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Abstract: Remote sensing technology allows to provide information about biochemical and bio-
physical crop traits and monitor their spatiotemporal dynamics of agriculture ecosystems. Among
multiple retrieval techniques, hybrid approaches have been found to provide outstanding accuracy,
for instance, for the inference of leaf area index (LAI), fractional vegetation cover (fCover), and
leaf and canopy chlorophyll content (LCC and CCC). The combination of radiative transfer models
(RTMs) and data-driven models creates an advantage in the use of hybrid methods. Through this
review paper, we aim to provide state-of-the-art hybrid retrieval schemes and theoretical frameworks.
To achieve this, we reviewed and systematically analyzed publications over the past 22 years. We
identified two hybrid-based parametric and hybrid-based nonparametric regression models and
evaluated their performance for each variable of interest. From the results of our extensive literature
survey, most research directions are now moving towards combining RTM and machine learning
(ML) methods in a symbiotic manner. In particular, the development of ML will open up new ways
to integrate innovative approaches such as integrating shallow or deep neural networks with RTM
using remote sensing data to reduce errors in crop trait estimations and improve control of crop
growth conditions in very large areas serving precision agriculture applications.

Keywords: leaf area index; fractional vegetation cover; chlorophyll content; hybrid-based parametric
regression model; hybrid-based nonparametric regression model; radiative transfer models

1. Introduction

The importance of robust retrieval of crop traits in the agricultural sector has been en-
dorsed by the Global Climate Observing System and reported in IPCC Sixth Evaluation [1].
Demand for food will increase in the future in order to feed a constantly growing human
population. Currently, the total global population is around 7.86 billion and the Food and
Agriculture Organization of the United Nations (FAO) estimates that it will increase to
11.2 billion by the end of the 21st century. To meet estimated world nutrition needs, it is
necessary to boost crop production. However, climatic change is likely to cause a reduction
in crop productivity in terms of quality and quantity, resulting in a progressive burden
on the ecosystem [2]. Thus, intervention in agriculture is necessary in order to obtain
not only high quantity yields but also high-quality yields while remaining economically
perspective [3].

To maintain crop productivity, croplands should be monitored during the growth
cycle, noting the changes in crop status that are manifested in biophysical (e.g., leaf area
index (LAI), fractional vegetation cover (fCover)) and biochemical (e.g., chlorophyll content
(CC) at leaf (LCC) and canopy (CCC) levels) variables. Where an abatement in yield can be
anticipated, for example, due to climate change, feasible measures must be undertaken to
avoid nutrient deficiencies in the population [4]. A precise management approach needs to
be adopted by providing accurate supplies of fertilizers (organic or non-organic), pesticides,
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and irrigation taking into account inter- and intra-field variability in crops [5]. This method
is known as precision agriculture (PA), and endeavors to reduce and optimize the cost of
inputs by using multiple sources of data informing about spatial and temporal variability
of the crops and soil sites [6].

For providing such data in a continuous and non-destructive way, remote sensing
(RS) technology provides an affordable and environmentally friendly tool to assess crop
area, type, and condition (e.g., diseases, plant pests, and plant stress states) in near-real
time along the season [7]. In this context, the continuous growth of space-based platforms,
such as airborne, unmanned aerial vehicles (UAV), and satellite remote sensing, along
with in situ observation, creates the potential to offer reliable and repeatable coverage of
Earth observation datasets. These will support and help farmers as well as national and
international ministries of agriculture for management and decision-making. In optical RS,
the visible near-infrared spectrum (VNIR) and short-wave infrared (SWIR) are often used to
record information about the state and dynamics of vegetation. This information is acquired
by the sensors that are implemented, making it possible for multispectral and hyperspectral
imaging [8]. Each of these images has different spatial, spectral, and temporal resolutions.
Multispectral imagery (e.g., Landsat, Sentinel 2, and SPOT) contains a limited number of
spectral bands. On the other hand, hyperspectral images (e.g., PROBA-1, HyspIRI, Hyper-
ion, and CASI) provide multiple bands that help detect subtle variations of ground covers
and their changes over time [9]. Therefore, the performance of hyperspectral data is outper-
formed in monitoring crop traits and has attracted researchers, e.g., estimating LAI [10],
fCover [11–13], and CC [14,15].

Since the advent of RS science, a diversity of retrieval methods has been employed to
link spectral reflectance with biophysical and biochemical traits. The earliest approaches
were (i) variable data-driven, i.e., empirical statistical approaches from a practical ex-
periment in 1970, and (ii) radiometric data-driven, also referred to as physically-based
approaches or radiative transfer modeling (RTM), appearing in the 1980s [16,17]. Dur-
ing the last two decades, hybrid retrieval approaches have paved the road to make the use
of both fundamental approaches (variable and radiometric data-driven) in a synergistic
way. Verrelst et al. [18] and Verrelst et al. [19] updated the actual taxonomy of the retrieval
methods into four main groups: (1) parametric regression methods follow an empirical
statistical approach, which postulates the explicit relationship between the spectra bands
as predictors and the interested canopy variable as the dependent variable. (2) Nonpara-
metric regression methods are preferred for use due to fewer limitations in using the
number of spectrum bands and in the type of data distribution as compared to the previous
method [20]. The non-explicit relationship between the feature spectrum and the target
parameters is assumed, which means that the relationship forum is not predetermined. This
method is divided into two classes: linear and nonlinear regression models. (3) Physically-
based canopy trait retrieval method is grounded by radiative transfer theory, which is a
mathematical model that describes the interaction between solar radiation and vegetation
canopies. Over the past four decades, a diversity of vegetation radiative transfer models
(RTM) have been developed, simulating the optical properties and radiative interactions
of leaves, canopies, and soil (e.g., see [21] for a comparison). (4) Hybrid methods are the
combination of physically-based canopy trait retrieval methods with data-driven models
(parametric and nonparametric).

A retrieval approach is used to model Earth observation (EO) data. With the ad-
vancement of remote sensing tools, the acquisition of EO data has increased the data
archive beyond dozens of 65 petabytes [22]. It increases the dimensions of the data struc-
ture in terms of spatial, spectral, and temporal resolution. Thus, these big data require
computational power to analyze, process, and create large-scale crop mapping [23,24].
The developed method of hybrid retrieval has the ability to speed up the processing chain
and find complex relationships between the canopy reflectance and the variable of interest
to obtain useful information about crop traits [22]. In addition, thanks to the synergistic
use of both mechanical (RTM) and data-driven methods (either parametric or nonparamet-
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ric), the ground in situ data are not urgently required in the simulation process but can
mainly be used for validation. Different studies have proved the efficiency of using such
a method in terms of the accuracy of estimates and mapping crop variables at local and
global scales [25–31].

Indeed, the terminology of a hybrid approach is widely denominated when combining
at least two methods, as claimed in the study of [32]. For instance, the hybrid method can be
a combination of a crop growth model (CGM) with a canopy RTM [33,34], a geometric and
a turbid medium model to represent the canopy in three-dimensional (3D) space RTM [35],
a geostatistical method with machine learning (ML) [36], or blending two methods of
MLs [37]. Verrelst et al. [18] and Berger et al. [32] exemplified the conceptual framework of
retrieval strategies, including the hybrid method based on a combination of RTMs with MLs
for estimating vegetation traits. However, some studies used vegetation indices instead of
ML to retrieve the targeted variable(s) based on the simulated spectra of the RTM [38,39].
Hence, there is no consensus about the exact terminology of a hybrid retrieval method,
i.e., the types of methods that may contribute to quantifying the vegetation properties
of interest.

Therefore, there is still a need to clarify the conceptual framework for the hybrid
retrieval methods, including a description of the basic idea of both approaches, parametric
and nonparametric, based on radiative transfer model simulation. To date, no review paper
has been devoted to depicting this optical retrieval method in a detailed manner, although a
variety of retrieval approaches (such as RTM and empirical statistical model using them as
an independent unit) are available to determine the essential vegetation characteristics in
the agriculture application. The review paper aims to provide a comprehensive overview
of the application of hybrid retrieval methods in the field of quantitative RS, exemplarily,
for retrieving LAI, fCover, and CC. Our paper is structured into several main aspects as
follows: In Section 2, the state-of-the-art hybrid approaches are explained by providing the
conceptual framework. Section 3 describes techniques that handle the simulated spectra
obtained from the radiative transfer model. The scientific literature over the past two
decades (from 2000 to 2022) was analyzed, as illustrated in Section 4. Sections 5 and 6
are devoted to presenting the results in the form of bar and pie charts and drawing the
conclusion and future perspective.

2. The Conceptual Frameworks of Hybrid Retrieval Methods

The foundation of optical remote sensing is radiative transfer models (RTMs), which
describe the interaction of matter and electromagnetic radiation [40]. RTM (deterministic
models) is an effective tool for precise retrievals of Earth attributes from satellite data and is
used in a variety of contexts, including the calibration of radiometric sensors, atmospheric
correction, and the modeling radiation processes in vegetation canopies [22]. In canopy
radiative transfer models, the link between leaf and canopy parameters and reflectance,
absorbance, and scattering mechanisms has been investigated [40–43]. According to the
complex structure of plants, various types of canopy RTMs have been proposed, starting
from the simple turbid medium model (1D) to the advanced Monte Carlo model, which
allows a clear representation of complex 3D canopy structures [21,44–46]. The most estab-
lished method of canopy modeling is to calculate the reflectance from the top of the canopy
(TOC) by coupling the leaf optical properties model and the canopy reflectance model to the
soil reflectance model (e.g., PROSAIL [47]). This aids to investigate how other disturbing
elements, such as soil background, nonphotosynthetic materials, and observation geometry,
affect canopy reflectance [48]. When combining the canopy reflectance models with the
atmosphere, the radiance from the top of the atmosphere (TOA), which is detected by the
sensor, can be computed [41,49]. To estimate leaf traits and canopy properties either from
TOC reflectance or TOA radiance data, the retrieval method as the core of a retrieval system
is needed [16].
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The hybrid retrieval method, as the main focus of this research, is to link both models
of canopy radiative transfer with the data-driven model. Analytically, a hybrid retrieval
workflow consists of two parts: first, establishing the lookup table (LUT database) for
simulating canopy spectra based on the predefined input parameters of RTM, and second,
applying a data-driven model (statistical methods) to simulations to estimate crop traits.
These simulations are determined according to spectral configuration for the particular
sensor. To search for the optimal simulated spectra closed to the measured spectra, two
methods are available to use, either the parametric or nonparametric regression method.
Selecting either of them depends on the types of sensors in remote sensing used. Many
studies prefer to use a nonparametric method with hyperspectral data due to its ability
to handle the high dimensions of the spectra and resistance against noise and spectrum
uncertainty [50]. This method is distinguished by its outstanding predictive power and
can be efficiently applied over the entire satellite images at a global or local scale to map
the functional traits of plants. This is not the case for the parametric method when using
multispectral data. Any of the retrieval methods, whether parametric or nonparametric,
can apply to these data, and this depends on the objective of the study.

