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Abstract: Synthetic aperture radar (SAR) image-change detection is widely used in various fields,
such as environmental monitoring and ecological monitoring. There is too much noise and insuf-
ficient information utilization, which make the results of change detection inaccurate. Thus, we
propose an SAR image-change-detection method based on multiplicative fusion difference image (DI),
saliency detection (SD), multi-scale morphological reconstruction (MSMR), and fuzzy c-means (FCM)
clustering. Firstly, a new fusion DI method is proposed by multiplying the ratio (R) method based
on the ratio of the image before and after the change and the mean ratio (MR) method based on the
ratio of the image neighborhood mean value. The new DI operator ratio–mean ratio (RMR) enlarges
the characteristics of unchanged areas and changed areas. Secondly, saliency detection is used in DI,
which is conducive to the subsequent sub-area processing. Thirdly, we propose an improved FCM
clustering-change-detection method based on MSMR. The proposed method has high computational
efficiency, and the neighborhood information obtained by morphological reconstruction is fully
used. Six real SAR data sets are used in different experiments to demonstrate the effectiveness of the
proposed saliency ratio–mean ratio with multi-scale morphological reconstruction fuzzy c-means
(SRMR-MSMRFCM). Finally, four classical noise-sensitive methods are used to detect our DI method
and demonstrate the strong denoising and detail-preserving ability.

Keywords: change detection; clustering; fusion difference image; morphological reconstruction;
saliency detection; SAR image

1. Introduction

The goal of synthetic aperture radar (SAR) image-change detection is to generate a
change image, which describes the changes of two or more time-phase images between
different calibration times [1–3]. As SAR has imaging capability for all day and for all
weather [4,5], it is widely used in environmental monitoring, ecological monitoring, urban
development research, agriculture forestry monitoring, natural disaster assessment, and
other fields [6–9].

The process of SAR image-change detection generally includes three parts: image
preprocessing, difference image (DI) generation, and difference image analysis [10,11].

The first step mainly includes image registration and image denoising. Due to the large
amount of speckle noise in SAR images, many denoising methods are used to improve the
detection effect, such as Lee filtering [12], Frost filtering [13], non-local means (NLM) [14],
and Speckle reducing anisotropic diffusion (SRAD) [15].

DI generation is an important step in change detection. The first type is based on
the pixel. Dekker proposed the ratio (R) method [16]. The R method reduces the noise,
but exaggerates the change degree of the low gray pixel area. Bazi et al. proposed the
log-ratio (LR) method [17]. The method transforms the multiplicative noise into additive
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noise, which is more conducive to the subsequent denoising work. The second type is
based on neighborhood information such as mean value, median value, local variance,
and weighted spatial distance. Inglada et al. proposed the mean-ratio (MR) method [18].
The MR operator can reduce the image noise. However, it will reduce the contrast of the
changed area. Zheng et al. proposed a new operator by weighted fusion of the subtraction
operator and LR operator [19]. Gong et al. proposed the neighborhood-based ratio (NR)
method [20]. The NR operator makes full use of the spatial information of the image,
but it will enlarge the gray level of the edge. Zhang et al. proposed a method based on
super-pixel segmentation [21], which makes better use of neighborhood information, while
maintaining image contours. Wang et al. proposed a DI-generation method based on the
coefficient of variation and physical proximity [22]. Zhang et al. proposed a DI-generation
method based on the adaptive generalized likelihood ratio test (AGLRT) [23]. This method
greatly suppresses the noise in the image. Jia et al. fused the subtraction DI and ratio DI by
multi-scale wavelet fusion [24].

The last step is DI analysis. Threshold and clustering are the most common unsuper-
vised methods. Kittler and Illingworth (KI), Otsu method, and the expectation maximiza-
tion (EM) method are widely used in change detection [25–27]. Clustering methods mainly
include K-Means [28] clustering and fuzzy c-means clustering (FCM) [29].

FCM is the most widely used method. However, neighborhood information is not
used in FCM, as it is very sensitive to noise, so the final segmentation effect is not ideal.
Ahmed et al. proposed the offset corrected fuzzy c-means clustering (FCM_S) [30] method.
Aiming at the low efficiency of FCM_S, Chen et al. proposed the improved FCM_S1 and
FCM_S2 [31]. These two methods all use neighborhood information, but many experimen-
tal parameters need to be adjusted to get optimal results. Gong et al. used the improved
fuzzy local information c-means (FLICM) method in SAR image-change detection [32].
This method has few parameters. However, the convergence speed is slow. Mu et al.
proposed the fuzzy c-means clustering method based on the Gaussian kernel (KFCM) [33].
This algorithm can improve the extraction of image features but has high requirements
for the selection of initial clustering centers. Wang et al. proposed the fuzzy adaptive
local and region-level information c-means (FALRCM) [34]. Neighborhood information is
adaptively utilized, and it is robust to noise. Lei et al. proposed the fast and robust fuzzy
c-means (FRFCM) [35], which introduced the morphological images into fuzzy clustering.
In deep learning, FCM is often used for image pre-classification. Gong et al. used FCM to
pre-classify the DI and obtained reliable changed samples and unchanged samples. These
samples are used to train Deep Neural Networks (DNN) [36].

Now, machine learning and deep learning are widely used in change detection. Gao
et al. combined the neighborhood-based ratio and extreme learning machine (NR-ELM) [37],
and Cui et al. proposed an unsupervised SAR change detection method based on stochastic
subspace ensemble learning, which combined the training samples generated by two
DIs [38]. Ma et al. proposed a method based on multi-grained cascade forest and multi-
scale fusion [39]. Gao et al. proposed the convolution wavelet neural network (CWNN) [40]
and the principal component analysis network (PCANet) [41]. Wang et al. proposed a novel
multi-scale average pooling (MSAP) network to exploit the changed information from the
noisy difference image [42]. Qu et al. proposed a dual-domain network (DDNet) [43],
which introduced discrete cosine transform (DCT) to the net. However, machine learning
and deep learning methods usually need a long running time and depend on the accuracy
of labels.

In the existing DI methods, only single pixel or neighborhood information is used in
these methods. Besides, the calculation of clustering is complex when using neighborhood
information. The proposed saliency ratio–mean ratio with multi-scale morphological re-
construction fuzzy c-means (SRMR-MSMRFCM) has the following advantages. R operator
and MR operator are used to generate fusion DI in our method. Therefore, the advantages
of single pixel operator and neighborhood operator are combined in our method. Saliency
detection can effectively extract the changed areas and unchanged areas, which lays the
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foundation for the subsequent sub-regional processing. Moreover, neighborhood informa-
tion is introduced through morphological reconstruction rather than directly adding fuzzy
factors, which simplifies the operation.

This paper’s remaining frame is organized as follows. The proposed method is
described in Section 2 in detail. The experimental results on six data sets are shown in
Section 3. Parameter analysis is shown in Section 4. The conclusion and further research
direction are put forward in Section 5. The main contributions of this paper are as follows.

(1) A new difference image generation method is proposed. The R method and the MR
method are combined by multiplication. In the case of preserving the details of the
image, the features of the changed areas are effectively enlarged, and the features of
the unchanged areas are suppressed.

