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Abstract: Due to the shortage of independent and identically distributed (i.i.d.) training samples,
space−time adaptive processing (STAP) often suffers remarkable performance degradation in the
heterogeneous clutter environment. Sparse recovery (SR) techniques have been introduced into STAP
for the benefit of the drastically reduced training requirement, but they are incompletely robust for
involving the tricky selection of hyper−parameters or the undesirable point estimation for parameters.
Given this issue, we incorporate the Multiple−measurement Complex−valued Variational relevance
vector machines (MCV) to model the space−time echoes and provide a Gibbs−sampling−based
method to estimate posterior distributions of parameters accurately. However, the Gibbs sampler
require quantities of iterations, as unattractive as traditional Bayesian type SR−STAP algorithms
when the real−time processing is desired. To address this problem, we further develop the Bayesian
Autoencoding MCV for STAP (BAMCV−STAP), which builds the generative model according to
MCV and approximates posterior distributions of parameters with an inference network pre−trained
off−line, to realize fast reconstruction of measurements. Experimental results on simulated and
measured data demonstrate that BAMCV−STAP can achieve suboptimal clutter suppression in terms
of the output signal to interference plus noise ratio (SINR) loss, as well as the attractive real−time
processing property in terms of the convergence rate and computational loads.

Keywords: clutter suppression; variational autoencoder (VAE); space−time adaptive processing
(STAP); clutter plus noise covariance matrix (CCM); sparse recovery (SR)

1. Introduction

Airborne phased−array radar is widely used to detect moving targets because of its
mobility and freedom from the radius of the earth’s curvature, but it is always plagued
by the existence of the ‘nuisance’ clutter coupling in the space−time domain. To ensure
the detection of weak targets, space-time adaptive processing (STAP) methods [1–4] are
developed to mitigate the clutter and achieve better performance compared with traditional
non−adaptive methods. For classical STAP methods, the performance is substantially
determined by the accuracy of the clutter plus noise covariance matrix (CCM). Typically,
the CCM of the cell under test (CUT) is estimated by training samples adjacent to the CUT,
which are supposed to be independent and identically distributed (i.i.d.) [5]. According
to the Reed−Mallett−Brennan (RMB) rule [6], the required training samples should
be at least twice the system degree of freedom (DOF) to achieve steady performance.
Nevertheless, since the clutter background is usually non−homogeneous and the DOF
is usually high in practice, obtaining adequate qualified training samples is challenging,
leading to dramatically degraded performance of CCM estimation and clutter suppression.
A large number of methods to improve the performance of STAP with finite training
samples have been proposed in the past few years, such as the reduced−dimension (RD)
methods [7–10], the reduced−rank methods (RR) [11–13], the direct data domain (D3)
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methods [14] and the knowledge−aided STAP (KA−STAP) methods [15–19]. However,
the number of required samples is still large in the RD and RR methods, the DOF of D3
is significantly reduced resulting in severe performance loss, and the KA−STAP methods
depend heavily on prior knowledge. By contrast, the sparse recovery STAP (SR−STAP)
methods [20–23], which are not only more tolerant with the number of training samples
but also more independent from the prior knowledge, have received significant attention.
In SR−STAP, every atom of the dictionary is a space−time steering vector denoting a
grid of the space−time plane, which is uniformly over−sampled in both the angle and
Doppler. The space−time profile, recovered by solving the formulated optimization
problem, will be leveraged to reconstruct the CCM for effective clutter suppression.
Since the clutter suppression performance mainly relies on the accuracy of recovery
results, many efforts have been put into the problem formulation of sparse recovery. The
pioneering work, such as greedy algorithms [24–27], considers the problem of SR−STAP
as an l0−norm minimization problem which is known as NP−hard [28,29]. To tackle the
NP−hard problem, appealing approaches transform it into a convex problem [20,30–32],
but the strong coherence among the atoms of sparse dictionary often leads to the severe
performance degradation of sparse reconstruction. Besides, the recovery results obtained by
convex optimization are particularly sensitive to the selection of regularization parameters.

Due to the superior ability to deal with the highly coherent dictionary situation
and the tricky selection of regularization parameters, Bayesian type sparse recovery (SR)
algorithms [22,33–35], represented by the sparse Bayesian learning (SBL) methods [36] and
its extension for the multiple measurement vector (MMV) case, i.e., M−SBL [37], have
received much attention in the field of STAP. However, the potential need for a large
number of iterations per testing in these methods is a fatal drawback for STAP where
real−time processing is desired. Some methods [33–35,38] are devoted to modifying the
time−consuming process and accelerating the convergence, but they are at the price of
either significant signal loss or expensive computational loads, which also hinder the
real−time processing. In addition, all these Bayesian type SR methods are incompletely
robust as a result of only providing point estimates for some parameters, such as the
parameter controlling the variance of the space−time profile and the parameter denoting
the noise power. In summary, the completely robust Bayesian type SR−STAP algorithms
that ensure both the stable performance of sparse reconstruction and the feasibility of
real−time processing are rarely studied.