The benefit of hybrid retrieval methods is that they mimic a wide range of land cover
scenarios (up to hundreds of thousands), resulting in a data collection far larger than what
can be obtained during a field study [20]. Hence, a large amount of in situ data is not
required; only a few samples are needed to validate the estimations. Keep in mind that
the developed retrieval method does not mitigate the nature of the ill-posed problem,
which often renders unstable results and uncertainties of results. To alleviate this problem,
prior information related to the correlation and distribution of the canopy variables [51,52]
and/or use additional information of spatial, temporal [53–55], both of them, or multi-
angular observation data [56] were integrated with LUT approach in the RTM. Figure 1
shows an overview of the hybrid retrieval methodology, including regression models. They
are described in the following Sections 2.1 and 2.2.

Figure 1. General workflow for the hybrid retrieval methodology.

2.1. Hybrid Modeling Based on Parametric Regression Methods

Over the last two decades, parametric models based on physical models have been
pronounced in the science of vegetation analysis to obtain universal indices applicable
under different environmental conditions. Given the various scenarios of synthetic canopy
spectra and their corresponding canopy characteristics, a hybrid model can be utilized to
create a new index or optimize and evaluate the robustness of vegetation indices (VIs),
shape indices, and spectral transformation techniques. In general, these techniques create
a regression model in which a few spectral bands with high sensitivity are selected for
the variable of interest. In the hybrid retrieval method, the generated regression model
is applied to simulation and experimental data. Then, the cost function is used to reduce
the discrepancy between the observed indicator and the simulation. To select the best
VIs for predicting canopy characteristics, the curve-fitting models are used to construct
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the relationship between the targeted variable and index. These models can be linear,
exponential, power, logarithmic, or polynomial regression. Finally, the implementation
of a validation procedure using empirical measurements is a necessary and final step
to verify the accuracy of the estimation of the variable of interest. Table 1 describes the
advantages and limitations attached to a parametric method that researchers need to
be aware of. The procedure of the hybrid method based on the parametric method is
illustrated in Figure 2 below, along with an overview of the most popular parametric
regression techniques.

Table 1. Overview of the advantages and limitations and caveats of the parametric method.

Hybrid Retrieval Method Advantages Limitations and Caveats

Parametric regression

1- It preserves the physical principles. 1- The accuracy of the results depends the type
of RTM model and the design of LUT.

2- The absorption and scattering features of the
reflectance spectrum are taken into account.

2- When using hyperspectral data, the spectral
range should be chosen with caution to
generate a simple or complex VI.

3- The statistical relationships between the
variable and the spectral response are taken
into account.

3- The representatives of the relationship
between VI and the variable of interest using
curve fitting function are limited to represent
the database.

4- It is simple to apply and computationally
inexpensive.

4- The possibility of obtaining accurate results
from this method may be questioned because
the uncertainty calculation is not provided.

5- The interpretation of the results is
straightforward.

5- The covariate with other variables related to
absorption properties is not taken into account.

6- Mapping crop traits over a large scale is not
a simple task.

Vegetation
indices

Parametric
regression 

Spectral
transformation

Shape
indices

Measured 

Vegetation indices 

  

Canopy reflectance  

OR/Both

Cost function 
(e.g., RMSE)

Validation Prediction 
(e.g., LAI)YesGround

data

No

I_VI

REP

D_VI

Two
bands

Three
bands

Four 
bands

CR

WT

Optimal Index
Fitting function 

(e.g., linear
regression )

RTM  
LUT database 

Input data 
(Reflectance and

vegetation indices with
the input variables of
canopy, leaf, and soil)

Figure 2. Workflow diagram of parametric algorithms in the hybrid method.
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2.1.1. Vegetation Indices

Vegetation index (VI), which was developed in the 1970s, is a mathematical com-
bination of surface reflectance from multiple bands to refine information about canopy
attributes, reducing susceptibility to confound influences such as soil background, illumina-
tion geometry, and atmospheric conditions [57–59]. The observations from several spectral
bands are transformed to provide a single value of VI. These numerical transformations,
which are semi-analytical measurements of vegetative activity, have been shown to differ
considerably not just with seasonal variation in green foliage but also throughout space,
making them valuable for identifying within-field spatial variability (i.e., in precision
farming application) [60].

VIs can be calculated from either broadband spectra (more than 50 nm intervals) or
narrowband spectra (5–10 nm intervals) [61,62]. In broadband VIs computed from multi-
spectral data, VIs intend to study the spectral properties of vegetation in both the visible
and near-infrared regions of the spectrum. The spectral response of vegetation within
the red domain is powerfully related to the amount and concentration of photosynthetic
pigments such as chlorophyll concentration, whereas the spectral response within the near-
infrared region is controlled by leaf structural characteristics (e.g., LAI and fCover). Since
hyperspectral narrow band data can separate and characterize the canopy, narrow-band
vegetation indices are recommended for use by finding the most effective combination
between spectral bands. Many VIs have been developed moving from two bands (e.g.,
Normalized Difference Vegetation Index (NDVI)) toward four spectral bands (e.g., the trans-
formed chlorophyll absorption in reflectance index/the optimized soil adjusted vegetation
index (TCARI/OSAVI)) [63]. The accuracy of estimates using VIs as model inputs can be
affected if the study does not identify an appropriate index through model inversion [64].
Further information about this technique presenting the general concept of VIs can be found
in these studies: [65–67] for LAI, ref. [68] for fCover, and [69] for CC.

2.1.2. Shape Indices

As an alternative to classical VIs, shape indices have been investigated to enhance
absorption features present in vegetation spectra since the advent of hyperspectral data.
One of the most common calculations used in the category of shape indices, the red edge
position (REP), is a significant feature for detecting the variations of crop variables [70–72].
It is defined as the maximum first derivative of the spectrum between the red and NIR
domains [73,74]. This region was often used to infer crop characteristics such as LAI
and CC [75,76]. Recently, it was discovered that the indices created by the red edge
(RE) bands (680–780 nm) are useful to enhance the precision of the estimates [76–79].
The extraction of REP parameters from various sources of spectral data has resulted in the
development of a number of techniques, such as maximum first derivative (MFD) [80,81],
the polynomial fitting (PF) technique [82], the inverted Gaussian (IG) technique [83], and the
linear extrapolation (LE) technique [84]. Cui et al. [85] succeeded in increasing the accuracy
of predicated LCC by proposing a new VI called red edge chlorophyll absorption index
(RECAI) and integrated it with classical VI (TVI).

Besides REP, there are other methods of calculation indices that depend on the
derivative-based VIs (D_VI) and integration (I_VI) [86]. Both methods convert the original
spectrum band for any spectral region, including the red edge band, into an index. In the
D_VI, the slope and first and second derivative curves of spectral reflectance are deter-
mined instead of using reflectance values, while in the I_VI, the integration of the spectral
regions at the visible wavelengths and the red edge is used to normalize the vegetation
index. Further details can be found in [72,87–89]. Indices based on derivative spectra
have been demonstrated to be more successful than reflectance-based indices because they
principally reduce background signals and separate overlapping spectra using a variety
of differentiation techniques [61]. Some studies performed a systematic evaluation be-
tween conventional VI and derivative-based indices, and the results confirmed that it is not
necessary to see such improvement when using a derivative-based index [86,90]. In the
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study of [91], the double-peak nitrogen index (DCNI I) was the best for estimating chloro-
phyll content, resulting in the ability to assess nitrogen content. For LAI, Qiu et al. [92]
constructed new derivative parameters of NDVI to improve the estimation accuracy. Com-
pared to the derivative-based index approach, the integration-based indices are utilized for
retrieving leaf chlorophyll (LCC) [89,93,94].

2.1.3. Spectral Transformations

In addition to the previous techniques, continuum removal and wavelet transform
methods are developed for airborne or satellite hyperspectral imaging instruments. Kokaly
and Clark [95] tested the potential of continuum removal (CR), a technique that is frequently
employed in geology, using dried leaf specimens, where broad absorption characteristics
in dry leaf spectra were subjected to CR, and absorption-band depths in relation to the
continuum were computed. Each absorption feature’s band depths were normalized.
The depth at the feature’s center and the region under the band depth curve were used
to examine normalization. In other words, CR normalizes the reflectance spectrum by
comparing different absorption properties related to vegetation characteristics with a
common baseline [96–98]. For instance, in the study of [99], the Chlorophyll Absorption
Continuum Index (CACI) was developed and calculated, based on computing the area
under the spectral curve between 550 and 730 nm. Other studies also used this technique
for enhancing the accuracy of crop traits (LAI, nitrogen, and chlorophyll) [97,100,101]. The
wavelet transform (WT) method is a viable method for analyzing the spectrum that converts
the original reflectance spectrum into coefficients resolving at high scales (e.g., small
narrow bandwidth absorption features) and low scales (e.g., broad absorption features).
The discrete wavelet transform (DWT) and the continuous wavelet transform (CWT) are
methods utilized to extract spectral features, whereby using one of these methods, the
optimum number of wavelet coefficients associated with a particular type of spectral feature
is determined [102]. Different studies focus on the WT method for estimating LAI [103,104],
chlorophyll content [105,106], fCover [107], and nitrogen [108].

2.2. Hybrid Approach Based on Nonparametric Methods

The nonparametric methods have recently gained prominence in the era of free Earth
observation (EO) data streams. In practice, the LUT databases, including pairs of simula-
tion and canopy parameters, are used to fit linear or nonlinear nonparametric regression
formulas, and the fitted equation is then utilized for estimating land surface parameters.
This is performed after the training data and testing data have been prepared. This is a
critical step for developing generic and robust hybrid models and is a typical application
of the supervised learning model. The learning process successfully lies in the ability to
minimize the error of the training sets and improve the accuracy over iterations [109].
To assess the generalizability of the regression model, the model should be tested based on
independent (unseen) datasets to ensure full interpretation of the spectral variance in the
optical remote sensing image that is reflected in the accuracy of the plant characteristics of
interest. Lastly, the results (estimated canopy characteristics of interest) from the successful
trained model should be validated with the ground data (Figure 3). Table 2 displays the
advantages and limitations and caveats of the nonparametric method.
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Figure 3. Flow chart of nonparametric algorithms process in the hybrid method.

Table 2. Summary of the advantages and limitations and caveats of the nonparametric method.

Hybrid Retrieval Method Advantages Limitations and Caveats

Nonparametric regression

1- It uses physical laws. 1- The accuracy of the results depends the type
of RTM model and the design of LUT.

2- It is accommodated to any type of data, be it
linear or nonlinear relationships.

2- It needs knowledge to optimize the model to
obtain realistic results.

3- It can be trained with the full spectrum
information, band selection, or transformed
spectrum.

3- As the model progresses, the complexity of
the model increases in terms of understanding
the model and analyzing the results.

4- It is fast at calculating and perfectly
implementing global maps.

4- It is fast at calculating global maps and is
perfectly executed.

5- Some MLs can calculate uncertainties for
assessing retrieval quality (inference on model
transparency).

5- When using a large set of data, the training
process is computationally expensive for some
methods.

6- It can tackle the problem of high
dimensionality and large size of training data.

