteristics of GI and ES
3.3.1. Urban Development Phases Detection

For a more effective distinction between urban development and policy-driven eco-
logical restoration, and to examine how land cover and ES differ across different urban
development gradients, we divided each city into three sections: long-term built-up areas
(built-up areas since 2000), new built-up areas (built-up areas from 2000 to 2020), and
non-built-up areas. According to the land cover observations discussed in Section 2.2.1,
built-up areas for 2000 and 2020 were extracted. Additionally, we used morphological
and kernel density estimation methods to fill in the internal gaps between the long-term
built-up area and the newly built-up area. Figure A1 shows the three phases in each city.

3.3.2. Equity Measurement of ES

The GINI index was used as an indicator to measure the degree of equity in the spatial
distribution of ES, which can be calculated based on the Lorenz curve [50] as follows:

Gini = A/(A + B) (8)
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where A is the area between the line of equal distribution and B represents the area under
the Lorenz curve. The GINI coefficient takes values between 0 and 1. A larger Gini
coefficient value indicates greater inequity, i.e., a Gini coefficient of 0 indicates absolute
equity, while absolute inequity is represented when the Gini coefficient is equal to 1. In this
study, we used the “ineq” package [51] in R to calculate the Gini coefficient.

3.4. Sensitivity as the Synthesis of ES Dynamics

We calculated a sensitivity index (SI) [52] to assess the impact of land-cover change on ES
changes. In particular, land-cover changes had a positive impact on ES changes when SI > 0;
otherwise, they exerted a negative impact. SI is calculated with the following formula.

CDI = ∑4
i=1 ∆LCi

∑4
i=1 LCi

× 1
T

(9)

SI =
(ESend − ESstart)/ESstart

CDI
(10)

where CDI is the degree of land-cover change within a given period and represents the
area of land cover i that has changed, LCi is the area of land cover i, and T represents the
range of years. The ESstart and ESend indicators correspond to the ES in the start year and
end year during the study period, respectively.

4. Results
4.1. Land Cover Simulation Result

As shown in Figures 3 and 4, there is a significant difference between the land cover
patterns in 2020 and the three simulated scenarios in 2030. Figure A2 shows the land cover
conversion for different scenarios from 2020 to 2030.
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Figure 4. Land-cover observation results for 2020 and simulated land-cover maps for 2030 under
three scenarios for three cities in Europe.

For the three Chinese cities, the built-up area shows rapid growth in all three develop-
ment scenarios. Specifically, in Beijing, the built-up area grew up to the 643.2 km2 (BAU),
965 km2 (MLS), and 322 km2 (EPS) scenarios by 2030, where almost all (98.7%, 92.3%, and
99.3%) new built-up space was transformed from arable land. In Shanghai, the built-up
area increased to 819 km2, 1223 km2, and 413 km2 under the BAU, MLS, and EPS scenarios
by 2030. It is worth noting that in all three scenarios in Shanghai, the area of forest grows,
mainly converted from cropland, with forest area increasing by 371 km2, 224 km2, and
518.5 km2 in BAU, MLS, and EPS, respectively. In Ningbo, the built-up area increased by
476 km2 (BAU), 720 km2 (MLS), and 215 km2 (EPS). Under the BAU and MLS scenarios,
151 km2 and 189 km2 of forest were converted to cropland, respectively. Overall, the three
cities will continue to experience extensive urban expansion in terms of built-up area over
the next ten years, with average growth rates of 23.8% (BAU), 35.9% (MLS), and 11.6% (EPS).
In the process, cropland will become less available, with average reductions of 24.1% (BAU),
28.6% (MLS), and 19.5% (EPS) in the three cities. The green space area in the three cities
shows different trends from 2020 to 2030, with Beijing and Ningbo showing relatively
few changes in the green space area under the three scenarios, while in Shanghai, the
green space area increases to varying degrees under the three scenarios, at 39.5 km2 (BAU),
19.9 km2 (MLS), and 58.8 km2 (EPS).

