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Abstract: In recent years, synthetic aperture radar (SAR) automatic target recognition (ATR) has been
widely used in both military and civilian fields. Due to the sensitivity of SAR images to the observation
azimuth, the multi-aspect SAR image sequence contains more information for recognition than a
single-aspect one. Nowadays, multi-aspect SAR target recognition methods mainly use recurrent
neural networks (RNN), which rely on the order between images and thus suffer from information
loss. At the same time, the training of the deep learning model also requires a lot of training data, but
multi-aspect SAR images are expensive to obtain. Therefore, this paper proposes a multi-aspect SAR
recognition method based on self-attention, which is used to find the correlation between the semantic
information of images. Simultaneously, in order to improve the anti-noise ability of the proposed
method and reduce the dependence on a large amount of data, the convolutional autoencoder (CAE)
used to pretrain the feature extraction part of the method is designed. The experimental results
using the MSTAR dataset show that the proposed multi-aspect SAR target recognition method is
superior in various working conditions, performs well with few samples and also has a strong ability
of anti-noise.

Keywords: synthetic aperture radar (SAR); automatic target recognition (ATR); multiview; self-attention;
convolutional autoencoder (CAE)

1. Introduction

Synthetic aperture radar (SAR) is a high-resolution coherent imaging radar. As an
active microwave remote sensing system, which is not affected by light and climatic
conditions, SAR can achieve all-weather day-and-night earth detection [1]. At the same
time, SAR adopts synthetic aperture technology and matched filtering technology, which
can realize long-distance high-resolution imaging. Therefore, SAR is of great significance
in both military and civilian fields [2].

In recent years, with the development of SAR technology, the ability to obtain SAR
data has been greatly improved. The early methods of manually interpreting SAR images
cannot support the rapid processing of large amounts of SAR data due to their low time
efficiency and high cost. How to quickly mine useful information from massive high-
resolution SAR image data and apply it to military reconnaissance, agricultural and forestry
monitoring, geological survey and many other fields has become an important problem
in SAR applications that needs to be solved urgently. Therefore, the automatic target
recognition (ATR) [3] of SAR images to solve this problem has become a research hotspot.

Since a SAR image shows the scattering characteristics of the target to electromagnetic
waves, the SAR image is very different from the optical image, which also has a great
impact on the SAR ATR. Classical SAR ATR methods include a template-based method
and model-based method. The template-based method is one of the earliest proposed
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methods, including direct template matching methods that calculate the similarity between
the template formed by processing the training sample itself and the test sample for classi-
fication [4], and feature template matching methods that use classifiers such as SVM [5],
KNN [6] and Bayes classifier [7] after extracting various features [8,9] for classification.
The template-based method is simple in principle and easy to implement, but requires
large and diverse training data to build a complete template library. To make up for the
shortcomings of the template-based method, the model-based method [10] is proposed,
which includes two parts: model construction and online prediction.

With the development of machine learning and deep learning technology, the auto-
matic feature extraction ability of a neural network has attracted the attention of researchers,
and then deep learning has been applied in SAR ATR. Initially, the neural network model
in traditional computer vision (CV) was directly applied to SAR target recognition. For in-
stance, Kang et al. transferred existing pretrained networks after fine-tuning [11]. Unsuper-
vised learning methods such as autoencoder [12] and deep belief network (DBN) [13] were
also used to automatically learn SAR image features. Afterward, the network structure and
loss function were designed for the specific task of target recognition using the amplitude
information of SAR images, which were more in line with the requirements of the SAR tar-
get recognition task and undoubtedly achieved better recognition performance. Chen et al.
designed a fully convolutional network (A-ConvNets) for recognition on the MSTAR target
dataset [14]. Lin et al. proposed the deep convolutional Highway Unit for ATR of a small
number of SAR targets [15]. Du et al. recommended the application of multi-task learning
to SAR ATR to learn and share useful information from two auxiliary tasks designed to
improve the performance of recognition tasks [16]. Gao et al. proposed to extract polariza-
tion features and spatial features, respectively, based on a dual-branch deep convolution
neural network (Dual-CNN) [17]. Shang et al. designed deep memory convolution neural
networks (M-Net), including an information recorder to remember and store samples’ spa-
tial features [18]. Recently, the characteristics brought by the special imaging mechanism
of SAR are being focused on, and some methods combining deep learning with physical
models have appeared. Zhang et al. proposed a domain knowledge-powered two-stream
deep network (DKTS-N), which incorporates a deep learning network with SAR domain
knowledge [19]. Feng et al. combined electromagnetic scattering characteristics with a
depth neural network to introduce a novel method for SAR target classification based on
an integration parts model and deep learning algorithm [20]. Wang et al. recommended an
attribute-guided multi-scale prototypical network (AG-MsPN) that obtains more complete
descriptions of targets by subband decomposition of complex-valued SAR images [21].
Zhao et al. proposed a contrastive-regulated CNN in the complex domain to obtain a
physically interpretable deep learning model [22]. Compared with traditional methods,
deep learning methods have achieved better recognition results in SAR ATR. However,
most of these current SAR ATR methods based on deep learning are aimed at single-aspect
SAR images.

In practical applications, due to the special imaging principle of SAR, the same target
will show different visual characteristics under different observation conditions, which
also makes the performance of SAR ATR methods affected by various factors, such as
environment, target characteristics and imaging parameters. The observation azimuth is
also one of the influencing factors. The sensitivity of the scattering characteristics of artificial
targets to the observation azimuth leads to a large difference in the visual characteristics
of the same target at different aspects. Therefore, the single-aspect SAR image loses the
scattering information related to the observation azimuth [23]. The target recognition
performance of single-aspect SAR is also affected by the aspect.

With the development of SAR systems, multi-aspect SAR technologies such as Circular
SAR (CSAR) [24] can realize continuous observation of the same target from different
observation azimuth angles. The images of the same target under different observation
azimuth angles obtained by multi-angle SAR contain a lot of identification information.
The multi-aspect SAR target recognition technology uses multiple images of the target
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obtained from different aspects and combines the scattering characteristics of different
aspects to identify the target category. Compared with single-aspect SAR images, multi-
aspect SAR image sequences contain spatially varying scattering features [25] and provide
more identification information for the same target under different aspects. On the other
hand, multi-aspect SAR target recognition can improve the target recognition performance
by fully mining the intrinsic correlation between multi-aspect SAR images.

The neural networks that use multi-aspect SAR image sequences for target recogni-
tion mainly include recurrent neural networks (RNN) and convolutional neural networks
(CNN). Zhang et al. proposed multi-aspect-aware bidirectional LSTM (MA-BLSTM) [26],
which extracts features from each multi-aspect SAR image through a Gabor filter, and fur-
ther uses LSTM to store the sequence features in the memory unit and transmit through
learnable gates. Similarly, Bai et al. proposed a bidirectional convolutional-recurrent net-
work (BCRN) [27], which uses Deep CNN to replace the manual feature extraction process
of MA-BLSTM. Pei et al. proposed a multiview deep convolutional neural network (MVD-
CNN) [28], which uses a parallel CNN to extract the features of each multi-aspect SAR
image, and then merges them one by one through pooling. Based on MVDCNN, Pei et al.
improved the original network with the convolutional gated recurrent unit (ConvGRU)
and proposed a multiview deep feature learning network (MVDFLN) [29].