(2) Saliency detection is used to obtain the changed and unchanged areas of the image.
Large-size structuring elements are used to remove noise in the unchanged area. In
the changed area, multi-scale morphological reconstruction can not only maintain the
details of the image but also effectively remove the noise.

(3) FCM, Kmeans, Otsu, and manual threshold are very sensitive to noise. Though these
methods are applied in the proposed method, the proposed method can decrease the
influence of the noise and preserve the detail of the changed area better.

2. Materials and Methods

In this part, we introduce the proposed SAR image-change detection method in detail.
This method can be divided into the following steps: difference image generation, saliency
detection, sub-regional morphological reconstruction, and output detection results.

Firstly, the R operator and the MR operator are used to generate DI, and the two
images are fused into a new DI by multiplication. Secondly, saliency detection is used for
DI, and Otsu method is used to obtain the binary saliency image. Thirdly, according to
the saliency image, we reconstruct the image by sub-regional morphology. Finally, FCM
is used to output the change detection result. Figure 1 is the flow chart of the method
in this paper. In the proposed method, the new DI operator effectively increases the
contrast between the changed and unchanged areas and increases the accuracy of saliency
detection. Saliency detection is the basis of sub-regional morphological reconstruction.
The combination of the two not only removes noise, but also preserves image details. By
introducing the morphological reconstruction image information into FCM, FCM also has
strong robustness to noise. The details of DI generation, saliency detection, multi-scale
morphological reconstruction, and FCM are reported in Sections 2.1–2.4

2.1. Generation of Difference Image

The ratio method reduces the influence of multiplicative noise and increases the
contrast of the changed area. However, the additive noise generated by this method still
exists in large quantities. Firstly, the normalized ratio method is used to obtain the initial
DI. Compared with the original ratio method, this method reduces the weight of the change
difference for low gray pixels, while the weight of the change difference for high gray pixels
is almost unchanged. This improves the accuracy. Assuming that images T1 and T2 are
SAR images of different times in the same area, the difference image of T1 and T2 can be
obtained by Equation (1).

Xd1(x, y) =
max{T1(x, y), T2(x, y)} −min{T1(x, y), T2(x, y)}
max{T1(x, y), T2(x, y)}+ min{T1(x, y), T2(x, y)} (1)
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The MR method is to take the neighborhood mean of the corresponding pixels and
then calculate the ratio. It is strongly robust to scatter noise. The MR method can be
calculated by Equation (2).

Xd2(x, y) = 1−min
{

µ1(x, y)
µ2(x, y)

,
µ2(x, y)
µ1(x, y)

}
(2)

where µ1(x, y) and µ2(x, y) are the average of the gray values of all pixels in the 3 × 3
neighborhood window centered on coordinate (x, y) in images T1 and T2, respectively.

In this paper, the R operator and the MR operator are multiplied and normalized to
form a new DI operator. The ratio–mean ratio (RMR) DI can be calculated by Equation (3).
The normalized image is shown by Equation (4).

Xd3 = max{T1(x,y),T2(x,y)}−min{T1(x,y),T2(x,y)}
max{T1(x,y),T2(x,y)}+min{T1(x,y),T2(x,y)}

×
{

1−min
{

µ1(x,y)
µ2(x,y) , µ2(x,y)

µ1(x,y)

}} (3)

Xd4 =
Xd3(x, y)−min(Xd3)

max(Xd3)−min(Xd3)
(4)

When a single pixel and its neighborhood change greatly, the gray value of the new
operator will be still large after normalization. When the change of a single pixel and its
neighborhood change little, the gray value of the new operator will be very small after
normalization. Therefore, the contrast between the changed area and the unchanged area
is improved. In addition, the proposed RMR method reduces the false negative caused by
R operator and the false positive caused by MR operator through multiplication operator.
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Figure 1. Flowchart of the proposed method. 
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−
=

+
 (1) 

The MR method is to take the neighborhood mean of the corresponding pixels and 
then calculate the ratio. It is strongly robust to scatter noise. The MR method can be cal-
culated by Equation (2). 

( ) ( )
( )
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, ,
, 1 min ,

, ,d

x y x y
X x y

x y x y
µ µ
µ µ

  = −  
  

 (2) 
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2.2. Saliency Detection

Saliency detection (SD) is suitable for SAR image-change detection. In paper [44,45],
saliency detection was applied to select training samples. Context-Aware (CA) was pro-
posed by Goferman et al. in 2012 [46]. The author thought that the saliency image should
contain both the target and the background area near the target. In this way, the salient
information of the image can be better described. Therefore, the changed area must be in
the salient area. In this paper, the RMR DI is used for saliency detection. The principle of
CA is as follows. RMR DI is converted from RGB space to Lab space. The distance between
RMR DI blocks is obtained by the following.

d
(

pi, pj
)
=

dcolor
(

pi, pj
)

1 + c · dposition
(

pi, pj
) (5)

where dcolor
(

pi, pj
)

is the Euclidean distance of color between area pi and
pj, and dposition

(
pi, pj

)
is the Euclidean distance of space. Therefore, the distance between pi

and pj is proportional to the color distance and inversely proportional to the spatial distance.
Here c is set to 3. Then, the saliency value can be calculated according to the distance.

Sr
i = 1− exp

(
− 1

K

K

∑
K=1

d(pi, pk)

)
(6)

where Sr
i is the saliency value. At scale r, the image is segmented into K areas. The greater

the dissimilarity calculated by the area, the greater the saliency value of the pixels in
the area. Here K is set to 64. In order to enhance the contrast between salient areas and
non-salient areas, the above calculation is extended to multi-scale. When a pixel has a large
saliency value at multiple scales, it is considered as the salient area we are looking for.
Therefore, the introduction of the mean saliency value is necessary, which is calculated by
the following.

Si =
1
M ∑

r∈R
Sr

i (7)

where R = {r1, . . . rM} is the set of scales of the area, and Si is the average saliency value of
the area at these scales. Here R is set to {100%, 80%, 50%, 30%}. Extract the most focused
local areas at each scale from the saliency image, and a pixel is considered to be of attention
at the current scale if its saliency value exceeds a certain threshold. The saliency value is
refined as

Ŝi = Si ·
(

1− dr
f oci(i)

)
(8)

where dr
f oci(i) is the distance between area i and the nearest area of attention. Assuming

that the image obeys a two-dimensional Gaussian distribution, the final saliency value S of
the image can be calculated as

S = Ŝi · G (9)

where G is a two-dimensional Gaussian distribution at the center of the image. After
obtaining the saliency image, the image is binarized in order to more intuitively reflect
the changed area and unchanged area. Otsu [26] method can effectively distinguish the
background from the target. Therefore, it is used to segment the image. Then, we get the
binary saliency image SB. In SB, the white part is the general changed area, and the black
part is the general unchanged area. Through SB, we get the corresponding changed area fc1
and unchanged area fu1 from DI.
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2.3. Morphological Reconstruction

After the images of the two areas have been acquired, the preconditions for sub-
regional processing have been completed and there is still some noise in the image. How-
ever, FCM algorithm does not make use of the neighborhood information, and it is poor to
noise. Therefore, the change-detection results in lots of scenes are not satisfactory. Morpho-
logical reconstruction [35] can reduce the noise of noisy images while preserving the target
contour in FCM. Morphological reconstruction includes two basic operations: dilation and
erosion. Suppose f is the original image, and P is the structuring element. The two basic
morphological operators can be written as

f ⊕ P(x, y) = sup f (x + a, y + b),
a, b ∈ Db
x, y ∈ D f

(10)

f ΘP(x, y) = inf f (x + a, y + b),
a, b ∈ Db
x, y ∈ D f

(11)

where f ⊕ P(x, y) and f ΘP(x, y) are dilation and erosion operator of f at pixel (x, y),
respectively. Db represents the domain of P, and D f represents the domain of f.

