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Abstract: Feature-based target detection in synthetic aperture radar (SAR) images is required for
monitoring situations where it is difficult to obtain a large amount of data, such as in tactical regions.
Although many features have been studied for target detection in SAR images, their performance
depends on the characteristics of the images, and both efficiency and performance deteriorate when
the features are used indiscriminately. In this study, we propose a two-stage detection framework to
ensure efficient and superior detection performance in TSX images, using previously studied features.
The proposed method consists of two stages. The first stage uses simple features to eliminate
misdetections. Next, the discrimination performance for the target and clutter of each feature is
evaluated and those features suitable for the image are selected. In addition, the Karhunen–Loève (KL)
transform reduces the redundancy of the selected features and maximizes discrimination performance.
By applying the proposed method to actual TerraSAR-X (TSX) images, the majority of the identified
clusters of false detections were excluded, and the target of interest could be distinguished.

Keywords: SAR image; target detection; discrimination; feature selection

1. Introduction

High-resolution synthetic aperture radar (SAR) systems have been widely used to
monitor various regions for civilian and military purposes. In particular, because radar can
monitor vast areas, regardless of day or night or weather conditions [1], the SAR system
is very effective in surveilling targets of interest, such as tanks and transporter erector
launchers (TEL), within a short time. However, SAR images have raised numerous false
alarms owing to natural and cultural clutter as well as the targets of interest. Recently, a
neural-network-based approach has been proposed for distinguishing only the objects of
interest from wide-area SAR images [2]. However, teaching the neural network requires
large amounts of training with SAR images against the objects of interest, which is expensive
and time-consuming compared to the relatively easy-to-obtain optical images. Therefore,
it is challenging to obtain sufficient training SAR images for the targets of interest in real-
life situations, which demands a new paradigm for detecting the targets of interest from
SAR images.

To discriminate targets from SAR images with heavy clutter responses, it is essential
to remove false alarms owing to noise and speckle, as well as to discriminate the targets
of interest from natural and artificial clutter. In general, the target detection process for
SAR images consists of speckle reduction, constant false-alarm rate (CFAR) detection,
clustering, and discrimination. Various techniques have been devised for preprocessing
(i.e., speckle reduction, CFAR detection, and clustering) prior to the discriminator. In the
discriminator, various features have been proposed and evaluated in terms of the detection
performance of targets of interest from a SAR image with a reduced number of false alarms
after preprocessing.
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The speckle phenomenon causes many irregular pixels with high-intensity fluctuations,
owing to interference between multiple scatterers in a single resolution cell. Strong speckles
in a SAR image can produce many false alarms for conventional detectors that base their
identifications on intensity [3]. Thus, speckle reduction must precede the detection of target
pixels, and so various filters have been devised to reduce the speckles in SAR images. Local
filters, such as the mean filter, median filter, Lee filter, and enhanced Lee filter, adjust the
value of the target pixels by referring to the values of the neighboring pixels within a short
calculation time [4,5]. In addition, a nonlocal mean filter or deep learning-based method
enables precise speckle reduction by considering all pixels in the entire SAR image [6].
After speckle reduction, the pixels of the potential target can be detected. Scatterers on
the desired targets in the SAR image are assumed to be stronger than those in background
clutter scenes. Thus, these target pixels can be detected by the CFAR detector, based on
pixel intensity. To date, various CFAR detectors have been proposed, including fixed
threshold (FT), cell-averaging (CA), and ordered statistic (OS) CFAR, which can be easily
extended to two dimensions for SAR images [7,8].

The detected pixels must be clustered into individual objects to calculate the features
for discriminating targets from clutter. Therefore, the clustering process aims to construct
a single cluster for each target. Various clustering algorithms have been developed, such
as the K-nearest neighbor (KNN) and K-means algorithms. However, using them for
SAR target detection is impractical because the number of clusters (i.e., targets) must be
determined a priori [9,10]. Because the number of targets of interest is generally unknown
in a real-life situation, the clustering stage should be able to identify the desired target
clusters, even without such information. Hence, a suitable approach for target detection
in SAR images may involve mean-shift algorithms or density-based spatial clustering of
applications with noise (DBSCAN) [11,12].

