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Abstract: Plastic mulch is extensively applied in agricultural production in arid regions. It signif-
icantly influences the interactions between land and atmosphere by altering underlying surface
characteristics. An accurate and timely extraction method for Plastic-Mulched Cropland (PMC) is
required to understand land surface energy transfer processes, eco-hydrological cycle, the climate
effect of PMC, and in the management of water resources. In this study, we proposed a Timely
Plastic-mulched cropland Extraction Method (TPEM) from complex mixed surfaces with multi-source
remote sensing data in the Shiyanghe River Basin (SRB), a typical representation of a complex and
inhomogeneous arid region in the northwest of China. We defined TPEM in three phases; in the first
phase, the spectral characteristic curves were drawn from ground object points labeled by visual
interpretation with multi-source remote sensing data. In the second phase, a spectral characteristic
analysis of the modified index was proposed to amplify the difference between PMC and non-PMC
ground objects. Finally, the Classification and Regression Tree (CART) classifier was used to generate
thresholds of indices as PMC extraction rules. The results showed that it can extract the boundary of
PMC in large-scale farmland, distinguish PMC from ground objects in complex mixed surfaces, and
separate the PMC from desert land that shares same spectral characteristics with PMC. The TPEM is
verified to be efficient and robust, with an overall accuracy of 0.9234, quantity disagreement of 0.0541,
and allocation disagreement of 0.0224, and outperformed two extensively used PMC extraction
methods, especially for timely PMC extraction when satellite data only during the period that ground
surface incomplete covered by plastic mulch is available. This study will provide us with an accurate
and timely method to extract PMC, especially in the widely distributed complex mixed surfaces.

Keywords: TPEM; complex mixed surfaces; Shiyanghe River Basin; CART; remote sensing index;
spectral curve

1. Introduction

Plastic mulch has been used extensively in the arid and semi-arid areas in China
since the end of the 20th century due to its ability to reduce soil evaporation, increase soil
temperature, and promote crop yields [1–3]. However, plastic mulch alters the surface
albedo and influences the energy and water transfer processes between the underlying
surface and atmosphere, further affecting regional climate [4]. Moreover, wide application
of plastic mulch will also cause environmental issues if it is not properly removed after use
or degraded in natural conditions [5,6]. The crop yield will decrease significantly when
residual plastic mulch exceeds 240 kg/ha [7]. It is essential to know the distribution of
Plastic-Mulched Cropland (PMC) to accurately evaluate the mulching effect on the local
climate and the residual contamination caused by the extensive plastic mulch application.
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However, collected statistics about plastic mulch (the collected statistics more focus on
the usage or the area of PMC rather than the distribution of the PMC) are based on
administrative areas rather than natural basins. The administrative regions and natural
basins are often inconsistent, introducing errors in the usage or the area of the PMC.

Remote sensing technology, which can be used to extract ground surface information
efficiently, is also a good method to extract PMC information. Some studies [8–11] are
based on the local computing software such as ENVI to extract the PMC. Lu et al. [8] first
generated a decision-tree classifier, and the result implies that the classifier is temporarily
stable to be applied in different years. Then, a threshold model for detecting transparent
film mulch was proposed using Landsat 5 Thematic Mapper (TM) to map PMC over
a large geographic area [9] but cannot extract PMC accurately in other regions during
tests. Moreover, an Object-Based Image Analysis (OBIA) approach [10] was proposed
using Sentinel-1 SAR and Sentinel-2 data. Three machine-learning algorithms, including
classification and regression tree (CART) [12], Random Forest (RF) [13,14], and Support
Vector Machines (SVM) [15], were carried out. The results showed that the SVM and RF
classifiers performed better than the CART classifier in the Overall Accuracy (OA) and
kappa accuracy in most cases. Hasituya and Chen [11] gathered the spectra, textures,
and thermal features into RF and SVM machine-learning algorithms. They found that
NDVI, Greenness Index (GI), and textural features of the mean are more critical than the
other features for mapping PMC in Jizhou, during April and May, because both months
are optimal periods for mapping PMC in Jizhou. These studies require collecting large
amounts of remote sensing image data and are slow to compute locally. Some studies based
on the cloud computing platforms Google Earth Engine (GEE) for data processing improve
computation speed and reduce costs. Hao et al. [16] proposed a new workflow merging
PMC of multiple temporal phases using Sentinel-2 data of Hengshui, China, and have good
potential to identify PMC in Guyuan, China. Xiong et al. [17] detected PMC in Xinjiang,
China using multi-temporal and multi-sensor satellite images with a CART classifier,
and an overall accuracy of 92.2% for the PMC. All the above studies cannot provide a
method with simple format as well as accurately and timely PMC extraction results at the
same time.

Accurate and timely PMC extraction from complex mixed underlying surfaces re-
quires a more effective index to (1) distinguish PMC from ground objects that share similar
spectral characteristics, (2) raise the PMC extraction method’s accuracy, and (3) reduce the
requirement for remote sensing data. However, great challenges still exist. First, consider-
ing the PMC has the same spectral characteristics as sand and impervious surfaces, neither
plastic mulch index can distinguish these ground objects easily. Second, most farmlands in
China are usually distributed separately in anthropic regions, raising difficulties in classifi-
cation of ground objects over complex mixed underlying surfaces. Third, the requirement
of having satellite data for long periods, that extend from seeding to growing periods,
limit the application of previous methods in timely extraction of PMC distribution [8,17].
Therefore, the main objectives of this study are: (1) to propose a timely PMC extraction
method (TPEM) to obtain the plastic-mulched croplands distribution accurately and quickly
by modifying a remote sensing index through amplifying the difference between PMC
and other ground objects; (2) to verify the TPEM in a typical complex mixed underlying
surfaces region, the Shiyanghe River Basin, only using data for the plastic mulch just being
applied, without being covered by plants.