Although these methods have obtained good recognition results, there are still the
following problems:

1. When using RNN or CNN to learn the association between multi-aspect SAR images,
the farther the two images are in a multi-aspect SAR image sequence, the more difficult
it is to learn the association between them. That is, the association will depend on the
order of the image in the sequence.

2. All current studies require a lot of data for training the deep networks, and the
accuracy will drop sharply in the case of few samples.

3. The existing approaches do not consider the influence of noise, which leads to a poor
anti-noise ability of the model.

To address these problems, in this paper, we propose a multi-aspect SAR target
recognition method based on convolutional autoencoder (CAE) and self-attention. Af-
ter pre-training, the encoder of CAE will be used to extract the features of single-aspect SAR
images in the multi-aspect SAR image sequence, and then the intrinsic correlation between
images in the sequence will be mined through a transformer based on self-attention.

In this paper, it is innovatively proposed to mine the correlation between multi-
aspect SAR images through a transformer [30] based on self-attention. Vision transformer
(ViT) [31] for optical image classification and the networks based on attention for single-
aspect SAR ATR, such as the mixed loss graph attention network (MGA-Net) [32] and the
convolutional transformer (ConvT) [33], extract representative features by determining
the correlation between various parts of an image itself. Unlike them, the ideas of natural
language processing (NLP) tasks are leveraged to mine the association between the semantic
information of each image in the multi-aspect SAR image sequence. Because each image is
correlated with other images in the same way in the calculation process of self-attention,
the order dependence problem faced by existing methods will be avoided. Considering that
self-attention loses local details, the CNN pre-trained by CAE with shared parameters is
designed to extract local features for each image in the sequence. On the one hand, effective
feature extraction provided by CNN can diminish the requirement for sample size. On the
other hand, by minimizing the gap between the reconstructed image and the original input,
the autoencoder ensures that the features extracted by the encoder can effectively represent
the principal information of the original image. Thus CAE plays a vital role in anti-noise.

Compared with available multi-aspect SAR target recognition methods, the novelty as
well as the contribution of the proposed method can be summarized as follows.

1. A multi-aspect SAR target recognition method based on self-attention is proposed.
Compared with existing methods, the calculation process of self-attention makes it
not affected by the order of images in the sequence. To the best of our knowledge,
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this is the first attempt to apply a transformer based on self-attention to complete the
recognition task of multi-aspect SAR image sequences.

2. CAE is introduced for feature extraction in our method, which is due to the additional
consideration of the cases with few samples and noise compared with other methods
and is created to improve the ability of the network to effectively extract the major
features through pre-training and fine-tuning.

3. Compared with the existing methods designed for multi-aspect SAR target recogni-
tion, our network obtains higher recognition accuracy on the MSTAR dataset and
exhibits more robust recognition performance in version and configuration variants.
Furthermore, our method demonstrates better in the recognition task with a small
number of samples. Our method achieves stronger performance in anti-noise assess-
ment as well.

The remainder of this paper is organized as follows: Section 2 describes the proposed
network structure in detail. Section 3 presents the experimental details and results. Section 4
discusses the advantages and future work of the proposed method. Section 5 summarizes
the full paper.

2. Multi-Aspect SAR Target Recognition Framework
2.1. Overall Structure

As shown in Figure 1, the proposed multi-aspect SAR target recognition method
consists of five parts, i.e., multi-aspect SAR image sequence construction, single-aspect fea-
ture extraction, multi-aspect feature learning, feature dimensionality reduction and target
classification. Among them, feature extraction is implemented using CNN pretrained by
CAE, and multi-aspect feature learning uses the transformer encoder [31] structure based
on self-attention.
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Figure 1. Basic architecture of the proposed multi-aspect SAR target recognition method.

Before feature extraction, single-aspect SAR images are used to construct multi-aspect
SAR image sequences and also serve as the input to pre-train CAE, which includes the
encoder that utilizes the multi-layer convolution-pooling structure to extract features and
the decoder that utilizes the multi-layer deconvolution-unpooling structure to reconstruct
images. The encoder of CAE after pre-training will be transferred to CNN for feature
extraction of each image in the input multi-aspect SAR image sequence. In particular,
the output of feature extraction for an image is a 1-D feature vector. Then, in the multi-
aspect feature learning structure, the vectorized features extracted from each image are
spliced and added to position embedding to be the input of the transformer encoder based
on multi-head self-attention. All the output features of the transformer encoder are reduced
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in dimension by 1× 1 convolutions and then averaged. Finally, the softmax classifier gives
the recognition result.

In the training process, the whole network obtains errors from the output and propa-
gates back along the network to update parameters. It should be noted that the parameters
of multi-layer CNN used for feature extraction can be frozen or updated with the entire
network for fine-tuning.

In the following discussions, the details of each part of the proposed method and the
training process will be introduced in turn, such as the loss function and so forth.

2.2. Multi-Aspect SAR Image Sequence Construction

Multi-aspect SAR images can be obtained by imaging the same target from differ-
ent azimuth angles and different depression angles by radars on one or more platforms.
Figure 2 shows a simple geometric model for multi-aspect SAR imaging.

view k

view 3view 1

view 2

Depression

Azimuth

Radar

Target

Figure 2. A simple geometric model for multi-aspect SAR imaging.

On this basis, multi-aspect SAR image sequences are built based on the following rules.
Suppose Xr = {X1, X2, · · · , XC} is the raw SAR image set, where Xi = {xi

1, xi
2, · · · , xi

ni
}

is the image set sorted by azimuth angle for a specific class ci. C is the number of classes
and ni is the number of images contained in one class. The azimuth of the image is ϕ(xi

j).
For a given angle range θ and sequence length k, a window with fixed length k + 1 is
placed along the original image set with a stride of 1 and the images in the window form
k sequences of length k by permutation, then the sequence whose azimuth difference
between any two images is smaller than θ is reserved as the training sample of the network.
In addition, the final retained sequence samples are required to not contain duplicate
samples. The process of multi-aspect SAR image sequence construction is summarized
in Algorithm 1. In Algorithm 1, XS = {X1

S, X2
S, · · · , XC

S } is the multi-aspect SAR image
sequence, where Xi

S = {Xi
s1

, Xi
s2

, · · · , Xi
sNi
} is the sequence set for a specific class ci. Ni is

the number of sequences contained in one class.
Figure 3 shows an example of multi-aspect SAR image sequence construction. When

the sequence length is set to 4, ideally, 12 sequence samples can be received from only
7 images. In this way, enough training samples can be obtained from limited raw SAR images.
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Algorithm 1 Construct multi-aspect SAR image sequence

Input: angle range θ and sequence length k, raw SAR images Xr = {X1, X2, · · · , XC}, and
class labels ci ∈ {1, 2, · · · , C}