To determine whether potential target clusters identified via a clustering algorithm
originate from the desired targets of interest or from false alarms due to natural or artificial
clutter, the discrimination stage should exploit some suitable features for this task. Features
refer to the various qualities that can separate the target and clutter in the feature space.
In other words, useful target-discriminating features should have similar values between
targets, while targets and clutter should have different values. However, the features of
artificial clutter are often similar to those of the targets, making them difficult to distinguish.
To overcome this problem, several features with a good discrimination capability between
targets and clutter have been introduced at the MIT Lincoln Laboratory [13]. In [14], some
additional features based on the projected length (PL) of a target were also presented for a
moving and stationary target acquisition and recognition (MSTAR) dataset. Even though all
these features can be effective in terms of target detection, their performance significantly
fluctuates depending on the specifications and configuration of the SAR system, such as
the resolution and look-angle. Therefore, a detection framework that applies specifically to
SAR images is required.

In this study, we propose a two-stage detection framework to ensure efficient and high
detection performance in TSX images. We analyzed the performance of the features for
distinguishing targets and clutter in TerraSAR-X (TSX) images and selected those features
suitable for target discrimination. Moreover, we propose an efficient two-stage target
discrimination scheme for clustered pixels in TSX images. In the proposed scheme, speckle
reduction, based on the Lee filter, and pixel detection, based on FT-CFAR, are performed a
priori, followed by building clusters of targets using the DBSCAN algorithm in the SAR
image. Although the SAR image is designed, there are many clusters owing to the false
alarms related to the remaining speckles, background noise, and clutter. Subsequently, a
discrimination stage was required to reduce the number of false alarms. The proposed
discrimination stage consists of two sequential steps: a coarse discrimination step (CDS) and
a fine discrimination step (FDS). The CDS quickly finds the desired clusters corresponding
to the targets of interest and results in reducing the majority of the false-alarm clusters. Then,
FDS is performed only against those clusters that passed the CDS based on the selected
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features with good discrimination performance. In FDS, feature generation based on the
Karhunen–Loève (KL) transform is adopted to maximize the discriminatory performance
in the feature space [15].

The remainder of this paper is organized as follows. In Section 2, the proposed two-
stage target-discrimination scheme is presented. In Section 3, the experimental results are
provided using real TSX images, and they are analyzed in terms of detection performance.
Finally, Sections 4 and 5 present the discussion and conclusions, respectively.

2. Proposed Method

The overall process of the proposed method is illustrated in Figure 1. The prepro-
cessing stage aims to form clusters of target candidates as soon as possible and consists
of three steps: speckle reduction, pixel detection, and clustering. Any speckle reduction
filter is applicable, and the Lee filter [4], which does not require much computation, was
used in this study. Two-dimensional (2D) CFAR methods, such as CA-CFAR and OS-CFAR,
are generally used to find the peaks in SAR images. However, these 2D CFAR methods
are relatively time-consuming, and many targets are irregularly present in the image of
interest. Therefore, applying a fixed threshold value to an entire scene is the most efficient
solution. TCFAR, the threshold for the FT-CFAR method, is obtained based on the Rayleigh
distribution, as follows [15]:

TCFAR =

√
−4 ln(PFA)

π
E(I), (1)

where PFA is the false alarm probability and E(I) is the average magnitude of the image.
In addition, because DBSCAN does not require the number of clusters in advance, it is
suitable as a clustering technique [12].
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step and the fine target-discrimination step.