The land-cover patterns of the three European cities for the year 2030 are shown
in Figure 4. The Paris region and Aarhus exhibited relatively little urban expansion
between 2020 and 2030, with Paris showing built-up area growths of 111 km2 (BAU)
with a growth rate of 5.5%, 116 km2 (MLS) with a growth rate of 8.3%, and 56 km2 (EPS)
with a growth rate of 2.8%. Velika Gorica demonstrated a relatively significant urbanization
intensity, with built-up area growths of 6.6 km2 (19.6%) (BAU), 10.1 km2 (29.9%) (MLS), and
3.1 km2 (9.3%) (EPS), respectively. The average growth rates of built-up area in the three
municipalities range from 10% (BAU) to 15.2% (MLS) and then drop down to 5% (EPS).
The average decreases in cropland area are 6.8% (BAU), 7.6% (MLS), and 6.1% (EPS). There
are differences in the trends of green space in the three cities: specifically, the green spaces
in Aarhus and Velika Gorica show an increasing trend, while the area of green space in
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the Paris region decreases in all scenarios, with decreases of 5.3% (BAU), 5.9% (MLS), and
4.8% (EPS).

For the validation of land-cover simulation results, Table A2 shows the ROC values of
the logistic regression results. The mean value of ROC for each land cover was greater than
0.8 across all six cities, indicating a good correlation and ability to explain land cover based
on the selected driving factors. Table A3 shows the evaluation of the classification results
for the six cities obtained by comparing the observed and simulated land cover in 2020
using 2000 random samples per city, where the mean value of the overall accuracy reached
0.8 and the mean value of the kappa value was 0.74 (Table A3). These figures indicate that
the land-cover simulation model developed in this study can produce a convincing result.

4.2. Dynamics of GI and ES
4.2.1. GI Fraction and Connectivity Changes

Figure 5 shows the changes in GIF and GIC distribution for the six cities from 2000 to
2020. At the city-wide scale, the GIF values of the three Chinese cities decrease significantly;
the average of GIF in the three cities decreased from 85.5% in 2000 to 75.1% in 2020. The
most significant reduction in GIF is in the new built-up area, where the average GIF of the
three cities in the region decreases from 88% in 2000 to 57.8% in 2020. It is worth noting
that the GIF and GIC values increase for most areas of the long-term built-up in Beijing and
Shanghai between 2010 and 2020. It is also reflected in the regional averages; for example,
from 2010 to 2020 in Shanghai, the GIF of the long-term built-up region increases from
25.6% to 28.1% and the GIC increases from 77.6 to 81. For the three European cities, the
changes in GIF and GIC at the city scale are insignificant, with a slight decrease from 89%
in 2000 to 86.4% in 2020 for the three cities. GIF, on the other hand, also shows a very small
decrease from 97.1 in 2000 to 96.8 in 2020.
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The GIF and GIC in different scenarios in 2030 show a big difference between cities
in China and Europe (Figure 6). In China, the average GIFs for the three cities are 59.7%
(MLS), 63.3% (BAU), and 66.8% (EPS). In the EPS scenario, GIF increased by 7.1% relative to
the MLS scenario, and GIC increased by 18.7 relative to MLS. In the three European cities,
the GIFs were 82.7% (MLS), 83% (BAU), and 83.4% (EPS), and the GICs were 90.3 (MLS),
91.3 (BAU), and 92.3 (EPS), respectively, with small differences across scenarios.
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4.2.2. Dynamics in Carbon Stock

Figures 7 and A4 show the distribution of carbon stock changes from 2000 to 2020
and 2020 to 2030 under different scenarios. Between 2000 and 2020, some areas of the
long-term built-up areas in Beijing and Shanghai have greater carbon stocks, with increases
in the southwestern and southeastern parts of Beijing and increases in Shanghai mainly
in the outer ring green belt and Chongming Island. For Ningbo, the carbon stock shows
a decreasing trend between 2000 and 2020. From 2020 to 2030 under various scenarios,
there is a significant increase in carbon stock in the EPS scenario relative to the BAU and
MLS. As for the three cities in Europe, from 2000 to 2020, carbon stock shows a stable trend
in the Paris region, while in Aarhus, there is a strong increasing trend in carbon stock in
the south of the city. In Velika Gorica, the carbon increase was significant throughout the
region, especially in the forest area.