Through the combination of morphological dilation operator and erosion operator,
some reconstruction operators with strong filtering ability can be obtained, such as mor-
phological open operation and closed operation. They can be written as

f ◦ P(x, y) = ( f ΘP)⊕ P(x, y) (12)

f •P(x, y) = ( f ⊕ P)ΘP(x, y) (13)

where f ◦ P(x, y) represents open operation, and f •P(x, y) represents closed operation.
The open operation can reduce the noise of the image and remove the outliers in the image.
The closed operation can fill the small cracks in the image without changing the position
and size of the image block. Therefore, the alternative use of open operation and closed
operation can remove the noise in the picture, while ensuring that the image is basically
unchanged. In this paper, the morphological filtering of the image is achieved through
open operation and closed operation, as shown in Equation (14).

F(x, y) = ( f ◦ P(x, y))•(P(x, y)) (14)

where F(x, y) represents the value of the pixel (x, y) after morphological reconstruction.
In the above operations, the radius of the structuring element is 1. In paper [35],

morphological reconstruction is only used in the original image. However, such operation
is too rough for change detection. Therefore, the changed image is decomposed into three
scales, and better results are obtained by morphological reconstruction of the three scales.
They are shown by Equations (15)–(17).

fc2(x, y) = ( fc1 ◦ n1P(x, y))•(n1P(x, y)) (15)

fc3(x, y) = ( fc(1/2) ◦ n1P(x, y))•(n1P(x, y)) (16)

fc4(x, y) = ( fc(1/4) ◦ n1P(x, y))•(n1P(x, y)) (17)

where fc1 is the original-scale image, fc(1/2) is the 1
2 -scale image, fc(1/4) is the 1

4 -scale image,
and n1 is the size of the structuring element. Different weight coefficients are used to fuse
the three images. Then, the expression of the final changed image can be written as

fc(x, y) = α fc2(x, y) + β fc3(x, y) + γ fc4(x, y) (18)
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For unchanged areas, it is more appropriate to use larger structuring elements for
morphological reconstruction on the original scale image. It is written as

fu(x, y) = ( fu1 ◦ n2P(x, y))•(n2P(x, y)) (19)

Finally, fc and fu are summed to obtain the final morphological reconstruction image ξ.

ξ(x, y) = fc(x, y) + fu(x, y) (20)

2.4. Fuzzy C-Means Clustering

FCM is a classical change-detection method. Its objective function is to find the fuzzy
clustering of given data by minimizing the objective function. Its objective function can be
calculated by Equation (21).

Jm =
q

∑
l=1

c

∑
k=1

(ukl)
m‖yl − vk‖2 =

q

∑
l=1

c

∑
k=1

(ukl)
md2

kl (21)

where Y = (y1, y2, . . . , yq) denotes a set of data samples, V = (v1, v2, . . . , vk) denotes the
clustering center of data, U = [ukl ]q×c is the membership matrix of the samples, ukl ∈ [0, 1]

is the degree of membership belonging to class k, ‖yl − vk‖2 is the Euclidean distance
between the k-th cluster center and the l-th sample, and m ∈ (1, ∞) is a weighted index. We
introduce morphologically reconstructed images into clustering. Therefore, the objective
function of the multi-scale morphological reconstruction fuzzy-c-means (MSMRFCM)
clustering algorithm can be written as

Jm =
q

∑
l=1

c

∑
k=1

χl(ukl)
m‖ξl − vk‖2 (22)

where χl denotes the number of pixels of l-th gray level, ξ denotes the image after mor-
phological reconstruction, ξl means gray level, and ‖ξl − vk‖2 is the Euclidean distance
between the k-th cluster center and the l-th gray level. The optimal ukl and vk can be
obtained by Lagrange multiplier method, which are as follows.

ukl =
‖ξl − vk‖

−2
(m−1)

c
∑

j=1

∥∥ξl − vj
∥∥ −2

(m−1)
(23)

vk =

q
∑

i=1
γl(ukl)

mξl

q
∑

i=1
γl(ukl)

m
(24)

Each pixel is assigned to the corresponding class according to the final membership
degree, and the change detection result is generated.

Many improved FCM algorithms, such as FLICM, introduce spatial local information
into the objective function. This will greatly increase the computational complexity of the
algorithm. By introducing morphological reconstruction into FCM, we not only reduce the
computation of the algorithm, but also have good robustness to different kinds of noise.
In addition, the introduction of multi-scale images can better obtain the complete features
of the image. Finally, the running time of the algorithm is greatly reduced by using gray
histogram instead of pixel-by-pixel calculation.
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3. Experimental Results
3.1. Data Set

In this section, six real SAR image data sets are used to demonstrate the superiority of
the method. Figures 2–7 show the SAR data sets. Figure 2 is the Bern data set. They were
taken in July 1999 and May 1999 by ERS-2. The image size and resolution are 301× 301 and
20 m. Figure 3 is the Ottawa data set. They were taken in May 1997 and August 1997 by
Radarsat-1. The image size and resolution are 290 × 350 and 12 m. Figure 4 is the Farmland
data set. They were taken in June 2008 and June 2009 by Radarsat-2. The image size and
resolution are 306 × 291 and 8 m. Figure 5 is the Coastline data set. They were taken
in June 2008 and June 2009 by Radarsat-2. The image size and resolution are 450 × 280
and 8 m. Figure 6 is the Inland Water data set. They were taken in June 2008 and June
2009 by Radarsat-2. The image size and resolution are 291 × 444 and 8 m. Figure 7 is the
Bangladesh data set. They were taken in April 2007 and July 2007 by Envisat. The image
size and resolution are 300 × 300 and 10 m. A description of these data sets is shown in
Table 1.

Table 1. The 6 data sets used in the experiments.