After the preprocessing stage, the proposed target detection scheme consists of CDS
and FDS. As shown in Figure 1, the targets of interest are represented by large clusters.
Speckle and natural clutter clusters, consisting of a small number of pixels, exist in the
entire scene. Therefore, in the first step of the target detection scheme, the number of pixels
constituting the cluster feature mass is used to filter the false alarms from the clusters. The
threshold of mass, Tmass is determined by considering the resolution of the image and the
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size of the target of interest, and the clusters consisting of fewer pixels than the threshold
Tmass are excluded from the target candidate:

Tmass = α
lhlv

RrRa
, (2)

where α is the expected ratio of detected pixels in the target of interest, lh and lv are the
horizontal and vertical lengths of the target, respectively, and Rr and Ra are the range and
azimuth resolution of the SAR image, respectively. For example, if the smallest target of
interest is a D7 Caterpillar bulldozer (2.4 m × 4.1 m), if the image resolution is 0.5 m × 0.2 m,
and α is 0.3, then Tmass becomes 29.5. Because the mass of a cluster is measured without a
separate calculation process, the amount of computation required to measure the features of
the incorrectly detected clusters can be significantly reduced.

Even though speckle reduction is performed before detecting target pixels using the
CFAR detector, many pixels are incorrectly detected because of the natural clutter. There-
fore, not only target clusters but also numerous clusters of false detections are formed due
to clustering the detected pixels using DBSCAN. Because the clutter has different scattering
characteristics and shapes from the targets, these clusters of false alarms can be distin-
guished using certain features. According to [13,14], various features for distinguishing the
target of interest from the clutter have been studied, and the features considered in this
study are standard deviation (STD), weighted-rank fill-ratio (WRFR), fractal dimension,
mass, diameter, normalized rotational inertia, max CFAR, mean CFAR, percentage of bright
CFAR, count, minimum projected length (MINPL), maximum PL (MAXPL), contrast of
PL (CPL), average of min and max PL (AMMPL), average of PL (APL), error between the
reference and PL (ERPL), squared error between the reference and PL (SERPL), energy of
PL in the frequency domain (EPLF), squared energy of PL in the frequency domain (SEPLF),
average of detected pixels (ADP), sum of detected pixels (SDP), and standard deviation of
detected pixels (STDDP).

For the coarse discrimination result, clusters larger than Tmass are distinguished using
FDS. In this step, the targets of interest and the clutter are discriminated against, based on
the features introduced in [13,14]. However, the distribution of each feature differs accord-
ing to the characteristics of the image. Thus, those features that effectively discriminate
the targets of the TSX image should be selected. Therefore, to evaluate the discriminating
performance of each feature, the overlap between the distributions of feature values for
targets and the distribution of feature values for clutter is measured, as shown in Figure 2.
The smaller the overlapped area between the two distributions, the better the distinguishing
performance. The overlap l can be obtained as follows:

l = P(ω1 > c) + P(ω2 < c), (3)

where ωj is the feature value of class j, and c is a feature value in which the probabilities of
the two distributions are equal.

Remote Sens. 2022, 14, x FOR PEER REVIEW 5 of 13 
 

 

 
Figure 2. Overlap between the distributions of feature values for targets and the distributions of 
feature values for clutters. 

When multiple features are used, the separation ability of the features deteriorates if 
there is a dependency between them. In this situation, the KL transform is used to improve 
the separation performance by selecting independent features and removing the 
redundancy between the selected features [16,17]. For the feature set x, which was 
extracted from the training data, the feature set y, transformed to be mutually 
uncorrelated, is expressed as follows:  

TA=y x , (4) 

where A is an N × N transformation matrix. In addition, the correlation matrix of y, Ry, is 
given by: 

[ ] [ ]T T T T
y xR E E A A A R A= = =yy xx , (5) 

where Rx is the correlation matrix of x. Because Rx is a symmetrical matrix, if the columns 
of matrix A are chosen as the orthonormal eigenvectors of Rx, ai, i = 0, 1, …, N 1, then the 
resulting Ry is: 

T
y xR A R A= = Λ . (6) Λ is a diagonal matrix with eigenvalues 𝜆 , corresponding to ai as the elements. 