2.2.1. Linear Nonparametric Regression Methods

Linear regression applied to optical data deals with more than one single explanatory
variable, called a regressor (X), for a regression model to determine the response variable
(Y) while keeping the assumption of linearity. Stepwise multiple linear regression (SMLR),
principal component analysis (PCA), and partial least square error (PLSR) are the most
popularized methods used in the 1980s, as compared to ridge regression (RR) and least
absolute shrinkage and selection operator (LASSO). These methods have been adopted
from simple linear regression. Table 3 presents the comparison of pros and cons of different
model representations.

• Stepwise multiple linear regression
Stepwise multiple linear regression (SMLR) is a way to select the most significant
explanatory variable from a set of independent variables that has the highest corre-
lation with the response variable (Y) [110]. The SMLR method is conducted in two
phases: forward and backward stepwise selections. The model starts with no variable
(spectral bands) and adds variables one by one, which is the most significant part.
Then, a backward elimination procedure starts with all spectral bands and removes
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the bands one-by-one, obtaining the least statistically significant. Typically, the range
of the p-value for entering and removing the variables is set between 0.01–0.02 [58]. In
addition, to quantify the severity of multicollinearity between explanatory variables,
the variance inflation factor (VIF) is an index to measure how much variance there is of
the estimated regression coefficient. A rule of thumb is that if VIF is more than 10, then
the data have high collinearity [111], otherwise no collinearity between independent
variables is found.

• Principal component regression
Principal component regression (PCR) is based on a combination of principal compo-
nent analysis (PCA) and linear regression model [112]. The main idea is to convert
the original variables into a new set of synthetic variables, which are independent
of each other. By using a linear transformation, the data are transformed into a new
orthogonal coordinate system where the data with the largest variance are displayed
on the first axis (referred to as the first PC), the data with the second-largest variance
on the second axis (referred to as the second PC), and so on [98]. As a result, the or-
thogonal PCs are ordered from the highest to lowest variance data information of
spectral features.

• Partial least square regression
Following a similar idea to the above method, partial least square regression (PLSR)
relies on two methods, which are PCR and canonical correlation analysis (CCA).
A large number of correlated variables of the spectral data is reduced to a few non-
correlated variables, with high variability. For the case of PCR, the projection space
of PCA depends only on the independent data (X); however, in partial least squares
(PLS), the projection space of X is explicative of both X and Y. The original variables X
and Y are transformed into their respective latent variables (X1 and Y1), and then PLS
seeks the most probable linear correlation between latent variables (the idea of CCA).

• Ridge regression
Ridge regression (RR) is a method for estimating the coefficients of multiple-regression
models in scenarios with highly correlated linearly independent variables. A new
trendline is introduced to fit the training data by adding a certain amount of bias in
the regression estimates to obtain reliable approximations of the population values.
The bias called lambda (λ) plays a role to control the trade-off of bias variance and the
user tries to find the best value of lambda that has low variance using cross-validation.
With increasing lambda value, the important parameters may shrink to be zero, and
fewer stay at high values.

• Least absolute shrinkage and selection operator
This approach, abbreviated as LASSO, uses variable selection and regularization to
improve the statistical model’s prediction accuracy and interpretability. This method
allows forcing the most and least important parameters to be close to zero or absolute
zero, as compared to RR.

2.2.2. Nonlinear–Nonparametric Methods: Machine Learning

As a part of the retrieval methods used in the hybrid model, machine learning (ML)
does not rely on any particular form of the regression function to characterize the connec-
tion between the dependent (variable of interest) and explanatory variables (in this case,
a spectral reflectance image). In addition, ML not only provides a powerful and flexible
framework of the data-driven method for making a decision, but it also allows for the
incorporation of expert knowledge into a learning system. For this reason, ML is becoming
increasingly popular and important in the field of agricultural monitoring studies. Below is
a brief description of ML methods, with their pros and cons summarized in Table 4.
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Table 3. Pros and cons of the linear nonparametric methods.

Methods Pros Cons

SMLR

(1) Simple, fast, and easy to use. (1) Suffers from multicollinearity when applied to canopy
hyperspectral data.

(2) Screens a large number of potential predictors to obtain
the best one.

(2) The selected wavelength is often not related to the
absorption characteristics of the compounds of
interest [113,114].

PCR

(1) Mitigates multicollinearity and avoids overfitting prob-
lem.

(1) Does not consider the response variable (Y) when
deciding which principal components are dropped and
relies only on the magnitude of the variance of
components.

(2) Improves the predictive performance and provides stable
result in regression coefficient.

(2) Does not perform feature selection.

(3) Issue of interpretability.

PLSR
(1) Handles multiple inputs and outputs, data noise,
and missing data.

(1) Relies on the cross-product relations with the response
variables and is not based on the (co)variances between
independent variables.
(2) Has difficulty explaining.
(3) Response distribution unknown.

RR
(1) Solves the problem of overfitting. (1) Low in-model interpretability.
(2) Adds bias to estimators to reduce the standard error. (2) Unimplemented the feature selection.
(3) Uses all the predictors in the final model. (3) Trades the variance for bias.

LASSO

(1) Performs feature selection. (1) Arbitrarily selection.
(2) Fast in terms of inference and fitting. (2) Difficult to justify which predictor needs to select.

(3) Avoids overfitting. (3) Uses a small bias in the model since the prediction is
too dependent upon the particular variable.
(4) Lower prediction performance than RR.

• Artificial Neural Networks
An artificial neural network (ANN) is a collection of connected artificial neurons, and
each artificial neuron or node connects to another, linking with weight, and nonlinear
equations are specified by the activation function (e.g., rectified linear unit or sigmoid
functions). Through a nonlinear function of the sum of its inputs, the output of each
neuron is calculated. When exceeding a certain value of the threshold/activation
function of the output node, then the node is activated and data are sent to the next
layer (having a set of neurons or nodes) of the neural network, known as the hidden
layer [115]. This leads us to identify the design or structure of ANN starting from
simple to the complex one, depending on the number of hidden layers, the number of
artificial neurons, the directional flows (uni or multi), the type of activation function
used, and how many inputs and outputs are used in the model. An example of simple
architecture is a feed-forward neural network (FFANN). It was often used in remote
sensing for mapping vegetation properties in the mid-1990s. This is a unidirectional
flow, where the information from the input nodes is transferred to the output nodes.
An back-propagation neural network (BPANN) is built based on using multi-directional
forward and backward mode and the error rate obtained from the output layer and
distributed back through the network layers [116]. As an alternative to the afore-
mentioned methods, radial basis function (RBFANN) [117], recurrent neural network
(RANN) [118], and Bayesian regularized ANN (BRANN) are advanced models that
deal with a large quantity of remotely sensed data [119].
Deep neural networks (DNNs), which emerged in 2015, have achieved excellent results
in classification tasks. Nevertheless, DNN is still under investigation for regression in
experimental and operational hybrid settings [24]. It uses many hidden layers and
relatively few neurons per layer, as compared to the simple structure of NNs [115].
Ultimately, the success of NN performance relies on how the user adjusts the hyperpa-
rameters, such as the number of hidden layers and neurons in the layer, to minimize
the difference between the model prediction and the desired outcome, respecting a
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good trade-off between the computational time, stability, and accuracy [34].
• Ensemble learning

Ensemble learning (EL) uses multiple learners that are trained to solve the same prob-
lem. The EL approach mixes numerous decision trees to generate higher predictive
power, instead of using a single decision tree. Bagging and boosting are the main
families of ensemble methods. An ensemble is made up of a group of learners known
as base learners. An ensemble’s generalization ability is usually much higher than
that of base learners.
- The bagging technique is the short form for bootstrap aggregating, in which the
independent multiple sub-groups of features are randomly created with iterative
replacement from original training datasets. Their decision trees are trained with each
group of data and aggregated to average (reducing the variance of the decision tree)
to obtain the final prediction [120].
Random forest regression (RFR) is an extension over bagging where a subset of features
is randomly selected from the total and the best split feature from the feature subsets
is used to split each node in a tree and all features are examined for splitting at a
node [121].
A canonical correlation forest (CCF) is a collection of decision trees that are constructed
by several canonical correlation trees (CCTs). They are trained by using canonical
correlation analysis (CCA) to determine feature projections providing the maximum
correlation between features and then picking the optimal splits in this projected space.
The results from individual CCTs combine to make a final prediction for unknown
samples [122]. Contrary to RF, CCF uses full training datasets in selecting split points
at each tree. Since the bagging approach works based on the combination of multiple
weak learners to obtain a stable result, it is the preferred method to be used for any
study. However, the result can be biased if the model is properly adapted and thus
may result in underfitting.
- Boosting is a dependent framework, based on generating several weaker learners
in a very adaptable manner and sequentially to make a strong learner. At every step,
a new model is built upon the previous one to boost the training instances by weighing
previously mislabeled examples with higher weight. The best example of a dependent
framework is gradient boosting regression tree (GBRT), introduced by [123], which
aims to reduce the bias rather than variance. On the other hand, random forests reduce
the variance of the regression predictions without changing the bias.

• Kernel machines
A kernel machine uses a kernel to perform calculations in a higher-dimensional space
without explicitly doing so. Kernel methods transform data from their original location
(known as input space) to a higher-dimensional space (known as feature space). Then,
in the feature space, these approaches look for linear decision functions that become
nonlinear decision functions in the input space [124]. Kernel methods replace the inner
product of the observations with a chosen Kernel function. There are various classes
of kernel functions, including the linear kernel, radial basis function, polynomial,
and sigmoid functions. They should be continuous, symmetric, and have a positive
definite value.
- Support vector regression (SVR) was introduced in the late 1990s to early 2000s
by [125,126] SVR enables the extraction of the complex nonlinear relationships be-
tween the feature vector (X) containing spectral information and the variable of interest
(Y) using the kernel trick. This approach determines how much error is acceptable in
the model and finds an appropriate line (or hyperplane) to split the data spatially in
high-dimension space. Ultimately, the performance of SVR depends on which kernel
function is used in the model and how the user tuned their hyperparameters (epsilon-
insensitive zone (ε) and regularization (C) parameters). The parameter (ε) controls
the width of the epsilon-insensitive zone for the training data, whereas regularization
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(C) controls the trade-off between the minimization of errors and the regularization
term [127].
- Gaussian processes regression (GPR) follows the Bayesian theorem by using the
probability distribution across all admissible functions that fit the data [128]. Af-
ter specifying the prior on the function space, the posterior distribution is computed
based on the prior distribution for the successor retrieval procedures [129]. Since GPR
can describe the properties of functions, the mean of a (Gaussian) posterior distribution
and variance are predicted. To increase the efficiency of the GPR model, the kernel’s
hyperparameters (mean and covariance function) need to be tuned efficiently for
maximizing the log-marginal likelihood in the training data [130].
- Kernel ridge regression
Kernel ridge regression (KRR) combines the kernel trick with ridge regression [19].
The key idea is that nonlinear map data can be transformed to high-dimensional
feature space and linear regression embedded in feature space using a weight penalty.
As a result, it learns a linear function in the space caused by the kernel and data.
This relates to a nonlinear function in the original space for nonlinear kernels [131].
The model learned by KRR has the same form as support vector regression (SVR).
The loss function of SVR is based on ε-insensitive loss with ridge regression, but KRR
uses the square error loss function to solve a convex quadratic programming problem
for classical SVMs [132].