Place Pre-Data Post-Data Size Satellite Resolution

Bern 1999.04 1999.05 301 × 301 ERS-2 20 m
Ottawa 1997.05 1997.08 290 × 350 Radarsat-1 12 m

Farmland 2008.06 2009.06 306 × 291 Radarsat-2 8 m
Coastline 2008.06 2009.06 450 × 280 Radarsat-2 8 m

Inland water 2008.06 2009.06 291 × 444 Radarsat-2 8 m
Bangladesh 2007.04 2007.07 300 × 300 Envisat 10 m
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3.2. Evaluation Criterion 
In order to more objectively explain the effect of change detection, we give five quan-
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Figure 6. Inland Water data set. (a) Image obtained in June 2008; (b) image obtained in June 2009;
(c) the ground truth.
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Figure 7. Bangladesh data set. (a) Image obtained in April 2007; (b) image obtained in July 2007;
(c) the ground truth.
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3.2. Evaluation Criterion

In order to more objectively explain the effect of change detection, we give five
quantitative evaluation criterions of detection results: number of false negatives (FN),
number of false positives (FP), number of overall errors (OE, the sum of FP and FN),
percentage correct classification (PCC, the ratio of the number of correctly detected pixels
to the total number of pixels) [47], and Kappa coefficient (KC, the similarity between the
detection result image and the ground truth) [48]. The actual number of changed and
unchanged pixels is Nc and Nu. These indicators are calculated by the following.

OE = FP + FN (25)

PCC =
Nu + Nc − FP− FN

Nu + Nc
× 100% (26)

KC =
PCC− PRE

1− PRE
(27)

PRE =
(Nc − FN + FP) · Nc + (Nu − FP + FN) · Nu

(Nc + Nu) · (Nc + Nu)
(28)

3.3. DI Analysis

For DI analysis, we will take the Ottawa data set as an example. The images before
and after change, saliency images, DIs, and change-detection results are shown in Figure 8.
Figure 8a,b are the images before and after change, respectively. Figure 8c,d are the saliency
image and binary image obtained by RMR DI, respectively. Figure 8e–h are R DI, MR DI,
RMR DI, and SRMR-MSMR DI, respectively. Figure 8i–l are the change-detection results of
these DIs, respectively. The evaluation indicators are shown in Table 2.

Table 2. Change-detection evaluation indicators of Ottawa data set by different DIs.

FP FN OE PCC (%) KC (%)

R [16] 1631 1287 2918 97.13 89.29
MR [18] 2323 193 2516 97.52 91.66

RMR 427 941 1368 98.65 94.87
MSMR 670 499 1169 98.85 95.69

It can be seen from the binary saliency image that the changed area of the image is not
continuous. The binary image is the approximate changed area of the image, which has a
larger changed area than the ground truth. Therefore, it lacks a large number of details of
the image, but reduces the missed detection. There is a lot of speckle noise in R DI, which
makes the detection result of the image poor. The calculation process of R DI only involves
ratio operation, so it is very sensitive to noise. There are a large number of isolated pixels in
the final change image, and the FP value reaches 1631. The FN value reaches 1287, which
is the worst. Due to the mean filtering of MR DI, the changed area becomes significantly
larger, and the final change image has the most FP pixels, reaching 2323. Thanks to the
multiplication operation, the noise in the unchanged area is reduced in the RMR DI. The KC
value of RMR reaches 94.87%, which is far higher than those of R and MR. From the binary
saliency image, the area within the green rectangle is the changed area. Compared with
RMR, SRMR-MSMR successfully eliminates the surrounding misdetected pixels, so the
changed area is completely preserved. The area within the red rectangle is the unchanged
area. SRMR-MSMR completely eliminates these misdetected pixels. It can be seen that
small-size structuring elements are used for the changed area, which can not only maintain
the details of the image but also eliminate noise. Large-size structuring elements are used
for the unchanged area, which can completely eliminate noise. This is thanks to the correct
guidance provided by the saliency detection for subregional processing.
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Figure 8. Images of the Ottawa data set. (a) Before; (b) after; (c) saliency image; (d) binary saliency
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3.4. Change-Detection Results and Analysis

Six SAR image data sets and the change-detection results obtained by various methods
are shown in Figures 9–14. The change-detection-result evaluation is shown in Tables 3–8.
Eight methods are used as comparison methods for the proposed SRMR-MSMRFCM, which
are FCM [29], FLICM [32], PCA-KMeans [28], PCANet [41], CWNN [40], MSAPNet [42],
robust unsupervised small-area change detection (RUSACD) [21], and DDNet [43].

Table 3. Change-detection evaluation indicators of Bern data set of different methods.

FP FN OE PCC (%) KC (%)

FCM [29] 83 310 393 99.57 80.92
FLICM [32] 301 77 378 99.58 84.87

PCA-KMeans [28] 158 146 304 99.66 86.74
PCANet [41] 25 455 480 99.47 74.21
CWNN [40] 85 230 315 99.65 85.28

MSAPNet [42] 148 140 288 99.68 87.56
RUSACD [21] 307 122 429 99.53 82.57

DDNet [43] 71 246 317 99.65 84.98
SRMR-MSMRFCM 163 123 286 99.68 87.67
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Table 4. Change-detection evaluation indicators of Ottawa data set of different methods.

FP FN OE PCC (%) KC (%)

FCM [29] 802 2139 2941 97.10 88.74
FLICM [32] 839 657 1496 98.53 94.49

PCA-KMeans [28] 970 1541 2511 97.53 90.57
PCANet [41] 871 1021 1892 98.14 92.97
CWNN [40] 1291 434 1725 98.30 93.75

MSAPNet [42] 262 2351 2613 97.43 89.79
RUSACD [21] 1468 295 1763 98.26 93.66

DDNet [43] 693 1010 1703 98.32 93.65
SRMR-MSMRFCM 670 499 1169 98.85 95.69

Table 5. Change-detection evaluation indicators of Farmland data set of different methods.

FP FN OE PCC (%) KC (%)

FCM [29] 2472 880 3352 96.23 70.39
FLICM [32] 1381 467 1848 97.92 82.76

PCA-KMeans [28] 1293 476 1769 98.01 83.37
PCANet [41] 25 1312 1337 98.50 84.77
CWNN [40] 324 734 1058 98.81 88.93

MSAPNet [42] 179 686 865 98.94 90.87
RUSACD [21] 124 1060 1184 98.67 86.98

DDNet [43] 231 855 1086 98.78 88.40
SRMR-MSMRFCM 102 709 811 99.01 91.35

Table 6. Change-detection evaluation indicators of Coastline data set of different methods.

FP FN OE PCC (%) KC (%)

FCM [29] 30,397 60 30,457 75.83 5.87
FLICM [32] 903 87 990 99.21 71.43

PCA-KMeans [28] 39,583 24 39,607 68.57 4.28
PCANet [41] 17,879 6 17,885 85.81 11.27
CWNN [40] 13,954 51 14,005 88.88 13.94

MSAPNet [42] 5794 58 5862 95.36 29.33
RUSACD [21] 115 174 289 99.77 88.92

DDNet [43] 144 184 328 99.74 87.52
SRMR-MSMRFCM 32 164 196 99.84 92.27

Table 7. Change-detection evaluation indicators of Inland Water data set of different methods.

FP FN OE PCC (%) KC (%)

FCM [29] 3268 543 3811 97.05 64.63
FLICM [32] 1654 798 2452 98.10 72.84

PCA-KMeans [28] 1354 603 1957 98.49 78.09
PCANet [41] 622 1770 2392 98.15 71.01
CWNN [40] 1333 494 1827 98.59 79.73

MSAPNet [42] 939 669 1608 98.76 81.04
RUSACD [21] 729 1114 1843 98.57 76.58

DDNet [43] 1334 576 1910 98.52 78.63
SRMR-MSMRFCM 721 912 1633 98.74 79.72
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Table 8. Change-detection evaluation indicators of Bangladesh data set of different methods.