Additionally, to exclude redundant features, the normalized sum of the top r eigenvalues 
Er is calculated thus, as in a previous paper [18]: 

1 1
/

r N

r i i
i i

E λ λ
= =

=  . (7) 

Then, the number of features utilized, 𝛾, is determined as follows: 

{ }min | rr
r Eγ η= ≥ . (8) 

where 𝜂 is a constant between zero and one. Then, a generated feature set yr, composed 
of the features corresponding to the upper 𝛾 eigenvalues can be obtained. The feature 
values extracted from the detected clusters, xtest, can also be transformed by A to ytest on 
the same axis as y:  

T
test testA=y x . (9) 

In addition, 𝐲 , , which is composed of the features corresponding to the upper 𝛾 
eigenvalues in 𝜆 , exists in the same feature space as ytest, allowing the discrimination of 
the target and clutter to be performed using a classifier. The process of performing KL 
transform and obtaining 𝐲 ,  is described in detail in Figure 3.  

Figure 2. Overlap between the distributions of feature values for targets and the distributions of
feature values for clutters.



Remote Sens. 2022, 14, 4044 5 of 12

When multiple features are used, the separation ability of the features deteriorates
if there is a dependency between them. In this situation, the KL transform is used to
improve the separation performance by selecting independent features and removing
the redundancy between the selected features [16,17]. For the feature set x, which was
extracted from the training data, the feature set y, transformed to be mutually uncorrelated,
is expressed as follows:

y = ATx, (4)

where A is an N × N transformation matrix. In addition, the correlation matrix of y, Ry, is
given by:

Ry = E[yyT ] = E[ATxxT A] = AT Rx A, (5)

where Rx is the correlation matrix of x. Because Rx is a symmetrical matrix, if the columns
of matrix A are chosen as the orthonormal eigenvectors of Rx, ai, i = 0, 1, . . . , N − 1, then
the resulting Ry is:

Ry = AT Rx A = Λ. (6)

Λ is a diagonal matrix with eigenvalues λi, corresponding to ai as the elements.
Additionally, to exclude redundant features, the normalized sum of the top r eigenvalues
Er is calculated thus, as in a previous paper [18]:

Er =
r

∑
i=1

λi/
N

∑
i=1

λi. (7)

Then, the number of features utilized, γ, is determined as follows:

γ = min
r
{r|Er ≥ η}. (8)

where η is a constant between zero and one. Then, a generated feature set yr, composed of
the features corresponding to the upper γ eigenvalues can be obtained. The feature values
extracted from the detected clusters, xtest, can also be transformed by A to ytest on the same
axis as y:

ytest = ATxtest. (9)

In addition, yγ,test, which is composed of the features corresponding to the upper γ
eigenvalues in λi, exists in the same feature space as ytest, allowing the discrimination of
the target and clutter to be performed using a classifier. The process of performing KL
transform and obtaining yγ,test is described in detail in Figure 3.
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3. Results
3.1. Experimental Settings

In this study, target detection is performed on TSX images of Sejong Lake Park and the
surrounding areas located in Sejong-si, Korea, with a resolution of 0.5 m × 0.2 m. Instead
of military targets, such as tanks and TELs, large vehicles commonly found in urban areas
are defined as the targets of interest. The training dataset consisted of 2420 target chips and
2705 artificial clutter chips extracted from the TSX images for different regions, each with a
size of 128 × 128 pixels.

To evaluate the performance of detection and discrimination, precision, recall, and the
F1-score are used, which can be defined as follows:

Precision =
TP

TP + FP
, (10)

Recall =
TP

TP + FN
, (11)

F1− score =
2× Precision× Recall

Precision + Recall
, (12)

where TP is the true positive and represents the number of detected clusters corresponding
to the target of interest. FP is the false positive and represents the number of detected
clusters corresponding to the clutter. FN is the false negative and is the number of target
clusters mistaken for clutter at each processing step. Moreover, to evaluate the clutter
discrimination performance of each step, the probability of removing false detection, Pc, is
defined as follows:

Pc =
Nc − Dc

Nc
. (13)

where Nc is the total number of clusters that are not targets of interest and Dc is the number
of false detected clusters remaining after each detection step.

The experiments were conducted using a computer with an Intel i7-6700 CPU, with
3.4 GHz and 64 GB of memory.