Table 4. Pros and cons of nonlinear nonparametric methods.

Method Pros Cons

ANNs

(1) Holds a lot of promise for revealing the hidden
correlated variables and distribution in datasets.

(1) Characterized as ”black-box” and it is difficult to explain
and assess the model performance.

(2) Regardless of the noise in the data. (2) Requires lots of computational power.
(3) Speeds up computational power when using the DNN. (3) Needs a lot of data for training.

(4) Reduces the overfitting problem in the DNN. (4) Difficult to optimize the neural network model for
production.

EL

(1) Reduces variance and bias. (1) Hard to predict and explain.

(2) Elevates weak learners. (2) Reduces the predictive accuracy by wrong choice of
model.

(3) Insensitive to data distribution patterns and noise.
(4) Handles overfitting problem by using bagging method.

Kernel machines

SVR

(1) Deals with the overfitting problems. (1) Does not compute the uncertainty associated with the
prediction.

(2) Handles nonlinear data and is effective with
high-dimensional data.

(2) Expensive in terms of computation time and processing
power.

(3) Stability and no effect in the hyperplane when slight
change in the data. (3) Not suitable for large datasets and sensitive to noise.

(4) Careful with choosing the optimal kernel for the SVM.

GPR

(1) Captures the model uncertainty by calculating the mean
and standard deviation of prediction.

(1) Computationally expensive when using the large size of
data.

(2) Does not require a large sample size for training and is
unrelated to the data distribution. (2) Less efficiency in high-dimensional spaces.

(3) Incorporates expert knowledge and specifications about
the shape of the model via the choice of kernel.

KRR

(1) Fast in computation as compared to the SVR and GPR. (1) No sparseness in the vector of coefficients, unlike the
SVR.

(2) Simple during model training because it finds the
parameters that reduce the mean squared error.

3. Techniques Used for RTM Database in Hybrid Retrieval Strategies

To generate a lookup table database (LUT), all possible combinations of canopy vari-
ables are produced by defining the boundaries and distributions of input parameters for
a given model. This information can be acquired through the user experience, fieldwork,
or/and previous studies [133]. Due to the large set of simulations stored in the LUT
database (containing canopy parameter checks and their corresponding simulated spectra),
various techniques have been proposed to help find the best spectral sample from the
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pooled dataset. The selected sample should contain sufficient and rich information to
represent the objective under consideration. Neglecting this procedure may affect the
accuracy of the estimated variable (Figure 4).

Figure 4. Overview of the techniques used in simulating the data.

3.1. Calibrating the Lookup Table Inputs Based on Global and Local Sensitivity Analysis

Calibration of the model inputs before applying the RTM for a specific crop is an
indispensable step since the model’s resilience and realism can be examined to improve
the results. This is performed by minimizing the number of free variables [134]. For
instance, the advanced RTMs (e.g., DART and SCOPE), which contain a great number of
input parameters to characterize the complex land–atmosphere interactions in geophysical
parameters, typically need intensive work for calibration. Indeed, some of the input
parameters have a high impact on the model’s output, whilst others do not. Therefore,
the role of using sensitivity analysis (SA) is attempted to identify which parameter is the
most or least significant in a specific spectral region to understand the model process
and quantify the uncertainty of each of them on the model output [135]. Each model
input parameter is variated one at a time (OAT) in the model output, while the rest of
the parameters remain constant at their central values. It is a straightforward technique
belonging to a local SA. Such a sensitivity computes through gradients or discrete partial
derivatives of spectrum reflectance while taking into account the input parameters [136].
Regarding its simplicity and inexpensive computational time, it is often used, although it
is not suited for complex models and does not know the interaction between parameters.
To overcome this drawback, global SA (all at a time (AAT)) has been explored to present the
variations in the model input parameters individually (first-order effects) and collectively
through their interactions (known here as the total-order effects). This can create the
variability of the model output [137,138]. Besides applying GSA to the input parameters of
RTM, the GSA of VI based on RTM simulations is carried out to evaluate the propagation
of uncertainty obtained from confounding factors (e.g., soil background and atmospheric
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correction). It may lead to improvements in the results of using VI to describe canopy
properties [138,139].

In general, here are some of the most commonly used techniques in global SA:

• Variance-based sensitivity analysis (VBSA), such as the Sobol method [140], Fourier
amplitude sensitivity test (FAST), and the extended Fourier amplitude (EFAST) [141–144].

• Density-based sensitivity analysis (DBSA) [93,137,145].
• Global screening method, such as the Morris method [146] and Latin hypercube-OAT

(LH-OAT) [147].
• Regression/correlation-based techniques [148].
• Regionalized sensitivity analysis (RSA) [149].

In RTMs (e.g., PROSAIL, SLC, and SCOPE), several studies have widely applied the
VBSA [63,135,138,150,151], rather than the DBSA [152], method. The VBSA aims to quantify
the variance of the main effect and the higher-order effect of factors that contributed to the
variance of the model output [63]. Instead of using variance as a basic assumption of VBSA,
DBSA analyzes the distribution of model output using probabilities density function (PDF)
or cumulative distribution function (CDF) of the output to characterize its uncertainty [152].

3.2. Active Learning for Regression Tasks

The experimental design and sampling strategy play important role in the retrieval
process as the size of the LUT has an impact on the accuracy of the estimates. With a
small size of the LUT, the estimation accuracy can deteriorate. Contrarily, the large size
might lengthen computation times without providing any additional benefits in terms of
accuracy [153]. The goal of experimental designs is to maximize the information from a
small number of simulations [154]. From here, the role of ML can be accessed. A form
of ML known as “active learning (AL)” allows learning algorithms to engage with users
to categorize data with desired outcomes. AL can be used for classification, emulation,
or regression task [155]. In hybrid retrieval schemes, ALR is a subclass of an intelligent
sampling methodology for active learning (AL), known as “optimal experimental design”.
It is an alternative approach to random sampling strategy [155]. It is a naive approach
and may not lead to optimal sample selection [156]. Hence, this approach is modified
by the introduction of systematic sampling and stratified sampling. This refers to Latin
hypercube sampling (LHS) as an effective method for sampling from their multivariate
distributions [157].

Returning to ALR, the objective of this method is to reduce the sample size of the
pooled dataset while having the richness and diversity of information [156]. Through the
regression process, a number of labeled samples are needed to build a regression model
with good generalization ability [158]. In a hybrid scheme, a large database generated
from RTM consists of unlabeled samples. This means that we cannot know which of the
reflectance spectra belongs to which set of input parameters, and it may not be useful
to use them all for training via advanced regression methods (e.g., kernel methods and
deep learning) [159,160]. Most of these databases contain quite redundant information and
are noisy, leading to high computation time and dispersion of estimates [161]. Therefore,
the need for ALR in data classification is an indispensable task to solve the problem
of training a sample collection. Theoretically, ALR starts with selected small training
datasets of label data and then repeatedly adds new samples to the original training
set of samples (unlabeled data), depending on query criteria. This can be defined by
either uncertainty [162] or diversity measures [163], without involving human experts.
An uncertainty query aims to find unlabeled samples, which are the most uncertain instance
with the least confidence near the decision boundary. The selected samples are used to
delimit the position of boundary decision and then labeled to include them later in the
training set and remove them from the candidate test [164].

There are two known measures that have been used to obtain a reliable sample.
The first measure is the calculation of uncertainty when sampling ALR. This is roughly
divided into three categories, as follows: a variance-based pool of regressors (PAL) [165], en-
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tropy query by bagging (EQB) [166], and residual regression AL (RSAL) [167]. In the second
measure, for taking a diversity of unlabeled samples, which depends on the diversity or
the distance between the samples, the selected samples are added to the training data after
labeling them. Thus, the redundancy among the selected samples is avoided [168]. In this
measure, three classes are used: (1) Euclidean distance diversity (EBD) [169]; (2) angle-
based diversity (ABD) [168]; and (3) cluster-based diversity (CBD) [170].

To obtain more knowledge about AL heuristics, the study of [171,172] is elaborated in de-
tail. Several studies have been devoted to evaluating six types of two measures of AL with ker-
nel methods (GPR and KRR) using multispectral and hyperspectral data [155,159,171,173,174].
They were unanimous that the diversity measure (especially EBD) outperformed the uncer-
tainty measure, because it delivered the highest levels of accuracy while speeding up the
time required for computation [155].

3.3. Curse of Dimensionality

With the increasing dimensionality of spectral features, the data become increasingly
sparse in the space they occupy. This case typically occurs in the hyperspectral data, which
oversample reflectance spectra in many wavelengths, leading to multicollinearity between
spectral bands. In addition, processing such a big data stream is going to degrade regarding
the heavy computational burden and storage cost. Therefore, dimensionality reduction
(DR) has to be taken to tackle the curse of dimensionality (CoD) problem by condensing
or reducing the spectral data while preserving the significant information in the original
data. In the context of a hybrid retrieval processing chain, using DR with nonparametric
regression to train the LUT database becomes a favorite step for improving the accuracy of
canopy retrievals while gaining some speediness in the processing [175]. These simulations
with high-dimensional data can be redundant information and need to be condensed to
significant information content to have a low dimension space. Another issue of CoD is
overfitting, where training (sparse) data by using the advanced regression models could
lead to an increase in variance. This is because the model repeatedly performs the training
process during the calibration process to reach the best results. However, when applying the
model to unseen data through the validation process, the estimation accuracy is decreased.

Two techniques are commonly applied to tackling such a problem (CoD): feature ex-
traction and feature (band) selection. Feature extraction (FE) is the process of transforming
information from an original feature dataset into an appropriate new feature subspace.
Such a technique can reduce the model complexity and generalization error introduced by
noise irrelevant to features. Among feature extraction methods, PCA [176] and PLS [177]
are the most popular methods in chemometric and remote sensing applications.

With the second technique (feature (band) selection) (FS), the original feature of
spectral bands is subsetting into small feature sizes by removing the redundant or irrelevant
features. In other words, the original representation of the data is not altered and maintains
the original meaning, unlike feature extraction. From a practical perspective, the feature
band selection is categorized into three groups: the filter, the wrapper, and the embedded
techniques. Compared to the embedded method [178], filter [179] and wrapper [180] band
selections are major methods used in the field of remote sensing, especially in classification
tasks; however, less work focuses on retrieval studies [174].

• Filter approach is extracting and ranking the spectra features as a preprocessing step
before learning the algorithm [181]. The best feature with a high rank is chosen
and the redundant or irrelevant features are filtered out. This can be performed by
finding the highest correlation between a spectral feature and a dependent variable.
The vegetation index (VI) is a typical case for the filter method [174]. Before applying
regression, all possible band combinations between two or three bands through generic
VI-based LUT datasets are regressed against the targeted variable. The model’s
performance is assessed based on the determination coefficient as a measure.