To model the space−time echoes with a completely robust Bayesian framework, this
paper introduces variational relevance vector machines (VRVM) [39] into STAP due to
its attractive advantage of providing distributional estimates for all parameters without
any user parameters (known as the parameter−free property) and sufficient ability to
model the sparsity. However, the original VRVM is proposed in the real domain for
the single measurement vector (SMV) case, which is not suitable for STAP where the
complex−valued multiple measurement vector (MMV) case exists. As a result, we first
develop the multiple−measurement complex−valued variational relevance vector machines
(MCV), which can address the condition where complex−valued multiple measurements
occur. To achieve accurate inference, we employ the Gibbs sampler as a general technique
to estimate all parameters for MCV. Then, we present the novel STAP algorithm via
MCV, named MCV−STAP, to design the adaptive filters. However, a large number of
iterations, as well as expensive computational loads, are required in the Gibb sampler,
which limits the efficiency of the model for out−of−sample prediction. To render the
real−time processing of the MCV−STAP, inspired by the structure of the variational
autoencoder (VAE) [40–43], the powerful models for unsupervised learning in the field
of deep learning, we introduce a VAE into our model to provide the variational inference
and expand it to a VAE−structured model named Bayesian Autoencoding MCV−STAP
(BAMCV−STAP), which is scalable in the training phase and fast in the testing phase. Then,
our model can be optimized by minimizing the evidence lower bound (ELBO) via a gradient
ascent scheme. We note that due to the gradient ascent scheme without involving inverse
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operations when learning the parameters, BAMCV−STAP can approximate posterior
densities of space−time profiles with low computational loads. Moreover, since the
inference network can be pre−trained off−line, only a few iterations are needed before
testing. Finally, the space−time profiles recovered via BAMCV−STAP are adopted to
estimate the CCM for STAP. To the best of our knowledge, BAMCV−STAP is the first
work that attempts a VRVM−with−VAE strategy in the context of STAP, and our method
appears to outperform several other sparsity−enhanced methodologies in terms of clutter
suppression performance and real−time processing, as will be demonstrated in the
experimental results.

The main contributions of this paper are summarized as follows:

• Generalized from the original VRVM to the multiple measurements case existing in
the complex domain, a parameter−free probabilistic model called MCV is derived to
recover space−time profiles via the Gibbs sampling method for STAP.

• Since all parameters are estimated based on their posterior distributions in MCV,
the robustness to the number of training samples and noise power estimation is
significantly improved compared with other SR−STAP methods for the MMV case.

• Incorporating a suitable VAE into MCV, a novel method called BAMCV is developed
to accelerate the convergence of iterative procedures for estimating parameters. As
the inference network is pre−trained off−line, BAMCV−STAP can realize the sparse
reconstruction with lower computational loads and much fewer iterations compared
with conventional SR−STAP methods.

• As demonstrated on both simulated and measured data, the final proposed method
BAMCV−STAP can process space−time echoes in real−time without degrading
clutter suppression performance.

The rest of this paper is organized as follows. Section 2 introduces the signal model
for airborne radar. Section 3 details the proposed algorithm. Numerical experiments with
both simulated and measured data are shown in Section 4 before discussion in Section 5.
Section 6 presents the conclusion and future work of findings.

2. System Model and Derivation of Optimal Filters

For tractability purpose, a side−looking airborne phased−array radar with a uniformly
linear antenna (ULA) [34,44] consisting of M half wavelength spaced elements on the
airborne radar platform is considered. As shown in Figure 1, the platform is at altitude hp
and moving with constant velocity vp. ϕ and θ are the azimuth angle and the elevation
angle, respectively. The radar transmits N pulses at a constant pulse repetition frequency
(PRF) in a coherent processing interval (CPI). The model for the space−time clutter plus
noise snapshot x ∈ CMN×1 from the CUT is [45]

x = xc + n

=
Nc

∑
i=1

αiv( fd,i, fs,i) + n,
(1)

where xc ∈ CMN×1 is the space−time clutter vector and n ∈ CMN×1 is the Gaussian
white thermal noise whose variance is σ2; Nc denotes the number of independent clutter
patches in the CUT; αi, fd,i, fs,i, v( fd,i, fs,i) ∈ CMN×1 are the complex amplitude, the Doppler
frequency, the spatial frequency and the space−time steering vector of the ith clutter patch,
respectively. Considering the criterion of linearly constrained minimum variance (LCMV),
the optimal STAP weight vector is [45]

Sw = κR−1vt, (2)

where κ =
(

vH
t R−1vt

)−1
is the normalization constant, vt is the space−time steering

vector of the target, and R denotes the CCM, which is normally unknown and estimated
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from i.i.d training samples. (·)H denotes the conjugate operation. In conventional STAP
algorithms, the CCM can be calculated by [45]

R =
1
L

L

∑
l=1

xl x
H
l , (3)

where L is the number of training samples and xl ∈ CMN×1(l = 1, 2, . . . , L) denotes the
space−time clutter plus noise vector of lth training sample. In order to achieve stable
performance, L is required to be at least twice of MN. However, it is difficult to obtain
sufficient i.i.d. training samples in practice. As a result, SR−STAP algorithms, which
exhibit better performance using far fewer training samples, stand out from the crowd.
They start by dividing the whole space−time plane uniformly into K = NsNt bins, where
Ns = ρs M(ρs > 1) and Nt = ρtN(ρt > 1) are the number of spatial frequency grid points
and Doppler frequency grid points, respectively; ρs and ρd determine the resolution of the
spatial frequency and Doppler frequency axes. As each grid point can be represented as
a space−time steering vector vk(k = 1, 2, 3, . . . , K), STAP dictionary Φ ∈ CMN×K can be
denoted as a collection of all these space−time steering vectors, i.e.,

Φ = [v1, v2, . . . , vK]. (4)

For the SMV case, the signal model in Equation (1) can be re−expressed as

x = Φw + n, (5)

where w ∈ CK×1 denotes the space−time profile with non−zero elements representing the
presence of the clutter. The formulation of the CCM for the SMV case can be expressed as

R = ΦwwHΦH + σ2I. (6)

Figure 1. The side−looking airborne phased−array radar with a ULA.

For the MMV case, the signal model of L range cells X = [x1, x2, . . . , xL] ∈ CMN×L can
be expressed as

X = ΦW + N, (7)

where W = [w1, w2, . . . , wL] ∈ CK×L is an unknown solution matrix, N = [n1, n2, . . . , nL] ∈
CMN×L is a Gaussian white thermal noise matrix. Inconsistent with the SMV case, row
sparsity is encouraged simultaneously in the MMV case, i.e., each training sample in X has



Remote Sens. 2022, 14, 3800 5 of 24

the same indices of direction of arrival (DOA). The calculation of the CCM for the MMV
case can be expressed as

R =
1
L

ΦWW HΦH + σ2I. (8)

The optimal solution to W is discussed in the next section.