FP FN OE PCC (%) KC (%)

FCM [29] 4 4957 4961 94.49 74.27
FLICM [32] 21 3722 3743 95.84 81.43

PCA-KMeans [28] 308 4031 4339 95.18 78.46
PCANet [41] 5 4548 4553 94.94 76.73
CWNN [40] 19 3947 3966 95.59 80.17

MSAPNet [42] 2 4781 4783 94.69 75.35
RUSACD [21] 198 2886 3064 96.60 85.33

DDNet [43] 19 3774 3793 95.79 81.15
SRMR-MSMRFCM 139 2391 2530 97.19 88.05
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Figure 9. Change-detection results of the Bern data set. (a) FCM; (b) FLICM; (c) PCA-KMeans; (d) 
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truth. 
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The change-detection results and evaluation indicators of the Ottawa data set are 
shown in Figure 10 and Table 4, respectively. Similar to the Bern data set, the existence of 
isolated pixels reduces the detection accuracy of FCM and FLICM. The edge of PCANet 
is not smooth. Although the change image of CWNN is very smooth, a lot of image details 
are lost. Some small changed areas are not detected. Therefore, the edges remain poor. 
MSAPNet has a large number of FN pixels, while PCA-KMeans and RUSAD are the op-
posite. For this data set, the performance of DDNet is very ordinary, as the values of FP 
and FN are not outstanding. The proposed SRMR-MSMRFCM achieves the best detection 
results and effectively preserves the small changed area, while removing the isolated pix-
els. In terms of evaluation criteria, the KC value of the proposed SRMR-MSMRFCM is 
improved by 6.95%, 1.20%, 5.12%, 2.72%, 1.94%, 5.9%, 2.03%, and 2.04% over FCM, 
FLICM, PCA-KMeans, PCANet, CWNN, MSAPNet, RUSACD, and DDNet, respectively. 
Visually and metrically, the proposed method draws a balance between FP and FN. 

The change-detection results and evaluation indicators of the Farmland data set are 
shown in Figure 11 and Table 5, respectively. Since there is a large amount of noise in the 
original image, FCM, FLICM, and PCA-KMeans mistakenly judge the noise information 
as changed areas, resulting in a large number of FP values. There is almost no noise nor 
any isolated pixels in the image of PCANet and RUSACD, and the general changed areas 
and unchanged areas are detected. However, the detection results are not ideal because 
there are too many missed detection areas. CWNN and DDNet achieve better results in 

Figure 9. Change-detection results of the Bern data set. (a) FCM; (b) FLICM; (c) PCA-KMeans;
(d) PCANet; (e) CWNN; (f) MSAPNet; (g) RUSACD; (h) DDNet; (i) SRMR-MSMRFCM; (j) the
ground truth.
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Figure 10. Change-detection results of the Ottawa data set. (a) FCM; (b) FLICM; (c) PCA-KMeans;
(d) PCANet; (e) CWNN; (f) MSAPNet; (g) RUSACD; (h) DDNet; (i) SRMR-MSMRFCM; (j) the
ground truth.
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Figure 11. Change-detection results of the Farmland data set. (a) FCM; (b) FLICM; (c) PCA-KMeans; 
(d) PCANet; (e) CWNN; (f) MSAPNet; (g) RUSACD; (h) DDNet; (i) SRMR-MSMRFCM; (j) the 
ground truth. 

Table 5. Change-detection evaluation indicators of Farmland data set of different methods. 

 FP FN OE PCC (%) KC (%) 
FCM [29] 2472 880 3352 96.23 70.39 

FLICM [32] 1381 467 1848 97.92 82.76 
PCA-KMeans [28] 1293 476 1769 98.01 83.37 

PCANet [41] 25 1312 1337 98.50 84.77 
CWNN [40] 324 734 1058 98.81 88.93 

MSAPNet [42] 179 686 865 98.94 90.87 
RUSACD [21] 124 1060 1184 98.67 86.98 

DDNet [43] 231 855 1086 98.78 88.40 
SRMR-MSMRFCM 102 709 811 99.01 91.35 

The change-detection results and evaluation indicators of the Coastline data set are 
shown in Figure 12 and Table 6, respectively. For this data set, the detection results of 
FCM and PCA-KMeans are very poor. The FP value exceeds 30,000 and the error-detected 
pixels are almost all over the whole image. The results of PCANet, CWNN, and MSAPNet 
are better, but there are still a large number of block false detections. FLICM performs 
very well in this data set. The FP value is only 903, so the image noise is very small. 
RUSACD, DDNet, and our method all achieve excellent detection accuracy. By the naked 
eye, the change images of the three are almost the same as the ground truth. However, in 
the circular changed area, there are a small number of FP pixels in RUSACD and a small 
number of FN pixels in DDNet. From the evaluation criteria, our method achieves ad-
vantages in both FP and FN compared to those two methods. This is due to the fact that 
the MMR DI enlarges and reduces the gray levels of the changed area and the unchanged 
area, respectively. In addition, the MSMR algorithm effectively suppresses the noise. In 
terms of evaluation criteria, the KC value of the proposed SRMR-MSMRFCM is improved 
by 86.40%, 20.98%, 87.99%, 81.00%, 78.33%, 62.94%, 3.35% and 4.75% over FCM, FLICM, 
PCA-KMeans, PCANet, CWNN, MSAPNet, RUSACD and DDNet. For this data set, our 
method achieves much better results than the other methods, which proves its robustness. 

  

Figure 11. Change-detection results of the Farmland data set. (a) FCM; (b) FLICM; (c) PCA-KMeans;
(d) PCANet; (e) CWNN; (f) MSAPNet; (g) RUSACD; (h) DDNet; (i) SRMR-MSMRFCM; (j) the
ground truth.

Remote Sens. 2022, 14, 3604 16 of 24 
 

 

     
(a) (b) (c) (d) (e) 

     
(f) (g) (h) (i) (j) 

Figure 12. Change-detection results of the Coastline data set. (a) FCM; (b) FLICM; (c) PCA-KMeans; 
(d) PCANet; (e) CWNN; (f) MSAPNet; (g) RUSACD; (h) DDNet; (i) SRMR-MSMRFCM; (j) the 
ground truth. 
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CWNN [40] 13954 51 14005 88.88 13.94 

MSAPNet [42] 5794 58 5862 95.36 29.33 
RUSACD [21] 115 174 289 99.77 88.92 

DDNet [43] 144 184 328 99.74 87.52 
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The change-detection results and evaluation indicators of the Inland Water data set 
are shown in Figure 13 and Table 7, respectively. FCM, FLICM, PCAKMeans, and DDNet 
have the problem of a lot of FP pixels. PCANet and RUSACD have a large number of 
missed detections. CWNN and our method have their own advantages. In the red rectan-
gle, CWNN has a large number of false alarm areas, but there is none in ours. CWNN has 
the advantage over FN value of 418, and we have the advantage over FP value of 612. Our 
PCC value is higher than CWNN by 0.15%, and the KC value is only 0.01% lower. MSAP-
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Figure 12. Change-detection results of the Coastline data set. (a) FCM; (b) FLICM; (c) PCA-KMeans;
(d) PCANet; (e) CWNN; (f) MSAPNet; (g) RUSACD; (h) DDNet; (i) SRMR-MSMRFCM; (j) the
ground truth.

