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Abstract: When the transmitter is in motion, the airborne passive bistatic radar (PBR) has a complex
clutter geometry and lacks independent and identically distributed training samples in clutter
estimation and suppression. In order to solve these problems, this paper proposes a space–time
adaptive processing (STAP) algorithm based on root off-grid sparse Bayesian learning. The proposed
algorithm first models the space–time base of the dictionary as an adjustable state. Then, the positions
of those dynamic bases are optimized by iterating a maximum expectation algorithm. In this way,
the off-grid error in clutter estimation can be eliminated even when the modeling grid is wide. To
further improve the accuracy of clutter estimation, the proposed algorithm eliminates the error caused
by samples with singular values in the root off-grid sparse Bayes learning by artificially adding
pseudorandom noise and using hypothesis testing. The simulation results show that the proposed
algorithm achieves better performance than the existing algorithms.

Keywords: airborne passive bistatic radar; space–time adaptive processing; root off-grid sparse Bayes
learning; pseudorandom noise

1. Introduction

The passive bistatic radar (PBR) [1–3] is a novel sensing technology. It does not
actively transmit the electromagnetic waves but uses a non-cooperative opportunistic
radiation source [4–6] (FM radio station, analog TV station, digital TV station, mobile
4G/5G base station, Wi-Fi station, satellite, etc.) as a transmitter to implement the target
detection [4,6], imaging [7,8], and tracking tasks [9]. Due to the significant advantages
of PBRs over traditional active radars, such as the stealth characteristics, strong anti-
interception ability, and low maintenance cost, researchers have carried out a large amount
of theoretical research and actual measurement experiments on PBR in recent decades.
With the development of hardware techniques, the airborne PBR [10–12], placed on a high-
altitude platform, has added attracted an increasing amount of attention. For example, the
increased sensing height of the airborne PBR can help to overcome the influence of Earth
curvature and increase the effective sensing range. Due to the mobility of the platform,
the airborne PBR enables a flexible deployment. However, the airborne PBR still faces
many challenges in practical application. For example, the high sidelobe is caused by the
civil signal with continuous wave (CM) beams, the contaminated reference signal, and
the strong clutter in the near area. Some researchers have proposed solutions to these
problems [13–16]. Another challenge faced by the airborne PBR is to deal with the clutter
spread problem caused by the movement of the receiving platform [12].

Due to the movement of the platform, the Doppler frequency of the clutter in the echo
signal is no longer zero. Instead, the clutter spreads in the entire frequency domain due
to the coupling relationship between the time frequency and space frequency. Therefore,
the clutter suppression algorithm proposed for the traditional ground-based PBRs [17]
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is no longer applicable to airborne PBRs. The space–time adaptive processing (STAP)
algorithm can effectively suppress the clutter of the airborne radar by using the space–time
two-dimensional correlation method [18–20]. This approach considers the problem of
clutter Doppler broadening caused by the movement of the receiving platform. However,
in addition to this problem, the influences of the dual-base configuration and the motion
state of the transmitting source on the clutter should also be considered.

When the non-cooperative transmitting source is fixed, its side-looking observation
mode is equivalent to the clutter model of the traditional active side-looking radar, and this
indicates that the coupling relationship of the space–time clutter is presented as a diagonal
shape distribution in the space–time frequency spectrum plane. When the transmitting
source is in motion, the relative motion relationship between the transmitting source and
the receiving platform can be complex. The coupling relationship of the spatial–temporal
clutter changes correspondingly. In the spatial–temporal frequency spectrum, it is no longer
a diagonal shape distribution but a complex geometric relationship. The air-to-air bistatic
configuration increases the clutter complexity. Additionally, this configuration further
increases the difficulty of clutter estimation because it reduces the number of independent
and identically distributed (IID) training samples in clutter estimation.

In order to effectively estimate the clutter of the airborne PBR with a limited num-
ber of IID samples, three existing algorithms are available: Reduced-dimensional STAP
(RD–STAP) [21,22], reduced-rank STAP (RR–STAP) [23,24], and sparse recovery STAP
(SR–STAP) [25–28]. Although the RD–STAP and RR–STAP algorithms can reduce the num-
ber of training samples, they still need a large number of IID training samples. Therefore,
these algorithms are not applicable for airborne PBRs.

Based on the sparsity of the airborne PBR clutter in the space–time plane, the SR-STAP
algorithm can estimate the clutter using a small number of IID training samples by setting
an over-complete dictionary basis of spatial–temporal steering vectors. There are exten-
sive research studies on the SR–STAP algorithm [25–28]. However, these studies assume
a side-view monitoring mode of the airborne active radar and are hence not applicable to
the clutter suppression of the airborne PBR. The space–time sparse approach has an off-grid
effect due to the geometric complexity of the airborne PBR clutter, that is, the location of the
space–time clutter is mismatched with the uniformly divided space–time guide vector grid.
It is necessary to consider the estimation and suppression of the space–time off-grid clutter.