3. Proposed MCV−STAP Algorithm and BAMCV−STAP Algorithm

In this section, we first introduce the MCV approach by generalizing the complex−valued
VRVM from the SMV case to the MMV case. Then we propose an MCV−STAP algorithm
for designing the adaptive filters to suppress clutter and develop a Gibbs sampler to
estimate parameters. To remedy the unattractive property requiring quantities of iterations
in the Gibbs sampler of the MCV−STAP algorithm, we provide an efficient autoencoding
variational inference network for the generative model built on the MCV approach and
develop a VAE−structured method named BAMCV−STAP.

3.1. Derivation of MCV

We now derive the MCV approach by generalizing the complex−valued VRVM from
the SMV case to the MMV case. Firstly, for the SMV case, assuming the noise is white
complex Gaussian distribution with unknown power σ2, we can obtain the Gaussian
likelihood function of the signal model in Equation (5) as

p
(

x | w, σ2
)
, CN

(
Φw, σ2I

)
. (9)

Drawing on the concept of automatic relevance determination (ARD) [46], we assign the
Gaussian prior on the kth row of w ∈ RK as

p(wk | γk) , CN
(

0, γ−1
k

)
(10)

where γk is an unknown variance parameter. Combining these row priors, a full prior of
variable w can be expressed as

p(w | γ) ,
K

∏
k=1

p(wk | γk) (11)

where γ = [γ1, γ2, . . . , γK]
T ∈ RK

+ is a vector of hyper−parameters. In this way, every
weight has an individual hyper−parameter to moderate the strength of the prior. To ensure
the parameter−free property of our method and avoid point estimation of γ and σ2 [36],
the Gamma prior [47] over γk as well as over the noise variance σ2 in the signal model are
defined, i.e.,

p(γ) =
K

∏
k=1

Gamma(γk | ak, bk), (12)

p(β) = Gamma(β | c, d), (13)

where β = σ−2 and

Gamma(γk|ak, bk) = Γ(ak)
−1bk

ak γk
ak−1 exp(−bkγk). (14)

Γ(a) is the gamma function expressed as

Γ(a) =
∫ ∞

0
ta−1 exp(−t)dt. (15)

By providing posterior distribution estimates for γ and β, our method increases the
robustness of the noise power estimates while requiring fewer training samples.
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Extending the above model for the SMV case to the MMV case to obtain the proposed
model MCV, the Gaussian likelihood function of the signal model can be rewritten as

p(X |W , β) , CN
(

ΦW , β−1 I
)

. (16)

The prior of the kth row of W in Equation (7) denoted by wk· is

p(wk· | γk) , CN
(

0, γk
−1 I
)

. (17)

So the prior of the lth column of W denoted by w·l is

p(w·l | γ) , CN (0, A−1) (18)

where A=diag(γ) and diag(·) denotes the diagnonal operation. Hence the full prior of
W is

p(W |γ) ∆
=

L

∏
l=1

p(w·l |γ). (19)

The priors of γ and β are the same as the case of SMV.

3.2. Proposed MCV−STAP Algorithm

The Gibbs sampler to estimate all parameters for MCV are derived from the SMV case
in this subsection. Firstly, for the SMV case, the conditional posterior distribution over w
can be written as

p(w | x, γ, β) =
p(x|w, β)p(w | γ)

p(x | γ, β)

=
|Σ|−1

πK exp
[
−(w− µ)HΣ−1(w− µ)

] (20)

where the posterior covariance and mean are respectively

Σ =

(
β

MN

∑
i=1

φi
Hφi + A

)−1

, (21)

µ = βΣΦHx, (22)

with φi denoting the i-th row vector of Φ.
Similarly, the conditional posterior distribution over γ can be expressed as

p(γ|w,a0, b0) =
p(w | γ)p(γ | a0, b0)

p(w | a0, b0)

=
K

∏
k=1

Gamma(γk | ak, bk)

(23)

where the shape parameter and the scale parameter can be expressed as

ak = ak,0 + 1,

bk = bk,0 + wk
2.

(24)

a0 = [a1,0, a2,0, ..., aK,0]
T denotes the vector of initial values for shape parameters of γ, and

b0 = [b1,0, b2,0, ..., bK,0]
T denotes the vector of initial values for scale parameters of γ. The

conditional posterior distribution over β is
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p(β | x, w, c0, d0) =
p(x | w, β)p(β | c0, d0)

p(x | w, c0, d0)

= Gamma(β | c, d),
(25)

where the shape parameter and the scale parameter respectively become

c = c0 + MN,

d = d0 + xHx− 2wHΦHx +
MN
∑

i=1
φi(wwH)φH

i .
(26)

c0 denotes the initial value for shape parameters of β and d0 denotes the initial values for
scale parameters of β.

Extending the above process to the MMV case, we develop the Gibbs sampler for MCV
here. The conditional posterior distribution over the latent variable W is thus given by

p(W | X, γ, β) =
p(X|W , β)p(W | γ)

p(X | γ, β)

=
|ΣM|−1

πK exp{tr
[
−(W − µM)HΣM

−1(W − µM)
]
}

(27)

where the covariance and mean are respectively

ΣM =

(
fi

MN

∑
i=1

φi
Hφi + A

)−1

, (28)

µM = βΣMΦHX, (29)

and tr(·) denotes the trace of a square matrix. The conditional posterior distribution over γ
can be expressed as

p(γ|W ,a0, b0) =
p(W | γ)p(γ | a0, b0)

p(W | a0, b0)

=
K

∏
k=1

Gamma(γk | ak, bk)

(30)

where the shape parameter and the scale parameter can be expressed as

ak = ak,0 + L,

bk = bk,0 + ‖wk.‖2
2.

(31)

The conditional posterior distribution over β is

p(β | X, W , c0, d0) =
p(X |W , β)p(β | c0, d0)

p(X |W , c0, d0)

= Gamma(β | c, d),
(32)

where the shape parameter and the scale parameter respectively become

c = c0 + MNL,

d = d0 +
L
∑

l=1
xl

Hxl − 2
L
∑

l=1
W HΦHxl +

MN
∑

i=1
φi(WW H)φH

i .
(33)

As conditional distributions over all parameters are specified clearly in the above, the
space−time profiles estimated accurately by the Gibbs sampler of MCV will be adopted to
design filters to suppress the clutter. For clarity, the pseudo−codes of the abovementioned
MCV−STAP algorithm are provided in Algorithm 1.
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Algorithm 1 MCV−STAP algorithm.