Output: multi-aspect SAR image sequence XS = {X1
S, X2

S, · · · , XC
S }

for i = 1 to C do
for j = 1 to ni − k do

if |ϕ(xi
j)− ϕ(xi

j+k)| ≤ θ

Construct all possible sequence except {xi
j+1, xi

j+2, · · · , xi
j+k}

else if |ϕ(xi
j)− ϕ(xi

j+k−1)| ≤ θ

Construct the sequence {xi
j, xi

j+1, · · · , xi
j+k−1}

end for
if |ϕ(xi

j+1)− ϕ(xi
ni
)| ≤ θ

Construct the sequence {xi
j+1, xi

j+2, · · · , xi
ni
}

Get Xi
S = {Xi

s1
, Xi

s2
, · · · , Xi

sNi
}

end for

θθ

Image 1

Image 2

Image 3

Image 4

Image 5

Image 6

Image 7

Image 8

Seq1：Image 1，Image 2，Image 3，Image 4

Seq2：Image 1，Image 2，Image 3，Image 5

Seq3：Image 1，Image 2，Image 4，Image 5

Seq4：Image 1，Image 3，Image 4，Image 5

Seq5：Image 2，Image 3，Image 4，Image 5

Seq6 ：Image 2，Image 3，Image 4，Image 6

Seq7 ：Image 2，Image 3，Image 5，Image 6

Seq8 ：Image 2，Image 4，Image 5，Image 6

θ

Seq9：Image 3，Image 4，Image 5，Image 6

Seq10 ：Image 3，Image 4，Image 5，Image 7

Seq11 ：Image 3，Image 4，Image 6，Image 7

Seq12 ：Image 3，Image 5，Image 6，Image 7

Figure 3. Example of multi-aspect SAR image sequence construction.

2.3. Feature Extraction Pre-Trained by CAE

Drawing on the idea of NLP, our method considers each image in a multi-aspect
SAR image sequence to be equivalent to each word in a sentence. To effectively extract
major features from each image in a multi-aspect SAR image sequence in parallel, CNN
pre-trained by CAE with shared parameters is designed, which can reduce the number of
learning parameters as well. Figure 4 shows the network structure of CAE, which consists
of an encoder and decoder.
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Figure 4. The structure of CAE.

The encoder is comprised of convolutional layers, pooling layers and the nonlinear
activation function. The convolutional layer is the core structure, which extracts image
features through convolution operations. The convolution layer in the neural network
initializes a learnable convolution kernel, which is convolved with the input vector to obtain
a feature map. Each convolution kernel has a bias, which is also trainable. The activation
function is a mapping from the input to the output of the neural network, which increases
the nonlinear properties of the neural network. ReLU, which is simple to calculate and can
speed up the convergence of the network, is used as the activation function in the encoder
of CAE. The convolutional layer is usually followed by the pooling layer, which plays
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the role of downsampling. Common pooling operations mainly include max pooling and
average pooling. In this method, maximum pooling is selected; that is, it takes the largest
value in the pooling window as the value after pooling.

For the lth convolution-maxpooling layer of the encoder, suppose xl−1 is the input
and xl is the output feature map, and the input of the first layer x0 is the input image x.
Suppose W l is the convolution kernel in the lth layer, and bl is its bias. The feedforward
propagation process of a convolution-maxpooling layer in the encoder can be expressed as:

al = xl−1 ∗W l + bl (1)

xl = fDOWN(σ(al)) (2)

where ∗ and fDOWN denote the convolution and the pooling operation, respectively. σ
represents the ReLU activation function, which is defined as:

σ(z) = max(0, z) (3)

The decoder reconstructs the image according to the feature map. The decoder is
also a multi-layer structure, which contains unmaxpooling layers, deconvolution layers
and the ReLU activation function. Unpooling is the reverse operation of pooling, which
restores the original information to the greatest extent by complimenting. In this work,
unmaxpooling is chosen; that is, it is assigned the value to the position of the maximum
value in the pooling window recorded during pooling, and we supplement 0 for the other
positions in the pooling window. The deconvolution layer performs convolution between
the feature map and the transposed convolution kernel so as to reconstruct the image based
on the feature map.

For the lth unpooling-deconvolution layer of the decoder, suppose x̂l−1 is the input
and x̂l is the output. The input of the decoder’s first layer x̂0 is the output of the encoder xL.
Suppose Ŵ l is the convolution kernel in the lth layer, ŴT represents the transpose of the
convolution kernel, and b̂l is the bias in the lth layer. The feedforward propagation process
of an unpooling-deconvolution layer in the decoder can be expressed as:

âl = fUP(x̂l−1) (4)

x̂l = σ(âl ∗ (Ŵ l)T + b̂l) (5)

where fUP represents the unpooling operation.
The output of the whole CAE x̂ is the output of the decoder’s last layer x̂L. CAE

takes a single-aspect SAR image as input, and the output is a reconstructed image of
the same size as the input image. The training of the CAE module will be detailed in
Section 2.7.1. After the training, the encoder is transferred to extract features of each image
in the sequence, the output feature vector is the output of the last layer of the encoder xL

(i),
i = 1, · · · , k.

2.4. Multi-Aspect Feature Learning Based on Self-Attention

The multi-aspect feature learning part of the proposed method is modified based on the
transformer encoder to make it suitable for multi-aspect SAR target recognition. The feature
vectors extracted from each image in the sequence are combined as XF = [xL

(1), · · · , xL
(k)],

which is the input of position embedding. Positional embedding is proposed because
self-attention does not consider the order between input vectors, but in translation tasks in
NLP, the position of a word has an impact on the meaning of a sentence. As described in
Section 2.2, multi-aspect SAR images are constructed into sequences according to azimuth
angles, and the angle information of images in the sequence also needs to be recorded
by position embedding. In this work, sine and cosine functions are used to calculate
the positional embedding [30]. The output of positional embedding XPE is input to the
transformer encoder next.
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The transformer encoder, which is the kernel structure of this part, is shown in Figure 5.
The transformer encoder is composed of multiple layers, and each layer contains two
residual blocks, which mainly include the multi-head self-attention (MSA) unit and multi-
layer perceptron (MLP) unit. Supposed there are N layers in the transformer encoder,
the details of these two residual blocks in each layer will be introduced below.
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Figure 5. The structure of the transformer encoder.

The first residual block is formed by adding the result of the input vector going
through layer normalization (LN) [34] and MSA unit to itself. LN is used to implement
normalization. Different from the commonly used batch normalization (BN), all the hidden
units in a layer share the same normalization terms under LN. Thus, LN does not impose
any constraint on the size of a mini-batch. MSA, the core of the transformer encoder, is
to calculate the correlation as a weight by multiplying the query and the key and then
using this weight to weighted sum the value to increase the weight of related elements in a
sequence and reduce the weight of irrelevant elements.