There are three methods to solve the off-grid problem in sparse estimation, i.e., the
increased dictionary base density, the local refinement [29–31], and the atomic norm mini-
mization [31]. Increasing the dictionary base density can increase the correlation between
different dictionary bases and reduce the accuracy of sparse recovery. The local refinement
method needs to be split at each off-grid location, requiring a large amount of compu-
tation. Additionally, the method cannot be effectively restored under the rough model
condition. The atomic norm minimization method is sensitive to the low-rank character-
istics and has high computational complexity due to the interior point approach. Since
the calculation of the PBR signal data is huge, both the local refinement method and the
atomic norm minimization method cannot effectively estimate the space–time clutter in the
airborne PBR.

In order to solve the problem of space–time clutter estimation and suppression for
the airborne PBR, a space–time adaptive algorithm based on root off-grid sparse Bayes
learning is proposed. This algorithm is mainly derived from the concepts of SBL [32–34]
and RSBL [35,36], and estimates the off-grid space–time clutter. The proposed algorithm
first establishes a space–time steering vector dictionary with a wide grid, then sets the
position of the space–time clutter as a variable parameter, and finally uses the maximum
expectation (EM) algorithm to iteratively optimize the position to estimate the position and
amplitude of the space–time clutter. Therefore, this algorithm can estimate and suppress
the off-grid space–time clutter of the airborne PBR with few IID training samples and
a small amount of computation. To further improve the accuracy of clutter estimation, the
proposed algorithm has been further optimized based on RSBL, named pseudorandom root
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off-grid sparse Bayes STAP (PROGSBL–STAP). The PROGSBL–STAP algorithm adds pseu-
dorandom noise to original samples [37–39], then performs resampling and re-estimation,
and finally, uses the hypothesis-testing criteria to select effective training samples. The
PROGSBL–STAP algorithm can eliminate the error caused by samples with singular values.
Simulation experiments show that the PROGSBL–STAP algorithm performs better than
existing algorithms for the off-grid space–time clutter estimation of airborne PRBs.

The rest of this paper is arranged as follows: Section 2 introduces the signal model,
clutter model and presents the PROGSBL–STAP algorithm. In Section 3, simulation experi-
ments are used to verify the effectiveness of the proposed algorithm. Section 4 presents
discussions of the experimental results and Section 5 concludes the paper.

The definitions of some necessary notations are provided in Table 1.

Table 1. Some important notations.

Notations Definition

capital bold letters the matrices
lowercase bold letters the vectors

(·)∗ the conjugate operation
(·)T the transpose operation
(·)H the conjugate transpose operation
(·)−1 the inverse operation
E{·} find the mathematical expectation
CM×N the M× N complex matrix set
⊗ the Kronecker product
‖ · ‖2 the L2 norm

2. Method
2.1. Signal Model of PBR System and Traditional STAP

In this subsection, we present the signal model and clutter model of the airborne PBR
and introduce the traditional STAP algorithm for clutter estimation and suppression.

2.1.1. Signal Model of PBR System

The geometric structure of the airborne PBR system considered in this paper is shown
in Figure 1, in which a low-orbit satellite is used as the signal emitter. The PBR flies at
altitude H and speed VR, the reference sensor of the radar is pointed at the moving emitter,
a uniform linear array (ULA) composed of M sensors is used as a set of surveillance sensors
to point to the surveillance area, the distance between the array elements is d, and the
speed of the emission source is VT .

The reference signal received by the reference sensor can be expressed as follows:

Sre f (t) = Dre f

P−1

∑
p=0

s(t− pTr)ej2π fdt + Nre f (t) (1)

where P denotes the number of equivalent pulses, Tr denotes the pulse repetition inter-
val, Dre f denotes the complex amplitude of the reference signal, fd denotes the Doppler
frequency of the reference direct wave signal, s(t) represents the complex envelope of the
reference signal, and Nre f (t) denotes the noise in the reference sensor.

The echo signal from the g-th reflection point received by the m-th surveillance sensor
can be expressed as follows:

Secho(m, g, t) = Dm,g
echo

P−1

∑
p=0

s
(
t− τg −mTr

)
ej2π fgetej2πmϑg + Nm,g

echo(t) (2)
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where Dm,g
echo denotes the complex amplitude of the echo signal from the corresponding

reflection, τg denotes the time delay, and fge and ϑg denote the temporal and spatial
frequency, respectively, Nm,g

echo(t) denotes the noise of the m-th surveillance sensor.
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Figure 1. The geometric structure of the airborne PBR system. 
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Figure 1. The geometric structure of the airborne PBR system.