2. Materials and Methods
2.1. Study Area

The Shiyanghe River Basin (SRB) was chosen as the study area because it belongs
to an arid region and plastic mulch is widely used in this region. Mainly located in the
Gansu Province in northwest China, as shown in Figure 1, this basin extends from 36◦29′ to
39◦27′N and from 101◦22′ to 104◦16′E, with an area of 41,600 km2 [18,19]. The underlying
surface in the SRB is complex, with the fragmentary cropland interspersed with urban



Remote Sens. 2022, 14, 4051 3 of 22

impervious surface, which can represent the most of croplands in China. On the one
hand, plastic mulch used in the SRB can maintain soil moisture, promote crop growth, and
increase crop yield [20,21]. On the other hand, the residual plastic mulch can contaminate
the soil, reducing crop yield. It has an annual precipitation of only 164 millimeter (mm),
belonging to the arid climate, with mean annual pan evaporation of 2000 mm [22]. The
plastic mulch was used in this basin to best use the scarce water resources and increase
the local grain yield with a severe water resource shortage. The widespread use of plastic
mulch in the SRB will alter the surface albedo and influence the energy and water exchange
between the ground surface and atmosphere [4]. Thus, to estimate this influence, it is
necessary to know the distribution of local PMC.
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reflectance values in the visible band, which will overestimate the occurrence of PMC area 
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Figure 1. Location and elevation maps of the SRB. (a) The position of China and Gansu province in
China’s provincial administrative regions. (b) the location of SRB in the Gansu province municipal
administrative region. The area of SRB includes several municipal districts. (c) the boundary,
elevation map, and river system of the SRB.

In the SRB, there are two main deserts, Badain Jaran Desert in the north and Tengger
Desert in the east. It is hard to distinguish the sand from PMC because they share similar
reflectance values in the visible band, which will overestimate the occurrence of PMC
area [23,24]. Like most parts of China, the farmland is fragmentary and interlaced with
urban impervious surfaces. This complex mixed surface contributes to the difficulty in
PMC extraction.

2.2. Datasets
2.2.1. Satellites Data

In the satellite remote sensing data, the best time window to extract plastic mulch
is during the period from the plastic mulch applied on the farmland to the crop canopy
fully covered the ground surface. Considering the plastic mulch covered farmland will
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be sheltered by crop leaves as the plants growing up, the remote sensing data within the
time window is crucial to PMC extraction. Hu et al. [25] mentioned the main crops in the
SRB are wheat, corn, oil sunflower, and capsicum, which coincides with Gansu Province’s
Agricultural Statistical Yearbook’s data [26]. According to Hu’s research [25], the seeding
period varies from mid-March to mid-April. Then the plastic mulch will be gradually
covered by crops within a month.

The remote sensing data for 2020 was chosen to propose the TPEM and build its
extraction rules because in the time window of this year (from 1 April to 15 April), the
PMC is clearly exposed to the satellite and be easily identified, which is helpful to obtain
spectral characteristics. To apply this method to extract PMC in 2011–2021, the remote
sensing data in time windows for these years need to be selected. Considering different
years, the seeding periods as well as the time windows change with the solar term, and
the calendar dates of solar term are not unique in each year. The data from 1 February to
31 July in each year were chosen to apply the TPEM proposed by this study. This time span
can ensure the time windows of major crop be included. Due to the influence of clouds and
the coarse temporal resolution of medium and high-resolution remote sensing images, it is
impossible to fully cover the whole SRB only using a single source of remote sensing data.
Thus, it is necessary to use multi-source remote sensing data to cover the whole SRB.

This study consists of four satellites including Sentinel-2 Multispectral Images (MSI),
Landsat 8 Operational Land Images (OLI), Landsat 7 Enhanced Thematic Mapper Plus
(ETM+), and Terra MODIS (Moderate-resolution Imaging Spectroradiometer). There are
only six common bands including visible bands (Blue, Green, Red), NIR band, and SWIR1
and SWIR2 bands existing in these four satellites. The dataset of the MSI is from Leverl-
2A, which is provided by European Space Agency (ESA, last accessed date: 8 December
2021 (https://sentinel.esa.int/web/sentinel/user-guides/sentinel-2-msi/product-types/
level-2a)). The dataset from MSI have 10 meter’s spatial resolution in the Blue, Green, Red,
and NIR bands and have 20 meter’s spatial resolution in the SWIR1 and SWIR2 bands. The
dataset of OLI is in Level 2, which is provided by United States Geological Survey (USGS)
(last accessed date: 8 December 2021, (https://www.usgs.gov/landsat-missions/landsat-
surface-reflectance)). The dataset of OLI has 30 meter’s spatial resolution in the Blue, Green,
Red, NIR, SWIR1, and SWIR2 bands. The dataset of ETM+ is in Level 2, which is provided
by USGS (last accessed date: 8 December 2021; (https://www.usgs.gov/landsat-missions/
landsat-surface-reflectance)). The dataset from ETM+ has 30 meters of spatial resolution
in six common bands. The three products mentioned above can provide relatively clear
images that can be used to obtain ground truth. The dataset of MODIS is MOD09A1
product, which is provided by National Aeronautics and Space Administration (NASA)
(last accessed date: 8 December 2021, (https://lpdaac.usgs.gov/products/mod09a1v006/)).
The dataset of MODIS has 500 meter’s spatial resolution in the six common bands, which
means the ground truth cannot be identified by this product due to the coarser resolution.
All the four datasets are surface reflectance products and can be downloaded, used, and
processed by GEE platform.