Figure A5 shows the changes of carbon stock in different urban development phases.
Among the six cities, in 2020, Beijing has the largest carbon stock with 210.7 Mt, followed by
the Paris region with 140 Mt. There is a slight increase in the long-term built-up carbon stock
in Shanghai between 2010 and 2020, from 11.9 Mt to 12.4 Mt. Under different development
scenarios, the most carbon stock is found in the EPS scenario. For example, in China, the
total carbon stocks of the three cities in the EPS scenario are 7.1 Mt and 14.3 Mt more than
those in the BAU and MLS scenarios, respectively. The Chinese cities generally show much
more carbon in the newly built up areas compared with old built-up areas, when compared
with European cities. Shanghai in particular shows a large proportion in newly built-up
compared with the total study area (Figure A5).
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4.2.3. Dynamics in PM2.5 Removal

Figures 8 and A6 show the dynamics of PM2.5 removal under different development
scenarios from 2000 to 2020 and from 2020 to 2030. Between 2000 and 2020, both Shanghai
in China and Velika Gorica in Europe exhibit large increases in PM2.5 removal. The results
for regions at different phases (Figure A7) of urban development show that Beijing has the
highest PM2.5 removal among the six cities. The level of PM2.5 removal in Shanghai sub-
stantially increased from 2000 to 2020 and continued to increase slightly in 2030, especially
under EPS. For Ningbo, the amount of PM2.5 removal increased from 2000 to 2010 but then
decreased in 2020. PM2.5 removal in the Paris region experienced an increase up to 2010
and then a decrease in 2020, with insignificant differences in PM2.5 removal among the
three future scenarios. For Aarhus and Velika Gorica, their PM2.5 removals are much lower
compared with the other cities, with insignificant changes in the values of PM2.5 removals
for Aarhus in each year. Detailed information about the dynamics of GI and ES in different
urban development stages and different years are available in the supporting materials
(Tables A4–A7).

4.3. Sensitivity of GI and ES to Land-Cover Changes

Table 2 shows the SI of various indicators related to land-cover changes. Overall, most
of the SIs for the four different indicators are less than 0, indicating that land-cover changes
in the six cities have a negative impact on the coverage and connectivity of GI, as well as
on the amount of carbon sequestration and air pollution removal. Based on observations
from 2000 to 2020, land-cover change showed a positive effect on carbon stock and PM2.5
removal from 2000 to 2010 in Beijing, while land cover in Shanghai continued to positively
affect carbon stock and PM2.5 removal from 2000 to 2020. In Ningbo, land-cover change
had a positive effect on PM2.5 removal only from 2000 to 2010. For the three European
cities, land-cover change had a small positive effect on carbon stock and PM2.5 removal
between 2000 and 2020, while in Aarhus, the land cover had a positive effect on carbon
stock and PM2.5 removal between 2010 and 2020, where SIcarbon was 0.02, and SIpm2.5
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was 4.16. In Velika Gorica, there was a continuous positive effect of land cover on both
carbon stock and PM2.5 removal between 2000 and 2020.
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Under the three scenarios in 2030, land-cover change had a negative impact on all four
indicators to varying degrees. The impact of land-cover change on ES was most pronounced
under MLS, with an average SI of −1.95. It is worth noting that in the Paris region, land-
cover change positively affects both carbon stock and PM2.5 removal under EPS.

4.4. Equity of GI Distribution

In order to better understand changes in the distribution of GI in areas that rarely
experience urban expansion, in Table 3, the GINI coefficients are shown as a function of the
GIF distribution of long-term built-up areas on a 1 km × 1 km grid between 2000 and 2030.
According to the results, GINI coefficients of GIF distributions from 2010 to 2020 decreased
for Beijing and Shanghai, indicating a greater equity of GIF in the long-term built-up areas
of the region. By contrast, for Ningbo, the GINI coefficients increased from 2000 to 2020,
indicating an increasing inequity of GIF distributions. Among the three European cities,
the GINI coefficients of the GIF distribution in the long-term built-up area vary less, and
Velika Gorica has the smallest GINI coefficient of the GIF distribution in the stable built-up
area, with a GINI value of 0.1 in 2020 and a GINI value of 0.24 in the EPS scenario in 2030.
The GINI coefficient values increase the least in the EPS scenario in 2030, indicating that
the EPS scenario is also a guarantee of the equity of the GIF distribution. In all cases, the
GINI coefficients are greatest (i.e., greatest inequity) in the MLS scenario.
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Table 2. Sensitivity index (SI) of the impact of land-cover change on GI and ESES changes in various
stages. A higher SI value means that the indicator is more sensitive to land-cover change. When SI is
greater than 0, it indicates that land-cover change has a positive effect on indicator change; otherwise,
land-cover change has a negative effect on indicator change.