Here the calculation process of the first residual block is described. Suppose Zn−1 ∈ Rk×m

is the input of the first residual block on the nth layer of the transformer encoder, and
Zn ∈ Rk×m is the output. Among them, k is the number of images in a multi-aspect SAR
image sequence, m represents the channel number of each image’s feature vectors, and the
input of the first layer is the output of the position-embedding XPE. The input vector
Zn−1 ∈ Rk×m first passes through LN to get Yn−1 ∈ Rk×m; that is:

Yn−1 = ΦLN(Zn−1) (6)

where ΦLN indicates the process of LN. Then, Yn−1 is divided into H parts along the channel
dimension. Suppose dh = m/H, each part is recorded as Yn−1

h ∈ Rk×dh , h = 1, · · · , H,
and corresponds to a head of self-attention. In other words, Yn−1 = [Yn−1

1 , · · · , Yn−1
H ],

where H is the number of heads in MSA. For each head, the input Yn−1
h is multiplied by

three learnable matrices, the query matrix Wn
qh ∈ Rk×k, the key matrix Wn

kh ∈ Rk×k and the

value matrix Wn
vh ∈ Rk×k to obtain the query vector Qn

h ∈ Rk×dh , the key vector Kn
h ∈ Rk×dh

and the value vector Vn
h ∈ Rk×dh , which can be formulated as:

Qn
h = Wn

qhYn−1
h (7)

Kn
h = Wn

khYn−1
h (8)

Vn
h = Wn

vhYn−1
h (9)

Then, the transposed matrix of Kn
h and Qn

h are multiplied to obtain the initial correlation
matrix Ân

h ∈ Rdh×dh , and then a softmax operation is performed on Ân
h column by column

to obtain the correlation matrix An
h ∈ Rdh×dh . The calculation process is written as:

Ân
h = (Kn

h )
TQn

h (10)

An
h(i, j) = So f tmax(Ân

h(i, j)) =
eÂn

h (i,j)

dh
∑

s=1
eÂn

h (s,j)
(11)
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Vn
h is multiplied by the weight matrix An

h to get the output Yn
h ; that is:

Yn
h = Vn

h An
h (12)

Then, the output vectors of each head Yn
h , h = 1, · · · , H are concatenated along the channel

dimension to obtain Ỹn = [Yn
1 , · · · , Yn

H ] ∈ Rk×m. The output of MSA Yn ∈ Rk×m is obtained
by multiplying Ỹn with a trainable matrix Wn

o ∈ Rm×m; that is Yn = ỸnWn
o . Finally, to get

the output of the first residual block Z̃n ∈ Rk×m, the residual operation is applied to
compute the summation of this block Zn−1 and the output of MSA Yn, which can be
formulated as:

Z̃n = Zn−1 + Yn (13)

The second residual block of each layer in the transformer encoder is composed of
adding the results of the input vector through MLP to itself. The input vector of the second
residual block Z̃n goes through LN, a fully connected sublayer with the nonlinear activation
function and another fully connected sublayer in turn. The two fully connected sublayers
expand and restore the vector dimension, respectively, thereby enhancing the expressive
ability of the model. The number of neurons of the two fully connected sublayers is N f c1
and m, respectively. GELU is employed as the activation function, which performs well in
transformer-based networks, and its definition is given as follows:

GELU(x) = xΦ(x) (14)

where Φ(x) is the cumulative distribution function of the standard normal distribution.
Finally, through the residual operation, the output of the second residual block Zn, which
is also the output of the nth layer of the transformer encoder, is obtained. The calculation
process of the second residual block is described as:

Zn = Z̃n + ΦFC2(ΦFC1(ΦLN(Z̃n))) (15)

where ΦFC1, ΦFC2 represent the operation of the two fully connected sublayers separately.
To alleviate the overfitting issue that is prone to occur when the training sample is

insufficient, dropout is added at the end of each fully connected sublayer. Dropout is
implemented by ignoring part of the hidden layer nodes in each training batch, and to put
it simply, p percent neurons in the hidden layer stop working during each training iteration.

2.5. Feature Dimensionality Reduction

After the multi-aspect feature learning process based on self-attention, features that
contain intrinsic correlation information of multi-aspect SAR image sequence have been ex-
tracted with the size of k×m. Before using these features for classification, their dimension
needs to be reduced.

MLP is the most commonly used feature dimensionality reduction method but one
that lacks cross-channel information integration. Our proposed method uses a 1 × 1
convolution [35] for dimensionality reduction, which uses the 1× 1 convolution kernel
and adjusts the feature dimension by the number of convolution kernels. The 1× 1 con-
volution realizes the combination of information between channels, thus reducing the
loss of information during dimensionality reduction. At the same time, compared with
MLP, the 1× 1 convolution reduces the number of parameters.

The input of the 1× 1 convolutional layer is the output of the transformer encoder ZN ,
and the output size is k× C, where C is the number of classes. Therefore, the number of
convolution kernels of the 1× 1 convolution layer is C. Before the convolution operation,
dimension transformation is performed from ZN to ZN

r ∈ Rk×1×m. Suppose the output of
dimensionality reduction is Zc, W1×1 is the convolution kernel of the 1× 1 convolutional
layer and b1×1 is the bias. The dimensionality reduction process is described as:
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Zc = ZN
r ∗W1×1 + b1×1 (16)

After dimensionality reduction, dimensional transformation is performed on Zc ∈ Rk×1×C

to obtain Z ∈ Rk×C for subsequent classification.

2.6. Classification

The classification process uses the softmax classifier. After dimensionality reduction, Z
is averaged along the sequence dimension to get Z̄mean = [z̄1, · · · , z̄C]

T . Finally, the softmax
operation is appiled upon Ẑmean to get the probability output Zmean = [z1, · · · , zC]

T .

2.7. Training Process
2.7.1. Pre-Train of CAE and Layer Transfer

CAE is an unsupervised learning method. As described in Section 2.3, taking the
single-aspect SAR images as input, after the forward propagation, reconstructed images
will be obtained. Network optimization of CAE is achieved by minimizing the mean square
error (MSE) between the reconstructed image and the original image; that is, using the MSE
loss function. Suppose the total number of samples is Ns. x is the input image, and x̂ is the
reconstructed image. The MSE loss function is defined as

LMSE =
1

Ns

Ns

∑
i=1
‖x̂(i) − x(i)‖

2
2 (17)

In this work, backpropagation (BP) is selected to minimize the loss function and
optimize the CAE parameters. The aim of BP is to calculate the gradient and update the
network parameters to achieve the global minimum of the loss function. The process of
BP is to calculate the error of each parameter from the output layer to the input layer
through the chain rule, which is related to the partial derivative of the loss function
relative to the trainable parameters, and then the parameters are updated according to
the gradient. When the network converges, it means that the encoder of CAE can extract
enough information to reconstruct the single-aspect SAR image, which can prove the
effectiveness of feature extraction.

After the CAE network converges, the parameters of the encoder are saved for subse-
quent layer transfer. The specific layer transfer operation is first when initializing network
parameters; the CNN for feature extraction loads the parameters of the trained encoder of
CAE. Next, in the process of network training, the parameters of each layer of the CNN
can be frozen, which means that they will remain unchanged during the training process
or continue to be optimized; that is, fine-tuning. It should be noted that only the first two
layers of the CNN are frozen, and the last layer of the CNN is fine-tuned along with the
overall network in our method. This is because the pre-training of CAE is carried out
for single-aspect SAR images. Therefore, in order to effectively extract sufficient internal
correlation information to support multi-aspect feature learning, it is necessary to fine-tune
during the whole network training. At the same time, the parameters of the first two layers
are frozen to maintain the effective extraction of the main features of each single-aspect
image to ensure the noise resistance of the network.