This study used remote sensing images from the seeding period to propose mPMCI
(modified plastic-mulched cropland index). In addition, four data sources were mixed
and used to reduce the influence of clouds. Considering these four data sources have
different time availabilities, Table 1 shows which satellite data sources were used in the
different periods.

https://sentinel.esa.int/web/sentinel/user-guides/sentinel-2-msi/product-types/level-2a
https://sentinel.esa.int/web/sentinel/user-guides/sentinel-2-msi/product-types/level-2a
https://www.usgs.gov/landsat-missions/landsat-surface-reflectance
https://www.usgs.gov/landsat-missions/landsat-surface-reflectance
https://www.usgs.gov/landsat-missions/landsat-surface-reflectance
https://www.usgs.gov/landsat-missions/landsat-surface-reflectance
https://lpdaac.usgs.gov/products/mod09a1v006/
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Table 1. The remote sensing datasets used for proposing TPEM.

Sensors Satellite Available
Time Source Resolution Purpose The Number

of Images

MSI Sentinel-2 Since 28
March 2017 ESA

10 m in Blue, Green, Red,
and NIR bands 0 m in

SWIR1 and SWIR2 bands

Provide fine resolution
data to obtain
ground truth.

71

OLI Landsat 8 Since 18
March 2013 USGS

30 m in Blue, Green, Red,
NIR, SWIR1, and

SWIR2 bands

Provide medium
resolution data to assisted

access ground truth.
8

ETM+ Landsat 7 Since 28 May
1999 USGS

30 m in Blue, Green, Red,
NIR, SWIR1, and

SWIR2 bands

Provide medium
resolution data to assisted

access ground truth.
8

MODIS Terra Since 18
February 2000 NASA

500 m in Blue, Green,
Red, NIR, SWIR1, and

SWIR2 bands

Provide coarse resolution
but almost fully

covered data.
2

2.2.2. Ground Truth

In the SRB, the main ground objects include PMC, vegetation, impervious surface,
sand, farmland, snow, and water. In this study, we used 4456 sample points. These sample
points presenting ground truth were randomly selected and then labeled by visual inter-
pretation to display the spectral characteristic, train the machine-learning-based classifiers,
and evaluate the effectiveness of the PMC extraction rules generated by the classifiers. To
focus on the PMC extraction, other ground objects except PMC were classed as non-PMC.
The classes and number of points of each class and final classes are shown in Table 2.

Table 2. The main ground objects of the SRB and the number of sample points of these objects.
Considering this study’s key is plastic-mulched cropland extraction, objects were classed together as
non-PMC except for PMC.

Classes Description Number of Points Final Classes

PMC Including cropland covered by plastic mulch. 1486 PMC

Vegetation Land surface covered by vegetation, including crops, bushes, trees, etc. 704

non-PMC

Impervious Surface Including hardened ground, roads, and buildings, etc. 602
Sand Including desert and saline soils, etc. 516

Farmland Including farmland area not being used at the moment, which means
without plastic mulch or vegetation covered. 506

Snow Including snow, mainly on the mountains before the growing season. 141
Water Includes rivers, reservoirs, and open-air water storage facilities. 501

This study also randomly selected and then labeled another isolated dataset to increase
the objectivity and independence including 1035 points of PMC and 1484 points of non-
PMC, to evaluate and compare the extraction accuracy of the TPEM and method proposed
by other studies. All of these sample points can represent the ground truth.

2.2.3. Ancillary Data

To obtain the distribution and total area of farmland in the SRB, the cropland layer
from the Finer Resolution Observation and Monitoring-Global Land Cover (FROM-GLC,
last accessed date: 17 August 2021. Link: http://data.ess.tsinghua.edu.cn/) [27–29], which
was a 30 m resolution global land cover map was used. The ratio of PMC to total farmland
was calculated based on this product. Two versions of FROM-GLC data were selected
considering farmland distribution and area change. Table 3 shows the file record and the
other information of this dataset in detail.

http://data.ess.tsinghua.edu.cn/
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Table 3. The record of the FROM-GLC used in this study.

Name Time File Record Resolution

FROM-GLC 2017v1 2017 100E_40N 10 m
FROM-GLC 2015_v1 2015 100E40N 10 m

2.3. Method

A complete set of workflows was used in this study. The whole process can be divided
into four parts, i.e., (1) data processing, (2) spectral characteristic extraction and analysis,
(3) extraction rule generating, and (4) accuracy assessment. The workflow chart can be seen
in Figure 2.
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Figure 2. The workflow chart shows how this study processed data, developed indices, and generated
plastic-mulched farmland extraction rules in details.

First, the remote sensing satellite images of the SRB during the seeding period were
filtered in the data processing. The Quality Assessment (QA) bands were used to remove
the pixel covered by clouds or the shadow of clouds. A pixel where QA is equal to a
certain value is seen as clouds or the shadow of clouds. The GEE platform provides a cloud
removing function for every dataset [30–33]. However, this function will mask out the
pixel covered by clouds and makes this pixel have no data. Therefore, this study used four
satellite datasets and blended them to reduce the data loss caused by cloud removal. The
detail of this part is introduced in Section 2.3.1.