City SI 2000–2010 2010–2020 2000–2020 2020–2030 (BAU) 2020–2030 (MLS) 2020–2030 (EPS)

Beijing

SIGIF −0.30 −0.27 −0.50 −1.56 −1.40 −1.30
SIGIC −0.04 −0.02 −0.06 −1.78 −1.66 −1.12

SICarbon −0.20 0.04 −0.13 −0.68 −1.07 −0.27
SIPM2.5 5.06 −2.32 0.54 −1.91 −3.83 −2.66
SImean 1.13 −0.64 −0.04 −1.48 −1.99 −1.34

Shanghai

SIGIF −0.63 −0.22 −0.52 −1.88 −2.00 −1.69
SIGIC −0.14 0.00 −0.08 −1.62 −2.60 −0.71

SICarbon −0.23 0.10 −0.08 −0.59 −0.98 −0.25
SIPM2.5 7.75 6.72 19.22 −3.11 −4.19 −4.06
SImean 1.69 1.65 4.63 −1.80 −2.44 −1.68

Ningbo

SIGIF −0.12 −0.31 −0.38 −1.37 −1.35 −1.52
SIGIC 0.01 −0.06 −0.05 −1.00 −1.16 −0.82

SICarbon −0.19 0.07 −0.12 −0.64 −1.02 −0.28
SIPM2.5 1.12 −1.80 −0.88 −1.27 −2.16 −1.24
SImean 0.21 −0.53 −0.36 −1.07 −1.42 −0.96

Paris Region

SIGIF −0.04 −0.22 −0.23 −1.03 −1.05 −1.01
SIGIC −0.02 0.01 −0.01 −1.53 −1.57 −1.39

SICarbon 0.06 −0.49 −0.37 −0.34 −0.16 0.57
SIPM2.5 1.10 −4.06 −2.85 −0.51 0.93 2.36
SImean 0.27 −1.19 −0.86 −0.85 −0.46 0.13

Aarhus

SIGIF −0.03 −0.17 −0.15 −3.22 −2.75 −3.85
SIGIC 0.02 −0.04 −0.02 −2.12 −2.18 −1.98

SICarbon −0.17 0.02 −0.13 −0.98 −1.59 −0.30
SIPM2.5 −2.04 4.16 0.53 −1.64 −9.69 −13.17
SImean −0.55 0.99 0.06 −1.99 −4.05 −4.82

Velika Gorica

SIGIF −0.06 −0.18 −0.19 −0.27 −0.39 −0.14
SIGIC 0.00 −0.02 −0.02 −0.95 −1.03 −0.86

SICarbon 0.27 0.17 0.31 −0.37 −1.12 −0.54
SIPM2.5 0.07 1.07 0.94 −0.44 −2.73 −2.34
SImean 0.07 0.26 0.26 −0.51 −1.31 −0.97

SI −10.00 −6.00 −2.00 2.00 6.00 10.00
−15 0 10

Table 3. GINI coefficients of GIF distribution for different scenarios from 2000 to 2030 for six urban
long-term development areas.

2000 2010 2020 2030 (BAU) 2030 (MLS) 2030 (EPS)

Beijing 0.37 0.42 0.39 0.76 0.84 0.66
Shanghai 0.32 0.41 0.36 0.64 0.69 0.57
Ningbo 0.28 0.32 0.37 0.64 0.68 0.58

Paris Region 0.38 0.41 0.41 0.58 0.61 0.55
Aarhus 0.34 0.35 0.33 0.38 0.41 0.36

Velika Gorica 0.08 0.08 0.10 0.27 0.30 0.24

5. Discussion

Urban development stages and policies directly affect the quantity and distribution
pattern of GI, which in turn affects the equity of distribution of ES. This study enables a
robust multi-context prediction of future land cover in cities and provides an assessment of
past and future GI and ES functions.

The selection of six contrasting cities in China and Europe exemplifies the evolution of
ES for fairly typical sizes of towns, cities, and megacities to illustrate impacts of ongoing
urbanization processes. On the one hand, due to the difference of urbanization process
and stage between China and Europe, the dynamic changes in land cover and ES showed
substantial differences for similar time points. Specifically, Europe is a highly urbanized
continent, while China is progressing rapidly towards an urbanized country over the last
decades. Therefore, urban expansion in the three Chinese cities caused significant damage
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to the coverage and connectivity of urban GI and the ES it provides [53]. In contrast,
national land cover and ES in Europe have shown more moderate changes.