3.2. Preprocessing and Coarse Discrimination Step

The proposed method was applied to four TSX images with the targets of interest.
Figure 3 shows the original SAR image for which the target detection was performed,
along with the preprocessing results for each image. A Lee filter with a 3 × 3 window
was applied for despeckling, and an FT-CFAR detector with a false alarm probability of
10−2 was applied for pixel detection. The detected pixels were clustered using DBSCAN,
then the clusters corresponding to different objects were expressed in different colors. As
parameters of DBSCAN, the neighborhood range, ε, was set to 10, and the minimum
number of points in the neighborhood, MinPts, was set to 3. As shown in Figure 4, there
are many clusters of false detections owing to the clutter, as well as the targets of interest in
the image.

After preprocessing, CDS was performed, based on the mass feature. The threshold,
Tmass, was set to 29.5, and the results of the clutter exclusion are shown in Figure 5. In
all images, the number of small false detection clusters was significantly reduced, and
all the clusters removed at this stage had been incorrectly detected. The average proba-
bility of clutter exclusion is 0.9196, and the specific detection performance is presented
in Table 1.
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Table 1. Performance of the coarse discrimination step.

Pc Precision Recall F1-Score

Scene 1 0.9450 0.7222 1.0000 0.8387
Scene 2 0.8776 0.8868 1.0000 0.9400
Scene 3 0.9429 0.8000 1.0000 0.8889
Scene 4 0.9080 0.5588 1.0000 0.7170

Total 0.9196 0.7600 1.0000 0.8636
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3.3. Fine Discrimination Step

To select the features that are effective in distinguishing the target from clutter, the
separation performance of the features was evaluated based on the training data. The values
of all features were extracted for each chip of the training data, and the distributions of
targets and clutters for each feature were obtained using a normalized histogram. Figure 6
shows the distributions of standard deviation and weighted-rank fill-ratio as an example.
In addition, for all features, the area overlapping the distributions of the target and clutter,
l, was measured (Table 2). It is considered that the feature with a lower overlapping area, l,
has better separation performance, and features with l less than 0.6 were selected based on
Table 2. As a result, seven features (standard deviation, weighed-rank fill-ratio, max CFAR,
mean CFAR, ADP, SDP, and STDDP) were available for target-clutter discrimination.
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Table 2. Measured overlapping area between distributions of the target and clutter with respect to
each feature.

Feature Overlap Feature Overlap

Standard deviation 0.4556 MAXPL 0.7600
Weighted-rank fill-ratio 0.4323 CPL 0.8812

Fractal dimension 0.8391 AMMPL 0.7406
Mass 0.7278 APL 0.7452
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Percentage of bright CFAR 0.9075 ADP 0.5785
Count 0.8083 SDP 0.5735

MINPL 0.7475 STDDP 0.2606

Although features with excellent separation performance have been selected, using
all these features is ineffective because of their redundancy. Therefore, from the training
feature set, x, the feature space was conducted with γ significant features by using the
KL transform. η was set to 0.995, and the eigenvalues λi and normalized sum of the top r
eigenvalues Er are shown in Figure 7. Then, as shown in Figure 7b, the number of features
utilized, γ, was determined to be three by Equation (8). In other words, three features are
sufficient to discriminate between the target of interest and the clutter, and the features
corresponding to the top three eigenvalues are standard deviation, weighed-rank fill ratio,
and STDDP. Therefore, a feature space is formed using vectors corresponding to the features
in set y that are transformed by A.

The same features can be extracted from the clusters of the test images and similarly
transformed by A to the project yr,test into the feature space. Figure 8 shows the results of
target detection performed using the proposed method. The KNN algorithm is used to
determine the test data in the feature space. As shown in Figure 8, compared to the results
in Figure 5, the clusters of natural and artificial clutter were removed. The discrimination
performance of the proposed method for each scene is presented in Table 3. As a result, more
than 97% of the initially detected false detection clusters could be excluded with the proposed
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method. In addition, although a few structures that were similar in shape and scattering
characteristics to the targets of interest were also detected, most of the targets of interest that
were present in the image were detected, resulting in a comprehensive F1-score of 0.9061.
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Table 3. Performance of the fine discrimination step.