For the spectral characteristic extraction and analysis, this study first selected ground
object sample points using visual interpretation and split them into training and testing
datasets. Then the spectral curves of these seven types of ground objects were drawn to
analyze their spectral characteristics. The details of this part is introduced in Section 2.3.2.

This study used a machine-learning algorithm CART [12] with a modified plastic
mulch index to generate the TPEM in the extraction rule generating part. The details of this
part are introduced in Section 2.3.3. Finally, the accuracy assessment method is introduced
in Section 2.3.4.
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2.3.1. Multi-Source Data Fusion

The available remote sensing images are rare to extract plastic mulch from the plastic
mulch applied on the farmland to the crop canopy fully covered with mulch. Considering
the medium and high-resolution remote sensing images usually have coarse temporal
resolution and there is only a short time window. After using the clouds removing function,
the pixel covered by the clouds and shadow of clouds will be removed and only left a hole
without remote sensing data. Therefore, it is impossible to cover the whole basin only using
a single remote sensing data source. Luckily, the MSI and OLI have good consistency in the
plastic-covered agriculture area [34]. Thus, this study used multi-source remote sensing
data to fix the data hole. The data from MSI was selected as the first layer. It has the highest
resolution among these four satellite datasets. The second layer was the data from OLI,
and the third layer was ETM+. These two datasets have a lower resolution at 30 m, and
considering ETM+ had scanner error since 31 May 2003; this dataset was put in the third
layer. However, even blending these three satellites datasets cannot make sure there are no
holes left. Therefore, the data from MODIS was selected as the bottom layer. The 500 m
resolution of it can barely not be used to show the feature of the ground object, but this
dataset was composited over fifteen days, so almost no clouds exist. Considering the four
datasets is not all available during 2011–2021, some datasets cannot provide data before
a specific time, as seen in Table 1. For example, the data from MSI is not available before
28 March 2017. In this situation, the first layer is not available and blend the remaining
datasets in order.

The discrepancies in different sensors would affect the combination of these datasets.
For example, the root means square error (RMSE) is more significant than 8% in the red
band between MSI and ETM+ data [35]. This study used a relevant linear model [36,37] to
eliminate the discrepancies between different sensors. Based on the data from MSI, this
linear model calibrated the data from OLI, ETM+, and MODIS to be consistent with the
data from MSI.

Taking MSI and ETM+ as an example to build up these relevant linear models, 165 sam-
ple points were picked from the globally overlapped areas of MSI and OLI at the same time.
Then, with the reflectance of MSI as the vertical axis and the reflectance of ETM+ as the
horizontal axis, the reflectance scatter diagrams and their trend lines of blue, green, red,
NIR, SWIR1, and SWIR2 bands were drawn in Figure 3. The linear relationship between
MSI and OLI, and MSI and MODIS are shown in Figures 4 and 5, respectively. Third,
according to these linear relationships, the six bands of ETM+ mentioned before can be
calibrated to be consistent with MSI In the same way, 174 common points of MSI and ETM+
at the same time were selected, and 152 common points of MSI and MODIS at the same
time were selected to build the linear model.

With these linear models, the cloud-removed remote sensing datasets can be calibrated
to be consistent with MSI. Moreover, all the four datasets need to be resampled to 30m
resolution due to different spatial resolutions. Finally, we blend these datasets to become
the remote sensing dataset for this study.
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2.3.2. Spectral Characteristic Extraction and Analysis

The ground truth points were labeled on the GEE platform using visual interpretation.
Due to the spectral characteristics varying among different ground objects, these ground
objects could represent different colors or features using the right combination of bands.
Thus, they can be identified by the visual interpretation. Figure 6 shows the true color
and false-color images of the SRB. The SRB’s seven main ground objects include PMC,
vegetation, impervious surface, sand, farmland, snow, and water.
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Figure 6. (a) shows the true color (R = Red, G = green, B = blue) image and (b) shows the false-color
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1 April to 15 April 2020. The red triangle shows the PMC in large-scale farmland. The green circle
shows the PMC in complex mixed surfaces. In addition, the yellow square shows PMC by the desert.



Remote Sens. 2022, 14, 4051 10 of 22

According to the ground truth sample points labeled using visual interpretation,
the spectral reflectance curve was drawn by the GEE platform. As shown in Figure 7,
different ground objects owned different reflectance curves. Take vegetation as an example.
From visible bands (blue, green, and red bands) to near-infrared (NIR) bands, vegetation
reflectance increased sharply to its highest value, which means the NIR band was sensitive
to vegetation. This unique trend makes it possible to distinguish vegetation from other
ground objects.
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2.3.3. Modified Plastic Mulch Index and PMC Extraction Rules

Xiong et al. [17] proposed two PMFIs (plastic-mulched farmland index) based on the
quotient of SWIR2 band and NIR band as well as the quotient of SWIR2 band and blue
band. These two indices can be calculated as following Equations (1) and (2):

PMFI f irst =
ρSWIR1

ρNIR
(1)

PMFIsecond =
ρSWIR1

ρBlue
(2)

However, in the SRB, all ground objects between SWIR2 and NIR band are not as
significant as the differences between SWIR1 and NIR band. Therefore, in this study, a
modified plastic mulch index was proposed based on spectral characteristics. It is clear that
PMC, impervious surface, sand, and farmland shared similar reflectance curves, but it can
still be distinguished by targeted bands calculation. Although these four ground objects
both show an increasing trend from blue band to SWIR1 band and get their peak at SWIR1
band then decrease, the trends of them from NIR to SWIR1 band are different. Based on
this difference, the mPMCI was built up with the reciprocal normalization of the SWIR1
and NIR bands. The mPMCI can be calculated by the following Equation (3):

mPMCI =
ρSWIR1 + ρNIR
ρSWIR1 − ρNIR

(3)

where ρNIR is the reflectance of a pixel in the NIR band, ρSWIR1 is the reflectance of pixel in
the SWIR1 band.