Specifically, the multi-scenario analysis provides urban planners and policy makers
with more dimensions of reference, which may guide urban planning policies by demon-
strating the characteristics of ES distribution and their impacts under different scenarios.
In addition to the extensive research on the spatial and temporal dynamics of ES, the
resulting environmental equity is also receiving increasing attention because it is essential
for equitable urban policy making [54]. Recent studies show that the loss of ES equity can
affect not only ethnic groups of people differently [55], it is also essential in order to attain
the social inclusion that is part of SDG 11 [56]. Quantifying ES distribution patterns helps
increase the understanding of its contribution to environmental equity and use it as an
important reference for reallocating ecological resources.

Moreover, the multi-regional analysis distinguishes between the impacts of urbaniza-
tion on ES at different stages of urban development, i.e., long-term, new, and non-built-up
areas [14,53], which is useful to increase the understanding of how ES are affected by
different urbanization intensities and dynamics. The focus on long-term built-up areas also
provides insight into the status and recovery of ES in urban centers that are not subject to
urban sprawl or in the post-urbanization phase, and, as revealed in China, that there is
potential to retrospectively improve GI provision at large scale within existing urban areas.
For example, the values and distributional balance of GI and ES in long-term built-up areas
in Beijing and Shanghai, China, improved between 2010 and 2020, indicating a return to
green in these cities, which is a direct outcome of government policies [1].

In particular, in the early stages of urban development, such as from 2000 to 2010, most
regions of China experienced rapid urbanization and urban sprawl, and many blue-green
elements were directly replaced by built-up areas, resulting in a direct loss of GI coverage
and ES. During the latter stages of development, GI and ES have improved in long-term
built-up areas with a higher demand for ES, as seen in Beijing and Shanghai from 2010
to 2020. As compared to the three Chinese cities, the European cities have experienced
longer-term development and slower urban expansion in the past decades, so the EPS
scenario is more likely to maintain and optimize ES in Chinese cities in the future.

The study examined both GI and ES in order to explore the comprehensive effects
of urbanization and policies on urban ecosystems. Specifically, a high GIF, for instance,
contributes to an inclusive, resilient, and sustainable urban development [57]. In addition to
regulating urban microclimate and reducing urban heat islands, adequate green space also
prevents surface runoff and floods as well as provides residents with habitat, recreation,
and cultural opportunities [58–60]. Furthermore, GIC reflects the loss of natural habitat
mentioned in SDG 15.5 and its consequences for biodiversity [61,62]. This is because
natural vegetation corridors provide adequate connectivity, allowing species to move freely
and contributing to biodiversity preservation, while low connectivity isolates species and
threatens biodiversity [63]. The benefit of carbon stock as one of the main ES is that the
absorbed carbon dioxide from the air in urban vegetation is bound to organic carbon
through photosynthesis and ultimately stored. As PM2.5 does great harm to the health
of urban residents, we analyzed this indicator as, to a certain extent, it is captured and
removed through the atmospheric process of dry deposition to vegetation surfaces.

For the uncertainty of the study, because of the high heterogeneity of land cover in
urban centers, there are inevitable errors in both the mapping and simulation of land
cover and which further lead to uncertainty in ES assessment. These uncertainties in ES
assessment have also been explored extensively in previous studies [64]. Different spatial
resolutions and time lags between historical and future parameters, available for land-cover
simulations, may lead to uncertainties in the results. In future studies, the accuracy of land-
cover simulations can be effectively improved by using more high-resolution inputs and
more homogeneously stored spatial information, such as new road plans and established
future protected areas. Furthermore, interpreting results of the ecosystem service model
outputs is not straightforward, since the models include other components. For example,
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in the estimation of PM2.5 removal, the model used in this study is sensitive to the initial
concentration of PM2.5 as well as the removal capacity of trees [65]. Therefore, interpreting
the final results requires knowledge about how other aspects (e.g., air pollution levels) are
changing at the same time. When estimating carbon stock, the carbon density parameters
were obtained from the literature but could be improved with more detailed data collected
for each city.