• Wrapper approach uses a predefined learning algorithm to search the space of all
possible subsets of features. The most informative spectral features based on their
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predictive performance are selected for retrieving canopy properties. This process is
repetitive to improve the performance of the previously selected feature subset [182].
Some methods belong to this group, such as recursive feature elimination (RFE) [183],
simulated annealing (SA) [184], genetic algorithms (GA) [185], and correlation-based
feature selection (CFS) [186]. Moreover, nonparameter linear or nonlinear algorithms
(e.g., SMLR, PLSR, RFR, and GPR) are capable of feature selection as well as regres-
sion [58,187]. These strategies have been used in different studies to determine the
best band settings for retrieving biochemical and biophysical characteristics from
hyperspectral data [23,188].

• Embedded method is the last group of FS, which is an extension of the wrapper method,
except that the training data do not need to be split into training and test sets [189].

4. Systematic Reviews

In this section of the reviewed articles, each of the three variables of interest is classified
into two categories; one for the parametric method and the other one for the nonparametric
method. To screen the literature review for such an objective, Scopus, Google Scholar,
ScienceDirect, PubMed, Web of Science, and MDPI were used as search engines. In addi-
tion, the “hybrid retrieval method” was used in conjunction with each of the following
keywords: “machine learning, vegetation indices, radiative transfer model, LAI, fCover or
vegetation cover, and LCC and CCC”. A total of 102 publications were found in total for
2000–2022. On the other hand, publications in languages other than English, conference
papers, chapters, reviews, and master’s and doctoral theses were excluded after reviewing
the aggregated data for the published papers.

Finally, 73 of the total published papers, which include 46 and 27 papers applied to
nonparametric and parametric methods, respectively, were identified under this research.
Figure 5 shows the general trend of published papers over a period of 22 years, indicating
the greater use of the hybrid retrieval approach in the journal Remote Sensing rather
than the journal Remote Sensing in Environment. Moreover, the upper part of Figure 5
shows that there is a larger number of publications applying the nonparametric method for
training the LUT database (64%) than the parametric method (36%).
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Figure 5. (Lower part) Bar chart showing the number of studies versus the annual number of pub-
lished papers in different journals from 2000 to 2022. (Upper part) Pie chart showing the percentage of
published papers applied for nonparametric compared to parametric methods based on the radiative
transfer model (RTM) approach.
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4.1. Estimated Canopy Traits from Hybrid Models Based on Parametric Methods
4.1.1. Leaf Area Index

Two studies were devoted to analyzing the wheat crop. For example, the study of [190]
explored the effect of using prior knowledge relating to the distribution in the LUT-based
inversion. Moreover, by using fifteen vegetation indices along with the reflectance bands,
the accuracy of leaf area index (LAI) winter wheat retrieval with different phenological
stages was improved. In the other study [191], the authors also investigated the perfor-
mance of reflectance-based LUT and vegetation index (VI)-based LUT over six experimental
plots from 2018 to 2019 for wheat LAI retrieval.

For mixed crops including wheat, the red-edge-based VI was assessed from mul-
titemporal RapidEye images and compared with VI-visible reflectance using synthetic
spectrum [76]. The authors of [192] tried to find the optimal VI from nine tested VIs, using
the curve fitting and backward feature elimination method (BFE) integrated with RFR.
Then, three regression models, including curve fitting, k-nearest neighbor (KNN), and RFR,
were determined to find the optimal algorithm for building the relationship between LAI
and VIs. The aim of [193]’s study was close to the idea of other studies by finding the
suitable LAI-VI that can be resistant to chlorophyll content and atmospheric and soil bright-
ness effects. Concerning the property of generalization, the uncertainty measures were also
considered through the analysis, which was mainly focused on the crop reflectance model
(e.g., PROSAIL). As sources of propagation of uncertainty in LAI estimation, the influences
of changing the solar zenith angle and atmospheric perturbations were tested over multiple
years (1999 to 2006) and on a regional scale [194]. These authors focused on four indices
(NDVI, OSAVI, EVI, and MTVI2) to show the spectral resolution under these conditions.
Finally, Broge and Leblanc [99] carried out a systematic and rigorous evaluation between
broad-band and narrow-band VIs to find out which of them could increase the accuracy of
the estimation.

The authors of [195] dedicated their study to evaluating the performance of 43 hyper-
spectral VIs to find the optimal one based on two datasets of PROSAIL simulations. It also
relied on prior knowledge of one from literature and the other from ground data. To build
the relationship between LAI and simulated VIs, the simple (curve fitting) and advanced
regression (RFR and ANN) models were employed. The same authors extended this study
by comparing the results obtained from using 26 VIs and PLS dimension reduction with
the use of appropriate principal components as the input variables for modeling inversion
strategy [64]. Houborg et al. [196] evaluated the performance of a hybrid model based on
VIs for mapping LAI over time and space. Under different spatial resolutions (250–500 m)
for 8 days, the MODIS data were used in the coupling of PROSPECT and the two-layer
Markov chain canopy reflectance (ACRM) model inversion. Moreover, in this study, a hy-
brid inversion scenario was investigated based on the combination of the measurements
from the field and physical model. The target property (LAI) and explanatory variables of
vegetation indices using Landsat 8, which were classified into five groups, were trained by
using random forest and cubist regression approaches. Table A1 summarizes the above
papers and presents the main result for the LAI hybrid parametric method.

4.1.2. Fractional Vegetation Cover

In this category, few articles are reported to belong to hybrid spectral indices. The
studies of [13,197] are mainly focused on improving such a variable of interest. In particular,
the authors of [197] developed the physical model by considering multi-angle reflectance
and LAI products to quantify the Normalized Difference Vegetation Index of highly dense
vegetation (NDVIv) and bare soil (NDVIs) at coarse resolution (e.g., 1 km) for estimating
fCover. The other study [13] proposed a method called the “fan-shaped method” (FSM)
to mitigate the effect of CCC variation in the pixel dichotomy model (PDM)-based FVC
estimation. For fCover estimation, an FSM method, which creates a two-dimensional
scatter map with three vertices, represents high and low levels of CCC values, and bare soil
using a CCC spectral index (SI). It relied on spectra simulated on PROSAIL and spectra
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measurements delivered from UAV. Lastly, the studies of [198,199] evaluated the impact of
soil background and leaf angle distribution (LAD) on fCover estimation by using a set of
different vegetation indices. Table A2 summarizes the above papers for the fCover hybrid
parametric method.

4.1.3. Chlorophyll Content at Leaf and Canopy Levels

For corn, Haboudane et al. [69] integrated a new index by combining two indices as a
ratio TCARI/OSAVI. It has the potential to predict CCC and minimize the background and
LAI effects. Another study by [200] studied the effects of different nitrogen fertilization
with eight levels on CC estimation for corn. Two spectral indices (MCARI and OSAVI) were
combined with spectral bands, such as OSAVI and NIR/red and MCARI and NIR/green,
to define which indices can minimize the background and are sensitive to LCC. In the
last study [201], two cultivars of corn were planted in the field experiment; spectral fea-
tures based on vegetation indices, wavelet coefficient (WC), and spectral reflectance were
assessed for estimating the LCC.

Three articles are reported for potatoes. In the study of [202], a systematic evaluation
between sets of VIs was determined to define the suitable VI for estimation of canopy
chlorophyll content (CCC). The authors of [38] hypothesized that using the ratio of vegeta-
tion indices based on LAI normalization can accurately estimate leaf chlorophyll content
(LCC) by mitigating the other external factors (e.g., soil background properties, changing
leaf orientation, or changing solar zenith angle). The simulated spectra were evaluated with
field measurements for five consecutive years between 2010 and 2014. The last article [36]
studied fifty hyperspectral vegetation indices for potatoes, where indices were tested to
retrieve LCC and CCC. To verify the inversion result, observed data, including auxiliary
data obtained from fieldwork and CHRIS image data, were utilized.

As shown from the presented systematic reviews (Table A3), two articles [201,203]
devoted their analysis to wheat. The authors [201] suggested a new strategy to improve
LCC estimation by building a matrix-based VI combination for minimizing the influence
of LAI. Single VI (e.g., MCARI and OSAVI) and the ratio of VIs (e.g., red edge relative
index) were used to build a matrix of two VIs (VI1–VI2) space and each cell of the matrix
was assigned to an LCC value using simulated data. For the study of [203], the extracted
wavelengths of LCC were selected by the amplitude- and shape-enhanced 2D correlation
spectrum based on using PROSAIL. Deep learning was then utilized for training the
PROSAIL database to the inversion tasks of field-measured LCC.

Several studies cultivated different crops in the field, such as wheat, corn, and
soybean [204–207]. These studies tried to increase the sensitivity of VI to chlorophyll content
variations and resistance to LAI and other permutation factors (such as soil background).
Particularly, ref. [204] concluded that the type of crop, the type of data obtained from
model simulations or/and from field measurements, spectral range, and model type
can influence the predictions of variables. Table A3 summarizes the results from the
aforementioned papers.

4.2. Estimated Canopy Traits from Hybrid Models Based on Nonparametric Methods
4.2.1. Leaf Area Index

The study of [208] proposed a new approach to alleviating the ill-posed problem that
relies on the use of the object signature for a specific crop. The synthetic database was built
based on the spectrum signature obtained from a neighboring pixel of interest using a neural
network. The authors proved that the suggested method can reduce the uncertainties in
estimations and does not require the use of prior knowledge for constraining the boundary
of input parameters or identifying the crop type. Another study [209] attempted to solve the
inversion problem by introducing SVR-based kernel regularization to reduce the number of
simulations, leading to reduced computational time, rather than using NN, which requires
a large number of datasets for training. The recent article [52] introduces the variable
correlation through the generation of LUT to produce a realistic simulation from accurate
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representative combinations of the input parameter. The regularized LUT (LUTreg) was
trained by GPR-based kernel since it performs well due to the unnecessity of using a large
size of datasets with robustness in the estimation along with providing the uncertainty
of estimates. In the article [210], the authors explored the utility of active learning (AL)
with a GPR method to train simulated datasets for reducing the sample size and redundant
information. To study its performance, the outcome was compared with the results of
non-kernel methods for a specific crop (wheat). By applying the hybrid NN model for
the same crop at different growing seasons, the study of [211] intended to optimize this
approach by decreasing the uncertainty of LAI estimation, especially when values of LAI
or green leaf area index (GLAI) are high due to the saturation effect.

Other studies for such a corn crop [187,192] were devoted to finding the optimal
method based on a comparison of different retrieval methods. The same objective was
applied to the study of [212,213]. With the availability of multiple data sources from mul-
tiresolution satellite data, a hybrid model can help to create a generic model, transferable
and independent from in situ data, as shown in the study of [214]. Additionally, other
studies [20,195] used Landsat 8 and SPOT 5 to confirm the robustness and consistency of
the retrieval chain for monitoring the real spatiotemporal changes in crop development.
Table A4 summarizes the above papers for a hybrid nonparametric method sub-category.

