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Abstract: This paper proposes a superpixel spatial intuitionistic fuzzy C-means (SSIFCM) clustering
algorithm to address the problems of misclassification, salt and pepper noise, and classification
uncertainty arising in the pixel-level unsupervised classification of high spatial resolution remote
sensing (HSRRS) images. To reduce information redundancy and ensure noise immunity and image
detail preservation, we first use a superpixel segmentation to obtain the local spatial information
of the HSRRS image. Secondly, based on the bias-corrected fuzzy C-means (BCFCM) clustering
algorithm, the superpixel spatial intuitionistic fuzzy membership matrix is constructed by counting
an intuitionistic fuzzy set and spatial function. Finally, to minimize the classification uncertainty, the
local relation between adjacent superpixels is used to obtain the classification results according to the
spectral features of superpixels. Four HSRRS images of different scenes in the aerial image dataset
(AID) are selected to analyze the classification performance, and fifteen main existing unsupervised
classification algorithms are used to make inter-comparisons with the proposed SSIFCM algorithm.
The results show that the overall accuracy and Kappa coefficients obtained by the proposed SSIFCM
algorithm are the best within the inter-comparison of fifteen algorithms, which indicates that the
SSIFCM algorithm can effectively improve the classification accuracy of HSRRS image.

Keywords: intuitionistic fuzzy C-means clustering; superpixel; classification; high spatial resolution;
remote sensing image

1. Introduction

With the vigorous development of earth observation technology, high spatial reso-
lution remote sensing (HSRRS) images are widely used in many fields, such as disaster
monitoring, agricultural management, urban and rural planning, as well as national de-
fense construction [1]. Image classification is the basis of computer interpretation, a key
step to complete information extraction, data mining, and resource integration. Whether
the classification results are accurate plays a vital role in the qualitative and quantitative
analysis of images, and the same function in the effective extraction and utilization of the-
matic information [2]. However, the problems of “same objects with different spectra” and
“different objects with the same spectrum” are widespread and bring significant challenges
to the accurate classification of HSRRS images.

The essence of classification is to classify each pixel or object in the image into different
categories according to certain rules based on its spectral characteristics, spatial structure
characteristics, or other information in different spectral bands. Generally, HSRRS image
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classification can be divided into supervised and unsupervised classification. Generally
speaking, supervised classification results are greatly affected by human subjectivity, and
poor recognition of undefined or too few categories, in practical applications. In contrast,
unsupervised classification does not require prior category knowledge to build a discrimi-
nant function; based on specific algorithms and the concept of similarity, pixels with similar
features are clustered. Thus, it is more popular and widely applied [3]. However, traditional
unsupervised classification algorithms, such as K-means and the iterative self-organizing
data analysis technique algorithm (ISODATA), are both ‘hard’ clustering algorithms with
a single classification basis. Hence the resulting categories are so difficult to control that
the algorithms can easily fall into local optima and have classification uncertainties. The
proposed classification method, based on fuzzy mathematics theory, has good results in
solving the problem of HSRRS image classification uncertainty. For example, the fuzzy
C-means clustering (FCM) algorithm considers the fuzzy characteristics between samples
and classes in the membership degree, and completes the automatic classification by op-
timizing the objective function to obtain the membership degree [4]. FCM is better than
hard clustering because it has higher tolerance for fuzziness and can retain more original
image information. However, FCM is sensitive to noise and the function convergence is
slow. Furthermore, a classification based on a single membership degree is not sufficient to
describe the fuzzy information of the image, which cannot completely solve the problem of
classification uncertainty.

To overcome the shortcomings of the FCM algorithm, scholars around the world
carried out a large number of studies, mainly forming three improved methods: (1) Spa-
tial neighborhood information is introduced into the objective function to suppress the
influence of abnormal data on clustering results [5,6]. However, introducing local spatial
information is similar to pre-image filtering [7], which often increases computational com-
plexity. (2) Replacing Euclidean distance with kernel distance to solve the initial clustering
sensitivity problem of objective function [8,9], but the applicability of kernel distance for
complex images clustering needs to be improved. (3) Modify the membership function
and add specific parameters to balance the limitations of single membership clustering
classification [10,11]. Although the classification effect is improved, the uncertainty is
not entirely solved. To solve this problem, Xu et al. [12] proposed an intuitionistic FCM
(IFCM) clustering algorithm based on FCM and intuitionistic fuzzy set (IFS). Relevant
researches [13,14] applied IFS into HSRRS image change detection and image segmentation
and uncertainty problem in the clustering process is well resolved. However, IFCM with
pixels as the basic unit only considers the spectral information of pixels and ignores the
spatial characteristics of images, so it cannot denoise the salt and pepper noises.

Ren et al. [15] first proposed the concept of superpixels and applied it to image seg-
mentation in 2003. Preprocessing by using superpixel segmentation can effectively extract
local features and express image structure information, reducing the salt and pepper noise
of classification, and effectively, the computational complexity of unsupervised classi-
fication [16]. In recent years, numerous scholars turned their attention to the study of
unsupervised classification methods that combine superpixels and FCM algorithms. The
performance of the FCM algorithm is improved by introducing local spatial information
with superpixels. The superpixel-based fast FCM (SFFCM) clustering algorithm [17] and
the fast and robust FCM (FRFCM) clustering algorithm [18] change the traditional unsu-
pervised classification from the pixel level to the object level, which improves robustness
while reducing the complexity of the algorithm. However, both algorithms only consider
membership degree as the basis for classification, which is prone to misclassification in
practical applications due to the influence of classification uncertainty. The researchers
improved the FCM by combining superpixels, but the discriminability of images with
spectral heterogeneity was lower [19,20]. Other scholars paid attention to HSRRS image
superpixel segmentation [21,22] and realized adaptive determination of the segmentation
scale and provided good support for subsequent classification. The object-level unsu-
pervised classification method, combined with the superpixel and FCM algorithm, has
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better classification performance, which provides conditions for the homogeneous region
clustering of images by comprehensive utilization of spectral and spatial information.

In summary, a superpixel spatial intuitionistic fuzzy C-means (SSIFCM) clustering
algorithm for the object-level unsupervised classification of HSRRS images is proposed in
this paper. IFS theory is introduced to add a degree of uncertainty and non-membership into
the FCM algorithm in order to solve the problem of classification uncertainty. Considering
spatial neighborhood information and spatial function, the problem that adjacent pixels
with similar feature intensity are easily classified into the same category can be solved.
By introducing superpixels, the unsupervised classification of HSRRS images changes
from the pixel level to the object level, the feature information of the object increases, the
phenomenon of salt and pepper is solved, and finally, the accurate classification of HSRRS
images is realized.