The change-detection results and evaluation indicators of the Bern data set are shown
in Figure 9 and Table 3, respectively. The change images generated by FCM, FLICM, and
PCA-KMeans have many isolated pixels. Besides, the changed areas of FCM and DDNet
are not continuous, resulting in a large number of FN values. The changed areas of FLICM
and RUSACD are too large, resulting in a large number of FP values. The detection result
of PCA-KMeans is very well, but there is too much noise. Inside the red rectangle, there
are a lot of missing changed areas in PCANet, so the detection effect is poor. The result of
CWNN is the same, but the situation is slightly better. Obviously, from the visual point
of view, our method and MSAPNet have achieved the best detection results. Our method
has a slight advantage over FN, while MSAPNet has a slight advantage over FP. There are
no isolated pixels in the image, and the changed area is also kept completely. In terms of
evaluation criteria, the KC value of the proposed SRMR-MSMRFCM is improved by 6.75%,
2.80%, 0.93%, 13.46%, 2.39%, 0.11%, 5.10%, and 2.69% over FCM, FLICM, PCA-KMeans,
PCANet, CWNN, MSAPNet, RUSACD, and DDNet, respectively. Therefore, the proposed
method has effective advantages in both visual and quantitative comparisons.

The change-detection results and evaluation indicators of the Ottawa data set are
shown in Figure 10 and Table 4, respectively. Similar to the Bern data set, the existence of
isolated pixels reduces the detection accuracy of FCM and FLICM. The edge of PCANet
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is not smooth. Although the change image of CWNN is very smooth, a lot of image
details are lost. Some small changed areas are not detected. Therefore, the edges remain
poor. MSAPNet has a large number of FN pixels, while PCA-KMeans and RUSAD are the
opposite. For this data set, the performance of DDNet is very ordinary, as the values of FP
and FN are not outstanding. The proposed SRMR-MSMRFCM achieves the best detection
results and effectively preserves the small changed area, while removing the isolated
pixels. In terms of evaluation criteria, the KC value of the proposed SRMR-MSMRFCM is
improved by 6.95%, 1.20%, 5.12%, 2.72%, 1.94%, 5.9%, 2.03%, and 2.04% over FCM, FLICM,
PCA-KMeans, PCANet, CWNN, MSAPNet, RUSACD, and DDNet, respectively. Visually
and metrically, the proposed method draws a balance between FP and FN.
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Figure 13. Change-detection results of the Inland Water data set. (a) FCM; (b) FLICM; (c) PCA-
KMeans; (d) PCANet; (e) CWNN; (f) MSAPNet; (g) RUSACD; (h) DDNet; (i) SRMR-MSMRFCM; (j) 
the ground truth. 
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shown in Figure 14 and Table 8, respectively. Obviously, the FP value of this data set is 
negligible, but there is a large number of missed detections, which can be seen from the 
image inside the red rectangle. The remaining methods, except RUSACD, all have FN 
values around 4000. RUSAD and the proposed SRMR-MSMRFCM successfully detected 
more changed areas. However, the proposed method leads by 59 and 495 pixels in FP and 
FN values, respectively. Thus, the proposed method effectively preserves the image de-
tails. In terms of evaluation criteria, the KC value of the proposed SRMR-MSMRFCM is 
improved by 13.78%, 6.62%, 9.59%, 11.32%, 7.88%, 12.70%, 2.72%, and 6.90% over FCM, 
FLICM, PCA-KMeans, PCANet, CWNN, MSAPNet, RUSACD, and DDNet, respectively. 
It can be seen that the proposed method effectively reduces the missed detection. 

Figure 13. Change-detection results of the Inland Water data set. (a) FCM; (b) FLICM; (c) PCA-
KMeans; (d) PCANet; (e) CWNN; (f) MSAPNet; (g) RUSACD; (h) DDNet; (i) SRMR-MSMRFCM;
(j) the ground truth.

The change-detection results and evaluation indicators of the Farmland data set are
shown in Figure 11 and Table 5, respectively. Since there is a large amount of noise in the
original image, FCM, FLICM, and PCA-KMeans mistakenly judge the noise information
as changed areas, resulting in a large number of FP values. There is almost no noise nor
any isolated pixels in the image of PCANet and RUSACD, and the general changed areas
and unchanged areas are detected. However, the detection results are not ideal because
there are too many missed detection areas. CWNN and DDNet achieve better results in
the changed area, but there are some false alarm areas. Our method has achieved excellent
results in both changed and unchanged areas. MSAPNet has a similar performance to ours,
but there are still some missed changed areas. It can be seen that our method has excellent
robustness when the original image noise is too serious. In terms of evaluation criteria,
the KC value of the proposed SRMR-MSMRFCM is improved by 20.96%, 8.59%, 7.98%,
6.58%, 2.42%, 0.48%, 4.37%, and 2.95% over FCM, FLICM, PCA-KMeans, PCANet, CWNN,
MSAPNet, RUSACD, and DDNet, respectively. Therefore, the proposed method restores
the changed areas with as little loss of information as possible.
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Figure 14. Change-detection results of the Bangladesh data set. (a) FCM; (b) FLICM; (c) PCA-
KMeans; (d) PCANet; (e) CWNN; (f) MSAPNet; (g) RUSACD; (h) DDNet; (i) SRMR-MSMRFCM; (j) 
the ground truth. 

Table 8. Change-detection evaluation indicators of Bangladesh data set of different methods. 

 FP FN OE PCC (%) KC (%) 
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For six real SAR image-change detection data sets, the proposed SRMR-MSMRFCM 
method achieves the best results for five of them. Obviously, the results of our method are 
much better than those of the classical methods, such as FCM, FLICM, and PCA-KMeans. 
Therefore, our analysis mainly focuses on the comparison with advanced deep learning 
methods and the mechanism of the methods.  

Firstly, the multiplication operator effectively increases the contrast between the 
changed and unchanged areas. The R operator will improve the FN value of the detection 
result, while the MR operator will improve the FP value of the detection result. The rea-
sons for these two problems are the ratio operation between pixels and the mean filtering 
of the neighborhood. In the FP area of the MR DI, the corresponding pixels have low gray 
values on the R DI. Therefore, the R operator can suppress the FP value of the MR operator 
after the multiplication operation. Similarly, in the FN area of the R DI, the corresponding 
pixels have higher gray values on the MR DI. Therefore, the MR operator can suppress 
the FN value of the R operator after the multiplication operation. Besides, compared with 
the fusion method with weighted summation, the method based on multiplication can 
amplify the change characteristics of the image. For data sets less affected by noise, such 
as the Bern and Bangladesh data sets, the comprehensive performance of the proposed 
method is much better than the deep learning methods due to the RMR DI. The proposed 
method detects the changed areas more completely, while most deep learning methods 
miss many changed areas. The reason is that these deep learning methods use LR DI to 

Figure 14. Change-detection results of the Bangladesh data set. (a) FCM; (b) FLICM; (c) PCA-
KMeans; (d) PCANet; (e) CWNN; (f) MSAPNet; (g) RUSACD; (h) DDNet; (i) SRMR-MSMRFCM;
(j) the ground truth.