4.2.2. Fractional Vegetation Cover

Two studies [215,216] suggested the combination of the two models, RTM and crop
growth model, for time series fCover estimation using a dynamic Bayesian network (DBN).
It was generated from coarse-resolution remote sensing data and validated with a fine
temporal and high spatial resolution. As shown from their findings, the proposed method
gave reliable results and was visible for use at a large scale with various types of vegetation.
Extending the previous two studies, a study of [217] utilized the proposed method based on
GLASS FVC data from MODIS with temporal dependencies for each Landsat 7 ETM+ pixel
to constrain the dynamic vegetation growth model. They concluded that the computational
power of the proposed method was improved and feasible for real-time fCover estimation.
A comparison between different nonparametric approaches was performed, and GPR was
found to be the best algorithm using Sentinel-2 [210]. However, in the study of [52], RF was
the best retrieval for fCover using UAV-based hyperspectral data.

Three studies [216,218,219] utilized a hybrid retrieval method for their study area with
corn and wheat fields. In these studies, the authors were interested in quantifying the
spatiotemporal fCover products from different scales of remote sensing. That needs, first,
temporal consistency between remote sensing products to have a time series of fCover.
Then, after training the simulation data by ML, the spatiotemporal fusion algorithm is
used to make spatial consistency between RS data for improving the accuracy of fCover
estimates. The last article [219] developed the hybrid framework using ML to retrieve the
variable of interest from the bottom of the atmosphere (BOA) and the top of the atmosphere
(TOA). The rest of the studies in Table A5 applied a hybrid retrieval model for the mixed
plants. Table A5 summarizes the above papers and presents the main result of the hybrid
nonparametric method.

4.2.3. Chlorophyll Content at Leaf and Canopy Levels

Several researchers studied wheat as one of the most common crops [210,220–223].
Two of the researchers were interested in studying AL techniques with GPR. Respecting
the use of different sensors in these studies [210,222], entropy query by bagging (EQB)
and Euclidean distance-based diversity (EBD) was the most efficient technique in terms
of accuracy and computational demand. Indeed, the study of [210] intended to compare
different regression methods for estimating LCC and CCC at two different locations and
found that RFR and PLSR performed better than GPR + AL.

These findings are in agreement with other studies [52,224] when comparing GPR
with other MLs. However, some studies, such as [206,219,225,226], preferred to place
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their attention on one method of MLs for increasing the efficiency of training RTM-based
inversion to improve the accuracy of estimations. Another study [227] was dedicated to
improving the sampling strategy in a simulated dataset to decrease the problem of ill-posed
inversion. Different types of distributed datasets of simulations and variable relations
were applied to reflect the real situation in the field. Other studies [201,221] compared
NN and Bayesian network (BN) within a hybrid retrieval framework with LUT-based
inversion, aiming to improve the accuracy of estimates. Finally, two studies [220,228]
discussed the impact of different spatial resolutions on the vegetation variables and tried to
decrease the uncertainties obtained from the model when applied to heterogeneous pixels.
Table A6 summarizes the outcomes from the above papers for the CCC using the hybrid
nonparametric method.

5. Results, Meta-Analysis, and Discussion

Based on analyzing the articles contributed in this arena, it was found that several
researchers placed more attention on methods of hybrid-model-based nonparametric, specif-
ically nonlinear, than parametric methods (Figures 6 and 7). In a parametric method, most
of the researchers often used vegetation indices for LAI, fCover, and CC, especially the
Normalized Difference Vegetation Index (NDVI), which is extensively applied as compared
to other indices such as the enhanced vegetation index (EVI), the modified triangular vege-
tation index (MTVI2 and MTVI1), the (optimized) soil adjusted vegetation index (SAVI and
OSAVI), the chlorophyll index CIgreen or the red edge, the Transformed Chlorophyll Ab-
sorption Reflectance Index, and the Transformed Chlorophyll Index (TCARI and TCI) using
satellite. There are a few researchers who, in their studies, used shape indices and shape
transformation (i.e., red edge and waveform analysis). The results accuracy of estimates fall
within the range R2 = 0.2–0.93 and RMSE = 0.05–0.94 m2/m2 for LAI, R2 = 0.54–0.90 and
RMSE = 0.05–0.22 for fCover, R2 = 0.61–0.85 and RMSE = 3.24–11.90 (µg cm−2) for LCC, and
0.61–0.85 and RMSE = 9.28–77.10 (g m−2) for CCC.

Within the various types of nonparametric methods, the hybrid model based on
machine learning using ANN excels in improving the accuracy of estimates (Figure 7).
Several studies applied machine learning more than the linear nonparametric methods
(e.g., PLSR and LSLR), which only applied in two studies [133,210]. The accuracy of
LAI ranges from 0.63–0.83 for R2 and 0.32–3.89 m2/m2 for RMSE. fCover’s accuracy
ranges from 0.70–0.98 for R2 and 0.05–0.10 for RMSE. The accuracy of LCC and CCC
falls within range for R2 = 0.38–0.93 and RMSE = 6.5–57.51 (µg cm−2), R2 = 0.55–0.78,
and RMSE = 0.35–111.90 (g m−2), respectively. When comparing the range of accuracy
from two approaches, it was shown that the nonparametric approach was successful
to obtain the best result for fCover rather than the parametric approach. In particular,
nonparametric nonlinear methods are powerful in extracting information from subtle
differences in reflection by supporting covariance between biochemical and biophysical
variables [18].

Another remark is that after ANN, GPR is becoming more popular and applicable in
the retrieval process, since Verrelst et al. [130] found that GPR had the best performance
using Sentinel-2 and -3 and provides retrieval uncertainties (Figure 7). Nowadays, deep
learning (DL), as extending machine learning, is starting to be explored for crop monitoring
using hyperspectral images [34,229]. DL has the advantage of handling a large data size of
training samples to possibly improve the targeted variable.

In the hybrid model context, the wheat crop was mostly analyzed by researchers,
followed by corn, potato, soybean, and rice, as shown in Figure 8. Other crop types
comprise grapes, barley, alfalfa, sugar beet, oil-seed rape, cotton, pea, sunflower, garlic,
and onion.

From synthesizing the reviewed studies, PROSAIL, which is an integration of the leaf
level PROSPECT model and canopy-level SAIL model, seems to be more favorably used
with the methods of vegetation indices and machine learning rather than other types of
RTM (SLC [41], SCOPE [230], and DART [231]) (Figure 9). This is due to its simplification



Remote Sens. 2022, 14, 3515 21 of 39

in terms of model parameterization and that it is computationally inexpensive and free for
users in various computer languages [212]. Nevertheless, radiative transfer models were
used less often in the literature for investigating agriculture features as compared to the
pure regression models [9]. While regression models can only estimate one variable at a
time, RTM can infer a wide range of vegetation features in a single model.

Therefore, the next development of physical models should be simple and capable of
generating a realistic simulation in the spatial and temporal dimensions for agricultural
purposes. Analyzing such a large amount of remote sensing data necessitates a computa-
tionally efficient retrieval algorithm. Recently, some studies have tried to solve this issue by
introducing emulation where a technique is used for estimating model simulations, such as
RTM, to accelerate the inversion procedure and the speed of vegetation mapping [156,232].

Figure 6. Bar chart of the most contributed parametric methods in a hybrid model.

Figure 7. Bar chart of the most contributed machine learning methods used in a hybrid model.
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Figure 8. The most investigated crops using hybrid inversion model.

Figure 9. Number of publications that used radiative transfer models within the period of 2000–2022.

Among the papers reviewed in this study, nonparametric approaches with multi-
spectral data were employed in a hybrid model more than other platforms due to their
accessibility (Figure 10). Nonetheless, hyperspectral data gathered from airborne platforms
or drones have the potential to provide more precise spectral information regarding vari-
ables of interest, particularly in the red edge, NIR, and SWIR regions. Applying multisource
remote sensing data, such as multispatial, multitemporal, and multiangular, in the frame-
work of crop monitoring and management increases the estimation accuracy, as proved in
these studies [20,54,130,233]. Limited access to high spectral resolution using a multisensor
approach to regions of land cover heterogeneity at the pixel scale may cause the problem of
scale effect. More studies need to explore approaches to eliminate the effect of size since
many crops can grow together in one plot.
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Figure 10. Sensor type used in both categories of hybrid model.

6. Conclusions and Future Directions

In this review paper, we provided the conceptual framework of hybrid retrieval
models and processing chains for retrieving biophysical and biochemical variables using
parametric and nonparametric methods. In view of the increasing popularity of hybrid
strategies, including machine learning, these methods may become a cornerstone in the
context of precision agriculture applications and, in particular, for hyperspectral data pro-
cessing.This popularity can be explained by the synergistic use of two complementary
methods (data-driven and physical-based retrieval), which perfectly combines their ad-
vantages. The simplicity, flexibility, and computational efficiency of statistical methods are
combined with the generalization capabilities of the physical-based method. Additionally,
the need for collecting in-situ training data is reduced and used only for validating the
targeted trait.

Upon the meta-analysis, we note that the NDVI-VI and NN algorithms have been
extensively applied to Landsat and Sentinel-2 data, which are among the most popular
sources of remote sensing data used for crop trait estimates. The high-frequency Earth
observation at different scales requires a model that can process big data with high speed in
the calculations. This typically applies to the use of machine learning algorithms. As shown
from the publications, researchers often utilize nonparametric (machine learning) with
a radiative transfer model rather than a parametric regression approach. An important
drawback of the latter approach, such as VIs or other indices, is the saturation problem, a
lack of uncertainty estimates with difficulty in selecting an optimal vegetation index from
a wide range of VIs that correspond to the spectral ranges in optical remote sensing data.
In contrast, the nonparametric approaches can provide estimates of uncertainty and the
use of the complete optical spectrum information. Developers of ML attempt to modify
them in such a way that the model can reduce the erroneous values in the training data and
the outliers with fast computation in the training and good candidate for the operational
mapping application. In general, there is a clear gap to define an optimal generalized
hybrid method (either parametric or nonparametric) coupled with a radiative transfer
model that can be applied to another crop or other sites. The final result found by analyzing
the articles, merging numerous sensor data from diverse spatial, spectral, and temporal
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ranges into a single model (e.g., hybrid method), was improved accuracy in monitoring
intra-field variations of crop attributes, particularly from mid- to late growth stages and
improving the level of agricultural monitoring operation.