Remote Sens. 2022, 14, 4051 11 of 22

After building the mPMCI, setting a proper threshold is the simplest way to distinguish
different ground objects. To figure out the threshold and build the extraction rules, this
study tried three machine-learning-based classifiers: Support Vector Machines (SVM),
Naive Bayesian Model (NBM) and CART, to train the sample points. The sample points
fall into PMC or non-PMC. Then they were divided into two parts: the training part with
randomly selected 70% sample points of each category to train the classifiers and the testing
part with randomly selected 30% sample points of each category to test the classifiers and
present classification results.

2.3.4. Accuracy Assessment

In essence, classification accuracy is typically taken to mean the degree to which the
derived image classification agrees with reality or conforms to the truth. A classification
error is some discrepancy between the situation depicted on the thematic map and real-
ity [38]. In remote sensing image classification, the confusion matrix method is widely
used to describe the relationship between the fundamental attribute of the sample data and
the classification results. Based on the confusion matrix, some evaluation indices can be
calculated. Overall accuracy (OA), quantity disagreement (QD), allocation disagreement
(AD) [39], producer accuracy (PA), and user accuracy (UA) were used to assess classification
accuracy of methods.

The following Equations (4)–(8) calculated these five indices:

OA =
J

∑
j=1

pjj (4)

QD = 0.5×
J

∑
g=1

∣∣∣∣∣
(

J

∑
i=1

pig

)
−
(

J

∑
j=1

pgj

)∣∣∣∣∣ (5)

AD = 0.5×
J

∑
g=1

2×min

[(
J

∑
i=1

pig

)
− pgg,

(
J

∑
i=1

pgj

)
− pgg,

]
(6)

PAg =
pgg

∑J
j=1 pjg

(7)

UAg =
pgg

∑J
j=1 pgj

(8)

where OA represents overall accuracy. pjj is the proportion of the sample points that is
category i in the classification results and category j in the real situation. QD represents
quantity disagreement. AD represents allocation disagreement. PAg and UAg are producer
accuracy and user accuracy of category g.

OA means the probability that the classification result is consistent with the actual type.
QD is defined as the amount of difference between the reference map and a comparison
map that is due to the less than perfect match in the proportions of the categories. AD is
defined as the amount of difference between the reference map and a comparison map
that is due to the less-than-optimal match in the spatial allocation of the categories [39]. PA
means the probability of a pixel being correctly classified and UA implies the probability of
a pixel classified on the map actually represents that category on the ground [40].

3. Results
3.1. PMC Extraction Rules

After choosing the remote sensing index and spectral band, the PMC can be extracted
by setting thresholds of indices and bands. Points within the threshold range were identified
as PMC. Three machine-learning-based algorithms were used to determine the thresholds
efficiently. Taking classification accuracy as the evaluation standard, as Table 4 shows, the
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CART is best with 0.9157 of OA, 0.0112 of AD and 0.0731 of AD. The OA, QD and AD of
SVM were 0.6709, 0.3037, and 0.0254, respectively. In addition, the OA, QD and AD of
NBM were 0.2739, 0.3172, and 0.4090, which means this method is not suitable for the
ground object classification. Moreover, the calculation speed of SVM is far slower than
other methods during the actual operation, so the most suitable classifier is CART due to
its high classification accuracy and high calculation speed. By repeatedly splitting the data
into more homogeneous groups, CART has more advantages like ease of interpretation,
comfort, and robustness of construction [41].

Table 4. The performance of the three classifiers, overall accuracy, quantity disagreement, and alloca-
tion disagreement, were considered indicators because they reflect the overall classification accuracy.

Classifier OA QD AD

SVM 0.6709 0.3037 0.0254
NBM 0.2739 0.3172 0.4090
CART 0.9157 0.0112 0.0731

One of CART classifier’s argument in the GEE platform is “maxNodes”, meaning the
maximum number of leaf nodes in each tree. By setting this argument to a low value, such
as 10, the scale of CART can be limited to avoid the PMC extraction method being too
lengthy. Choosing mPMCI and NDVI as indices and the result showed it is still difficult to
distinguish PMC from sand, so the SWIR2 band was also selected to generate the extraction
rules according to the importance of remaining unused bands (except the red, NIR, and
SWIR1 band because they were used in mPMCI and NDVI). Finally, the PMC extraction
rule was constructed and can be summarized as in Equation (9):

13 ≤ mPMFI
0.05 ≤ NDVI ≤ 0.12
0.23 ≤ SWIR2 ≤ 0.30

(9)

3.2. PMC Extraction Results in the SRB

The remote sensing images of the SRB from 1 to 15 April 2020 were selected to extract
the PMC. The false-color composite (R = SWIR2, G = NIR, B = Red) images were selected
as the underlying layer rather than the true color to illustrate the PMC and other ground
objects simultaneously. In the ideal situation, the farmland and PMC were homogeneous,
which is easy to be identified by the index because there is no disturbance from other
ground objects with similar spectral characteristics to them. Therefore, we test the TPEM in
large-scale farmland near the town. As shown in Figure 8, the TPEM can extract PMC and
identify its boundary when the size exceeds the resolution of remote sensing images.