The contributions of this research consist of the following three aspects:

• We design an unsupervised classification algorithm of HSRRS images with super-
pixel spatial intuitionistic fuzzy C-means clustering, namely SSIFCM. By combining
superpixel segmentation with a modified affiliation function to resolve classification
uncertainty, it minimizes computing complexity and overcomes salt and pepper noise.

• Before applying the FCM algorithm, SSIFCM calculates an image’s local spatial infor-
mation by superpixel segmentation, which decreases the computational complexity
associated with introducing local spatial information to overcome noise. SSIFCM
captures object-level features of a superpixel image, allowing full utilization of the
image’s content while ensuring noise immunity.

• Based on the obtained superpixel image, a superpixel spatial intuitive fuzzy mem-
bership is constructed, this maximizes the robust decision-making interval, which
enhances the accuracy of fuzzy clustering. Therefore, for information-rich HSRRS
images, our proposed SSIFCM is more robust than the comparison algorithm.

The rest of this paper is organized as follows. Section 2 details the proposed algorithm.
Followed by the description of the dataset, experiments and results in Section 3. The
discussion is presented in Section 4. Finally, conclusions are drawn in Section 5.

2. Materials and Methods

To solve the problems of misclassification, salt and pepper noises, and classification un-
certainty of pixel-level HSRRS image unsupervised classification, we propose the SSIFCM
algorithm, which is divided into three steps: (1) The simple linear iterative clustering
(SLIC) [23] algorithm is used to segment the preprocessed HSRRS image into superpixels.
(2) Setting an appropriate threshold, we use the SSIFCM algorithm to unsupervised classify
superpixel images according to their spectral features and local relationships. (3) Color
space is used to assign values to categories, and the figure of the final classification result
is obtained.

2.1. Superpixel Segmentation

Before fuzzy clustering, SSIFCM obtains local spatial information of HSRRS images by
SLIC algorithm. The SLIC algorithm clusters based on the similarity of pixels in the image
plane space, and the generated superpixels are compact, uniform, regular in shape, and easy
to express neighborhood features. Compared with other algorithms, the SLIC algorithm is
a simple idea: super-pixel segmentation based on the color and distance measurements of
pixels can integrate the spectral and spatial characteristics of images, which is more suitable
for the classification of HSRRS images of ground objects with complex details.

The main steps of calculating the local spatial information of HSRRS images are
as follows:

(1) Converting HSRRS images with N pixels from the RGB color space to the CIELab
color space [24];
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(2) Define two features Cj =
[
lj, aj, bj

]T and Sj =
[
xj, yj

]T in the CIELab color space of
the image. Cj and Sj represent the color value and the planimetric position of the jth
pixel, respectively. Where, lj represents the brightness in the Lab color model, aj and
bj represent the channels from green to red and blue to yellow, respectively,xj and yj
are the two-dimensional plane coordinates of the pixel j. First, the clustering center is
initialized, then the k seed points are randomly and uniformly sampled in the image
containing N pixels. The sampling interval is S:

S =

√
N
k

(1)

(3) To avoid superpixels concentrating on image edges or noise pixels, the clustering
center is moved to the corresponding position of the lowest gradient amplitude in
the 3× 3 neighborhood. Finally, in the neighborhood around each seed point, the
clustering center is marked for each pixel point according to the distance D:

D(j, g) =

√(
dc

NC

)2
+

(
ds

NS

)2
=

√(‖Cj − Cg‖
NC

)2

+

(‖Sj − Sg‖
S

)2

(2)

The distance D represents the tightness between the pixel and cluster center and is
used to determine the segmentation area of the pixel. dc represents the color distance, ds
represents the spatial distance, and g is the cluster center’s (superpixels) label. Nc is the
color normalization constant and denotes the maximum color distance. Nc varies with
different images and clusters and is generally replaced by a fixed value range from 1 to
40 (20 in this paper). Ns is a space distance normalization constant that represents the
maximum space distance within the class (Ns = S).

(4) After iteration, the clustering center (superpixels) will be updated as the vector
average, and the pixel values of the clustering center is:

ϕg =
1

γg
∑

j∈Gg

[
Cj
Sj

]
(3)

where Gg represents the clustering of the center ϕg(the g-th superpixel), ϕg is the average
vector of Gg, γg is the number of pixels in Gg. The iterative update is repeated until the
preset number of iterations is reached (generally 10).

2.2. SSIFCM Clustering Algorithm

The traditional FCM does not consider the spatial neighborhood information of pixels
in image classification and only uses the gray information of the image to calculate the
membership degree. As a result, the noise pixels are easily misclassified due to abnormal
feature information, which is only suitable for images with less noise. In order to classify
HSRRS images using FCM, it is necessary to consider spatial neighborhood information in
the clustering process. To compensate for the nonuniformity of traditional FCM, Ahmed
et al. introduced a parameter α that allows pixels to be affected by their adjacent labels
in the FCM objective function. He obtained the bias-corrected fuzzy C-means (BCFCM)
algorithm [25] based on deviation correction. The objective function is as follows:

JBC =
C

∑
i=1

N

∑
j=1

um
ij ‖zj − vi‖2 +

α

NR

C

∑
i=1

N

∑
j=1

um
ij

 ∑
zr∈Nj

‖zr − vi‖2

 (4)

where zj is the grayscale value the j-th pixel in the image, C represents the expected number
of categories, N is the number of pixels in the given image,um

ij is the membership of the j-th
pixel belonging to the i-th category in the image, vi is the i-th clustering center, parameter m
is a weighting exponent on each fuzzy membership and determines the amount of fuzziness
of the resulting classification, parameter α controls the effects of the neighbor item, Nj
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stands for the domain pixel in the surrounding window of zj and NR is the cardinality of Nj,
zr is the neighborhood pixels in the window around pixel j, and ‖‖ is a norm metric, which
represents the Euclidean distance between the pixel and the clustering center denoting
Euclidean distance between pixels and clustering centuries. JBC represents the sum of
Euclidean distances from all pixels to each cluster center. FCM clustering is essentially
finding the corresponding membership matrix and clustering center when the objective
function J takes the minimum value.

BCFCM mainly calculates the membership degree of the sample points to the clus-
tering center by optimizing the objective function, so as to judge the classification of the
sample points. The pixels in the HSRRS image are the sample points of the data set in the
BCFCM algorithm, and their characteristics (such as spectral characteristics) are sample
characteristics. The algorithm is not sensitive to noise, but the introduction of spatial
neighborhood information makes the distance between the pixels in the local neighborhood
window and the clustering center repeat, which increases the computational complexity.

The introduction of superpixels achieves the preservation of spatial neighborhood
information while effectively reducing the amount of computation. To reduce the number
of pixels in the image, increase the feature information of the object, and improve the
effectiveness of image classification and calculation efficiency, the SLIC algorithm is used to
realize the pre-segmentation of the image, and the pixel value in the original image region
is replaced by the spectral mean of the superpixel region.