From the perspective of the research trends, further development is needed to increase
the robustness of the hybrid model in terms of model output stability while improving
model performance with consensus on a single globally applicable model. The developed
model can also mitigate the ill-posed problem associated with the inversion of the physical
model. Besides estimating basic characteristics of crop traits, the hybrid approach with
active learning techniques has recently been successfully applied in some studies for
estimating nitrogen content at the canopy level. Despite the success of these studies,
the techniques used for selecting the spectral feature and the informative sample to increase
the quality of training data and reduce the computational burden of model generation
are still in their infancy. Therefore, in the foreseeable future, additional studies should be
conducted on this exciting topic to allow the hybrid method to be portable and independent
from field measurement.
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Abbreviations
The following abbreviations are used in this manuscript:

ASD FieldSpec3 Analytical Spectral Devices
ANN artificial neural networks
BFE backward feature elimination method
BPNNs back-propagation neural networks
BM Bayesian model
Bagging boostrap aggregating
CGM crop growth model
CART classification and regression tree
CNN convolution neural networks
DART Discrete Anisotropic Radiative Transfer
DL deep learning
DR dimensionality reduction
DT decision tree
DNN deep neural networks
EL ensemble learning
ELMs extreme learning machines
INFORM INvertible FOrest Reflectance Model
KNN k-nearest neighbor
LDA linear discriminant analysis
LASSO least absolute shrinkage and selection operator
MLR multiple linear regression
MTVI Modified Triangular Vegetation Index
MTVI2 Modified Triangular Vegetation Index - Improved
MARS multivariate adaptive regression splines
NDVI Normalized Difference Vegetation Index
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NIR near-infrared range of spectrum
OLSR ordinary least squares regression
OSAVI optimized soil adjusted vegetation index
PCA principal component analysis
PLSR partial least squares regression
PROSAIL PROSPECT (leaf optical PRoperties SPECTra model) and SAIL

(Scattering by Arbitrarily Inclined Leaves)
R2 coefficient of determination
RMSE root mean square error
RR ridge regression
REPI red edge position index
RF random forest
SCOPE Soil Canopy Observation, Photochemistry, and Energy fluxes
SVM support vector machines
SLC soil–leaf–canopy
SVR support vector regression
SMLR stepwise multiple linear regression
TCARI Transformed Chlorophyll Absorption Reflectance Index
UAV unmanned aerial vehicle
VIS visible range of spectrum
VNIR visible and rear-infrared ranges

Appendix A

Table A1. Summary of LAI prediction using a parametric method.

Crop Type Sensor Model Used Reference The Main Findings

Wheat

GF-1 PROSAIL + 10 VIs and reflectance [190]

Green NDVI (GNDVI) was an optimal choice for estimation
under the elongation stages R2 = 0.61 and RMSE = 0.34.
Additionally, the LAI green band was superior with R2 of
0.20 and RMSE of 0.74 at the grain-filling stages.

Multispectral and hyperspectral
UAV data

PROSAIL + 14 VIs or based
reflectance [191]

VI-based LUT (R2 > 0.74, RMSE < 0.51) was more robust
than reflectance-based LUT (R2 < 0.42, RMSE > 0.94).
In particular, the LUT-based MCARI2 and NDVI
outperformed.

Corn Sentinel-2 MSI, Landsat 8 OLI and
Landsat 7 ETM+

PROSAIL + 4 VIs or based
reflectance [234] CI-green-based LUT (R2 = 0.75, RMSE = 0.72) was more

robust than reflectance-based LUT (R2 = 0.71, RMSE = 0.82).

Wheat and canola RapidEye images PROSAIL + 7 VIs [76] RE-based VIs are less vulnerable to canopy structure, such
as the average leaf angle (ALA), than VIS-based VIs.

Winter wheat and oilseed rape Pleiades-1A, WorldView-2 and-3,
and SPOT-6. PROSAIL + 9 VIs [192]

NDVI was the best index for Pleiades-1A, WorldView-3,
and SPOT-6, but for WorldView-2, it was the modified
simple ratio vegetation index (MSR).

Mixed crops (soybean, corn,
and wheat) CASI hyperspectral data PROSAIL + 12 VIs [193]

Modified Triangular Vegetation Index (MTVI2) and a
modified chlorophyll absorption ratio index (MCARI2)
proved to be the best predictors of green LAI.

Mixed crops (corn, soybean,
and spring wheat) Landsat PROSAIL + 4VIs [194]

There was a significant impact of aerosol optical depth as
an interference factor on LAI estimation. The uncertainty of
NDVI was less prone to the LAI saturation, as compared to
EVI2 and MTV2.

Mixed crops (corn,
alfalfa, and potatoes) CHRIS/PROBA

PROSAIL + 43VIs [195]

OSAVI and MTVI2 are the most sensitive indices for LAI
and are relatively insensitive to other confounding factors
(chlorophyll, soil background, and view and illumination
geometry influences).

PROSAIL + 26VIs [64] OSAVI achieved the best indices as compared to other
indices.

Mixed plants (barley, wheat,
and other plants) Terra and Aqua MODIS

Two-layer Markov chain canopy
reflectance model (ACRM) + VIs
(NDVI and EVI)

[196] Enhanced vegetation index (EVI) outperformed
Normalized Difference Vegetation Index (NDVI).

Unspecified No specific sensor PROSAIL+VI [99]

The soil-adjusted vegetation index (SAVI2) proved to be the
best overall choice as a greenness measure of LAI.
Hyperspectral VIs, including the one based on waveform
analysis technique, are not always good predictors for LAI,
as compared to the broadband indices.
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Table A2. Summary of fCover prediction using a parametric method.

Crop Type Sensor Model Used Reference The Main Findings

Cropland (mostly corn) MODIS SAILH+ NDVI [197]

The proposed method based on LAI and
directional NDVI can decrease the error of fCover
estimates with an RMSD 0.117 that is close to the
reference fCover obtained from in situ data with an
RMSD of 0.127.

Corn Landsat 8 PROSAIL+ six methods of
inversion rely on 4 VIs [198]

The soil background has a great impact on fCover
estimation. The modified soil-adjusted vegetation
index (MSAVI) is less sensitive to soil backgrounds
and an alternative to NDVI.

Soybean UAV-based RGB and PROSAIL+ FSM [13]

By using fan-shaped model based on NDVI, FVC
estimates based on the UAV dataset have similar
accuracy to estimates based on the PROSAIL
dataset (R2 = 0.86, RMSE = 0.14).

Mixed crops AISA Eagle II PROSAIL+ 6 VIs [199] EVI2 and MTVI2 were the most strongly correlated
with fCover.

Table A3. Summary of CC prediction using a parametric method.

Crop Type Sensor Model Used Reference The Main Findings

Corn

CASI PROSPECT and SAILH + 2VIs [69]
Using CASI images, the result of CCC from the proposed
index (TCARI/OSAVI) was in agreement with
measurements, with R2 of 0.8 and RMSE of 4.35 µg/cm2 .

Landsat Thematic Mapper (TM) SAIL + 7 VIs [200]
The slope of isoline of the paired indices ((OSAVI and
NIR/red) and (MCARI and NIR/green)) agreed with the
slopes of isolines from Landsat TM bands.

ASD PROSPECT-D Model + 13 VIs [201]

The wavelet coefficients method yielded higher accuracy
for LCC (R2 = 0.78 and RMSE = 16.47%) than that of
VI-based NDVIcanste (R2 = 0.83 and RMSE = 27.07%) and
spectral reflectance (R2 = 0.35 and RMSE = 59.30%).

Potato

Cropscan PROSAIL + 15 VIs [202]
CIgreen and CI red edge [705,750] achieved the best index
for retrieving CC with an R2 of 0.93, as compared to others.

Cropscan and RapidEye PROSAIL + 3 VIs [38]
TCARI/OSAVI based on a logarithmic relationship was
outperformed for LCC (R2 = 0.55), compared to other VIs
(TCI/OSAVI and CVI).

CHRIS PROSAIL + 6 VIs [39]
PRI and CCI were the optimal VIs for estimating LCC
(R2 = 0.83 and NRMSE = 6.33%) and CCC (R2 = 0.85 and
NRMSE = 6.54%), respectively.

Winter wheat

Sentinel-2 PROSAIL + 4 of VI pairs [235]

The matrix with two new VIs, RERI(705) and RERI(783), is
the most effective. The results of the matrices of two VIs are
superior to the results of individual VIs and VI ratios (for
retrieving LCC (R2 = 0.70, NRMSE = 11.9%).

UAV-based hyperspectral data PROSAIL + waveband selection
method [203]

The good accuracy of LCC was delivered by using the
hybrid inversion method combining the amplitude- and
shape-enhanced 2D correlation spectrum and the
fine-tuned transfer learning model.

Wheat and corn
CASI PROSPECT-SAILH + 11 VIs [204]

TCI/OSAVI and TCARI/OSAVI seem to be suitable to
estimate CCC for both corn (R2 = 0.64 and RMSE = 10
µg/cm2) and wheat (R2 = 0.29 and RMSE= 9.28 µg/cm2),
respectively.

Hyperion data PROSAIL + 7 VIs [205] The modified indices of TCARI/OSAVI and
MCARI/OSAVI are most appropriate for LCC.

Wheat and soybean MERIS PROSAIL-D + VI [206]

The combinations of MTCI with LAI-VIs (e.g., NDVI,
MTVI2, RDVI, and L- or S-NDVI) delivered more accurate
results of estimated CCC than those of using the standalone
MTCI. For wheat and soybean, using satellite data for
validation R2 was 0.24 and RMSE = 136.54 µg cm−2 , while
based on ground data R2 was 0.64 and
RMSE = 77.10 µg cm−2 .

Mixed plants including cropland Hyperion, Hymap, and ASD PROSAIL + REP [70]

REPs with the wavebands at 680, 694, 724, and 760 nm
produced the highest correlation (R2 = 0.75), and extracted
by the linear extrapolation method was able to extract the
variation of LCC with minimizing the effect of LAI and
other parameters (e.g., leaf inclination distribution, soil
brightness, and leaf dry content).
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Table A4. Summary of example studies using nonparametric method for LAI prediction.

Crop Type Sensor Model Used Reference The Main Findings

Potato UAV–hyperspectral VNIR SLC + 3 MLs (GPR, RFR,
and CCF) [52]

The high accuracy of LAI estimates was derived
from GPR (R2 = 0.70 and NRMSE = 9.80%) as
compared to other approaches.

Wheat

Sentinel-2 PROSAIL+ 9 MLs [210]
LSLR was the best method, delivering accurate
results at two sites in Italy (R2 = 0.78 and
RMSE = 0.68) and China (R2 = 0.73 and RMSE = 1).

Huanjing optical satellites
(HJ) PROSAIL+ SVR [214]

There was good consistency between the
SVR-based inversions and field measured data
with the RMSE = 0.52.

Corn

GF-1 multispectral data PROSAIL+ NN [211]
LAI estimation achieved satisfactory results
(R2 = 0.818, RMSE = 0.50), after considering soil
types with various properties.

GF-5 hyperspectral data PROSAIL+RFR, BPNN,
and KNN [192]

Using RF for feature selection (FS) with RFR model
to estimate LAI achieved the best with R2 = 0.69
and RMSE = 0.91, as compared to other methods
for FS (KNN and K-means) or regression (BPNN
and KNN).

MODIS PROSAIL+ NN and LUT [187]
The hybrid model obtained more accurate results
(R2 = 0.81 and RMSE = 0.59) than that of using only
LUT-based inversion (R2 = 0.73 and RMSE = 0.66).

Rice

Landsat8 and SPOT5 PROSAIL+GPR [236]

For Landsat 8, the error of estimates (RMSE) was
found to be 0.39 and 0.38 in Spain and Italy,
respectively, while for SPOT5, RMSE was 0.51 and
0.47 for both sites.