Considering the underlying surface in the SRB is not homogeneous, and the cropland
is fragmentary, the PMC always mixes with other ground objects such as farmland without
plastic, vegetation, or impervious surface. The TPEM were applied in the area with the
complex mixed surfaces. Figure 9 was located where the town was surrounded by farmland
already covered or not covered by plastic mulch. Although it is hard to distinguish the
boundary between PMC and farmland without plastic, the TPEM can still extract PMC
from a complex mixed surface.

As mentioned in the spectral characteristic analysis, PMC shares a similar characteristic
curve with sand, impervious surface, sand, and farmland. In the SRB, the PMC mixes with
waterproof surfaces and farmland. Nevertheless, the sand, due to its high reflection similar
to PMC and large area, is easy to be misidentified as PMC. Figure 10 shows an area located
at the edge of the desert. The main PMC can be extracted, and there is little misidentification.



Remote Sens. 2022, 14, 4051 13 of 22Remote Sens. 2022, 14, x FOR PEER REVIEW 13 of 22 
 

 

 
Figure 8. The extraction results in large-scale farmlands. The main PMC can be extracted with the 
boundary between PMC also clearly. (a,c) the false-color composite (R = SWIR2, G = NIR, B = Red) 
images and (b,d) the extraction results (red part means PMC) above the false-color composite. 

Considering the underlying surface in the SRB is not homogeneous, and the cropland 
is fragmentary, the PMC always mixes with other ground objects such as farmland with-
out plastic, vegetation, or impervious surface. The TPEM were applied in the area with 
the complex mixed surfaces. Figure 9 was located where the town was surrounded by 
farmland already covered or not covered by plastic mulch. Although it is hard to distin-
guish the boundary between PMC and farmland without plastic, the TPEM can still ex-
tract PMC from a complex mixed surface. 

 

Figure 8. The extraction results in large-scale farmlands. The main PMC can be extracted with the
boundary between PMC also clearly. (a,c) the false-color composite (R = SWIR2, G = NIR, B = Red)
images and (b,d) the extraction results (red part means PMC) above the false-color composite.

Remote Sens. 2022, 14, x FOR PEER REVIEW 13 of 22 
 

 

 
Figure 8. The extraction results in large-scale farmlands. The main PMC can be extracted with the 
boundary between PMC also clearly. (a,c) the false-color composite (R = SWIR2, G = NIR, B = Red) 
images and (b,d) the extraction results (red part means PMC) above the false-color composite. 

Considering the underlying surface in the SRB is not homogeneous, and the cropland 
is fragmentary, the PMC always mixes with other ground objects such as farmland with-
out plastic, vegetation, or impervious surface. The TPEM were applied in the area with 
the complex mixed surfaces. Figure 9 was located where the town was surrounded by 
farmland already covered or not covered by plastic mulch. Although it is hard to distin-
guish the boundary between PMC and farmland without plastic, the TPEM can still ex-
tract PMC from a complex mixed surface. 

 
Figure 9. The extraction results in a complex mixed surface, where the PMC is mixed with impervious
surface, vegetation, and farmland not covered by plastic mulch. (a,c) the false-color composite
(R = SWIR2, G = NIR, B = Red) images and (b,d) the extraction results (red part means PMC) above
the false-color composite.



Remote Sens. 2022, 14, 4051 14 of 22

Remote Sens. 2022, 14, x FOR PEER REVIEW 14 of 22 
 

 

Figure 9. The extraction results in a complex mixed surface, where the PMC is mixed with impervi-
ous surface, vegetation, and farmland not covered by plastic mulch. (a,c) the false-color composite 
(R = SWIR2, G = NIR, B = Red) images and (b,d) the extraction results (red part means PMC) above 
the false-color composite. 

As mentioned in the spectral characteristic analysis, PMC shares a similar character-
istic curve with sand, impervious surface, sand, and farmland. In the SRB, the PMC mixes 
with waterproof surfaces and farmland. Nevertheless, the sand, due to its high reflection 
similar to PMC and large area, is easy to be misidentified as PMC. Figure 10 shows an 
area located at the edge of the desert. The main PMC can be extracted, and there is little 
misidentification. 

 
Figure 10. The extraction results in the edge of the desert. As one of the most similar ground objects, 
the sand can be excluded from the PMC extraction results. (a) the false-color composite (R = SWIR2, 
G = NIR, B = Red) images and (b) the extraction results (red part means PMC) above the false-color 
composite. 

3.3. Accuracy Assessment of PMC Extraction Rules 
To evaluate the accuracy of the TPEM, all sample points were used to calculate the 

confusion matrix and related accuracy assessment indices. The confusion matrix is shown 
in Table 5. The OA can reach 0.9234 QD is only 0.0541, and AD is only 0.0224. 

Table 5. The confusion matrix of the TPEM using all sample points. 