2.7.2. Training of Overall Network

Taking the multi-aspect SAR image sequence as input, after the forward propagation,
the predicted results given by the proposed network will be obtained. Network optimiza-
tion is achieved by minimizing the cross entropy between data labels and the predicted
result given by the network; that is, using the cross entropy loss function. Suppose the
total number of the sequence samples is Nm. For the ith sample, let [zi

1, · · · , zi
C]

T denote the
label, and [ẑi

1, · · · , ẑi
C]

T represent the probability output predicted by the network. When
the sample belongs to the jth class, zi

j = 1 and zi
k = 0 (k 6= j). Then the cross entropy loss

function can be written as:
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L = − 1
Nm

Nm

∑
i=1

C

∑
j=1

z(i)j log(ẑ(i)j ) (18)

The proposed method also minimizes the loss function and optimizes the network
parameters by BP, which is the same as most SAR ATR methods. The parameter updating
in the BP process is affected by the learning rate, which determines how much the model
parameters are adjusted according to the gradient in each parameter update. In the early
stage of network training, there is a large difference between the network parameters
and the optimal solution. Thus the gradient descent can be carried out faster with a
larger learning rate. However, in the later stage of network training, gradually reducing
the value of the learning rate will help the convergence of the network and make the
network’s approach to the optimal solution easier. Therefore, in this work, the learning rate
is decreased by piecewise constant decay.

3. Experiments and Results

To verify the effectiveness of our proposed method, first, the network architecture
setup is specified, and then the multi-aspect SAR image sequences are constructed using
the MSTAR dataset under the standard operating condition (SOC) and extended operating
condition (EOC), respectively. Finally, the performance of the proposed method has been
extensively assessed by conducting experiments under different conditions.

3.1. Network Architecture Setup

In the experiment, the network instances were deployed whose input can be single-
aspect images or multi-aspect sequences to comprehensively evaluate the recognition
performance of the network. In this instance, the size of the input SAR image is 64× 64.
The encoder of CAE includes three convolution-maxpooling layers, which obtain 64, 64
and 256 feature maps, respectively. In each layer, the convolution operation with kernel
size 7× 7 and stride size 2× 2 is followed by the max-pooling operation with kernel size
3× 3 and stride size 2× 2. The decoder of CAE includes three unpooling-deconvolution
layers with the number of channels 64, 64 and 1, respectively. In each layer, the unpooling
operation with kernel size 3× 3 and stride size 2× 2 is followed by the deconvolution
operation with kernel size 7× 7 and stride size 2× 2. In the transformer encoder with
6 layers, MSA has 4 heads and the number of neurons of the 2 fully connected sublayers is
512 and 256 in turn.

Our proposed network is implemented by the deep learning toolbox Pytorch 1.9.1.
All the experiments are conducted on a PC with an Intel Core i7-9750H CPU at 2.60 GHz,
16.0 G RAM, and a NVIDIA GeForce RTX 2060 GPU. The learning rate is 0.00001 when
training CAE and starts from 0.001 with decay rate 0.9 every 30 epochs when training the
whole network. The mini-batch size is set to 32, and the probability of dropout is 0.1.

3.2. Dataset

The MSTAR dataset [36], which was jointly released by the U.S. Defense Advanced
Research Projects Agency (DARPA) and the U.S. Air Force Research Laboratory (AFRL),
consists of high-quality SAR image data collected from ten stationary military vehicles
(i.e., rocket launcher: 2S1; tank: T72 and T62; bulldozer: D7; armored personnel carrier:
BMP2, BRDM2, BTR60 and BTR70; air defense unit: ZSU234; truck: ZIL131 ) through
the X-band high-resolution Spotlight SAR by Sandia National Laboratory between 1996
and 1997. All images in the MSTAR dataset have a resolution of 0.3× 0.3 m with HH
polarization. The azimuth aspect range of imaging each target covers 0◦∼360◦ with an
interval of 5◦∼6◦. The optical images of ten targets and their corresponding SAR images
are illustrated in Figure 6.
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2S1 T-72 T-62 D7 BMP-2 BRDM-2 BTR-60 BTR-70 ZSU-234 ZIL-131

Figure 6. The optical images of ten targets and their corresponding SAR images.

The acquisition conditions of the MSTAR dataset include two categories: Standard
Operating Condition (SOC) and Extended Operating Condition (EOC). Specifically, SOC
refers to the images of the training set and testing set that have the same target type
and similar imaging configuration. Compared with SOC, the data of the training set and
testing set of EOC are more different and have greater difficulty in identification. Generally,
the EOC includes configuration-variant (EOC-C) and version-variant EOC (EOC-V).

First, the images are cropped to 64× 64 and normalized. Next, the experiments are
conducted using the sequences constructed according to the steps described in Section 2.2
under SOC and EOC and the results are shown in Sections 3.3 and 3.4. Then, the perfor-
mance of the proposed method is compared with other existing methods in Section 3.5.
Finally, some further discussions are shown in Section 3.6 about the influence of convolu-
tion kernel size in feature extraction and the performance of the network with few samples
and noise.

3.3. Results under SOC

SOC means that the training and test datasets have the same target type and similar
imaging configuration. The experiment under SOC is a classical ten-class classification
problem of vehicle targets. Among the raw SAR images, the images collected at 17◦

depression angle are set as the training set, and the SAR images collected at 15◦ depression
angle as the testing set. By applying the method of constructing sequences described in
Section 2.2, the training sequences and testing sequences are obtained when the angle
range is set as 45◦ as in other multi-aspect SAR ATR methods, considering the actual
radar imaging situation and the tradeoff between the cost of data acquisition and network
training [28]. Table 1 shows the class types and the number of training samples and test
samples used in the experiment when the sequence length is set to 2, 3 and 4, respectively.

Table 1. Dataset of experiment under SOC.

Training Testing

Class Type Image
Samples

2-Aspect
Sequences

3-Aspect
Sequences

4-Aspect
Sequences

Image
Samples

2-Aspect
Sequences

3-Aspect
Sequences

4-Aspect
Sequences

2S1 299 578 840 1084 274 525 755 956
BRDM2 298 576 837 1080 274 525 755 956
BTR60 256 489 709 906 195 362 508 589

D7 299 578 840 1084 274 525 755 959
T72 232 443 640 814 196 364 499 569

BMP2 233 443 642 812 195 362 494 558
BTR70 233 442 639 817 196 363 496 568

T62 299 578 840 1084 273 522 749 954
ZIL131 299 578 840 1084 274 525 755 956
ZSU234 299 578 846 1087 274 525 755 959

Total 2747 5283 7673 9852 2425 4598 6521 8024

Table 2 shows the classification confusion matrix when the input is a single-aspect
image as control, and Tables 3–5 show the confusion matrix when each input sequence
sample contains 2, 3 and 4 images, respectively. Confusion matrix is widely used in SAR
target recognition to evaluate the recognition performance of the method. Each element of
the confusion matrix represents the number of samples of each class recognized as a certain
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class. The rows of the confusion matrix correspond to the actual class of the target, and the
columns show the class predicted by the network.