The cross-correlation result between the reference signal and the echo signal can be
expressed as follows:

χ(m, g, t) =
∫ ∞
−∞ Secho(m, g, t)S∗re f (ξ − t)dξ

= 0m,gej2πmϑg
P−1
∑

p=0
ej2πpTr fg rm

(
t− τg −mTr

)
+ N(t)

(3)

where 0m,g = Dm,g
echoDre f

∗, fg = fge − fd. N(t) denotes the noise component.
Taking the fast Fourier transform of χ(m, g, t) obtains:

χ
g
m,p = 0m,gej2πmϑg ej2πp fg + χN (4)

2.1.2. Traditional STAP

It can be observed in Figure 1 and Equation (4) that, in the same distance unit, the
received clutter can be equivalent to an equidistant clutter ring, so the clutter ring signal of
the l-th distance unit can be expressed as follows:

χl
c =

Nc

∑
i=1

0l
if(ϑi, vi) =

Nc

∑
i=1

0l
ifs(ϑi)⊗ ft( fi) (5)

where NC denotes the number of clutter points in an equidistant ring,

fs(ϑ) = [1, ej2πϑ, . . . , ej2π(M−1)ϑ]
T

and ft( fi) = [1, ej2π fi , . . . , ej2π(P−1) fi ]
T

denote the spa-
tial and temporal steering vectors, respectively.
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According to the STAP algorithm, the space–time clutter cancellation weight factor of
the t-th distance unit to be detected can be expressed as follows:

wt =
Rχt

c
−1f(ϑt, vt)

f(ϑt, vt)Rχt
c
−1f(ϑt, vt)

(6)

where Rχt
c

= E
{(

χt
c
)(

χt
c
)H
}

.
Since Rχt

c
in Equation (6) cannot be obtained directly, the method of averaging the

distance units to be detected is generally adopted in the traditional space–time adaptive
algorithm, that is:

R̃χt
c

= E
{(

χt
c
)(

χt
c
)H
}

=
1

NL

NL

∑
l=1

[(
χl

c

)(
χl

c

)H
]

(7)

where NL denotes the number of IID training samples. Generally, when the airborne PBR
works in a complex environment, NL cannot reach twice the space–time degrees of freedom
(2MP), which is required by the RMB criterion. Therefore, the traditional STAP algorithm
cannot effectively complete the clutter estimation and suppression.

2.2. STAP Algorithm Based on Root Sparse Bayes Learning

This subsection presents the sparse recovery model of space–time clutter and the
traditional sparse STAP algorithm, and proposes the modified algorithm named
PROGSBL–STAP algorithm.

2.2.1. Sparse Recovery Model of Space–Time Clutter

In the traditional SR–STAP algorithm [25–28], the spatial–temporal clutter is usually
estimated by constructing an overcomplete sparse recovery dictionary, and the dictionary
is obtained by discretizing the angle-Doppler plane.

The space–time plane is uniformly discretized into Ns ×Nt grid points along the
spatial angular frequency axis and the Doppler frequency axis, where Ns = ρsM, Nt = ρtP,
parameters ρs and ρt are the corresponding meshing coefficients and ρs, ρt > 1. The dis-
cretized spatial frequency and Doppler frequency interval can be expressed as
∆ fs = 1/Ns and ∆ ft = 1/Nt. The network points formed after discretization corre-
spond to the steering vectors in the space–time dictionary. Assuming that some clutter
points are located at the grid points, the snapshot in Equation (5) can be expressed as:

x = Ωs + n (8)

where x denotes the observation snapshot, Ω denotes the constructed sparse recovery
dictionary (its dimension is PM×NsNt), s denotes the vector of sparse recovery complex
coefficients, n denotes the noise and Ω can be expressed in detail as follows:

Ω = [f( fs,1, ft,1), f( fs,1, ft,2), . . . , f( fs,Ns , ft,Nt )] (9)

Equation (8) represents the single snapshot model. The multi-snap format of Equation (8)
can be expressed as follows:

X = ΩS + N (10)

where X =
[
x1, x2, . . . , xNL

]T, S =
[
s1, s2, . . . , sNL

]T and N =
[
n1, n2, . . . , nNL

]T.
The space–time clutter spectrum can be estimated by solving s in Equation (8) or S in

Equation (10) through conventional sparse recovery methods.
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2.2.2. STAP Based on Root Off-Grid Sparse Bayesian Learning

Aiming to solve the off-grid problem of sparse vector for s dictionary Ω, this subsection
proposes a root off-grid sparse Bayesian learning algorithm to effectively estimate the clutter
of the airborne PBR.