TPEM 
Classification Results 

Total PA 
PMC Non-PMC 

Real Situation 
PMC 1195 291 1486 0.8042 

non-PMC 50 2920 2970 0.9832 
Total 1245 3211 4456  

UA 0.9371 0.9094   

OA 0.9234 QD 0.0541 AD 0.0224 

Focus on the specific ground objects, the water, snow and vegetation points were all 
classified as non-PMC as the spectral curves of these ground objects are different from 
PMC. Although the spectral curves of sand and farmland are similar to the PMC, only few 
points were misclassified as PMC. As Table 6 shows, 43 impervious surface sample points 
were classified as PMC. Because impervious surface and PMC share similar spectral 
curves. 

  

Figure 10. The extraction results in the edge of the desert. As one of the most similar ground
objects, the sand can be excluded from the PMC extraction results. (a) the false-color composite
(R = SWIR2, G = NIR, B = Red) images and (b) the extraction results (red part means PMC) above the
false-color composite.

3.3. Accuracy Assessment of PMC Extraction Rules

To evaluate the accuracy of the TPEM, all sample points were used to calculate the
confusion matrix and related accuracy assessment indices. The confusion matrix is shown
in Table 5. The OA can reach 0.9234 QD is only 0.0541, and AD is only 0.0224.

Table 5. The confusion matrix of the TPEM using all sample points.

TPEM
Classification Results

Total PA
PMC Non-PMC

Real
Situation

PMC 1195 291 1486 0.8042
non-PMC 50 2920 2970 0.9832

Total 1245 3211 4456
UA 0.9371 0.9094

OA 0.9234 QD 0.0541 AD 0.0224

Focus on the specific ground objects, the water, snow and vegetation points were all
classified as non-PMC as the spectral curves of these ground objects are different from PMC.
Although the spectral curves of sand and farmland are similar to the PMC, only few points
were misclassified as PMC. As Table 6 shows, 43 impervious surface sample points were
classified as PMC. Because impervious surface and PMC share similar spectral curves.

Table 6. Specific ground objects classification results. Few non-PMC sample points were extracted as
PMC, except impervious surface points, who have similar spectral curves with PMC.

Classes
Classification Result

Total
PMC Non-PMC

PMC 1124 291 1486
Vegetation 0 704 704

Impervious Surface 43 559 602
Sand 0 516 516

Farmland 5 501 506
Snow 0 141 141
Water 2 499 501

However, some PMC that was not extracted by the TPEM will lead to an underestimate
of the area of PMC. The reason will be discussed later.

3.4. PMC Extraction Rules Threshold Sensitivity Analysis

The sensitivity analysis of the TPEM was carried out to assess the influence of the
rules’ threshold on the TPEM’s results. By adjusting the threshold of one rule and fixing the
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thresholds of two remaining rules, the extraction rules get changed, and the corresponding
extraction results are different. The OA, QD, and AD were calculated to evaluate the
performance of different combinations of thresholds. As listed in Table 7, the change in
the threshold of mPMCI will lead to a slight deterioration in performance. QD shows a
downward trend, AD is increasing, and OA rises and then falls with the decreasing of
mPMCI’s threshold.

Table 7. The summary of overall accuracy, quantity disagreement, and allocation disagreement at
different lower threshold values in the mPMCI band.

Band Threshold Value OA QD AD

mPMCI

17.00 0.9004 0.0866 0.0130
16.00 0.9087 0.0752 0.0162
15.00 0.9152 0.0664 0.0184
14.00 0.9199 0.0608 0.0193
13.00 0.9235 0.0541 0.0224
12.00 0.9228 0.0494 0.0278
11.00 0.9161 0.0382 0.0458
10.00 0.9062 0.0229 0.0709
9.00 0.8846 0.0009 0.1145

Considering the NDVI and SWIR2 bands have two thresholds of both upper and
lower compared to the mPMCI only has one lower threshold, this paper set three ways of
changing the thresholds of NDVI and SWIR2 bands, including (1) moving the threshold
interval without changing the range of the threshold interval, (2) only adjust the upper
threshold and (3) only adjust the lower threshold. As listed in Table 8, compared to
adjusting the upper and lower threshold of NDVI, moving the threshold interval of NDVI
without changing the range of the threshold interval has a more significant impact in the
performance of the TPEM. The results of SWIR2 show the same pattern in Table 8 too. In the
first way, with reducing the threshold interval of NDVI and SWIR2 band, QD fall then rise,
and AD present downward trend. In the second way, with reducing the upper thresholds
of NDVI and SWIR2 band, QD present upward trend and AD present opposite trend. In
the third way, with reducing the lower thresholds of NDVI and SWIR2 band, QD present
upward trend and AD present downward trend, which is opposite to the second way. In
general, the three rules have good robustness, even in the worst situation, the OA can
higher than 0.87, QD can lower than 0.11, and AD can lower than 0.12. A slight adjustment
of the thresholds does not significantly affect the extraction results.

Table 8. The summary of overall accuracy, quantity disagreement, and allocation disagreement at
different combinations of lower and upper threshold values in the SWIR2 band and NDVI band.