Step1: Give initial values ak,0=bk,0=c0=d0=10−6, k = 1, 2, 3, ..., K.
Step2: Sample γ(0) from Equation (12) and sample β(0) from Equation (13).
Step3: For t = 1, 2, ... do

Calculate µ
(t)
M and Σ

(t)
M via Equations (28) and (29);

Sample W (t) from Equation (20);
Calculate a(t) and b(t) via Equation (31);
Sample γ(t) from Equation (30);
Calculate c(t) and d(t) via Equation (33);
Sample β(t) from Equation (32);
Check for convergence.

End For
Denote the last iter number as T.

Step4: Assume W = µ
(T)
M , calculate the CCM via Equation (8) and the space−time adaptive

optimal
weight vector via Equation (1).

Step5: Denote the CUT as xvt, the output of MCV−STAP algorithm solved by Gibbs sampling
is y = Svt

H xvt.

While having closed−form updating equations and providing accurate estimation
for parameters, the Gibbs sampler is still not attractive since it takes a large number
of iterations to infer the sparse representation during the testing phase, which hinders
real−time processing of the incoming CUT and motivates us to construct a VAE with fast
testing, as described below.

3.3. BAMCV−STAP Algorithm

In this section, to ensure the real−time processing of MCV−STAP, we extend it
into a VAE−structured method named BAMCV−STAP to map the observation x directly
to the latent representation for out−of−sample prediction. Specifically, the generative
model (decoder) of BAMCV−STAP is built based on MCV as shown in Figure 2a, and
the inference network (encoder) is accomplished by the neural network with the structure
shown in Figure 2b. Instead of needing expensive iterative inference schemes with Gibbs
samplers introduced above, the variational inference network of BAMCV allows us to
efficiently realize sparse reconstructions by fitting an approximate inference model to the
unknown posterior using standard stochastic gradient methods. According to the theory of
mean−field variational Bayes [48–50], the ELBO of BAMCV can be expressed as

L = −DKL[q(γ)||p(γ)]−DKL[q(w|x)||p(w|γ)]−DKL[q(β)||p(β)]
+Eq(w,γ,β|x)[p(x|w, γ, β)]. (34)

where the approximate conditional posterior distributions q(γ), q(w|x) and q(β) can be
written as

q(γ) = Gamma(ah, bh),

q(w|x) = CN (µh, Σh),

q(β) = Gamma(ch, dh).

(35)

Noticeably, DKL[q(·)||p(·)] denotes the Kullback–Leibler (KL) divergence between q(·)
and p(·).
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(a) (b)

Figure 2. The structure of BAMCV. (a) Generative model of BAMCV. (b) Inference network of BAMCV.
The red arrows denote the data generation. The green arrows denote the information propagation in
the inference network. The black arrows with imaginary lines represent reparameterization tricks.

Different from traditional Gaussian distribution based VAEs, the gamma distribution,
modeling the sparsity and satisfying non−negative constraint, is defined over γ and β here.
However, it is hard to compute the gradient of the ELBO to γ and β due to the difficulty of
reparameterizing gamma distributed random variables [51,52]. To reparameterize γ and β
easily without deviating from gamma distributions, the Weibull distribution is considered
an ideal choice to replace the gamma distribution, as demonstrated in [53]. Consequently,
gamma distributed conditional posteriors, q(γ) and q(β), are approximated by Weibull
distributions expressed as

q(γ) =
K

∏
i=1

q(γi) =
K

∏
i=1

Weibull(kγi , λγi ),

q(β) = Weibull
(
kβ, λβ

)
.

(36)

where kγi and λγi are the parameters of γi, and λβ and kβ are the parameters of γi. Latent
variables γi and β can be easily reparameterized as [53,54]

γi = λγi (− ln(1− εγi ))
1

kγi , εγi ∼ Uniform(0, 1),

β = λβ(− ln(1− εβ))
1

kβ , εβ ∼ Uniform(0, 1).
(37)

In addition, the Gaussian distribution based variable w can be simply reparameterized
as [40]

wr = µr
h + Σh ∗ zr, zr ∼ N (0, I),

wi = µi
h + Σh ∗ zi, zi ∼ N (0, I)

(38)

where the superscript r of all parameters represents their real part and the superscript
i of all parameters represents their imaginary part. (∗) denotes matrix multiplication.
According to the illustration in [53], the KL divergence from the gamma distribution to the
Weibull distribution, which is the first term of the ELBO in Equation (34), can be expressed
analytically as

DKL[q(γ)||p(γ)] = DKL[ Weibull(kγ, λγ)||Gamma(a0, b0)]

=
K

∑
i=1

γeai,0

kγi

− ai,0 ln λγi + ln kγi + bi,0λγi Γ(1 +
1

kγi

)− γe − 1− ai,0 ln(bi,0) + ln Γ(ai,0).
(39)
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where γe is the Euler–Mascheroni constant. The second term of the ELBO can be expressed
analytically as

DKL[q(w|x)||p(w|γ)] = DKL[CN (µh, Σh)||CN (0, A−1)]

=
K

∑
i=1

(1 + logεkk − |µh,i|2 − εkk).
(40)

εkk means the k-th diagonal element of Σh, and µh,i denotes the i-th element of µh. | · |means
the modulus operation. The third term and the last term of the ELBO can be expressed
analytically as

DKL[q(β)||p(β)] = DKL[Weibull(kβ, λβ)||Gamma(c0, d0)]

=
γec0

kβ
− c0lnλβ + ln kβ + d0λβΓ(1 +

1
kβ

)− γe − 1− c0 ln(d0) + ln Γ(c0).
(41)

Eq(w,γ,β|x)[p(x|w, γ, β)] = ‖x−Φw‖2
2 (42)