6. Conclusions

Urbanization processing and policies can directly affect urban land cover patterns and
further influence ES. In this study, six cities of different sizes from China and Europe were
selected as case areas, and a framework for an integrated assessment of urban ecosystem
service dynamics under different development scenarios (BAU, MLS, and EPS) in the past
and future was proposed. Additionally, this study focuses on the dynamics and changes
in the variability and equity of GI and ES among different cities (Chinese and European
cities) and within cities at different stages of development, as well as quantifying the
sensitivity between changes in each indicator with respect to land-cover change. The main
conclusions of the study are as follows: (1) The use of multi-source remote sensing data
and the CLUE-S model can simulate future urban land cover distribution patterns under
different development scenarios, and the simulation accuracy performs well in cities of
different scales. (2) Urbanization levels in China and Europe are still at very different
stages of development, not only in terms of the intensity of land-cover changes but also in
terms of the characteristics of the changes in GI and ES. (3) Long-term built-up areas can
be an important indicator of urban regeneration and ecosystem restoration; e.g., Beijing
and Shanghai in China have seen significant improvements in both green space coverage
and equity and ES in long-term built-up areas over the last decade. (4) In the future, the
expansion of built-up areas will remain the main trend, and the loss of green space and
arable land will be greatly reduced in EPS scenarios compared to BAU and MLS, while the
green space cover in stable built-up areas is more fragile and should be a priority area for
protection. The results obtained from this study can be used as an important reference for
urban planners and policy makers at a later stage.
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Table A1. Carbon density of four pools in different land use types. (Unit: t/ha).

Land Cover
Types

C_above C_below C_soil C_dead

CN EU CN EU CN EU CN EU

Built-up 5 0 1 0 60 20.4 0 0
Cropland 8 4 1 0 97.84 102 0 0

Green space 40.54 56.4 20.27 12.97 92.96 130 12 16
Water 0 0 0 0 0 0 0 0

(C_above: aboveground carbon pool, C_below: belowground carbon pool, C_soil: soil organic carbon pool,
C_dead: dead matters organic carbon pool.).

Table A2. ROC values for simulated land cover.

City Built-Up Cropland Forest Water

Beijing 0.94 0.89 0.98 0.88
Shanghai 0.90 0.86 0.72 0.77
Ningbo 0.91 0.84 0.96 0.86

Paris Region 0.96 0.81 0.82 0.95
Aarhus 0.91 0.79 0.90 0.97

Velika Gorica 0.89 0.82 0.92 0.99
Mean value 0.92 0.84 0.88 0.90

Table A3. Accuracy of land-cover observation in 2020 compared with simulation results.

City Beijing Shanghai Ningbo Paris Region Velika Gorica Aarhus Mean Value

OA 0.77 0.62 0.88 0.86 0.86 0.82 0.80
Kappa 0.70 0.49 0.86 0.81 0.81 0.76 0.74
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Table A4. Statistics of the GIF in different areas of each city from 2000 to 2030.

City Areas 2000 2010 2020 BAU MLS EPS

Beijing

LB 41.05 31.90 30.78 9.49 7.35 13.47
NewB 90.89 75.98 60.84 41.44 36.44 47.46
NonB 98.54 98.26 96.70 95.05 93.79 95.79

Whole city 90.32 86.80 83.30 76.62 74.70 78.54

Shanghai

LB 46.12 25.60 28.10 8.33 6.78 10.56
NewB 90.67 70.29 57.12 28.47 21.94 36.29
NonB 90.16 87.83 87.88 75.87 67.95 81.98

Whole city 79.73 66.38 62.16 42.15 36.28 47.96

Ningbo

LB 46.58 40.97 30.80 13.13 11.62 15.69
NewB 82.32 72.43 55.51 33.31 29.67 39.44
NonB 94.49 95.18 94.53 91.16 88.33 93.14

Whole city 86.57 84.52 79.68 71.07 68.23 73.90

Paris Region

LB 36.49 34.45 31.63 15.70 14.43 17.19
NewB 88.28 85.88 70.84 57.60 55.44 59.47
NonB 98.50 98.65 97.86 97.41 97.21 97.57

Whole city 87.32 87.01 85.38 81.79 81.33 82.24

Aarhus

LB 44.30 44.63 45.23 27.97 29.58 62.55
NewB 88.75 82.54 72.70 63.57 64.31 97.52
NonB 98.99 98.73 97.89 97.61 97.64 26.47

Whole city 86.20 85.76 84.77 80.22 80.64 79.77

Velika Gorica

LB 47.09 44.48 37.05 29.86 27.73 32.79
NewB 79.99 76.47 62.92 56.82 54.49 60.15
NonB 97.24 96.78 94.44 93.05 92.13 93.83