It is assumed that the noise in the airborne PBR is a complex Gaussian random
variable [32,33], its mean is 0 and the variance is β−1. Regarding the training data in the
distance unit, the conditional probability density function of the observation vector can be
expressed as follows:

p
(
x|ŝ, β, f̂s, f̂t

)
= CN

(
x|Ω f̂s, f̂t

ŝ, β−1INsNt

)
=

1

(πβ−1)
NsNt

exp
(
−β‖x−Ω f̂s, f̂t

ŝ‖2
2

)
(11)

where f̂s =
[

f̂s,1, f̂s,2, . . . , f̂s,Ns

]
, f̂t =

[
f̂t,1, f̂t,2, . . . , f̂t,Nt

]
, Ωf̂s,f̂t

denotes space–time dictio-

nary bases with adjustable bases, and β = σ−2 and σ2 denote the noise variance. Commonly,
β can be assumed to obey a Gamma distribution hierarchical prior:

p(β; a, b) = Γ(β|a, b) (12)

where a, b→ 0 denotes generalized hyperparameters.
Suppose that the prior probability of the sparse vector ŝ representing the spatial–

temporal clutter follows a Gaussian distribution with a zero mean value, the prior probabil-
ity density function is as follows:

p(ŝi|δi) = CN
(

ŝi|0, δ−1
i

)
=

1
πδ−1

i

exp
(
−δi ŝ2

i

)
, i ∈ [1, 2, . . . , NsNt] (13)

where δi denotes that the inverse of the variance of ŝi and δi are non-negative parameters. In
the process of sparse Bayesian learning, the correlation vector machine decision mechanism
determines that most elements of δi tend to infinity, that is, when δi → ∞ , the variance of
δi tends to zero.

The prior probability density function of ŝ can be obtained as follows:

p(ŝ|δ) = CN
(

ŝ|0, Λ−1
)

=
Ns Nt

∏
i=1
CN

(
ŝi | 0, δ−1

i

)
=

1
πNs Nt |Λ−1| exp

(
−ŝHΩ f̂s , f̂t

ŝ
)

(14)

where δ = [δ1, δ2, . . . , δNs Nt ]
T and Λ = diag(δ).

Since p
(
ŝ, β, δ|x, f̂s, f̂t

)
cannot be computed explicitly, Bayesian inference via EM algo-

rithm is considered. In the E step of the EM algorithm, a lower bound is constructed on
the prior function, and this lower bound is optimized in the M step. The EM algorithm in
SBL [29] can be expressed as follows:

E step:

p
(
ŝ|x, β, δ; f̂s, f̂t

)
=

T

∏
t=1
CN (ŝt|µt, Σ) (15)

where
µt = βΣΩf̂s,f̂t

Hxt, t = 1, 2, . . . , NL (16)

Σ =
(

Λ−1 + βΩf̂s,f̂t
HΩf̂s, f̂t

)−1
(17)

To achieve the convergence of µt and Σ, the well-known sparse Bayesian equivalent
lower bound formula can be obtained as follows:

L
(

β, δ; f̂s, f̂t
)

=
〈
ln p

(
Ŝ, X, β, δ; f̂s, f̂t

)〉
p(Ŝ|X,β,δ;f̂s ,f̂t)

=
〈
ln p

(
X|Ŝ, β; f̂s, f̂t

)
p(Ŝ|δ, β; f̂s, f̂t)p(β)p(δ)

〉
p(Ŝ|X,β,δ; f̂s , f̂t)

(18)
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M step:
By maximizingL

(
β, δ; f̂s, f̂t

)
, the updated values of δi and βi can be obtained as follows:

δnew
i =

−T +

√
T2 + 4ρ

T
∑

t=1
[Ξt]ii

2ρ
(19)

βnew =
TM + (a− 1)

b +
T
∑

t=1
‖xt −Ω f̂s , f̂t

µt‖2
2

+ Ttr
(

Ω f̂s , f̂t
ΣΩH

f̂s , f̂t

) (20)

where Ξt , µt(µt)
H + Σ.

By ignoring the irrelevant parameters, the updating of f̂s, f̂t can be solved by maximiz-
ing the following equation:〈

lnp
(
X|Ŝ, β; f̂s, f̂t

)〉
p(Ŝ|X,β,δ;θ̂)

= −β
T
∑

t=1

〈
‖xt −Ω f̂s , f̂t

ŝ‖2
2

〉
p(Ŝ|X,β,δ;f̂s ,f̂t)

= −β
T
∑

t=1
‖xt −Ω f̂s , f̂t

µt‖2
2
− βTtr

(
Ω f̂s , f̂t

ΣΩH
f̂s , f̂t

) (21)

In order to refine the treatment of each f̂s, f̂t or its exponential form, k f̂s , f̂t
, ej2πmϑg ej2πpvg ,

take the partial derivative of the equation with respect to k f̂s , f̂t
, and set the partial derivative

to zero, then obtain Equation (22):

(
f′( fs,i, ft,i)

)H

f( fs,i, ft,i)
T

∑
t=1

(
|µti|2 + γii

)
︸ ︷︷ ︸

, φ(i)

+
T∑

j 6=i
γjif′

(
fs,j, ft,j

)
−

T

∑
t=1

µ∗ti · xt−i︸ ︷︷ ︸
, ϕ(i)

 = 0 (22)

where f( fs,i, ft,i), µti and γii denote the i-th column, the i-th element, and the (i, j)-th element
of Ω f̂s , f̂t

, respectively. It can be obtained from Equation (22):

∂∑t ‖xt −Ω f̂s , f̂t
µt‖2

2
∂k f̂s , f̂t

=
(
f′( fs,i, ft,i)