As illustrated in Figure 2a, all the parameters relative to conditional distributions are
transformed from the observation xinput with the neural network. Specifically,

µr
h = ReLU

(
Cr

µh1 + gr
µ

)
,

µi
h = ReLU

(
Ci

µh1 + gi
µ

)
,

µh = µr
h + jµi

h,

(43)

where µh is the mean vector of w,

eh = ReLU(Ceh1 + ge, ) (44)

where eh = diag(Σh), and

h1 = ReLU
(
C1hxinput + g1h

)
(45)

where ReLU(·) denotes the non−linear activation function. Note that xinput denotes the
concatenation of the real part and the imaginary part of training data, as x and latent
representation w are complex−valued. Similarly,

kγ = Softplus(Cah2 + ga), λγ = Softplus(Cbh2 + gb)
kβ = Softplus

(
Cchβ + gc

)
, λβ = Softplus

(
Cdhβ + gd

)
(46)

h2 = ReLU(C2hh1 + g2h)

hβ = ReLU
(

Cβxinput + gβ

) (47)

where kγ = [kγ1 , kγ2 , ..., kγK ] ∈ RK×1, λγ = [λγ1 , λγ2 , ..., λγK ] ∈ RK×1 and Softplus(·)
applies log[1 + exp(·)] non-linearity to each element to ensure positive Weibull shape and
scale parameters.

Obviously, Cr
µ, Ci

µ, Ce, C1h, gr
µ, gi

µ, ge, g1h, Ca, Cb, Cc, Cd, C2h, Cβ, ga, gb, gc, gd, g2h
and gβ are parameters in the neural network. The superscript r of all parameters represents
the real part, and the superscript i of all parameters represents the imaginary part. For
clarity, the dimensions of parameters in the inference network are summarized in Table 1.

Above all, due to the simple reparameterization tricks, our proposed VAE−structured
MCV−STAP methods can obtain the latent representations directly with the aid of an
autoencoding inference network.
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Table 1. Parameters in the inference network.

Parameters Dimensions Parameters Dimensions Parameters Dimensions

Cr
µ K× K g1h 2MN × 1 ga K× 1

Ci
µ K× K Ca K× K gb K× 1

Ce K× K Cb K× K gc 1× 1
C1h 2MN × K Cc 1× 2MN gd 1× 1
gr

µ K× 1 Cd 1× 2MN g2h K× 1
gi

µ K× 1 C2h K× K gβ 2MN × 1
ge K× 1 Cβ 2MN × 2MN

Moreover, to make the proposed method further attractive in real−time processing,
we pre−train the inference network off−line with simulated data preparing for sequential
fine−tuning facing with realistic clutter data to be processed [55]. The main steps of the
proposed BAMCV for STAP (BAMCV−STAP) algorithm are summarized in Algorithm 2.
For clarity, the flow chart of BAMCV is plotted in Figure 3.

Algorithm 2 BAMCV−STAP algorithm.

Step1: Simulate data for pre−training using radar system parameters of realistic clutter data under
test. Denote the simulated dataset as Dpre and the realistic dataset as Dtest.

Step2: Pre−train the inference network with dataset Dpre off−line until the ELBO converges.
Step3: Select CUT in Dtest and choose L training samples around CUT.
Step4: Fine−tune the inference network with the selected L training samples until the ELBO

converges again. Assume W = µh.
Step6: Estimate the CCM via Equation (8) and the space−time adaptive optimal weight vector via
Equation (2).

Denote the weight vector as Svt.
Step7: Denote data in CUT as xcut, the output of BAMCV−STAP solved by the inference network is

y = SH
vtxcut.

Figure 3. Flow chart of BAMCV−STAP.

Compared with MCV, BAMCV has two explicit advantages which can be summarized
as follows:

• Decreasing the computational loads. Inspired by the gradient ascent scheme for
parameters optimization, the parameters of BAMCV are updated by the backpropagation
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of the gradient, which only involves some linear operations, exponential operations
and logarithmic operations, instead of involving complex inverse operations and
multiple samplings appeared in MCV.

• Improving the convergence rate for testing. As the inference network is pre−trained
off−line, only a few iterations are taken in BAMCV to obtain the recovery results of
observations rather than a large number of time−consuming iterations per testing
in MCV.

Experimental results shown in the following section will verify these advantages.

4. Numerical Results

In this section, we evaluate the proposed algorithms, MCV−STAP and BAMCV−STAP,
using both simulated data and measured data in terms of clutter suppression performance,
time efficiency and computational complexity. Significantly, the metric to evaluate clutter
suppression performance for the simulated data is the signal to interference plus noise ratio
(SINR) loss [45], which is defined as follows

LSINR=
σ2

n
MN

∣∣∣SH
w vt

∣∣∣2
SH

w RSw
. (48)

where Sw denotes the STAP weight vector, R denotes the true CCM, vt denotes the target
steering vector and σ2

n denotes the actual noise power. In addition, as the true CCM is unable
to be obtained for the measured data, we evaluate the target detection performance for
targets with normalized Doppler frequency of 0.1 by the probability of detection (PD) versus
signal to noise ratio (SNR) curves, which are achieved by utilizing the adaptive matched
filter (AMF) detector [56] and averaged over 105 Monte Carlo trials. The probability of the
false alarm rate (PFA) is set as 10−6, the PD is estimated based on 106 randomly sampled
CUTs and the PD to SNR curves are averaged over 105 Monte Carlo trials. SNR is defined
as the ratio of signal power (for a single pulse per antenna element) to the rough estimate of
noise power (the average energy of echoes within the support region) here. In addition, to
evaluate the time efficiency, we evaluate the time spent on the convergence rate per testing.
The computational complexity is also evaluated by the comparison of computational loads
per testing. For clarity, the performance metrics used in this paper are summarized in
Table 2, in which the check mark means the metric is used in the data and the blank
means not.

Table 2. Summary of Performance Metrics.