In this paper, the input image is segmented by superpixel, and the superpixel region
is regarded as the basic unit of subsequent classification. The statistical method of the
regional CIELab color histogram is used to extract the spectral features of superpixels. Q
superpixels are obtained in the HSRRS image, and the spectral mean ξg(g = 1, 2, . . . , Q) of
each superpixel region is calculated to extract spectral features and encode the superpixel
regions in the image. Finally, the Euclidean distance between the superpixels and each
clustering center is calculated to complete clustering.

ξg =
1

γg
∑

j∈Gg

Cj (5)

where Gg represents the clustering of the center ξg (the g-th superpixel). After the com-
pletion of superpixel segmentation and spectral feature extraction, the uncertainty and
spatial function are added to merge the superpixel segmentation regions based on BCFCM.
The algorithm merges adjacent superpixels with similar attributes or features into a region
according to the merging criterion. The objective function of the SSIFCM algorithm is:

J =
C

∑
i=1

Q

∑
g=1

γgum
ig‖ξg − vi‖2 +

α

NR

C

∑
i=1

Q

∑
g=1

um
ig

 ∑
Gr∈Ng

γr‖ξr − vi‖2

+ π IFE (6)

C

∑
i=1

uig = 1 (7)

where ξr represents the spectral mean of adjacent superpixels around superpixel Gg, Ng
stands for the set of neighboring superpixels that exist in a window around Gg and Gr
is the neighborhood superpixels in the window around Gg, γr is the number of pixels in
superpixel Gg. π IFE represents intuitionistic fuzzy entropy (IFE) [26], which is considered
to express the degree of fuzziness in the clusters. The IFE was introduced to maximise
the valid data points in the clustering and minimise the entropy of the data matrix. When
the uncertainty of the elements in each cluster is known, the corresponding IFE can be
calculated. IFE is defined as:

π IFE =
C

∑
i=1

π∗i e(1−π∗i ) (8)
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π∗i =
1
Q

Q

∑
g=1

πig (9)

where πig is the uncertainty and represents the degree of hesitancy of superpixel Gg to the
ith cluster. The objective functions of the SSIFCM algorithm are as follows:

J =
C

∑
i=1

Q

∑
g=1

γgum
ig‖ξg − vi‖2 +

α

NR

C

∑
i=1

Q

∑
g=1

um
ig

 ∑
Gr∈Ng

γr‖ξr − vi‖2

+
C

∑
i=1

πige(1−πig) (10)

In this paper, the same method as traditional FCM is used to find the minimum value of
the objective function, and iterative optimization is used to optimize the objective function.
According to the Lagrange multiplier method, the following equation is constructed:

F =
C

∑
i=1

Q

∑
g=1

γgum
ig‖ξg − vi‖2 +

α

NR

C

∑
i=1

N

∑
g=1

um
ig

 ∑
Gr∈Ng

γr‖ξr − vi‖2

+
C

∑
i=1

π∗i e(1−π∗i ) +
Q

∑
g=1

λg

(
1−

C

∑
i=1

uig

)
(11)

Taking the derivatives of uig and vi, the equation is set to 0 to obtain the calculation
formula of the superpixel fuzzy membership uig and initial cluster center vi of the SSIFCM:

uig =

 C

∑
k=1


γg‖ξg − vi‖2 + α

N R
∑

Gr∈Ng

γr‖ξr − vi‖2

γg‖ξg − vk‖2 + α
N R

∑
Gr∈Ng

γr‖ξr − vk‖2


1

(m−1)

−1

(12)

vi =

 Q

∑
g=1

um
ig

γgξg +
α

NR
∑

Gr∈Ng

γrξr

 Q

∑
g=1

um
ig

γg +
α

NR
∑

Gr∈Ng

γr

−1

(13)

On the basis of BCFCM, the objective function is modified to cluster the superpixels.
At the same time, the spectral characteristics of each superpixel and its neighborhood
superpixels are considered, which effectively inhibits the salt and pepper phenomenon
caused by BCFCM that only uses image pixels for clustering. However, the BCFCM, after
the introduction of superpixels, only achieves clustering by calculating membership degree,
which still fails to solve the problems of unsupervised classification of HSRRS images, such
as categories that are difficult to control, lack of a clear definition of classification approaches,
and classification uncertainty caused by human factors. In contrast, intuitionistic fuzzy
clustering takes into account the functions of uncertainty (hesitation), membership, and
non-membership, which can describe the fuzzy characteristics in the real world in detail and
better solve the uncertainty problems in unsupervised classification [27,28]. Uncertainty
πig is expressed as:

πig = 1− uig − τig, 0 ≤ πig ≤ 1 (14)

where τig represents the non-membership degree, indicating the degree that superpixel Gg
does not belong to the i-th cluster. According to Sugeno’s intuitive fuzzy supplement [29],
the non-membership degree can be expressed as:

τig =

(
1− uig

)
(
1 + λuig

) (15)

0 ≤ uig + τig ≤ 1 (16)

where λ is the empirical value (5 in this paper). The increase in λ will reduce the value
of the non-membership degree, which makes the algorithm close to the traditional FCM.
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After the initial clustering center is obtained, IFS is introduced to calculate the membership
degree uπ

ig of the intuitive fuzzy superpixel:

uπ
ig = uig + πig (17)

Spatial features are essential features of remote sensing images. By measuring the
location of the superpixel in the image and the spatial relationship between the neighboring
superpixels, the purpose of distinguishing different ground objects can be achieved. In
addition, it has an excellent auxiliary role in solving the problem of “same object with
different spectrums” and “different objects with the same spectrum” in HSRRS image
classification. For the fact that adjacent superpixels have similar feature intensity and can
be easily classified into the same category, a spatial function hig is introduced to express
the possibility that the superpixel Gg belongs to the i-th cluster center. When the spatial
function value is high, most of the superpixels surrounding the Gg neighborhood belong to
the same cluster center. While the spatial function strengthens the original membership
degree of the homogeneous region, the weight of the noise pixels is also reduced through
the labels of adjacent pixels. For this purpose, a 5× 5 equal-weight mask centered on
superpixel Gg is used. The spatial function is expressed as:

hig = ∑
l∈Ng

uil (18)

where uil represents the fuzzy membership degree of neighborhood superpixels in the
i-th cluster.

The superpixel spatial intuitionistic fuzzy membership is calculated as:

u∗ig =
uπ

ig
phig

q

C
∑

k=1
uπ

kg
phkg

q
(19)

where u∗ig represents the intuitive unclear membership degree of superpixel Gg to the i-th
cluster, where p and q are parameters representing relative weights used to determine the
initial fuzzy membership degree uig and spatial function hig.