Whole city 93.14 92.37 89.07 87.05 85.98 88.11

China

LB 44.58 32.82 29.90 10.32 8.58 13.24
NewB 87.96 72.90 57.83 34.41 29.35 41.07
NonB 94.40 93.76 93.04 87.36 83.35 90.30

Whole city 85.54 79.23 75.05 63.28 59.74 66.80

Europe

LB 42.63 41.19 37.97 24.51 23.91 37.51
NewB 85.67 81.63 68.82 59.33 58.08 72.38
NonB 98.24 98.05 96.73 96.02 95.66 72.63

Whole city 88.89 88.38 86.40 83.02 82.65 83.37

(Units: %) Where BAU, MLS, and EPS represent three different scenarios for 2030. LB, NewB, and NonB represent
different developed phrases of city, named long-term built-up, new built-up, and non-built-up.

Table A5. Statistics of the GIC in different areas of each city from 2000 to 2030.

City Areas 2000 2010 2020 BAU MLS EPS

Beijing

LB 90.03 86.94 88.65 36.65 28.19 54.51
NewB 98.77 97.43 96.38 85.46 78.80 93.46
NonB 99.34 99.39 98.86 97.99 96.74 98.88

Whole city 98.06 97.51 97.19 88.29 85.32 92.41

Shanghai

LB 86.31 77.55 80.96 29.74 11.78 52.70
NewB 98.51 95.52 93.89 66.58 33.41 89.98
NonB 97.76 97.20 96.80 89.71 70.24 95.82

Whole city 95.21 91.73 91.81 66.30 42.11 83.00

Ningbo

LB 89.56 88.43 84.65 52.45 42.40 64.96
NewB 95.67 95.69 93.05 80.08 71.29 88.25
NonB 98.05 98.44 98.24 96.62 94.74 97.65

Whole city 96.56 96.69 95.58 88.05 83.84 91.85
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Table A5. Cont.

City Areas 2000 2010 2020 BAU MLS EPS

Paris Region

LB 90.18 89.33 90.12 55.75 52.62 61.03
NewB 97.55 97.35 96.88 92.29 90.65 94.55
NonB 99.13 99.12 99.03 99.23 98.98 99.41

Whole city 97.48 97.32 97.37 91.26 90.45 92.42

Aarhus

LB 91.86 92.59 91.71 74.34 70.57 77.86
NewB 96.95 98.03 96.44 91.02 90.23 91.48
NonB 97.45 97.47 97.21 99.47 99.42 99.50

Whole city 96.14 96.38 95.91 93.25 92.30 94.10

Velika Gorica

LB 99.73 99.48 99.06 67.32 61.82 73.61
NewB 99.17 99.02 99.09 74.89 71.07 77.77
NonB 97.25 97.23 96.86 92.04 91.32 92.71

Whole city 97.53 97.48 97.14 89.39 88.18 90.56

China

LB 88.63 84.31 84.75 39.61 27.46 57.39
NewB 97.65 96.21 94.44 77.37 61.17 90.56
NonB 98.38 98.34 97.97 94.77 87.24 97.45

Whole city 96.61 95.31 94.86 80.88 70.42 89.09

Europe

LB 93.92 93.80 93.63 65.80 61.67 70.83
NewB 97.89 98.13 97.47 86.07 83.98 87.93
NonB 97.94 97.94 97.70 96.91 96.57 97.21

Whole city 97.05 97.06 96.81 91.30 90.31 92.36

Table A6. Total carbon storage statistics for different areas of each city from 2000 to 2030. (Unit: Mt).

City Areas 2000 2010 2020 BAU MLS EPS

Beijing

LB 15.88 15.07 14.95 13.89 13.70 14.22
NewB 25.62 23.73 21.98 20.75 20.21 21.43
NonB 173.69 170.64 173.76 173.82 172.03 175.32

Whole city 215.18 209.44 210.69 208.45 205.94 210.96

Shanghai

LB 13.38 11.92 12.41 11.88 11.64 12.22
NewB 26.60 23.99 23.19 22.22 20.96 23.72
NonB 26.68 26.70 28.88 29.09 27.92 29.84

Whole city 66.70 62.60 64.50 63.20 60.50 65.80

Ningbo

LB 8.35 7.90 7.58 7.28 7.20 7.41
NewB 16.93 16.16 14.87 13.92 13.61 14.43
NonB 87.42 84.35 87.40 86.21 84.63 87.54