Pc Precision Recall F1-Score

Scene 1 0.9891 0.9231 1.0000 0.9600
Scene 2 0.9153 0.8810 0.9250 0.9024
Scene 3 1.0000 1.0000 0.9412 0.9697
Scene 4 0.9697 0.7727 0.8947 0.8293

Total 0.9715 0.8817 0.9318 0.9061

To compare the processing time of the proposed method with that of the previous
method, which does not include coarse steps, fifty Monte Carlo simulations for each scene
were performed, and the average processing time was measured. The measured processing
times for each method are listed in Table 4. The average processing time of the proposed
method was 3.9136 s, and that of the single-step method was 13.6664 s. Therefore, it can
be seen that the proposed method can reduce the calculation load in the feature extraction
step and efficiently detect the targets of interest.

Table 4. Processing time of the proposed method and the previous single-step method.

Proposed Method (s) Single-Step Method (s)

Scene 1 2.4345 13.1425
Scene 2 5.9841 11.8243
Scene 3 2.6811 10.3851
Scene 4 4.5548 19.3136
Average 3.9136 13.6664

Finally, the proposed detection scheme was compared with other detection approaches.
The proposed scheme used a combination of selected features after the CDS. For compari-
son, detection performance was measured when only a single feature was applied after
CDS. The features used are STD, WRFR, and STDDP, with the best separation performance
in Table 2. In addition, target detection was performed by using the redundancy elimination
scheme (RES) and Haar-like (HL) features to the same images [14,19,20]. Table 5 shows
the average values of Precision, Recall, and F1 score measured for Scenes 1 to 4 using
each method. As a result, detection performance was degraded when a single feature was
applied in the FDS, even though the CDS was preceded. Furthermore, it can be seen that
the proposed scheme is more effective than the other approaches.

Table 5. Comparison of detection performance with other target detection approaches.

Coarse
+ STD

Coarse
+ WRFR

Coarse
+ STDDP RES HL

Features
Proposed
Method

Precision 0.7500 0.7200 0.6757 0.8936 0.7253 0.8817
Recall 0.7841 0.4091 0.2841 0.4884 0.7674 0.9318

F1-score 0.7667 0.5217 0.4000 0.6316 0.7458 0.9061

4. Discussion

Based on the experimental results in Section 3, we can see that the proposed method
effectively removed incorrectly detected pixels owing to natural and artificial clutter from
the TSX images. In addition, with a high F1-score of more than 0.9, it seems that most of
the targets of interest present in the image were detected.

Meanwhile, some of the adjacent targets were clustered into one object because of
the poor resolution of the image. In this case, the clusters of dense targets have features
that are significantly different from those of the targets included in the training data and
are sometimes not detected. In reality, as shown in the middle of Figure 8d and the right
side of Figure 8f, some clusters of multiple targets were mistaken for clutter. Therefore, a
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follow-up study is required to address the problems associated with these dense targets. In
future research, the features of distinguishing clusters composed of dense targets in the
image will first be established. Then, an image segmentation technique will be applied
to separate the dense target clusters into single-object units. Finally, it is expected that a
higher detection performance can be obtained by applying the proposed method to images
in which dense clusters of targets are separated.

5. Conclusions

In this study, a two-stage detection framework is proposed to ensure efficient and
high-quality detection performance in TSX images, using previously studied features. In
the examples, the image was preprocessed and the natural clutters were coarsely removed,
based on the number of pixels in each cluster in the first step. Many incorrectly detected
clusters were excluded at this stage, and accurate discrimination was performed on the
remaining artificial clutter in the next step. In the fine discrimination step, the most appro-
priate features were selected based on the evaluated target-clutter separation performance
among various features, and the feature space for the most effective utilization of these
features was constructed using the KL transform. As a result, the targets of interest and
clutter may be clearly differentiated in the feature space. In addition, given the training
data, it is expected that target detection can be performed using the proposed method in
other types of SAR images.
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