The cluster center updating formula is:

v∗i =

Q
∑

j=1
u∗ig

mξg

Q
∑

g=1
u∗ig

m

(20)

where v∗i is a cluster center after updating and represents the i-th cluster center after itera-
tion. The value of the superpixel spatial intuitionistic fuzzy membership matrix is updated
during each iteration, and the clustering center is updated repeatedly synchronously. When
the difference values of the membership matrix reach the set threshold range in the two
adjacent updates or the set maximum number of iterations is completed, it indicates that
the clustering center has reached the optimal value, and the iteration ends at this time. The
difference of superpixel spatial intuitionistic fuzzy membership is:

maxig

∣∣∣u∗new
ig − u∗old

ig

∣∣∣ < ε (21)

where u∗new
ig represents the membership matrix of the intuitionistic fuzzy of the superpixel

space updated last time. u∗old
ig represents the renewed superpixel spatial intuitive fuzzy

membership matrix. ε is the threshold.
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Z is the set of superpixel feature vectors. Ng denotes a set of superpixel neighbors.
C represents the number of clusters. Parameter α controls the neighborhood’s affect as
a predefined limit. The fuzziness of the cluster is controlled by m. ε is the termination
error. The max_iter is the maximum number of iterations. p is the relative weight of initial
membership. q is the relative weights of spatial functions. λ is the intuitionistic parameter.
vi denotes the cluster center. In this research, the values of α, m, ε , max_iter, p, q, and λ are
set to 0.2, 2, 0.05, 100, 1, 3, and 5, respectively.

Based on the above process, the proposed algorithm can be summarized as follows:
Step 1: input HSRRS image;
Step 2: convert RGB to CIELab;
Step 3: superpixel computing by SLIC by Equations (1)–(3). The maximum color

distance is set as Nc = 20, the number of segmentations k is the empirical value obtained
from a large number of experiments;

Step 4: extract the spectral features of superpixels using CIELab color histogram;
Step 5: the unsupervised classification uses SSIFCM as in Algorithm 1.

Algorithm 1 The proposed superpixel spatial intuitionistic fuzzy C-means (SSIFCM).

Input: Z =
{

ξ1, ξ2, . . . . . . . . . , ξQ
}

, Ng, C, α, m, ε, max iter, p, q, and λ
Output: uig

∗ and vi
∗

1. Initialize randomly the cluster center vi, i = 1, 2, . . . , C
2. for r D 0, 1, . . . , to max iter do
3. Calculate the superpixel fuzzy membership uig by Equation (12)
4. Calculate uncertainty πig by Equation (14)

5. Update the superpixel intuitive fuzzy membership uig
π by Equation (17)

6. Calculate the space function hig by Equation (18)

7. Update the superpixel spatial intuitive fuzzy membership uig
∗ by Equation (19)

8. Update the cluster center vi
∗ by Equation (20)

9. if Maxig

∣∣∣uig
πnew − uig

πold

∣∣∣< ε then

10. break
11. End if
12. End for

The overall technical flow of the proposed algorithm is shown in Figure 1.
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3. Results
3.1. Experimental Data

Four scenes of HSRRS images from the aerial image dataset (AID) [30], published by
Wuhan University and Huazhong University of Science and Technology in 2017, are used in
this work. The dataset was created by collecting sample images from Google Earth imagery;
the Google Earth images were post-processed using RGB renderings from the original
optical aerial images. The dataset contains 10,000 images, including 30 scene types, such as
airports, bare land, and forests; with approximately 220–420 images in each category, all
the images are labelled by experts in remote sensing image interpretation. The images in
this dataset are multi-sourced and come from different remote imaging sensors. Therefore,
the images of AID have multi-resolutions, varying from 0.5 to 8 m, with a unified 600 × 600
pixels image size to cover a scene with various resolutions.

To verify the effectiveness and generalization ability of the proposed algorithm, four
HSRRS images were selected from the AID (Figure 2). All the images contain three bands
of red, green, and blue. The four HSRRS images mainly include buildings, roads, water,
vegetation, and bare ground. The S1 image contains a large building with its own structure
rules; the shape of vegetation and roads in the image is irregular, which can be used to verify
the classification integrity of the classification algorithm in images with irregular regional
shape. The S2 image includes roads, bare land, and vegetation. The proportion of the pixels
in the image is unbalanced, which can be used to verify the stability of the classification
algorithm for images with unbalanced samples. Images S3 and S4 contain rivers and lakes,
and their boundaries with vegetation and bare ground are unclear, which can be used to
verify the discriminability of the classification algorithm for staggered objects.
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3.2. Accuracy Evaluation

In this paper, two groups of comparative experiments were designed. The first group
is used to verify the influence of both pixels and objects as basic units on the spatial
intuitionistic fuzzy clustering algorithm. The second group is used to verify the robustness
of the proposed algorithm. Qualitative and quantitative methods were used to evaluate the
accuracy of the classification results.

The quantitative evaluation of classification results is based on the confusion ma-
trix method, and the rows of the matrix represent the predicted category. The leading
indicators are as follows [31]: producer’s accuracy (PA), user’s accuracy (UA), overall
accuracy (OA), and Kappa coefficient. The higher the above index value is, the better the
classification effect.

The experimental platform is an Intel(R) Core (TM) six Core, 16 GB memory, Win10
operating system, and the software used includes MATLAB R2018b, Python 3.7, and PIE.

3.3. Experimental Results and Analysis
3.3.1. Experimental Comparison and Analysis of Pixel-Level and Object-Level Spatial
Intuitive Fuzzy Clustering Algorithms

In this group of experiments, the pixel-level spatial intuitive FCM (PSIFCM) clustering
algorithm [32] was used for comparison with the algorithm in this paper. Figure 3 shows
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the classification results of the pixel-level and object-level spatial intuitive fuzzy clustering
algorithms. To facilitate visual analysis and comparison, red rectangular boxes are marked
in the experimental results. Figure 3a,d,g,j are the reference images of the S1, S2, S3, and S4
images, respectively, which were obtained by manual visual interpretation.
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Figure 3. Experimental results. The red rectangle boxes are selected as the comparison areas. (a) S1
reference images, (b) S1 sIFCM, (c) S1 SSIFCM, (d) S2 reference images, (e) S2 sIFCM, (f) S2 SSIFCM,
(g) S3 reference images, (h) S3 sIFCM, (i) S3 SSIFCM, (j) S4 reference images, (k) S4 sIFCM, and
(l) S4 SSIFCM.

As seen from the classification results, the PSIFCM in Figure 3b,c shows that the red
rectangular labeled area produces a large amount of salt and pepper noise. The SSIFCM
solves this problem effectively. In the S2 image, it is shown that PSIFCM misclassified
vegetation and raw ground and produced ‘noise points’, resulting in a poor classification
effect. In our algorithm, the noise was effectively removed, and the specific ability of
ground objects was improved. In the S3 image, the water contour is irregular, the edge
information is fuzzy, and both algorithms produce misclassification. However, in the red
rectangular box in Figure 3h,i, the proposed algorithm improves the classification effect to a
certain extent. The S4 image contains a large area of water, and ground objects have various
categories but unknown boundaries, with significant differences within the categories. The
denoising impact of the proposed algorithm is better than that of PSIFCM, and the visual
effect of classification is the best.