The change-detection results and evaluation indicators of the Coastline data set are
shown in Figure 12 and Table 6, respectively. For this data set, the detection results of
FCM and PCA-KMeans are very poor. The FP value exceeds 30,000 and the error-detected
pixels are almost all over the whole image. The results of PCANet, CWNN, and MSAPNet
are better, but there are still a large number of block false detections. FLICM performs
very well in this data set. The FP value is only 903, so the image noise is very small.
RUSACD, DDNet, and our method all achieve excellent detection accuracy. By the naked
eye, the change images of the three are almost the same as the ground truth. However,
in the circular changed area, there are a small number of FP pixels in RUSACD and a
small number of FN pixels in DDNet. From the evaluation criteria, our method achieves
advantages in both FP and FN compared to those two methods. This is due to the fact that
the MMR DI enlarges and reduces the gray levels of the changed area and the unchanged
area, respectively. In addition, the MSMR algorithm effectively suppresses the noise. In
terms of evaluation criteria, the KC value of the proposed SRMR-MSMRFCM is improved
by 86.40%, 20.98%, 87.99%, 81.00%, 78.33%, 62.94%, 3.35% and 4.75% over FCM, FLICM,
PCA-KMeans, PCANet, CWNN, MSAPNet, RUSACD and DDNet. For this data set, our
method achieves much better results than the other methods, which proves its robustness.

The change-detection results and evaluation indicators of the Inland Water data set are
shown in Figure 13 and Table 7, respectively. FCM, FLICM, PCAKMeans, and DDNet have
the problem of a lot of FP pixels. PCANet and RUSACD have a large number of missed
detections. CWNN and our method have their own advantages. In the red rectangle,
CWNN has a large number of false alarm areas, but there is none in ours. CWNN has the
advantage over FN value of 418, and we have the advantage over FP value of 612. Our PCC
value is higher than CWNN by 0.15%, and the KC value is only 0.01% lower. MSAPNet
achieves the best PCC and KC values. Although we do not achieve the best results for this
data set, the noise in the change image is completely removed.

The change-detection results and evaluation indicators of the Bangladesh data set are
shown in Figure 14 and Table 8, respectively. Obviously, the FP value of this data set is
negligible, but there is a large number of missed detections, which can be seen from the
image inside the red rectangle. The remaining methods, except RUSACD, all have FN
values around 4000. RUSAD and the proposed SRMR-MSMRFCM successfully detected
more changed areas. However, the proposed method leads by 59 and 495 pixels in FP
and FN values, respectively. Thus, the proposed method effectively preserves the image
details. In terms of evaluation criteria, the KC value of the proposed SRMR-MSMRFCM is
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improved by 13.78%, 6.62%, 9.59%, 11.32%, 7.88%, 12.70%, 2.72%, and 6.90% over FCM,
FLICM, PCA-KMeans, PCANet, CWNN, MSAPNet, RUSACD, and DDNet, respectively. It
can be seen that the proposed method effectively reduces the missed detection.

For six real SAR image-change detection data sets, the proposed SRMR-MSMRFCM
method achieves the best results for five of them. Obviously, the results of our method are
much better than those of the classical methods, such as FCM, FLICM, and PCA-KMeans.
Therefore, our analysis mainly focuses on the comparison with advanced deep learning
methods and the mechanism of the methods.

Firstly, the multiplication operator effectively increases the contrast between the
changed and unchanged areas. The R operator will improve the FN value of the detection
result, while the MR operator will improve the FP value of the detection result. The reasons
for these two problems are the ratio operation between pixels and the mean filtering of
the neighborhood. In the FP area of the MR DI, the corresponding pixels have low gray
values on the R DI. Therefore, the R operator can suppress the FP value of the MR operator
after the multiplication operation. Similarly, in the FN area of the R DI, the corresponding
pixels have higher gray values on the MR DI. Therefore, the MR operator can suppress the
FN value of the R operator after the multiplication operation. Besides, compared with the
fusion method with weighted summation, the method based on multiplication can amplify
the change characteristics of the image. For data sets less affected by noise, such as the
Bern and Bangladesh data sets, the comprehensive performance of the proposed method is
much better than the deep learning methods due to the RMR DI. The proposed method
detects the changed areas more completely, while most deep learning methods miss many
changed areas. The reason is that these deep learning methods use LR DI to obtain labels.
This leads to the omission of changed class pixel labels. Therefore, the neural network
cannot fully learn the features of the changed areas, resulting in the high FN values.

Secondly, saliency detection and large-size structuring elements completely remove
noise in unchanged areas. For the six data sets, there is almost no isolated noise in the
detection of the proposed method. The CA method comprehensively considers the distance,
mean value, and multi-scale information, so it completely detects the changed area of the
image. Since the prior information of the two-dimensional Gaussian distribution matrix is
introduced, the final saliency image can better reflect the change information of the image.
Large-size structuring elements have strong denoising ability, but will destroy the details
of the image. However, since they deal with unchanged areas, this disadvantage does not
actually exist. The advantage of this method is reflected in the data sets that are heavily
affected by noise, such as the Farmland, Coastline, and Inland Water data sets. It can be
seen there are no isolated pixels in unchanged areas in the proposed method, but there are
more or less for the other methods.

Thirdly, multi-scale images of changed areas enrich the features of the images and
improve the detection accuracy. After the previous algorithm process, qualified results can
be obtained by a single-scale image. However, in order to obtain better results, the method
needs to be extended to multiple scales. The fusion of multi-scale images with appropriate
proportion not only preserves the details, but also reduces the noise of the image. Small-
size structuring elements play the same role here. The advantages of this method are also
reflected in data sets that are heavily affected by noise, such as the Farmland, Coastline,
and Inland Water data sets. It can be seen that the changed areas of the results are complete
and smooth.

In order to prove the universality of the proposed method, four detection methods are
used to test the simulation accuracy, which are manual threshold [49], Otsu, KMeans, and
FCM. Neighborhood information and complex operations are not used in these methods,
so they can be used for universality tests. The results of the Ottawa data set are shown in
Figure 15 and Table 9. Obviously, for this data set, no matter what method is used, very
similar and excellent detection results can be obtained. For all experiments, the values
of PCC and KC are more than 98.80% and 95.50%, which are higher than those of the
comparison methods in Section 3.4. It proves that the method has good universality.
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Figure 15. Change-detection results of Ottawa data set of different methods. (a) threshold; (b) Otsu;
(c) KMeans; (d) FCM.

Table 9. Change-detection results of Ottawa data set of different methods.