Table 2. Confusion matrix of a single-aspect experiment under SOC.

Class 2S1 BRDM2 BTR60 D7 T72 BMP2 BTR70 T62 ZIL131 ZSU234 Acc (%)

2S1 258 1 3 0 3 0 0 8 1 0 94.16
BRDM2 0 269 1 0 1 0 0 0 0 3 98.18
BTR60 0 3 187 0 1 0 2 0 0 2 95.90

D7 0 0 0 272 0 0 0 0 2 0 99.27
T72 0 0 0 0 196 0 0 0 0 0 100.00

BMP2 0 0 2 0 5 188 0 0 0 0 96.41
BTR70 0 0 1 0 0 0 195 0 0 0 99.49

T62 1 0 0 0 0 0 0 267 3 2 97.80
ZIL131 0 0 0 2 0 0 0 3 269 0 98.18
ZSU234 0 0 0 2 0 0 0 0 0 272 99.27

Total 97.86

Table 3. Confusion matrix of a two-aspect experiment under SOC.

Class 2S1 BRDM2 BTR60 D7 T72 BMP2 BTR70 T62 ZIL131 ZSU234 Acc (%)

2S1 512 0 0 0 2 0 1 10 0 0 97.52
BRDM2 0 523 1 0 0 0 0 0 0 1 99.62
BTR60 0 2 360 0 0 0 0 0 0 0 99.45

D7 0 0 0 524 0 0 0 0 1 0 99.81
T72 0 0 0 0 364 0 0 0 0 0 100.00

BMP2 0 0 0 0 3 359 0 0 0 0 99.17
BTR70 0 0 0 0 0 0 363 0 0 0 100.00

T62 5 0 0 0 0 0 0 517 0 0 99.04
ZIL131 0 0 0 0 0 0 0 3 522 0 99.43
ZSU234 0 0 0 1 0 0 0 0 0 524 99.81

Total 99.35

Table 4. Confusion matrix of a three-aspect experiment under SOC.

Class 2S1 BRDM2 BTR60 D7 T72 BMP2 BTR70 T62 ZIL131 ZSU234 Acc (%)

2S1 739 0 0 0 0 0 0 15 0 1 97.88
BRDM2 0 755 0 0 0 0 0 0 0 0 100.00
BTR60 0 1 507 0 0 0 0 0 0 0 99.80

D7 0 0 0 751 0 0 0 0 4 0 99.47
T72 0 0 0 0 499 0 0 0 0 0 100.00

BMP2 0 0 0 0 5 489 0 0 0 0 98.99
BTR70 0 0 0 0 0 0 496 0 0 0 100.00

T62 3 0 0 0 0 0 0 746 0 0 99.60
ZIL131 0 0 0 0 0 0 0 5 750 0 99.34
ZSU234 0 0 0 1 0 0 0 0 0 754 99.87

Total 99.46

From Tables 3–5, it can be observed that the recognition rate of our proposed method
with 2, 3 and 4-aspect SAR image input sequences are all higher than 99.00% under SOC in
the ten-class problem. Compared with the recognition rate shown in Table 2, it is proven
that the multi-aspect SAR image sequence contains more recognition information than the
single-aspect SAR image. In addition, from the improvement of the recognition rate in
Tables 3–5 from 99.35%, 99.46% to 99.90%, it can be concluded that the self-attention process
of our proposed method can effectively extract more internal correlation information of
multi-aspect SAR images, so as to improve the recognition rates with the increase in the
sequence length of multi-aspect SAR image sequence samples.
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Table 5. Confusion matrix of a four-aspect experiment under SOC.

Class 2S1 BRDM2 BTR60 D7 T72 BMP2 BTR70 T62 ZIL131 ZSU234 Acc (%)

2S1 951 0 0 0 0 0 0 5 0 0 99.48
BRDM2 0 956 0 0 0 0 0 0 0 0 100.00
BTR60 0 0 589 0 0 0 0 0 0 0 100.00

D7 0 0 0 956 0 0 0 0 3 0 99.69
T72 0 0 0 0 569 0 0 0 0 0 100.00

BMP2 0 0 0 0 0 558 0 0 0 0 100.00
BTR70 0 0 0 0 0 0 568 0 0 0 100.00

T62 0 0 0 0 0 0 0 954 0 0 100.00
ZIL131 0 0 0 0 0 0 0 0 956 0 100.00
ZSU234 0 0 0 0 0 0 0 0 0 959 100.00

Total 99.90

3.4. Results under EOC

Compared with SOC, the experiment under EOC is more difficult for target recognition
due to the structure difference between the training set and testing set, which is often used
to verify the robustness of the target recognition network. The experiments under EOC
mainly include two experimental schemes, configuration variation (EOC-C) and version
variation (EOC-V).

According to the original definition, EOC-V refers to targets of the same class that
were built to different blueprints, while EOC-C refers to targets that were built to the same
blueprints but had different post-production equipment added. The training sets under
EOC-C and EOC-V are the same, which consist of four classes of targets (BMP2, BRDM2,
BTR70 and T72), and the depression angle is 17◦. The testing set under EOC-C consists
of images of two classes of targets (BMP2 and T72) with seven different configuration
variations acquired at both 17◦ and 15◦ depression angles, and the testing set under EOC-V
consists of images of T72 with five different version variations acquired at both 17◦ and 15◦

depression angles. The training and testing samples for the experiment under EOC-C and
EOC-V are listed in Tables 6–8.

Table 6. The training set of experiment under EOC-C and EOC-V.

Class Type Depression
Angle

Image
Samples

2-Aspect
Sequences

3-Aspect
Sequences

4-Aspect
Sequences

BMP2 17◦ 233 443 642 812
BRDM2 17◦ 298 576 837 1080
BTR70 17◦ 233 442 639 817

T72 17◦ 232 443 640 814
Total 17◦ 996 1904 2758 3523

Table 7. The testing set of experiment under EOC-C.

Class Type Depression
Angle

Image
Samples

2-Aspect
Sequences

3-Aspect
Sequences

4-Aspect
Sequences

T72/A04 17◦&15◦ 573 1105 1598 2044
T72/A05 17◦&15◦ 573 1105 1598 2050
T72/A07 17◦&15◦ 573 1105 1604 2050
T72/A10 17◦&15◦ 567 1092 1577 2001
T72/812 17◦&15◦ 426 803 1133 1369

BMP2/9566 17◦&15◦ 428 807 1145 1401
BMP2/C21 17◦&15◦ 429 811 1143 1381

Total 17◦&15◦ 3569 6828 9798 12,296
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Table 8. The testing set of experiment under EOC-V.

Class Type Depression
Angle

Image
Samples

2-Aspect
Sequences

3-Aspect
Sequences

4-Aspect
Sequences

T72/A32 17◦&15◦ 572 1103 1595 2046
T72/A62 17◦&15◦ 573 1105 1604 2050
T72/A63 17◦&15◦ 573 1105 1598 2044
T72/A64 17◦&15◦ 573 1105 1598 2050
T72/S7 17◦&15◦ 419 789 1116 1349

Total 17◦&15◦ 2710 5207 7511 9539

The confusion matrices of experiments under EOC-C and EOC-V with single-aspect input
images, 2, 3 and 4-aspect input sequences are summarized in Tables 9 and 10, respectively.