Regarding classification accuracy, the building classification accuracy of PSIFCM in
Table 1 is good, but the classification accuracy of vegetation and road is lower than 89.00%.
In Table 2, PA values of PSIFCM vegetation and roads and UA values of raw ground are
optimal, but other items are lower than the SSIFCM by 6–14%. In Table 3, although the UA
value of the PSIFCM algorithm is high, its PA value is only 71.06%, and our algorithm is
superior to PSIFCM in other terms. In Table 4, it is shown that the vegetation PA value
and lake UA value of the proposed algorithm are slightly lower than those of the PSIFCM
algorithm, and the other items are optimal. The overall accuracy and Kappa coefficients of
the proposed algorithm are both higher than those of the PSIFCM algorithm, and 23 of the
30 evaluation indices are superior to those of PSIFCM.
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Table 1. Evaluation of S1 image pixel-level and object-level spatial intuitive fuzzy clustering algo-
rithms classification results.

S1 OA Kappa
Vegetation Load Building

PA UA PA UA PA UA

PSIFCM 89.88% 84.71% 83.94% 87.49% 88.25% 85.86% 97.42% 96.98%

SSIFCM 92.89% 89.21% 90.71% 89.10% 89.89% 92.51% 98.72% 96.74%

Table 2. Evaluation of S2 image pixel-level and object-level spatial intuitive fuzzy clustering algo-
rithms classification results.

S2 OA Kappa
Vegetation Load Bare Land

PA UA PA UA PA UA

PSIFCM 82.27% 66.28% 98.91% 83.05% 96.23% 67.57% 42.75% 97.20%

SSIFCM 88.87% 77.50% 98.34% 89.89% 95.21% 78.83% 56.74% 96.39%

Table 3. Evaluation of S3 image pixel-level and object-level spatial intuitive fuzzy clustering algo-
rithms classification results.

S3 OA Kappa
Vegetation Bare Land River

PA UA PA UA PA UA

PSIFCM 85.06% 77.63% 95.31% 70.14% 90.75% 96.01% 71.06% 98.29%

SSIFCM 89.78% 84.50% 95.61% 80.85% 93.91% 96.39% 79.25% 97.65%

Table 4. Evaluation of S4 image pixel-level and object-level spatial intuitive fuzzy clustering algo-
rithms classification results.

S4 OA Kappa
Vegetation Lake

PA UA PA UA

PSIFCM 95.02% 90.00% 96.24% 93.19% 93.97% 96.68%

SSIFCM 96.44% 92.88% 95.30% 97.34% 97.53% 95.62%

Thus, the experiments verify that the SSIFCM is superior to PSIFCM in classification
accuracy and visual effect.

3.3.2. Comparative Analysis with Main Unsupervised Classification Algorithms

In this group of experiments, results from the algorithm proposed in this paper were
compared with fourteen unsupervised classification algorithms, including K-means [33],
ISODATA [34], FCM [35], IFCM [36], fuzzy local information FCM (FLICM) clustering
algorithm [37], the hidden Markov random field models-FCM (HMRF-FCM) clustering
algorithm [38], the FCM clustering algorithm with spatial constraints (FCM_S) [39], the
FCM clustering algorithm with spatial and intensity constraint and membership (FCM-
SICM) [40], SFFCM [17], FRFCM [18], the superpixel-based FCM (SPFCM) clustering
algorithm [41], the SLIC-back propagation neural network (SBPNN) [42], felzenszwalb-
BPNN (FBPNN) [43], and the self-organization neural network (SOM) [44]. Among them,
K-means, ISODATA, FCM, IFCM, FLICM, HMRF-FCM, FCM_S, FCM-SICM, and SOM are
pixel-level classification algorithms, while SFFCM, FRFCM, SPFCM, SBPNN, FBPNN, and
SSIFCM are object-level classification algorithms, SBPNN and FBPNN are deep-learning-
based approaches.
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(1) S1 image experiment results

Figure 4 shows the experimental results for S1 image classification. As can be seen
from the figure, vegetation and roads are easily misclassified. Six algorithms, including
K-means, ISODATA, FLICM, HMRF-FCM, FBPNN, and SOM failed to distinguish between
roads and vegetation. Four algorithms, including IFCM, FCM_S, FCM-SICM, and SFFCM
misclassified some shadowed streets as vegetation. The IFCM, FCM_S, and FCM-SICM
algorithms are greatly affected by salt and pepper noises. Three other algorithms, FCM,
FRFCM, and SPFCM, have misclassification in the mixed region demarcated by the red
rectangular box. Only SBPNN and the proposed algorithm solve the above problems and
obtain the best classification effect. Compared with the classification results in Table 5, we
found that: the UA value of the IFCM algorithm is the best, but the PA value is only 62.47%,
while the proposed algorithm reaches 90.71%. The UA value of the K-means algorithm is
0.50% higher than that of the proposed algorithm, but the PA value is 34.15% lower than
that of the proposed algorithm. The SBPNN algorithm has three optimal indicators, which
are equivalent to the proposed algorithm, but the latter obtains the best overall accuracy
and Kappa coefficient. In general, the classification effect of the proposed algorithm is
better than those of the comparison algorithms.

Remote Sens. 2022, xx, x FOR PEER REVIEW 13 of 22 
 

 

 
(a) (b) (c) (d) (e) 

 
(f) (g) (h) (i) (j) 

 
(k) (l) (m) (n) (o) 

Figure 4. Experiment results of S1 images. The red rectangle boxes are selected as the comparison 
areas. (a) S1 K-means, (b) S1 ISODATA, (c) S1 FCM, (d) S1 IFCM, (e) S1 FLICM, (f) S1 HMRF-FCM, 
(g) S1 FCM_S, (h) S1 FCM-SICM, (i) S1 SFFCM, (j) S1 FRFCM, (k) S1 SPFCM, (l) S1 SBPNN, (m) S1 
FBPNN, (n) S1 SOM, and (o) S1 SSIFCM. 

Table 5. Evaluation of S1 image classification results. 