)H
(

f( fs,i, ft,i)
T

∑
t=1
|µti|2 −

T

∑
t=1

µ∗ti · xt−i

)
(23)

∂tr
(

Ω f̂s , f̂t
ΣΩH

f̂s , f̂t

)
∂k f̂s , f̂t

=
(
f′( fs,i, ft,i)

)H
Ω f̂s , f̂t

γi =
(
f′( fs,i, ft,i)

)H
(

γiif( fs,i, ft,i) + ∑
j 6=i

γjif′
(

fs,j, ft,j
))

(24)

Further simplifying Equation (22), it can be obtained:

[
k f̂s , f̂t

, 1, k−1
f̂s , f̂t

, . . . , k−(M−2)

f̂s , f̂t

]


M(M−1)
2 φ(i)

ϕ
(i)
2

2ϕ
(i)
3
...

(M− 1)ϕ
(i)
M


= 0 (25)

Selecting the root zi? closest to the identity element, the estimated angle of the refined
mesh is as follows:

f̂s, f̂t
new
i∗ = arcsin

(
− λ

2πd
· angle(zi?)

)
(26)
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2.2.3. Pseudo Resampling Root Off-Grid Sparse Bayesian Learning STAP Algorithm

Compared with the traditional STAP algorithm, the root off-grid sparse Bayesian
learning STAP algorithm has better clutter estimation performance than the traditional
STAP algorithm in the case of a small number of IID training samples. Additionally, the
proposed method can still maintain excellent performance under the condition of a wide
dictionary grid and low computational cost. However, this method may still cause clutter
outliers due to the mismatch of the base grid, and the existence of outliers will cause large
clutter estimation errors. In order to reduce these errors caused by outliers, based on the
root-based sparse Bayesian learning STAP algorithm, this paper further proposes a pseudo
resampling root-based sparse Bayesian learning STAP algorithm.

In the proposed algorithm, appropriate noise [37–39] is artificially added to sample
the values with large errors multiple times for some estimated values with large estimation
errors in the clutter results obtained using the root off-grid sparse Bayesian learning STAP
algorithm. When obtaining the new sample values after multiple estimations, the estimated
values with smaller errors are screened out through the generated sector range, and the
mean value of the new estimated values is calculated again, which is the final clutter
estimation result of this algorithm.

The essence of this algorithm is to add the artificial noise to the received samples,
which can be expressed as follows:

Y = X + Ñ (27)

where Ñ denotes the artificial noise.
After adding the artificial noise, the clutter estimation result can be obtained from

the dictionary basis matrix and sparse vector in the initially received sample through the
iterative convergence of the root-based sparse Bayesian STAP algorithm. For this series
of estimated values, it must be determined whether the estimated values are within the
error range. If the estimated values are all within the error range, the resample processing
of the values is not necessary; otherwise, the estimated data with larger errors need to be
resampled, which requires a practical test criterion to determine the estimated value. For
this requirement, assume the following test criteria:

= : all estimates fall inf

When the hypothesis-testing criterion = detects that an estimated value is distributed
within f, it is regarded as a normal estimate. If the estimated value fails to pass criterion =,
the original clutter estimate can be disturbed by generating pseudonoise to obtain the NPN
group of estimated values; only if group N= can pass the criterion =, then the estimated
values of group N= can be averaged to meet the conditions, so the following results can be
obtained:

f̂ (s, t)N=
=

1
N=

J

∑
i=1

f̂ (s, t)(i)
NPN

(28)

In Equation (28), when N= = 0, no perturbation resampling of the original data is
required. When N= = Q, the estimated value is calculated using Equation (28). Set Θ as
the pre-obtained space–time frequency screening area:

Θ = Θ1 ∪Θ2 · · · ∪ΘQ

=
[

f̂ (s, t)max
1 − σ f̂ (s, t)le f t

1 , f̂ (s, t)max
1 + σ f̂ (s, t)right

1

]
∪
[

f̂ (s, t)max
2 − σ f̂ (s, t)le f t

2 , f̂ (s, t)max
2 + σ f̂ (s, t)right

2

]
· · ·

∪
[

f̂ (s, t)max
Q − σ f̂ (s, t)le f t

Q , f̂ (s, t)max
Q + σ f̂ (s, t)right

Q

] (29)

where f̂ (s, t)le f t/right
q represents the space–time frequency corresponding to the left and

right critical points obtained by the peak drop 3 dB of the q-th estimated value, f̂ (s, t)max
q
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represents the highest peak in space–time frequency corresponding to the q-th estimate
value, σ ≈ 1. If the effective distance between the tested trough and the trough does not
exceed 3dB, then the space–time frequency value on the curve corresponding to the position
of the two troughs is determined as f̂ (s, t)le f t/right

q . The estimated value obtained via the
following definition for each resampling of M IID samples is as follows:
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(i)
=
[

f̂ (s, t)(i)
1 f̂ (s, t)(i)

2 · · · f̂ (s, t)(i)
M

]T
(30)

where f̂ (s, t)(i)
1 f̂ (s, t)(i)

2 · · · f̂ (s, t)(i)
M is the estimated value of the space–time clutter point

obtained by the i-th resampling, and the NΘ times of sampling for the clutter to be estimated
are as follows:

ћ f̂ (s,t) =
[
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(i)
]

=


f̂ (s, t)(1)

1 f̂ (s, t)(2)
1 · · · f̂ (s, t)(NΘ)

1

f̂ (s, t)(1)
2 f̂ (s, t)(2)

2 · · · f̂ (s, t)(NΘ)
2

...
...