Table 9 shows the superior recognition performance of the proposed network in iden-
tifying BMP2 and T72 targets with configuration differences. The recognition rates of the
proposed method reach 96.91%, 97.66% and 98.50% with 2, 3 and 4-aspect input sequences,
respectively, which are all higher than 94.65% for the single-aspect input image. It can
prove that, under EOC-C, the network can still learn more recognition information from
multi-aspect images through self-attention so as to obtain better recognition performance.

Table 9. Confusion matrix of experiments under EOC-C.

Instances Class BMP2 BRDM2 BTR70 T72 Acc (%) Total (%)

single-aspect

T72/A04 41 2 3 527 91.97

94.65

T72/A05 0 1 0 572 99.83
T72/A07 5 0 1 567 98.95
T72/A10 2 0 2 563 99.29
T72/812 4 1 11 410 96.24

BMP2/9566 371 1 26 29 86.68
BMP2/C21 368 7 19 35 85.78

2-aspect

T72/A04 63 5 10 1027 92.94

96.91

T72/A05 1 0 0 1104 99.91
T72/A07 7 1 1 1096 99.19
T72/A10 0 0 0 1092 100.00
T72/812 1 0 0 802 99.88

BMP2/9566 761 3 13 30 94.30
BMP2/C21 735 10 7 59 90.63

3-aspect

T72/A04 75 0 21 1502 93.99

97.66

T72/A05 0 0 0 1598 100.00
T72/A07 4 0 2 1598 99.63
T72/A10 0 0 0 1577 100.00
T72/812 0 0 0 1133 100.00

BMP2/9566 1114 0 9 22 97.29
BMP2/C21 1047 1 6 89 91.60

4-aspect

T72/A04 24 0 23 1997 97.70

98.50

T72/A05 0 0 0 2050 100.00
T72/A07 1 0 2 2047 99.85
T72/A10 0 0 0 2001 100.00
T72/812 0 0 0 1369 100.00

BMP2/9566 1382 0 0 0 98.64
BMP2/C21 1266 12 0 103 91.67

Table 10 shows the excellent performance of the proposed network in identifying
T72 targets with version differences. With the increase in the input sequence length,
the recognition rate of the network rises as well, from 98.12% for single-aspect input to
99.78% for four-aspect input.
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Table 10. Confusion matrix of experiments under EOC-V.

Instances Class BMP2 BRDM2 BTR70 T72 Acc (%) Total (%)

single-aspect

T72/A32 10 0 1 561 98.08

98.12
T72/A62 0 0 5 569 98.95
T72/A63 8 2 4 558 97.38
T72/A64 3 2 7 561 97.91
T72/S7 4 0 2 410 98.32

2-aspect

T72/A32 13 0 0 1090 98.82

99.35
T72/A62 0 0 0 1105 100.00
T72/A63 11 0 2 1092 98.82
T72/A64 0 2 5 1098 99.37
T72/S7 1 0 0 788 99.87

3-aspect

T72/A32 7 0 0 1588 99.56

99.61
T72/A62 0 0 0 1604 100.00
T72/A63 19 0 0 1579 98.81
T72/A64 0 3 0 1595 99.81
T72/S7 0 0 0 1116 100.00

4-aspect

T72/A32 8 0 0 2038 99.61

99.78
T72/A62 0 0 0 2050 100.00
T72/A63 3 0 2 2039 99.76
T72/A64 0 8 0 2042 99.61
T72/S7 0 0 0 1349 100.00

The above experiments indicate that the proposed network can achieve a high recogni-
tion rate when tested under different operating conditions, which confirms the application
value of the proposed network in actual SAR ATR tasks.

3.5. Recognition Performance Comparison

In this section, our proposed network is compared with six other methods, i.e., joint
sparse representation (JSR) [37], sparse representation-based classification (SRC) [38], data
fusion [39], multiview deep convolutional neural network (MVDCNN) [28], bidirectional
convolutional-recurrent network (BCRN) [27] and multiview deep feature learning net-
work (MVDFLN) [29], which have been widely cited or recently published in SAR ATR.
Among them, the first three are classical multi-aspect SAR ATR methods. JSR and SRC are
two classical methods based on sparse representation, and data fusion refers to the fusion
of multi-aspect features based on principal component analysis (PCA) and discrete wavelet
transform (DWT). The last three are all deep learning multi-aspect SAR ATR methods.

Here, first, the recognition performance under SOC and EOC is compared between
these methods. The recognition rates for each method under SOC and EOC are listed
in Table 11. It should be noted that in order to objectively evaluate the performance of
the method, it should be ensured that the datasets are as much the same as possible.
Among the six methods, the original BCRN uses the image sequences with a sequence
length of 15 as the input, which contains more identification information and requires a
larger computational burden. That is, the original BCRN is difficult to compare with the
other methods with an input sequence length of 3 or 4. Therefore, BCRN is implemented,
and the results in Table 11 are obtained using the same four-aspect training and testing
sequences as our method.

From Table 11, it is obvious that our method has a higher recognition rate than the other
six methods in multi-aspect SAR ATR tasks, which proves that the combination of CNN
and self-attention can learn the recognition information more effectively in multi-aspect
SAR target recognition.
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Table 11. Performance comparison between our method and other methods.

Method Accuracy (%)
SOC EOC-C EOC-V

JSR 94.69 - -
SRC 98.94 96.78 -

Data Fusion 98.32 - -
MVDCNN 98.52 95.45 95.46

BCRN 99.50 97.21 98.59
MVDFLN 99.62 97.84 99.10

Our Method 99.90 98.50 99.78

Then, as shown in Table 12, compared with BCRN, our method greatly reduces the
model size; that is, it greatly reduces the number of parameters and is in the same order
of magnitude as MVDCNN. Considering the network structure of MVDCNN, when the
sequence length increases, the network depth and the number of parallel branches will
increase correspondingly. On the contrary, our method does not change the network
structure when the sequence length increases, so it is more flexible, and the number of
parameters increases slowly with the sequence length. As for the FLOPs, which represent
the speed of network reasoning, it can be seen that our method still needs to be optimized.
It is speculated that the amount of floating point operations mainly comes from the large
convolution kernels for feature extraction and matrix operations for self-attention.

Table 12. Model size comparison with four-aspect input sequences.

Method BCRN MVDCNN Our Method

Model Size (M) 135.25 11.49 15.94
FLOPs (G) 1.894 2.654 2.873

3.6. Discussion

For further discussion, the experiments on the network structure of feature extraction
are carried out first. In order to obtain 1-D feature vectors, when a smaller convolution
kernel is selected, the number of layers of CNN will increase accordingly. The recognition
rates compared between the 6-layer CNN for feature extraction with the convolution kernel
size of 3× 3 and 3-layer CNN with the kernel size of 7× 7 are shown in Table 13. From the
results under EOC, it can be seen that the recognition performance of the larger convolution
kernel network is better. Such a result is obtained because the larger convolution kernel
can better extract the global information in raw images, which is beneficial to self-attention
to learn common features in image sequences as a basis for classification. On the contrary,
small convolution kernels are more concentrated on local information, which varies greatly
from different angles.