S1 OA Kappa 
Vegetation Road Building 

PA UA PA UA PA UA 
K-means 66.33% 46.81% 4.27% 0.70% 55.74% 93.01% 99.76% 92.25% 

ISODATA 66.31% 46.78% 4.73% 0.79% 55.70% 92.69% 99.75% 92.48% 
FCM 89.77% 84.50% 84.54% 85.32% 86.43% 87.93% 98.96% 96.02% 
IFCM 80.45% 71.04% 62.47% 92.93% 87.99% 58.55% 98.68% 96.28% 

FLICM 66.36% 46.89% 4.76% 0.81% 55.68% 92.27% 99.80% 93.16% 
HMRF-FCM 54.22% 29.45% 12.38% 9.43% 49.56% 65.45% 98.45% 80.51% 

FCM-S 80.34% 70.72% 63.19% 87.32% 83.70% 62.26% 98.98% 96.37% 
FCM-SICM 84.29% 76.52% 69.09% 89.75% 87.93% 70.06% 98.66% 96.93% 

SFFCM 70.42% 55.73% 49.15% 62.46% 66.37% 54.94% 99.66% 96.64% 
FRFCM 91.04% 86.42% 86.82% 86.55% 87.89% 89.67% 98.96% 96.76% 
SPFCM 90.53% 85.70% 82.89% 89.69% 89.47% 86.32% 99.47% 96.48% 
SBPNN 91.95% 87.79% 95.12% 86.30% 90.34% 91.58% 91.42% 97.47% 
FBPNN 68.12% 49.52% 4.24% 0.37% 55.86% 94.62% 99.90% 96.16% 

SOM 66.29% 46.73% 3.57% 0.57% 55.73% 93.29% 99.76% 91.89% 
SSIFCM 92.89% 89.21% 90.71% 89.10% 89.89% 92.51% 98.72% 96.74% 

Figure 4. Experiment results of S1 images. The red rectangle boxes are selected as the comparison
areas. (a) S1 K-means, (b) S1 ISODATA, (c) S1 FCM, (d) S1 IFCM, (e) S1 FLICM, (f) S1 HMRF-FCM,
(g) S1 FCM_S, (h) S1 FCM-SICM, (i) S1 SFFCM, (j) S1 FRFCM, (k) S1 SPFCM, (l) S1 SBPNN, (m) S1
FBPNN, (n) S1 SOM, and (o) S1 SSIFCM.
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Table 5. Evaluation of S1 image classification results.

S1 OA Kappa
Vegetation Road Building

PA UA PA UA PA UA

K-means 66.33% 46.81% 4.27% 0.70% 55.74% 93.01% 99.76% 92.25%

ISODATA 66.31% 46.78% 4.73% 0.79% 55.70% 92.69% 99.75% 92.48%

FCM 89.77% 84.50% 84.54% 85.32% 86.43% 87.93% 98.96% 96.02%

IFCM 80.45% 71.04% 62.47% 92.93% 87.99% 58.55% 98.68% 96.28%

FLICM 66.36% 46.89% 4.76% 0.81% 55.68% 92.27% 99.80% 93.16%

HMRF-FCM 54.22% 29.45% 12.38% 9.43% 49.56% 65.45% 98.45% 80.51%

FCM-S 80.34% 70.72% 63.19% 87.32% 83.70% 62.26% 98.98% 96.37%

FCM-SICM 84.29% 76.52% 69.09% 89.75% 87.93% 70.06% 98.66% 96.93%

SFFCM 70.42% 55.73% 49.15% 62.46% 66.37% 54.94% 99.66% 96.64%

FRFCM 91.04% 86.42% 86.82% 86.55% 87.89% 89.67% 98.96% 96.76%

SPFCM 90.53% 85.70% 82.89% 89.69% 89.47% 86.32% 99.47% 96.48%

SBPNN 91.95% 87.79% 95.12% 86.30% 90.34% 91.58% 91.42% 97.47%

FBPNN 68.12% 49.52% 4.24% 0.37% 55.86% 94.62% 99.90% 96.16%

SOM 66.29% 46.73% 3.57% 0.57% 55.73% 93.29% 99.76% 91.89%

SSIFCM 92.89% 89.21% 90.71% 89.10% 89.89% 92.51% 98.72% 96.74%

(2) S2 image experiment results

As can be seen from Figure 5, vegetation near roads in the S2 image is characterized
by strong spectral heterogeneity. Seven algorithms of IFCM, FCM-S, FCM-SICM, SFFCM,
FRFCM, FBPNN, and SOM failed to distinguish the road from raw ground correctly.
Six algorithms, including K-means, ISODATA, FCM, FLICM, HMRF-FCM, SPFCM, and
SOM misclassified some vegetation as raw ground and produced many noise points. The
SBPNN algorithm performed poorly in this set of experiments, and the classification was
not robust. However, the proposed algorithm can distinguish all ground objects correctly
and has a good suppression effect on the salt and pepper noises generated by the pixel-
level classification algorithm. Quantitative analysis shows that the proposed algorithm is
superior to the comparison algorithms in four aspects (Table 6). The overall accuracy, the
Kappa coefficient and the UA value of vegetation improved by 5.65–35.00%, 10.01–49.88%,
and 4.99–37.4%, respectively. The SBPNN algorithm achieved a bare ground PA value of
98.77% but had poor accuracy in other categories.
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K-means 80.30% 63.68% 98.95% 78.94% 95.92% 73.49% 39.93% 96.70%

ISODATA 74.89% 56.48% 99.19% 70.68% 94.98% 76.15% 33.91% 96.47%

FCM 80.42% 63.55% 98.75% 80.10% 95.98% 69.42% 40.17% 96.57%

IFCM 62.94% 36.92% 99.13% 66.59% 52.92% 91.07% 3.23% 6.03%
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FCM-S 61.92% 37.21% 99.35% 62.58% 54.82% 77.56% 15.13% 37.83%

FCM-SICM 59.94% 34.42% 99.87% 61.15% 51.53% 94.38% 4.01% 8.22%

SFFCM 66.97% 36.32% 95.58% 62.25% 52.10% 92.45% 0.04% 0.07%

FRFCM 53.87% 28.71% 99.76% 52.49% 55.73% 93.03% 3.77% 10.33%

SPFCM 68.48% 46.95% 99.10% 65.78% 72.02% 85.88% 23.30% 60.65%

SBPNN 71.99% 52.04% 95.13% 63.54% 37.96% 93.67% 98.77% 90.29%

FBPNN 55.56% 27.62% 99.03% 59.97% 4.72% 8.43% 43.23% 92.86%

SOM 61.89% 35.71% 99.38% 65.57% 53.61% 87.88% 3.72% 7.60%

SSIFCM 88.87% 77.50% 98.34% 89.89% 95.21% 78.83% 56.74% 96.39%
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(3) S3 image experiment results