Performance Metric Simulated Data Measured Data

Clutter Suppression SINR loss X
PD X

Real−time Processing Convergence rate X X
Computational loads X X

Moreover, the proposed algorithm is compared with some other classical methods
especially for the MMV case, such as loading sample matrix inversion (LSMI) for
STAP [57,58], multiple orthogonal matching pursuit (M−OMP) for STAP [59], M−SBL
for STAP and multiple fast converging SBL (M−FCSBL) for STAP [34]. The LSMI for
STAP [57,58], which is the representative of classical STAP algorithm, is an adaptive
algorithm imposing diagonal loading (DL) to improve the robustness of conventional
Capon beamformers but fails to achieve satisfactory performance unless the number of
training samples is more than twice the clutter rank. The M−OMP for STAP, orthogonal
matching pursuit (OMP) [25] for the MMV case, obtains sparse representations through a
greedy algorithm but is particularly unfriendly to the highly coherent dictionary. As the
classical technique to solve sparse recovery issues utilizing the greedy strategy, M−OMP is
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chosen as one of comparison methods in this paper. The M−SBL for STAP, suppressing
the clutter imposing M−SBL algorithm based on Bayesian theory as well as ours, receives
much attention in the field of STAP for the excellent performance with a highly coherent
dictionary but potentially requires a large number of iterations per testing leading to
unsuccessful real−time processing. The M−FCSBL for STAP, a fast converging M−SBL
algorithm, improves the convergence by incorporating a simple approximation term and
achieves a favorable recovery result with only a few iterations. However, the experimental
results reveal that this approximation term leads to sub−optimal recovery results, as shown
in its convergence curve.

Furthermore, the elements of all weight matrices in the neural network employed in
this paper are initialized with Gaussian distributions with standard deviations set to 0.1,
and all bias terms are set to zero. During the pre−training stage, we set the mini−batch size
to 32. For optimization, the Adam optimizer [60] with a learning rate of 10−4 is used. On a
Pentium PC with a 3.7 GHz CPU and 64 GB RAM, the inference network is pre−trained
and fine−tuning in non−optimized Python software before being moved to MATLAB for
testing. The amount of samples in the pre−training data set is ten times the number of
parameters in the neural network to ensure the generalization of the pre−trained neural
network. The settings of each layer in the neural network have been stated in Table 1.

4.1. Simulated Data

In this paper, a side−looking airborne phased array radar with a uniformly linear
antenna (ULA), whose inter−element spacing is half wavelength, is considered. The
parameters of radar system are shown in Table 3. In the simulations, we set Ns = 4M,
Nt = 4N, σ2

n = 1 and 180 clutter patches uniformly distributed from −π/2 to π/2.
According to Algorithm 2, the data set Dpre and Dtest for BAMCV−STAP are simulated
with the same radar system parameters, respectively. Obviously, MCV−STAP is executed
on Dtest directly without need of Dpre. To make the inference network easily generalized
to the training samples of CUT, We simulated as many training samples as ten times the
number of parameters with random clutter to signal ratio (CNR) sampled from 30 dB
to 70 dB in Dpre. As for Dtest, to investigate the performance of all methods under the
heterogeneous clutter scenario conveniently, we assume the 150−th range cell as CUT
which is located at the interested area with the average CNR = 45 dB and around by only
10 training samples satisfying the i.i.d constraint, as shown in Figure 4. Compared with
the clairvoyant spectrum calculated by known CCM in Figure 5a, the clutter spectrum
estimated by 128 training samples, as many as twice the DOF, exhibits too large value along
the clutter ridge due to the heterogeneity of samples, as depicted in Figure 5b. Noticeably,
the clutter suppression performance with the different number of i.i.d training samples in
the interested area will also be investigated later.

Table 3. Radar System Parameters of Simulated data.

Parameters Value Parameters Value

Carrier frequency (Hz) 1.25 G Platform velocity (m/s) 125
Bandwidth (Hz) 2.5 M Platform height (m) 6000

Mainbeam azimuth (◦) 0 Pulse number in one CPI 8
Mainbeam elevation (◦) 0 Antenna elements number 8

Pulse repetition frequency (Hz) 2000 Range cell number 400
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Figure 4. CNR versus range cell of Dtest.
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Figure 5. Estimated angle−Doppler clutter spectrum after pre−training. (a) Clairvoyant spectrum
calculated by known CCM. (b) Estimated clutter spectrum using 128 training samples.

4.1.1. Analysis of Clutter Suppression Performance

The clutter suppression performance of the proposed method is evaluated here. The
clutter spectrum of clutter data under test utilizing various approaches are depicted in
Figure 6. The number of training samples is fixed to 10 since the number of i.i.d training
samples is set as 10 according to Figure 4. As is customary in LSMI, the load factor is
set at 1. The clutter spectrum computed by MCV in Figure 6f and BAMCV in Figure 6h
is the closest to the ideal one in Figure 6a in terms of both position and value. As the
posterior distributions are strictly derived via Bayesian theory, the CCM computed using
Gibbs sampling is as close to the clairvoyant one as BAMCV−STAP. Because of limited
i.i.d. training samples, the approximated spectrum by M−OMP in Figure 6c and LSMI in
Figure 6b expose their powerlessness in clutter subspace estimation. Instead, the clutter
spectrum obtained by M−SBL, as shown in Figure 6d, is extremely close to the ideal one,
with a small spreading and a few noise peaks due to imprecise noise power assessment.
In Figure 6e, M−FCSBL [34] achieves an accurate clutter subspace and performs no noise
peaks. However, upon further investigation of these SR−STAP approaches, as shown in
Figure 7, we discover that values along the clutter ridge in the clutter spectrum calculated
by M−FCSBL are not as well as expected. The clutter ridge formed by our method, on the
other hand, is closer to the ideal result.
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Figure 6. Estimated angle−Doppler clutter spectrum using different methods. (a) Clairvoyant
angle−Doppler clutter spectrum. (b) LSMI. (c) M−OMP. (d) M−SBL. (e) M−FCSBL. (f) Clutter
spectrum via MCV. (g) BAMCV after pre−training. (h) BAMCV after fine−tuning.