Whole city 112.70 108.40 109.84 107.41 105.44 109.38

Paris Region

LB 10.26 10.40 8.99 8.31 8.01 8.63
NewB 5.10 4.98 4.05 3.88 3.78 3.97
NonB 129.95 130.66 126.94 125.16 124.93 125.36

Whole city 145.30 146.05 139.98 137.34 136.72 137.97

Aarhus

LB 0.53 0.54 0.54 0.51 0.49 0.53
NewB 0.25 0.24 0.21 0.21 0.21 0.21
NonB 3.91 3.81 3.85 3.84 3.84 3.84

Whole city 4.69 4.59 4.60 4.56 4.54 4.58

Velika Gorica

LB 0.13 0.12 0.11 0.10 0.09 0.10
NewB 0.19 0.18 0.16 0.15 0.15 0.16
NonB 4.18 4.36 4.55 4.74 4.69 4.78

Whole city 4.49 4.67 4.82 4.99 4.93 5.04

China

LB 37.61 34.89 34.94 33.05 32.54 33.85
NewB 69.15 63.88 60.04 56.89 54.78 59.58
NonB 287.79 281.69 290.04 289.12 284.58 292.70

Whole city 394.58 380.44 385.03 379.06 371.88 386.14
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Table A6. Cont.

City Areas 2000 2010 2020 BAU MLS EPS

Europe

LB 10.92 11.06 9.64 8.92 8.59 9.26
NewB 5.54 5.40 4.42 4.24 4.14 4.34
NonB 138.04 138.83 135.34 133.74 133.46 133.98

Whole city 154.48 155.31 149.40 146.89 146.19 147.59

Table A7. Total carbon storage statistics for different areas of each city from 2000 to 2030. (Unit: 102 t).

City Areas 2000 2010 2020 BAU MLS EPS

Beijing

LB 486.47 488.41 2110.37 1626.17 522.04 2431.99
NewB 2111.61 2104.90 4852.52 4689.54 2743.50 7037.47
NonB 537,607.45 894,294.79 578,345.61 585,690.19 564,301.11 605,787.67

Whole city 540,205.52 896,888.10 585,308.49 592,005.90 567,566.65 615,257.13

Shanghai

LB 6.21 7.75 18.97 17.42 14.01 22.40
NewB 3.23 10.15 34.41 54.91 39.94 72.48
NonB 2.57 18.88 56.41 85.24 73.15 90.61

Whole city 12.02 36.79 109.80 157.58 127.09 185.49

Ningbo

LB 2.11 1.03 1.44 1.09 0.84 1.48
NewB 7.79 4.23 4.47 3.52 2.76 4.63
NonB 356.23 443.20 291.98 287.76 278.42 296.69

Whole city 366.13 448.45 297.89 292.37 282.02 302.79

Paris Region

LB 10.48 10.63 5.75 5.72 5.41 6.03
NewB 4.14 4.33 2.49 2.37 2.31 2.44
NonB 115.24 127.19 85.05 82.98 82.74 83.19

Whole city 129.86 142.15 93.28 91.07 90.46 91.66

Aarhus

LB 0.08 0.10 0.18 0.21 0.20 0.22
NewB 0.04 0.06 0.07 0.07 0.07 0.07
NonB 1.22 0.83 1.20 1.19 1.19 1.18

Whole city 1.35 0.99 1.45 1.47 1.46 1.48

Velika Gorica

LB 0.03 0.01 0.03 0.02 0.02 0.02
NewB 0.04 0.04 0.06 0.06 0.06 0.07
NonB 6.24 6.32 7.62 8.28 8.19 8.36

Whole city 6.31 6.37 7.71 8.36 8.27 8.45

China

LB 494.79 497.19 2130.78 1644.68 536.89 2455.87
NewB 2122.63 2119.28 4891.40 4747.97 2786.20 7114.58
NonB 537,966.25 894,756.87 578,694.00 586,063.19 564,652.68 606,174.97

Whole city 540,583.67 897,373.34 585,716.18 592,455.85 567,975.76 615,745.41

Europe

LB 10.59 10.74 5.96 5.95 5.63 6.27
NewB 4.22 4.43 2.62 2.50 2.44 2.58
NonB 122.70 134.34 93.87 92.45 92.12 92.73

Whole city 137.52 149.51 102.44 100.90 100.19 101.59
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