Compared with the first two scenes, S3 is characterized by a fuzzy water boundary
and an irregular shape (Figure 6). For the water and vegetation areas, all algorithms have a
certain degree of misclassification and a large number of noise points generated, except
the SFFCM algorithm. In summary, the FBPNN and the proposed algorithm have high
integrity in distinguishing ground objects, and have a good smoothing effect on the salt
and pepper noises. However, the FBPNN algorithm is not robust enough for classification
in other images. As shown in Table 7, both the FBPNN and the proposed algorithm have
three optimal indicators, but the overall classification accuracy and Kappa coefficient of the
proposed algorithm are the best, with better performance in the other two indicators than
the FBPNN algorithm. Although the UA values of bare ground and river of the proposed
algorithm are slightly lower than those of the IFCM and HMRF-FCM algorithms, the PA
values of bare ground and river are improved by 9.81% and 28.78%, respectively.
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Figure 6. Experiment results of S3 images. The red rectangle boxes are selected as the comparison
areas. (a) S3 K-means, (b) S3 ISODATA, (c) S3 FCM, (d) S3 IFCM, (e) S3 FLICM, (f) S3 HMRF-FCM,
(g) S3 FCM_S, (h) S3 FCM-SICM, (i) S3 SFFCM, (j) S3 FRFCM, (k) S3 SPFCM, (l) S3 SBPNN, (m) S3
FBPNN, (n) S3 SOM, and (o) S3 SSIFCM.
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Table 7. Evaluation of S3 image classification.

S3 OA Kappa
Vegetation Bare Land River

PA UA PA UA PA UA

K-means 83.92% 75.97% 94.75% 68.02% 86.92% 96.31% 71.56% 97.24%

ISODATA 84.60% 76.93% 94.67% 69.69% 86.92% 96.31% 73.03% 97.00%

FCM 84.40% 76.66% 94.58% 69.29% 87.47% 95.97% 72.30% 97.31%

IFCM 82.17% 73.52% 95.45% 63.39% 84.10% 97.04% 69.77% 97.65%

FLICM 85.63% 78.43% 95.01% 71.68% 88.57% 96.44% 73.89% 97.38%

HMRF-FCM 58.24% 38.83% 57.14% 33.45% 77.91% 59.17% 50.47% 99.16%

FCM-S 83.27% 74.91% 91.88% 68.69% 86.30% 93.54% 72.40% 96.66%

FCM-SICM 85.10% 77.69% 94.99% 70.38% 91.90% 95.58% 70.65% 98.53%

SFFCM 83.96% 75.79% 89.38% 72.89% 92.16% 88.07% 72.17% 98.20%

FRFCM 86.05% 79.07% 95.35% 72.34% 93.43% 95.88% 71.38% 98.47%

SPFCM 86.61% 79.88% 95.48% 73.56% 91.05% 96.78% 73.94% 97.56%

SBPNN 81.40% 72.35% 92.38% 63.79% 99.13% 92.15% 62.10% 99.40%

FBPNN 89.71% 84.37% 94.66% 81.61% 93.94% 95.12% 79.95% 97.50%

SOM 84.98% 77.48% 94.21% 70.86% 92.56% 95.55% 70.29% 97.28%

SSIFCM 89.78% 84.50% 95.61% 80.85% 93.91% 96.39% 79.25% 97.65%

(4) Experimental results of S4 image

Due to the uncertainty of the homogeneity area, some algorithms showed poor classifi-
cation performance for the S4 image (Figure 7). K-means, ISODATA, and FCM are seriously
affected by salt and pepper noises. Although the IFCM, FLICM, FCM-S, and FCM-SICM
algorithms integrate other parameters on the basis of traditional algorithm, FBPNN and
SOM algorithms use neural networks to gradually merge each region and cluster each pixel
in the iteration, so salt and pepper noise still exists. HMRF-FCM produces considerable
noise, as well as serious misclassification. By introducing superpixels in SFFCM, FRFCM,
SPFCM, SBPNN, and the proposed algorithm, the salt and pepper noises can be effectively
suppressed, but the SBPNN algorithm cannot suppress an excessive combination of small
areas by the neural network in the iterative process, resulting in a loss of image detail. The
overall accuracy and Kappa coefficient of the proposed algorithm are better than those of
the comparison algorithm (Table 8). The vegetation PA value and lake UA value of the
ISODATA algorithm are the best, but the vegetation UA value and lake PA value are only
58.20% and 72.29%, respectively. The vegetation UA value and lake PA value of the SBPNN
algorithm is higher than those of the proposed algorithm. Nevertheless, the vegetation PA
value and lake UA value are much lower than those of the proposed algorithm by 9.63%
and 10.86%, respectively. Overall, the proposed algorithm obtains the optimal classification
accuracy. This collection of trials demonstrates the object-level classification algorithm’s
ability in “suppressing” salt and pepper noise.
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Table 8. Evaluation of S4 image classification results.

S4 OA Kappa
Vegetation Lake

PA UA PA UA

K-means 92.97% 85.86% 95.88% 89.09% 90.66% 96.51%

ISODATA 79.74% 58.64% 98.84% 58.20% 72.29% 99.38%

FCM 94.09% 88.14% 95.22% 92.24% 93.12% 95.78%

IFCM 94.02% 88.00% 95.46% 91.83% 92.80% 96.02%

FLICM 94.97% 89.92% 95.34% 94.05% 94.64% 95.81%

HMRF-FCM 79.19% 57.52% 97.74% 57.69% 71.92% 98.78%

FCM-S 94.24% 88.48% 92.77% 95.36% 95.66% 93.23%

FCM-SICM 95.48% 90.94% 95.14% 95.39% 95.79% 95.56%

SFFCM 95.23% 90.48% 91.94% 98.65% 98.68% 92.12%

FRFCM 96.23% 92.46% 93.81% 98.59% 98.66% 94.07%

SPFCM 95.98% 91.96% 94.11% 97.69% 97.82% 94.42%

SBPNN 92.02% 84.12% 85.67% 99.98% 99.98% 84.76%

FBPNN 94.24% 88.48% 91.68% 96.70% 96.83% 92.00%

SOM 91.91% 83.73% 94.35% 88.31% 89.94% 95.18%

SSIFCM 96.44% 92.88% 95.30% 97.34% 97.53% 95.62%
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4. Discussion

The proposed algorithm achieved better performance in four HSRRS image exper-
iments compared to the other fifteen algorithms, which demonstrates that SSIFCM is
effective and feasible for HSRRS image classification with rich details. It can be seen from
the experimental results that there are many factors affecting the accuracy of image classifi-
cation, including but not limited to the complex backgrounds in images and uneven pixel
ratios for each category.

The overall accuracy and Kappa coefficient in the S2 image experiment is lower
than those of the S1 image, mainly because the S2 image has a wide variety of ground
objects, different ground objects have spectral overlap, and the fuzzy boundary of contour
information is not clear, so the classification is more difficult. The overall accuracy and
Kappa coefficient of the S4 image are significantly improved, mainly because the content of
the S4 image is singular compared with other images, meaning less ground objects need to
be considered and the classification basis is easy to grasp.