...
...

f̂ (s, t)(1)
M f̂ (s, t)(2)

M · · · f̂ (s, t)(NΘ)
M


(31)

The space–time frequency estimated by the proposed algorithm in this paper is divided
into two sets, one of which falls within Θ, and the other falls outside of Θ. The final clutter
estimation result only uses the space–time frequency points that fall into Θ, the values
outside Θ are discarded. This algorithm improves the accuracy of clutter estimation. This
algorithm, based on the distributed reliability detection strategy, can effectively improve
the accuracy of clutter estimation. By analyzing a large number of experimental results, the
output of clutter estimation tends to converge with the resampling time of 30. Therefore, in
order to ensure that the generality is not lost, this paper adopts the number NΘ = 30.

2.3. Algorithm Summary

The steps of the algorithm proposed in Sections 3.2 and 3.3 are summarized in Algo-
rithm 1.

Algorithm 1. ROG-SBL STAP Algorithm

(1) Set the NL independent and identically distributed training samples of the airborne PRB as the
observation vector X in Equation (10).
(2) Initialization: the variable β, δi; hyperparameters a, b; the algorithm iteration convergence
threshold κ; and the maximum number of iterations NEND.
(3) When the number of iterations n < NEND and f̂s, f̂t

new
i∗ − f̂s, f̂t

new
i−1∗ < κ, continue steps (4), (5),

and (6).
(4) Update µt and Σ from Equations (16) and (17).
(5) Update δ and β from Equations (19) and (20).
(6) Update f̂s, f̂t

new
i∗ from Equation (26), then go back to step (3).

(7) Add artificial noise according to Equation (27).

(8) If f̂s, f̂t
new
i∗ ∈

[
f̂ (s, t)max

1 − σ f̂ (s, t)le f t
1 , f̂ (s, t)max

1 + σ f̂ (s, t)right
1

]
, f̂s, f̂t

new
i∗ is the final

estimate value.

(9) If f̂s, f̂t
new
i∗ /∈

[
f̂ (s, t)max

1 − σ f̂ (s, t)le f t
1 , f̂ (s, t)max

1 + σ f̂ (s, t)right
1

]
, re-estimate f̂s, f̂t

new
i∗ according

to Equations (30) and (31).
(10) Estimate ŝi based on the obtained µt, Σ, δ, β and f̂s, f̂t

new
i∗ according to Equations (13) and (14).

(11) Estimate wt of the airborne PBR based on ŝ and Ω f̂s , f̂t
in Equation (6), end.

3. Results
3.1. Spatial–Temporal Clutter Spectrum

This experiment evaluates the performance of the proposed algorithm by comparing the
space–time clutter spectra obtained using the proposed algorithm with three other existing
algorithms (traditional STAP algorithm [17], traditional SR–STAP algorithm [22–25], and
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BCS–STAP algorithm [30]). The key parameters used in the simulation are shown in Table 2,
in which the non-cooperative transmitting source and transmitting signal adopt parameters
close to GPS, and this experiment and subsequent experiments were carried out using
MATLAB2021 software. In the experiment, in order to reflect the off-grid computing
performance advantage of this algorithm, the space–time dictionary of the traditional
SR–STAP, BCS–STAP, and the PROGSBL–STAP algorithms in this paper is divided into the
same grid grids. Furthermore, in order to reflect the adaptability of the algorithm to the
bistatic PBR configuration, four typical different relative motion relationships between the
transmitter and the receiver are selected for verification in this paper. Figure 2 shows the
experimental results of this section.

Table 2. Simulation parameters.

Parameter Value

equivalent pulse repetition frequency 1600 Hz
signal bandwidth 2 MHz
signal wavelength 1.5 m

main beam direction side-looking
airborne PBR velocity 300 m/s

moving emitter velocity 7000 m/s
airborne PBR height 7000 m

moving emitter height 20,000 km
length of base 20,500 km

relative motion relationship Relationship 1, relationship 2,
relationship 3 and relationship 4

array element spacing 0.75 m
number of antenna elements 16
number of equivalent pulses 16