FP FN OE PCC (%) KC (%)

Threshold [47] 576 636 1212 98.81 95.51
Otsu [26] 626 566 1192 98.83 95.60

KMeans [28] 663 512 1175 98.84 95.67
FCM [29] 670 499 1169 98.85 95.69

4. Discussion
4.1. Discussion of Weight Coefficient

For parameter analysis, we will take the Ottawa data set as an example.
In order to prove the feasibility of MSMR, we designed five groups of experiments.

The experimental setup is shown in Table 10. The results of the Ottawa data set are shown in
Figure 16 and Table 10. In experiment A, only a 1/4-scale image is used. Accordingly, only
a 1/2-scale image and the original image are used in experiments B and C, respectively. In
experiment D, the images of all three scales occupy 1/3 of the proportion. The parameters
for experiment E are those when the best results are obtained. As can be seen from the
figure, in experiment A, when only the 1/4scale image is used, the detection image obtained
loses a lot of details. The FP value is 744, and the KC value is only 89.89%. In experiment B,
when only the 1/2–scale image is used, the image details are enriched and the accuracy
improves a little. In experiment C, when only the original scale image is used, PCC and KC
reach 98.60% and 94.60%, respectively, which are the second-best results. In experiment D,
when the images of the three scales are used equally, the inspection accuracy is improved
qualitatively, and KC reaches 94.43%. However, this value is slightly lower than that of
experiment C, which only uses the original image. The reason is the wrong proportion
of the three scales. There are rich details in the original image, so it should occupy the
largest proportion. The smaller the scale of the image, the more information is lost, and
there is less noise. Therefore, smaller-scale images should occupy smaller proportions.
In experiment E, when the original image, the 1/2-scale image, and the 1/4-scale image
occupy the proportions of 0.57, 0.32, and 0.08, respectively, we reach the highest PCC and
KC value of 98.85% and 95.69%, respectively.
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Table 10. Experimental parameter setting and change-detection results of Ottawa data set.

α β γ FP FN OE PCC (%) KC (%)

A 0 0 1 744 1907 2651 97.39 89.89
B 0 1 0 62 1849 1911 98.12 92.59
C 1 0 0 210 1212 1422 98.60 94.60
D 1/3 1/3 1/3 314 1157 1474 98.55 94.43
E 0.57 0.32 0.08 670 499 1169 98.85 95.69
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to the final result of image processing. This parameter will be analyzed by taking the 
Coastline data set as an example. The change-detection results and evaluation indicators 
of different-size structuring elements are shown in Figure 18 and Table 11, respectively. It 
can be seen that when the radius of the structuring element is 1, there are some isolated 
FP pixels in the image. When the radius is 2, there are very few FP pixels in the red rec-
tangle. When the radii are 3 and 4, there are no isolated FP pixels in the image. The final 
detection results are almost the same as the ground truth. When the radius is 5, the 
changed area in the red rectangle is missed, and there are a lot of FP pixels in the green 
rectangle. When the radius is 6, the detection result is even worse, as the changed area in 
the blue rectangle is missed. It can be seen that if the structuring element is too small, the 
isolated noise may not be completely removed. If the structuring element is too large, both 

Figure 16. Multi-scale DI and change-detection results of the Ottawa data set. (a) Original DI;
(b) 1/2-scale DI; (c) 1/4-scale DI; (d) result of A; (e) result of B; (f) result of C; (g) result of D;
(h) result of E.

Figure 17 shows the results of all data sets. We can see that for single-scale images,
the original images have achieved the best results, the second-best is the 1/2-scale, and the
worst is the 1/4-scale. The results of experiment C were better than those of experiment D,
except for the Farmland data set. This proves that the result of a multi-scale image with
wrong proportions is not as good as that of the original image. The best results are all
obtained in experiment E. For the Bern, Farmland, Coastline, Inland Water, and Bangladesh
data sets, α, β, and γ are 0.5 0.4 0.1, 0.6 0.3 0.1, 0.38 0.31 0.29, 0.4 0.33 0.27, and 0.64 0.32 0.04,
respectively.
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detection results are almost the same as the ground truth. When the radius is 5, the 
changed area in the red rectangle is missed, and there are a lot of FP pixels in the green 
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Figure 17. PCC and KC of all data sets. (a) PCC; (b) KC.

4.2. Discussion of Structuring Elements

In morphological reconstruction, the size of structuring elements is very important
to the final result of image processing. This parameter will be analyzed by taking the
Coastline data set as an example. The change-detection results and evaluation indicators
of different-size structuring elements are shown in Figure 18 and Table 11, respectively. It
can be seen that when the radius of the structuring element is 1, there are some isolated FP
pixels in the image. When the radius is 2, there are very few FP pixels in the red rectangle.
When the radii are 3 and 4, there are no isolated FP pixels in the image. The final detection
results are almost the same as the ground truth. When the radius is 5, the changed area in
the red rectangle is missed, and there are a lot of FP pixels in the green rectangle. When
the radius is 6, the detection result is even worse, as the changed area in the blue rectangle
is missed. It can be seen that if the structuring element is too small, the isolated noise
may not be completely removed. If the structuring element is too large, both FP and FN
pixels can seriously reduce the accuracy of detection. Therefore, it is necessary to select the
appropriate size of structuring elements according to the noise level of the image. For the
Coastline data set, the image noise is very serious, so the structuring element with radius 4
is chosen. For the Bern, Ottawa, Farmland, Inland Water, and Bangladesh data sets, the
best radii are 1, 1, 3, 4, and 1, respectively.
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tuning of parameters without sacrificing too much accuracy. In addition, there is still 
much room for progress in the selection of the design of filters. 
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Figure 18. Change-detection results of different-size structuring elements of the Coastline data set.
(a) Radius = 1; (b) radius = 2; (c) radius = 3; (d) radius = 4; (e) radius = 5; (f) radius = 6.
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Table 11. Change-detection evaluation indicators of different-size structuring elements of Coastline
data set.

FP FN OE PCC (%) KC (%)

Radius = 1 178 196 374 99.70 85.88
Radius = 2 63 182 245 99.81 90.39
Radius = 3 29 176 205 99.84 91.88
Radius = 4 32 164 196 99.84 92.27
Radius = 5 176 307 483 99.62 80.98
Radius = 6 239 729 968 99.23 55.75

5. Conclusions

In this paper, a new DI-generation method, RMR, is constructed by fusing the R DI
and the MR DI based on multiplication. Experiments show that this method makes better
use of the information of single pixels and neighborhood pixels. Therefore, it has excellent
detection results for different kinds of SAR images. In addition, this paper proposes
the MSMRFCM clustering change-detection method, based on multi-scale morphological
reconstruction. Saliency detection is used to process images in different areas. Experiments
show that the method is robust to noise and can maintain the details of the image. However,
the method still has some shortcomings. There are four parameters in the method that can
be adjusted. The size of the structuring elements can be easily adjusted to the best effect.
However, although the coefficient adjustment of the three scale images is regular, it also
takes some time to adjust. In future research, we will try to adapt or simplify the tuning of
parameters without sacrificing too much accuracy. In addition, there is still much room for
progress in the selection of the design of filters.
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