Remote Sens. 2022, 14, 3800 16 of 24

-0.5 -0.25 0 0.25 0.5

normalized Doppler frequency

-20

-10

0

10

20

30

40

50

60

v
al

u
e 

o
f 

cl
u

tt
er

 r
id

g
e 

(d
B

)

Clairvoyant

M-FCSBL

MCV

BAMCV

M-SBL

Figure 7. Analysis of clutter ridge estimated by different methods.

Moreover, to demonstrate the importance of the pre−training to the inference network,
we utilize the inference network after pre−training to recover the space−time profile of
clutter data under test, as shown in Figure 6g. Although the significant values along the
clutter ridge are not accurate enough, the sparsity of the clutter spectrum and the shape of
the clutter ridge are initialized successfully as the preparation for sequential fine−tuning.
Apart from the sparse subspace, the noise power estimation is also an important issue
for the CCM, according to Equation (8). Consequently, we enumerate the final results
estimated by all comparison methods in Table 4. Clearly, our methods outperform M−SBL
and M−FCSBL, proving the robustness to the estimation for noise power.

Table 4. Noise power estimation.

True Noise Power M−SBL M−FCSBL MCV BAMCV

0.01 2.49× 10−10 0.0111 0.00973 0.0101
0.1 4.15× 10−9 0.1197 0.1061 0.1103
1 7.92× 10−8 1.0117 0.9937 0.9925
5 2.98× 10−6 4.7692 4.9793 4.9001
10 7.57× 10−6 11.1382 9.9992 9.9856

When the number of training samples is 10, the clutter suppression performance
measured by SINR loss is evaluated in Figure 8. The optimal SINR loss curve is completed
using the clairvoyant CCM. In comparison to previous Bayesian SR−STAP approaches,
LSMI and M−OMP display severe performance loss in the sidelobe region, as depicted in
Figure 8a. Specifically, the output SINR loss of MCV−STAP is the closest to the optimal
one among various Bayesian SR−STAP methods, as shown in Figure 8b (which is an
enlargement of Figure 8a). BAMCV−STAP achieves the lower SINR loss than MCV−STAP
as shown in Figure 8 but still surpasses other comparison methods.

Besides, we compare the effect of reducing the i.i.d training samples on the SINR loss
of each method, and the results are shown in Figure 9. The average SINR loss is defined
in this section as the mean of the SINR loss values across the entire normalized Doppler
frequency range. According to Figure 9, on average sense, when L is a large value, all the
methods have almost equivalent performance. But with an decrease in L, the Bayesian
type SR−STAP methods, including M−SBL−STAP, MCV−STAP and BAMCV−STAP,
have the larger SINR loss. Notably, our methods, both MCV−STAP and BAMCV−STAP,
maintain stable performance as the number of training samples decreases and achieve a
3 dB higher SINR loss than M−SBL−STAP with only two training samples, demonstrating
the robustness of the proposed methods to the number of training samples.
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Figure 8. SINR loss curves. (a) SINR loss curves of all comparison methods. (b) SINR loss curves of
Bayesian STAP methods.
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4.1.2. Analysis of Computational Loads and Convergence Rate

To study the real−time processing of several SR−STAP algorithms with similarly
superior performance i.e., M−SBL, M−FCSBL and our methods, we detail the analysis of
the convergence rate and computational loads in Figure 10.
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Figure 10. Analysis of convergence and computational loads. (a) Convergence curves of different
methods using simulated data. (b) Comparison of computational loads.

For the on−line phase, convergence curves, utilizing the negative log−likelihood as
the unified loss function [34] for fair comparison, are shown in Figure 10a, i.e.,

Lcost = ln|M|+ tr(M−1Rcost) (49)
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where
M = ΦHA−1Φ + β−1 I

Rcost=
1
L

XX H .

Different from MCV converging as slowly as M−SBL, BAMCV, which is pre−trained
with lots of simulated data off−line, exhibits the dominant superiority at the beginning
of the iteration. Then, after fine−tuning with several snapshots around CUT over a few
iterations, BAMCV converges to a stable and optimal state. The time spent on each iteration
of each method is also listed in Table 5. Indeed, since it uses a gradient ascent scheme
without any inverse operation or sampling, BAMCV takes much less time per iteration
than the other three approaches. However, M−SBL and MCV require not only a large
number of iterations but also a long time for each iteration. Furthermore, even though
M−FCSBL quickly converges to its steady−state value, the final solution is not optimal,
which is exactly coincident with the estimated clutter spectrum in Figures 6e and 7.

Table 5. Comparison of running time per iteration using simulated data.

Approach Running Time Per Iteration (s)

M−SBL 0.125
M−FCSBL 0.055

MCV 0.103
BAMCV 0.011

In addition, the computational loads of M−SBL, M−FCSBL, MCV and BAMCV are
detailed in Table 6. Specifically, Ns is the iteration number of the M−SBL algorithm, N f is
the iteration number of the M−FCSBL algorithm and Ng is the iteration number of MCV for
our method. Due to the intractable inverse operations and the large number of iterations,
the computational loads of M−SBL and M−FCSBL, as well as MCV are about three times
of the DOF. By contrast, since the time−consuming training process of neural networks is
finished before testing, BAMCV achieves fast super−resolution by directly mapping out
sparse representation vectors of training samples with only twice of the DOF. To provide
an explicit illustration, we also display the curve of computational loads versus DOF in
Figure 10b with setting K = 16MN, L = 10 and Ns = N f = Ng = 1. Obviously, the
computational complexity of BAMCV is much lower than that of other methods, and the
gap between BAMCV and other methods diverges as DOF increasing.

Table 6. Comparison of computational cost.