Figure 2a–d shows the optimal (OPT) clutter spectrum when IID samples are sufficient
as a comparison of the four algorithms. From Figure 2e–h, it can be seen that the tradi-
tional STAP algorithm cannot effectively complete the spatial–temporal clutter estimation
when the IID training samples are insufficient. From Figure 2i–l, it can be seen that the
traditional SR–STAP can take advantage of the sparse recovery algorithm to show better
clutter estimation performance than the traditional STAP under the condition of insuffi-
cient IID samples, but the estimated clutter spectrum is relatively incomplete, and there is
a serious off-grid situation. From Figure 2m–p, it can be seen that compared with the tradi-
tional SR–STAP algorithm, the BCS–STAP algorithm shows better clutter estimation per-
formance and can slightly correct the off-grid phenomenon. Finally, as shown in Figure 2q–t,
the PROGSBL–STAP algorithm proposed in this paper can complete high-quality
spatial–temporal clutter spectrum estimation, and can better correct the off-grid prob-
lem. The experimental results are close to the OPT in Figure 2a–d.
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Figure 2. Spatial–temporal clutter spectra of: (a) OPT in relationship 1, (b) OPT in relationship
2, (c) OPT in relationship 3, (d) OPT in relationship 4, (e) Traditional STAP algorithm used in
relationship 1, (f) Traditional STAP algorithm used in relationship 2, (g) Traditional STAP algo-
rithm used in relationship 3, (h) Traditional STAP algorithm used in relationship 4, (i) Traditional
SR–STAP algorithm used in relationship 1, (j) Traditional SR–STAP algorithm used in relationship 2,
(k) Traditional SR–STAP algorithm used in relationship 3, (l) Traditional SR–STAP algorithm used
in relationship 4, (m) BCS–STAP algorithm used in relationship 1, (n) BCS–STAP algorithm used
in relationship 2, (o) BCS–STAP algorithm used in relationship 3, (p) BCS–STAP algorithm used in
relationship 4, (q) PROGSBL–STAP algorithm used in relationship 1, (r) PROGSBL–STAP algorithm
used in relationship 2, (s) PROGSBL–STAP algorithm used in relationship 3, (t) PROGSBL–STAP
algorithm used in relationship 4.

3.2. Improvement Factor of Signal-to-Noise Ratio

In order to further quantitatively analyze the clutter suppression performance of the
proposed algorithm, this experiment simulates the relationship between the signal-to-noise
ratio improvement factor (IF) and the normalized Doppler frequency of the distance unit to
be detected. The IF can be obtained using Equation (32), which is represented as follows:

IF =
σ2

t
PM

|wH
t s|2

wH
t Rcwt

(32)

where wt can be derived from Equation (6).
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Figure 3a–d shows the SINR loss curves of relationships 1, 2, 3, and 4, respectively,
and the results are the average of 300 Monte Carlo experiments. It can be seen that in
relationships 1, 2, 3, and 4, all four algorithms can form a zero limit where space–time
clutter exists, and the clutter suppression performance is in order from low to high: Tra-
ditional STAP, traditional SR–STAP, BCS–STAP, and PROGSBL–STAP. The proposed al-
gorithm (PROGSBL–STAP) has better clutter suppression performance than the existing
three algorithms, and the results of the PROGSBL–STAP algorithm are almost close to OPT.
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As a further quantitative analysis, in order to compare the clutter suppression perfor-
mance of each algorithm with different IID training samples, this experiment calculates the
relationship between the average IF value(dB) of each algorithm with the reduced number
of IID training samples at the zero spatial-Doppler. Figure 4a–d shows the IF curves of
relationships 1, 2, 3, and 4, respectively, and the results are the average of 300 Monte Carlo
experiments. It can be seen that with the reduction of the number of IID samples, the clutter
suppression performance of each algorithm is ranked from high to low as: PROGSBL–STAP,
BCS–STAP, traditional SR–STAP, and traditional STAP. Especially when the number of
training samples is from 10 to 3, the clutter performance of the proposed PROGSBL–STAP
algorithm can still maintain an advantage over the existing algorithm, and the performance
is close to OPT.

3.3. Performance with Dictionary Grid Width

Based on the experiment in Section 3.1, this experiment takes relationship 2 as
an example and compares the spatial–temporal clutter spectrum of the PROGSBL-STAP
algorithm with the traditional SR-STAP algorithm and BCS-STAP algorithm by setting
different spatial–temporal dictionary grids, so as to further verify the off-grid performance
advantages of the PROGSBL-STAP algorithm.
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Figure 5a,d,g shows the processing results of using the traditional SR–STAP algorithm
1 under grid 61× 61, grid 101× 101, and grid 141× 141, respectively. Figure 5b,e,h shows
the processing results of using the traditional SR–STAP algorithm 1 under grid a 61× 61,
grid 101× 101, and grid 141× 141, respectively. Figure 5c,f,i presents the processing results
of using the traditional SR–STAP algorithm 1 under grid 61× 61, grid 101× 101, and grid
141× 141, respectively.

From Figure 5a–i, it can be seen that the proposed PROGSBL–STAP algorithm has
better spatial–temporal clutter estimation performance and better off-grid performance
than the existing two algorithms when the dictionary grid is wide.