Traditional pixel-level classification algorithms, such as K-means, ISODATA, and
FCM, have relatively singular feature information, which means they cannot accurately
express ground object information and are susceptible to salt and pepper noise, resulting in
poor classification results. IFCM, FLICM, HMRF-FCM, FCM-S, and FCM-SICM reduced
the disadvantages of the traditional algorithm and basically preserved the details of the
ground features, but the performance remains to be improved. Superpixels introduced
in the SFFCM, FRFCM, SPFCM, SBPNN, and FBPNN algorithms can suppress salt and
pepper noise, but misclassification still exists.

SOM is a shallow neural network model, but SOM has no obvious advantages over
other methods. SBPNN and FBPNN combine deep learning with autoencoder structures
to classify the input images. SBPNN and FBPNN pre-segment the images by using the
SLIC and Felzenszwalb algorithms, respectively, and then complete feature extraction of
the input images using a full convolutional network. A convolution network can better
perceive the difference in texture, not just rely on color to classify. However, SBPNN and
FBPNN are not robust enough, the algorithms are greatly affected by parameters, and the
results of the algorithms can vary with multiple random restarts. Besides, SBPNN and
FBPNN cannot achieve instance segmentation in practical application, assigning the same
label to pixels with similar semantics through iteration, is not fully applicable to HSRRS
images with rich information. FBPNN is an improvement from SBPNN, which reduces
the number of iterations, but leads to a decrease in accuracy. As can be seen in Figure 7l,
the SBPNN algorithm does not suppress excessive merging of small regions by the neural
network, which leads to a certain degree of detail loss.

Superpixel segmentation can reduce information redundancy and comprehensively
utilize spectral and spatial information of images, but the classification uncertainty of
some ground objects in HSRRS images still exists after superpixel segmentation. The
introduction of intuitionistic fuzzy sets can better solve the classification uncertainty, and
the control of spatial function on adjacent pixel weight can also effectively reduce the
influence of noise on classification results, so as to improve the classification accuracy.
In this paper, the algorithm can take into account the uncertainty of the characteristics
of homogeneous regions, so that the uncertainty expression of pixel classes is enhanced,
which optimizes the classification effect. The algorithm effectively solves the problem that
some regions in the experiment are easily misclassified due to strong spectral heterogeneity
and blurred boundaries, while effectively retaining boundary details, thus verifying the
distinguishability of SSIFCM for boundary-crossing areas. Such as the vegetation and bare
ground area in the S1 image red rectangle, it is also noted that the vegetation area marked
by a red rectangle box in the S2 image is prone to misclassification.

The computational complexity of SSIFCM is well discussed and studied, and compared
with SPFCM, SFFCM, and FRFCM, which has an overall better effect. Table 9 shows a
comparison of the computational complexity of the proposed algorithm when changing
HSRRS size and spatial resolution. The experiments were conducted using raw UAV images
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of a local area in Anning City, Yunnan Province, with a spatial resolution of 0.1 m and an
image size of 1706× 1546 pixels, containing three bands of red, green, and blue. By clipping
and resampling, seven images with the same spatial resolution and different image sizes,
and seven images with the same image sizes and different spatial resolution were obtained,
respectively, and used to explore the relationship between the computational complexity of
the proposed algorithm and the spatial resolution and image size of remote sensing images.
As can be seen in Table 9, image size is positively correlated with algorithm running time
when the spatial resolution is the same. The larger the image, the more content it contains,
and the more iterations the algorithm needs before reaching the threshold. When the
image size is the same, the change in spatial resolution has no obvious correlation with
the running time of the algorithm. The reason for this result may be that the proposed
algorithm completes the pre-segmentation through superpixels before fuzzy clustering. We
will conduct in-depth research on this issue in the future.

Table 9. The running time of SSIFCM for remote sensing images of different sizes and resolutions.

Spatial Resolution Size of Image Number of Clusters Riming Time

0.1 m 200 × 200 pixels 4 1.6 s

0.1 m 400 × 400 pixels 4 5.7 s

0.1 m 600 × 600 pixels 4 9.1 s

0.1 m 800 × 800 pixels 4 14.3 s

0.1 m 1000 × 1000 pixels 4 28.4 s

0.1 m 1200 × 1200 pixels 4 40.4 s

0.1 m 1400 × 1400 pixels 4 79.5 s

0.1 m 200 × 200 pixels 4 1.8 s

0.2 m 200 × 200 pixels 4 2.4 s

0.3 m 200 × 200 pixels 4 1.2 s

0.4 m 200 × 200 pixels 4 2.0 s

0.5 m 200 × 200 pixels 4 2.6 s

0.6 m 200 × 200 pixels 4 2.1 s

0.7 m 200 × 200 pixels 4 1.4 s

Table 10 compares the running time of the algorithm with SPFCM, SFFCM, and
FRFCM using the S2 image. In terms of the running time, there is still a slight gap between
the proposed algorithm and the comparison algorithm. The reason for this result may
be that the proposed algorithm improved on the basis of BCFCM, which is insensitive
to noise. Overall, the proposed algorithm is superior to SPFCM, SFFCM, and FRFCM in
accuracy evaluation. Similarly, we will continue to optimize the algorithm for the problem
of running time in the future.

Table 10. Comparison of the running time of SSIFCM with SPFCM, SFFCM, and FRFCM.

S2 Riming Time OA Kappa

SPFCM 3.7 s 68.48% 46.95%

SFFCM 2.9 s 66.97% 36.32%

FRFCM 5.1 s 53.87% 28.71%

SSIFCM 9.4 s 88.87% 77.50%
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5. Conclusions

In this paper, an unsupervised classification algorithm (SSIFCM) for HSRRS images
was proposed to cope with the problems pixel-level HSRRS image unsupervised classi-
fication, such as the ease of producing salt and pepper noises, serious misclassification,
and classification uncertainty. By introducing IFS and spatial functions, the membership
function was modified to a superpixel spatial intuitionistic fuzzy membership matrix that
considered the classification of uncertainty, membership degree, and non-membership
degree simultaneously. The limitation of single membership clustering is balanced in
this work to solve the problems of uncertain classification and the similar feature inten-
sity of adjacent pixels that are easily classified into the same category, which ensures the
classification accuracy.

Four HSRRS images in the AID were selected for verification. The overall accuracy
and Kappa coefficients of the proposed algorithm were better than those of the comparison
algorithm. The overall accuracy improved by 0.21~38.67% and the Kappa coefficient was
improved by 0.42~59.76%. Compared with the sound SFFCM and FRFCM, the proposed
algorithm outperformed the FRFCM in 22 and the SFFCM in 23 out of 30 indices in 4 groups
of experiments.

Further research will be conducted considering edge features and graph cutting to
improve the classification performance and adaptively determine the initial parameters of
superpixels and the number of classification categories.
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