Approach Computational Loads

M−SBL ((K)3 + (MN)3 + 3K2 MN + [2(MN)2 + 2MNL + L + 1]K + MNL + 1)Ns
M−FCSBL ((MN)3 + K2 MN + 6K(MN)2 + (2KL + 2K)MN + 1)N f

MCV ((MN)3 + 3K2 MN + 4K(MN)2 + (L2 + L + 1)MNK + MNL2 + MNL + 1)Ng
BAMCV 2KMNL + 5K2L + 4(MN)2L + 4MNL

In summary, the modified method BAMCV−STAP not only requires less online
running time and lower computational loads than other comparison methods while
achieving comparable clutter suppression performance, but also remains robust to the
number of training samples and noise power. Consequently, BAMCV−STAP is suitable for
airborne early warning (AEW) radar applications.

4.2. Measured Data

In this subsection, MCV−STAP and BAMCV−STAP are applied to the public available
data set, the Multi−Channel Airborne Radar Measurements (MCARM) data set [61], to
verify their attractiveness. Some indispensable parameters of the radar system are listed



Remote Sens. 2022, 14, 3800 19 of 24

in Table 7. The clutter spectrum estimated using 10 training samples around the selected
target range cell by different methods is exhibited in Figure 11. Consistent with simulated
results, limited by the number of training samples, the clutter spectrum estimated by the
LSMI method in Figure 11a is as rough as the one by the M−OMP method in Figure 11b.
Due to the approximation term, the clutter spectrum estimated by M−FCSBL in Figure 11d
method is too sparse to reconstruct the information in the sidelobe region. M−SBL exhibits
a better capability of recovering the clutter spectrum using only 10 training samples but
with a slight broadening of the clutter ridge as shown in Figure 11c.
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Figure 11. Estimated clutter spectrum of MCARM data. (a) LSMI. (b) M−OMP. (c) M−SBL.
(d) M−FCSBL. (e) MCV. (f) BAMCV.
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Table 7. Radar System Parameters of MCARM data.

Parameters Value Parameters Value

Pulse repetition frequency (Hz) 1984 Antenna array spacing of azimuth (m) 0.1029
Wavelength (m) 0.24 Antenna array spacing of elevation (m) 0.5629

Pulse number in one CPI 128 Platform height (m) 10,188
Antenna elements number of azimuth 11 Range cell number 400
Antenna elements number of elevation 2

As it is difficult to judge whether our methods or M−SBL achieve the best performance
according to the clutter spectrum estimated shown in Figure 11c,e,f, we explore the
detection performance averaged over all range cells for the targets with the normalized
Doppler frequency of 0.1 (corresponding velocity is 10 m/s) by the PD versus SNR curves as
depicted in Figure 12a. The probability of the false alarm rate (PFA) is set as 10−6, the PD to
SNR for each CUT is averaged over 105 Monte Carlo trials. To further explore the detection
performance of targets with different velocity values, we exhibit the PD versus velocity
curves (SNR = 20 dB), which are averaged over 105 Monte Carlo trials, in Figure 12b.
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Figure 12. Average detection results of measured data. (a) PD versus SNR ( fd = 0.1, L = 10). (b) PD
versus normalized Doppler frequency (SNR = 20 dB, L = 10). (c) PD versus the number of training
samples ( fd = 0.1, SNR = 20 dB). fd denotes the normalized Doppler frequency of targets. L is the
number of training samples.

Moreover, the detection performance to explore the robustness to the number of
training samples is provided in Figure 12c. As shown in Figure 12, similar to the LSMI
method, M−FCSBL suffers a severe performance degradation as the information in the
sidelobe region is ultimately given up due to the approximation term, leading to the too
sparse reconstructions to obtain the accurate CCM. M−SBL method achieves sub−optimal
performance among comparison methods but with very slow convergence, as shown in
Figure 13 and Table 8. On the contrary, BAMCV−STAP achieves the sub−optimal target
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detection performance. Besides that, according to the computational loads analyzed in
Figure 10b and Table 6, the computational loads of BAMCV is about O(MN) but the
other methods are about O((MN)3). Consequently, BAMCV−STAP can achieve favorable
detection of targets and keep robust to the number of training samples, with the most
efficient convergence and the lowest computational loads among comparison methods.

Table 8. Comparison of running time per iteration using MCARM data.

Approach Running Time Per Iteration (s)

M−SBL 1.102
M−FCSBL 0.333

MCV 0.951
BAMCV 0.025

To sum up, among these comparison approaches, our method exhibits its superiority
in recovering the clutter spectrum in terms of both sparsity and accuracy on measured data,
which is consistent with the results on simulated data.
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Figure 13. Convergence curves of different methods using measured data.

5. Discussion

Along with the impressive performance achieved by our methods, the above−mentioned
experimental results indicate that it is substantially more challenging for traditional
SR−STAP algorithms, such as the proposed MCV−STAP, to ensure both the stable performance
of sparse reconstruction and real−time processing. However, deep learning techniques,
such as the proposed BAMCV−STAP, can efficiently realize parameter estimates for
real−time on−line processing at the expense of nonsignificant off−line pre−training.

6. Conclusions

Traditional SR−STAP algorithms are unattractive as they only provide point estimates
for several parameters and rely on a large number of iterations per testing at the testing
stage. To avoid the iterative procedure, we first propose MCV−STAP, a parameter−free
SR−STAP method that incorporates a modified VRVM into the field of STAP, to model
the space−time echoes with a completely robust Bayesian framework. Then, to realize the
real−time processing of the incoming space−time echoes, we introduce BAMCV−STAP, a
VAE−structured method that builds its encoder from MCV but with an efficient inference
network instead of the time−consuming Gibbs sampler in MCV−STAP. Compared with the
conventional Bayesian type SR−STAP algorithms, the inference network of BAMCV−STAP
can be pre−trained off−line using a gradient ascent scheme, enabling more efficient sparse
reconstruction. The experimental results show that the BAMCV−STAP algorithm can
achieve comparable clutter suppression with lower computational cost.

This paper focuses on the suppression of non−homogeneous clutter environments
with side−looking airborne phased−array radar by means of deep learning methods.
Inspired by their attractive characteristics, approaches that can solve the other tricky
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problems of radar signal processing, such as the suppression of the non−stationary clutter
and the detection of slow−moving targets, are the promising directions that we plan to
explore in the future.
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