Sentinel-2 PROSAIL+GPR and NN [20]

By using ground data, the predictive accuracy of
the hybrid GPR model (R2 = 0.82 RMSE = 1.65)
was more accurate than that of the hybrid ANN
model (R2 = 0.66, RMSE = 3.89).

Mixed crops

Landsat 8 and SPOT4 PROSAIL+ NN [237]

From both sensors, there was good spatiotemporal
consistency of the LAI product. When validating
the results from satellites with ground data for
three crops, the accuracy was R2 = 0.83 and
RMSE = 0.49.

CHRIS PROSAIL+RFR, BPNN,
and SVR [64]

The high accuracy was obtained from RFR as an
optimal method for three types of simulated
datasets, as compared to other MLs.

PRISMA SCOPE+ GPR [31]

The high accuracy was obtained from GPR using
20 PCR as an optimal model for LAI (R2 = 0.81 and
RMSE = 1.12), as compared to the results from GPR
based on 20-band ranking.

Sentinel-3 (OLCI) and
FLORIS SCOPE+GPR [238]

Based on using the synthetic data of FLORIS and
OLCI, the accuracy of LAI was enhanced with
R2 = 0.88 and RMSE = 1.01 rather than using only
FLORIS spectra (R2 = 0.87 and RMSE = 1.05) or
OLCI (R2 = 0.86 and RMSE = 1.12).

PRISMA PROSAIL + GPR [239]
The accuracy of LAI was increased after using
active learning (clustering-based diversity) with
R2 = 0.84 and nRMSE = 14.5%.

Unspecified

Landsat TM PROSPECT and SAILH+
ANN [208]

The object-based inversion approach significantly
increases the LAI estimation accuracy (R2 = 0.85
and RMSE = 0.5), as compared to the result of
pixel-based inversion (R2 = 0.71 and RMSE = 0.81).

MISR PROSAIL+ SVR [209]

By validating the estimated LAI with LAI retrieved
from MISR, RMSE was 0.64, relying on two bands
(NIR and red), while RMSE using only the NIR
band was 0.50.
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Table A5. Summary of fCover prediction using nonparametric method.

Crop Type Sensor Model Used Reference The Main Findings

Corn

MODIS, ASTER, and CASI
Coupled PROSAIL with crop
growth model + DBN and
LUT-based inversion

[215]

When validating the reference fCover derived
from ASTER and CASI, the estimated fCover from
MODIS using PROSAIL and crop growth model
achieved better performance with accuracy, R2 of
0.956 and a root mean square error (RMSE) of
0.057, than using an LUT method (R2 = 0.817,
RMSE = 0.11).

Landsat-7 and GLASS
Coupled PROSAIL with crop
growth model + DBN and
DPM (Dimidiate pixel model)

[216]

With using in situ data for validation,
the estimated fCover from DBN (R2 = 0.69,
RMSE = 0.09) had higher accuracy than estimation
from DPM (R2 = 0.70, RMSE = 0.16).

Coupled PROSAIL with
dynamic vegetation growth
model + Bayesian NN

[217]
The performance of using the proposed method
provided acceptable accuracy with the ground
data (R2 = 0.89, RMSE = 0.092).

Wheat Sentinel-2 PROSAIL+ 9 MLs [210]

Using simulation data, GPR and NN were optimal
methods for retrieving fCover at Italy (R2 = 0.89
and RMSE = 0.08) and China (R2 = 0.73 and
RMSE = 0.17), respectively.

Potato UAV–
hyperspectral VNIR

SLC+ 3 MLs (RFR, GPR,
and CCF) [52]

RFR was the best method, delivering the accurate
result of fCover with an R2 = 0.82 and RMSE = 0.10.

Corn and wheat

Landsat 7, MODIS, and
GLASS

PROSAIL+ NN + fusion
method [240]

After multiresolution tree (MRT) fusion,
the uncertainty of fCover was decreased
successfully. Additionally, the missing data of
Landsat-fCover was filled by the MRT method.

GLASS, GF-1, and MODIS PROSAIL+ RFR + fusion
method [218]

The results confirmed the feasibility of generating
high spatiotemporal resolution fCover based on
the fusion method ESTARFM.

Sentinel-2 PROSAIL+VHGPR [219]

Using the SNAP Biophysical Processor products
for validation, the result of fCover obtained from
BOA (R2 = 0.96 and RMSE = 0.05) had higher
accuracy than that of TOA (R2 = 0.91 and
RMSE = 0.20).

Mixed plants including corn

GF-1 PROSAIL+ BPNN [241]
Through the comparison to ground data,
the estimated fCover had good precision,
R2 = 0.790 and root mean square error of 0.073.

Sentinel-2 PROSAIL+NN [242]
There was low systematic error between the
estimated fCover for S-2 and the ground data
(RMSE = 0.17 and bias = −0.03).

Landsat8 and SPOT4 PROSAIL+ NN [243] There was good accuracy between the estimated
fCover and ground data, with an RMSE of 0.17.

Landsat 8 and
GLASS

Coupled PROSAIL with
dynamic vegetation models+
Bayesian NN and LUT

[244]

Validation results indicated that the
combined-method-based BNN (R2 = 0.77 and
RMSE = 0.08) achieved better results than the
common method of LUT-based inversion
(R2 = 0.7457 and RMSE = 0.1249).

CHRIS PROSAIL+NN [245]

Selecting the best band for fCover did not improve
the accuracy as compared to using all bands.
Moreover, the accuracy of fCover was improved,
once the actual distribution, reflecting the actual
situation in the ground data, was applied in the
training datasets.

Sentinel-3 (OLCI) and
FLORIS SCOPE+GPR [238]

The model performances using only one sensor or
their synergies were provided the same accuracy
(no preference) (fCover = R2 = 0.98; RMSE = 0.04).

VENµS PROSAIL+GPR [159] When compared to ground-measured, the retrieval
accuracy of the fCover was R2 = 0.76, RMSE = 0.09.

Landsat-7 and -8 PROSAIl+NN and MARS [246]

Using the field survey, the performance of MARS
(multivariate adaptive regression splines) with
PROSAIL achieved the best for retrieving fCover
(R2 = 0.88 and RMSE = 0.10).
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Table A6. Summary of CC prediction using nonparametric method.

Crop Type Sensor Model Used Reference The Main Findings

Wheat

Landsat 8
PROSAIL-5 + GPR with
different AL techniques. [222]

The use of entropy query by bagging (EQB-AL)
together with GPR was an optimal approach for
improving the accuracy of LCC
(RMSE = 12.43 µg/cm2, RRMSE = 21.77%).

Sentinel-2

PROSAIL + 9 MLs [210]

For LCC, the best-performing method was RFR at
both sites, in Italy (RMSE = 8.88 µg/cm2) and China
(RMSE = 16.77 µg/cm2). On the other hand,
the results of CCC showed no agreement about the
method used for the two sites; PLSR for Italy
(RMSE = 40.44 g/cm2 ) and RFR for China
(RMSE = 56.51 g/cm2).

PROSAIL+ NN and LUT [223]

The accuracy of LCC and CCC obtained from hybrid
NN model (RMSE (µg/cm2) = 12.69 for LCC and
108.30 for CCC) was higher than using standard LUT
(26.92 (µg/cm2) for LCC and 165.05 (µg/cm2) for
CCC).

IRS LISS-3 (Linear Imaging
Self Scanner), and ASD

PROSAIL5B+
NN, LUT-I (best solution),
and LUT-II (the best 10%
solutions).

[221]
The hybrid NN model yielded a less accurate result
for LCC with an RMSE of 23.7 µg/cm2, compared to
the LUT-I (15.6 µg/cm2) and LUT-II (9.06 µg/cm2).

Sentinel-2 (10–20m) and
SPOT5 PROSAIL+ ANN [220]

Red edge bands of S-2 exhibit the best estimate
accuracy for LCC and CCC with RMSE of 11.03
(µg/cm2) and RMSE of 0.35 (g/m2).

Rice
UAV multispectral data

PROSAIL+
BN, and cost-function-based
LUT [201]

The accuracy of CCC inverted by BN (R2 = 0.83 and
RRMSE = 0.37) was higher than that of using a cost
function (R2 = 0.74 and RRMSE = 0.44).

ASD
PROSPECT+
SVR [225]

The accuracy of LCC retrieved from the hybrid SVR
model achieved an R2 = 0.93 and
RMSE = 57.2872 µg/cm2.

Potato
UAV–
hyperspectral
VNIR

SLC +
3 MLs (GPR, RFR, and CCF) [52] CCF yielded the best results for CCC (R2 = 0.55 and

NRMSE = 13.40%) as compared to others.

Wheat and corn Sentinel-2 PROSAIL + VHGPR [219]

The CCC and LCC were estimated from both S2
bottom of atmosphere (BOA) L2A and S2 top of
atmosphere (TOA) L1C data. The LCC retrieval from
BOA (RMSE = 6.5 µg/cm2) was slightly better than
TOA (RMSE = 8 µg/cm2) reflectance; however, for
estimating CCC, the reflectance from TOA delivered
the best result (RMSE = 139 g/cm2).

Wheat and barley
Hyper
spectral data PROSAIL + RFR [226]

The LCC result of a hybrid RFR model performed
well when validated with field measurements data
(R2 = 0.89 and MAE = 6.94).

Wheat and soybean MERIS PROSAIL-D + RFR [206]

By using RFR for training the combination of
simulated VIs and MTCI, the prediction accuracy of
CCC was improved with R2 of 0.78 and RMSE of
47.96 µg/cm2.

Mixed crops (corn, alfalfa,
potato, and sugar beet) EnMAP PROSAIL + ANN, RFR, GPR,

and SVR [224]
ANN was an optimal model for retrieving LCC and
its prediction error was RMSE of 8.09 µg/cm−2 when
validating the result with ground data.

Mixed crops (corn, potato,
and sugar beet)

Sentinel-2 (20 m),
Sentinel-3 OLCI (300 m), and
HyPlant DUAL (3 m) SCOPE + GPR [228]

The estimated CCC was retrieved well at 300 m
spatial resolution (R2 = 0.74 and RMSE = 26.8
µg/cm−2), as compared to LCC, which was poorly
retrieved at such a scale (R2 of 0.38
and RMSE = 11.9 µg/cm2).

Mixed plants including
corn and soybean

ASD PROSPECT-5 + PLSR [133]

PLSR was applied to the best sampling design of
simulated data, which consider the correlations
between model inputs and normal distributions.
The accuracy of estimated LCC from such a modified
simulation (RMSE of 8.01 µg/cm2) was better than
other synthetic data built upon the unrealistic,
uniform (14.12 µg/cm2), normal distributions
(without correlation) (8.62 µg/cm2).

PRISMA PROSAIL + GPR [239]

The accuracy of CCC was increased after using active
learning (variance-based pool of regressors) with
R2 = 0.79 and nRMSE = 18.5% as well as for LCC
R2 = 0.62 and nRMSE = 27.9% using angle-based
diversity.
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