In order to further quantitatively analyze the off-grid performance of the
PROGSBL–STAP, this experiment compared the three algorithms with the Cramer–Rao
Bound (CRB). The performance improvement of the proposed algorithm was verified by
calculating the relation between the space time estimated root mean square error (RMSE)
and the grid interval. The results calculated at SNR 10 dB and 25 dB were the average of
300 Monte Carlo experiments.

From Figure 6a,b, it can be seen that the PROGSBL–STAP algorithm is superior to
the traditional SR–STAP algorithm and BCS–STAP algorithm, especially when the mesh
spacing is large. The reason for this is that when the mesh is thick, the traditional SR–STAP
algorithm and BCS–STAP algorithm will lead to high modeling error usage, while the
PROGSBL–STAP algorithm can correctly handle the modeling error mesh as adjustable
parameters using the rough sampling position.
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3.4. Improved Performance with Singular Value

In this experiment, based on the 4 flight relationships in Section 3.1, singular values
are added to the original spatial–temporal clutter samples. The advantages of the proposed
PROGSBL algorithm are demonstrated by comparing the experimental results of whether
to use pseudorandom noise optimization, that is, comparing the spatial–temporal clutter
spectrum in PROGSBL–STAP (before eliminating singular samples) and PROGSBL–STAP
(after eliminating singular samples).

From Figure 7a–h, it can be seen that, in the space–time clutter spectrum of re-
lationships 1, 2, 3, and 4, the estimation performance of the PROGSBL–STAP (before
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eliminating singular samples) is affected by singular values in Figure 7a,c,e,f, while the
PROGSBL–STAP (after eliminating singular samples) can better achieve accurate clut-
ter spectrum estimation when there are singular values in the clutter training sample in
Figure 7b,d,f,h.
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Figure 7. Spatial–temporal clutter spectra (a) in relationship 1: PROGSBL–STAP (before eliminating
singular samples), (b) PROGSBL–STAP (after eliminating singular samples), (c) in relationship
2: PROGSBL–STAP (before eliminating singular samples), (d) in relationship 2: PROGSBL–STAP
(after eliminating singular samples), (e) in relationship 3: PROGSBL–STAP (before eliminating
singular samples), (f) in relationship 3: PROGSBL–STAP (after eliminating singular samples), (g) in
relationship 4: PROGSBL–STAP (before eliminating singular samples), (h) PROGSBL–STAP (after
eliminating singular samples).
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In order to further quantitatively analyze the singular samples elimination perfor-
mance of the PROGSBL–STAP, this experiment simulates the relationship between the
signal-to-noise ratio IF and the normalized Doppler frequency of the distance unit to be
detected. The IF can be obtained using Equation (32), and the results are the average of
300 Monte Carlo experiments.

From Figure 8a–d, it can be seen that in the flight relationship 1–4, affected by the
singular value samples, the IF curves all have zero limits at the positions where the singular
values exist. These zero limits that should not exist will eliminate the target at the corre-
sponding position while suppressing the clutter. After the singular sample elimination of
the PROGSBLSTAP algorithm, the IF curve shows normal performance and can perform
correct clutter suppression.
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4. Discussion

The above experiments have obtained a large number of qualitative and quantitative
analysis results. These experimental results show that: (1) The proposed PROGSBL-STAP
algorithm has obvious clutter estimation and suppression performance advantages over
the existing algorithms in various complex geometric configurations of the airborne PBR
(Figures 2 and 3), (2) with the reduction of the number of IID training samples, the proposed
PROGSBL-STAP algorithm has more advantages than existing algorithms, especially under
the condition of very few training samples (Figure 4), (3) the proposed PROGSBL-STAP
algorithm has better off-grid clutter estimation performance than existing algorithms
(Figures 5 and 6), (4) when there are singular values in the training samples, the proposed
PROGSBL-STAP algorithm can eliminate the influence of singular values and maintain
excellent clutter suppression performance (Figures 7 and 8).

5. Conclusions

In this paper, a space–time adaptive processing algorithm based on root off-grid sparse
Bayes learning is proposed when the emission source of the airborne PBR is in motion,
namely, the PROGSBL–STAP algorithm. The algorithm first sets the space–time dictionary
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base to an adjustable state, and then uses the EM algorithm to iteratively optimize the
position of the base, thereby improving the estimation performance of off-grid clutter. The
simulations show that the proposed algorithm has obvious advantages over the existing
algorithms when the modeling grid is wider. In addition, the ROGGSBL-STAP algorithm
adds pseudorandom noise to the original sample, resamples and re-estimates, and finally
selects effective training samples according to the hypothesis-testing criteria. The sim-
ulation results show that the PROGGSBL-STAP algorithm has better clutter estimation
performance when singular values exist in the training samples. In summary, the pro-
posed PROGSBL-STAP algorithm has better performance than existing algorithms in the
clutter estimation and suppression of the airborne PBR in complex environments and
geometric configurations.
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