Table 13. Performance comparison between different kernel sizes.

Convolution Kernel Size Accuracy (%)
SOC EOC-C EOC-V

3× 3 99.90 97.28 98.70
7× 7 99.90 98.50 99.78

When the number of transformer encoder layers is different, the recognition perfor-
mance of the whole network will also be different. The recognition accuracy under different
operating conditions with different transformer encoder layers is shown in Table 14. When
the transformer encoder has more layers, it means that the self-attention calculation has
been carried out more times, so it is possible to mine more correlation information, which
is also confirmed by the higher recognition accuracy achieved in the experiment.
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Table 14. Performance comparison between different layers of the transformer encoder.

Number of Layers Accuracy (%)
SOC EOC-C EOC-V

2 99.66 97.99 99.57
4 99.80 98.21 99.69
6 99.90 98.50 99.78

Next, in order to verify the recognition ability of the method with few samples,
the training sequence is downsampled and the recognition rates of BCRN and MVDCNN
are compared with our method when the number of training sequences is 50%, 25%, 10%,
5% and 2% of the original under SOC. As shown in Table 15, the recognition accuracy
only decreases by 5% when the number of training sequence samples decreases to 2%,
which is much less than 21.8% for BCRN and 11.03% for MVDCNN. As is known to
all, the transformer needs a lot of data for training, which is mainly due to the lack of
prior experience contained in the convolution structure, such as translation invariance and
locality [30]. In our proposed method, we use CNN to extract features first so as to make
up for the lost local information. Therefore, the network also has excellent performance in
the case of few samples.

Table 15. Recognition performance comparison with few samples.

Method Accuracy of Downsampling Training Samples in Different Proportions (%)
100% 50% 25% 10% 5% 2%

MVDCNN 99.09 98.75 98.45 97.33 95.00 87.99
BCRN 99.50 99.43 98.99 94.34 91.43 77.70

Our Method 99.90 99.71 99.70 99.21 98.11 94.90

Finally, considering that in actual SAR ATR tasks, SAR images often contain noise,
which has a great impact on the performance of SAR ATR because of the sensitivity of
SAR images to noise, experiments are carried out to test the anti-noise performance of the
network under SOC. As shown in Figure 7, the output of input image reconstruction by
convergent CAE can reflect the main characteristics of the target in the input image but blur
some other details. This indicates that when the image contains noise, the feature extraction
network can filter the noise and extract the main features of the target. This is proven by
the test image with noise with variance from 0.01 to 0.05 and the results of its convergent
CAE reconstruction shown in Figure 8.

Raw Image

Reconstruct Image

Figure 7. Comparison between raw image and image reconstructed by CAE.

Table 16 shows the recognition rates of the methods to be compared when the variance
of noise increases from 0.01 to 0.05. Obviously, after pre-training, our method has excellent
anti-noise ability. When the input image is seriously polluted by noise, the recognition
rate of BCRN and the network without CAE is low, but the proposed method with CAE
still maintains a high recognition rate, which shows that CAE plays an important role
in anti-noise.
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Raw Image

Reconstruct Image

Variance of Noise 0.01 0.02 0.03 0.04 0.05

Figure 8. Comparison between raw image with noise with different variances and image recon-
structed by CAE.

Table 16. Comparison of anti-noise performance.

Method Accuracy of Different Variances of Noise Added to Testing Samples
0.01 0.02 0.03 0.04 0.05

BCRN 98.46 88.73 70.31 54.78 44.63
Our Method without CAE 98.19 88.97 74.00 46.73 33.97

Our Method with CAE 98.98 98.97 98.37 96.83 94.08

In addition, to further verify the effectiveness of the pre-trained CAE, as shown in
Table 17, CAE is replaced by other structures for experimental comparison. DS-Net [40] in
the table is a feature extraction structure composed of dense connection and separable con-
volution. The experimental results show that compared with other structures, the proposed
method with CAE does show better recognition performance under a variety of complex
conditions, which proves the advantage of CAE in extracting major features.

Table 17. Comparison between different structures for feature extraction.

Feature Extraction Structure Accuracy under Different Cases (%)
SOC 2% Downsample Noise with 0.05 Variances

Resnet18 99.19 85.41 42.33
DS-Net 97.78 88.29 55.33

CAE 99.90 97.33 94.08

4. Discussion
4.1. Advantages

From the experiments in Section 3, it can be seen that compared with the existing
methods, the proposed method has achieved higher recognition accuracy under both SOC
and EOC. This proves the feasibility of self-attention under various complex conditions in
multi-aspect SAR target recognition.

The experiment carried out with few samples in Section 3 shows that the proposed
method can still achieve a higher recognition rate than other methods. It proves the
advantages of the whole method in the case of small datasets, which make the proposed
method more practical, considering the high cost of radar image acquisition.

The anti-noise experimental results in Section 3 verify the advantages of the proposed
method. After pre-training, the anti-noise ability of the whole method is greatly enhanced,
and a high recognition rate is obtained on the testing samples containing noise. Due
to the characteristics of the coherent imaging system, the radar images almost certainly
contain noise, so the excellent anti-noise performance makes the method more valuable for
practical application.
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4.2. Future Work

The future subsequent research will mainly focus on two directions. One is to reduce
floating-point operands and improve reasoning speed, which is the main disadvantage
of our proposed method. In order to achieve the goal, the two main structures of the
network will be optimized, namely, the CNN structure whose FLOPs can be reduced by
applying separable convolution [41] and the transformer encoder that can be accelerated
by pruning [42] or improving the structure [43].

The other is to further improve the recognition performance of multi-aspect SAR ATR,
for which some attempts will be made to explore the combination of deep learning and the
physical characteristics brought by the special imaging mechanism of SAR. The method
proposed in this paper only uses the amplitude information of SAR images for network
training and testing. However, the complex SAR images contain more identification
information, which can be used to train deeper networks or make up for the lack of
information in small datasets. It is perhaps to extract and fuse the amplitude and phase
information of complex SAR images with reference to Deep SAR-Net [44] or expand the
convolutional neural network to the complex domain with reference to CV-CNN [45] so as
to make full use of the information contained in complex SAR images.

5. Conclusions

In this paper, a multi-aspect SAR target recognition network based on CNN and
self-attention has been presented. The overall network consists of the feature extraction
layers, the multi-aspect feature learning layers, feature dimensionality reduction and
classification. Specifically, after pre-training by single-aspect SAR images, the encoder
of CAE is transferred for feature extraction of images in the multi-aspect SAR image
sequence separately, and then the internal correlation between images in the sequence
is learned by self-attention. Finally, after dimensionality reduction by 1× 1 convolution,
the feature vectors of images in the sequence are averaged and fed into the softmax layer
for classification. Experiments on the MSTAR dataset show that the proposed method can
obtain satisfactory recognition performance under a variety of complex conditions. At the
same time, the recognition rate in the case of few training samples can still be close to that
of the complete training set. Besides that, the anti-noise ability of the whole network is
greatly enhanced after pre-training.
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