NDVI SWIR2

Threshold Value
OA QD AD

Threshold Value
OA QD AD

Lower Upper Lower Upper

0.07 0.14 0.8772 0.0958 0.0269 0.25 0.32 0.9001 0.0581 0.0417
0.06 0.13 0.9201 0.0552 0.0247 0.24 0.31 0.9176 0.0523 0.0301
0.05 0.12 0.9235 0.0541 0.0224 0.23 0.30 0.9235 0.0541 0.0224
0.04 0.11 0.9198 0.0597 0.0215 0.22 0.29 0.9170 0.0664 0.0166
0.03 0.10 0.9093 0.0714 0.0193 0.21 0.28 0.8829 0.1023 0.0148

0.05 0.14 0.9199 0.0474 0.0328 0.23 0.32 0.9125 0.0413 0.0462
0.05 0.13 0.9212 0.0500 0.0287 0.23 0.31 0.9192 0.0485 0.0323
0.05 0.12 0.9235 0.0541 0.0224 0.23 0.30 0.9235 0.0541 0.0224
0.05 0.11 0.9203 0.0613 0.0184 0.23 0.29 0.9174 0.0669 0.0157
0.05 0.10 0.9118 0.0738 0.0144 0.23 0.28 0.8835 0.1030 0.0135
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Table 8. Cont.

NDVI SWIR2

Threshold Value
OA QD AD

Threshold Value
OA QD AD

Lower Upper Lower Upper

0.07 0.12 0.8808 0.1026 0.0166 0.25 0.30 0.9111 0.0709 0.0180
0.06 0.12 0.9224 0.0592 0.0184 0.24 0.30 0.9219 0.0579 0.0202
0.05 0.12 0.9235 0.0541 0.0224 0.23 0.30 0.9235 0.0541 0.0224
0.04 0.12 0.9219 0.0525 0.0256 0.22 0.30 0.9230 0.0536 0.0233
0.03 0.12 0.9210 0.0516 0.0274 0.21 0.30 0.9228 0.0534 0.0238

3.5. Long-Term PMC Extraction Results

To understand the use of plastic mulch in the SRB over the past few years, the TPEM
were applied in the SRB from 2011 to 2021. The ratio of PMC to total farmland in each
year was calculated using FROM-GLC datasets as mentioned in Table 3. Considering the
limited land cover data, the FROM-GLC 2015 dataset was applied from 2011 to 2015, and
the FROM-GLC 2017 dataset was applied from 2016 to 2021. After filtering the cropland
area, the TPEM was applied to the cropland to avoid the influence of other ground objects.
Then, both cropland and PMC in each year were calculated to analyze the ratio of PMC to
total farmland from 2011 to 2021. The ratio of PMC to total farmland is shown in Figure 11.

Remote Sens. 2022, 14, x FOR PEER REVIEW 16 of 22 
 

 

higher than 0.87, QD can lower than 0.11, and AD can lower than 0.12. A slight adjustment 
of the thresholds does not significantly affect the extraction results.  

Table 8. The summary of overall accuracy, quantity disagreement, and allocation disagreement at 
different combinations of lower and upper threshold values in the SWIR2 band and NDVI band. 

NDVI SWIR2 
Threshold Value 

OA QD  AD  
Threshold Value 

OA QD AD 
Lower Upper Lower Upper 

0.07 0.14 0.8772 0.0958 0.0269 0.25 0.32 0.9001 0.0581 0.0417 
0.06 0.13 0.9201 0.0552 0.0247 0.24 0.31 0.9176 0.0523 0.0301 
0.05 0.12 0.9235 0.0541  0.0224 0.23 0.30 0.9235 0.0541  0.0224 
0.04 0.11 0.9198 0.0597 0.0215 0.22 0.29 0.9170 0.0664 0.0166 
0.03 0.10 0.9093 0.0714 0.0193 0.21 0.28 0.8829 0.1023 0.0148 
0.05 0.14 0.9199 0.0474 0.0328 0.23 0.32 0.9125 0.0413 0.0462 
0.05 0.13 0.9212 0.0500 0.0287 0.23 0.31 0.9192 0.0485 0.0323 
0.05 0.12 0.9235 0.0541  0.0224 0.23 0.30 0.9235 0.0541  0.0224 
0.05 0.11 0.9203 0.0613 0.0184 0.23 0.29 0.9174 0.0669 0.0157 
0.05 0.10 0.9118 0.0738 0.0144 0.23 0.28 0.8835 0.1030 0.0135 
0.07 0.12 0.8808 0.1026 0.0166 0.25 0.30 0.9111 0.0709 0.0180 
0.06 0.12 0.9224 0.0592 0.0184 0.24 0.30 0.9219 0.0579 0.0202 
0.05 0.12 0.9235 0.0541  0.0224 0.23 0.30 0.9235 0.0541  0.0224 
0.04 0.12 0.9219 0.0525 0.0256 0.22 0.30 0.9230 0.0536 0.0233 
0.03 0.12 0.9210 0.0516 0.0274 0.21 0.30 0.9228 0.0534 0.0238 

3.5. Long-Term PMC Extraction Results 
To understand the use of plastic mulch in the SRB over the past few years, the TPEM 

were applied in the SRB from 2011 to 2021. The ratio of PMC to total farmland in each year 
was calculated using FROM-GLC datasets as mentioned in Table 3. Considering the lim-
ited land cover data, the FROM-GLC 2015 dataset was applied from 2011 to 2015, and the 
FROM-GLC 2017 dataset was applied from 2016 to 2021. After filtering the cropland area, 
the TPEM was applied to the cropland to avoid the influence of other ground objects. 
Then, both cropland and PMC in each year were calculated to analyze the ratio of PMC to 
total farmland from 2011 to 2021. The ratio of PMC to total farmland is shown in Figure 
11.  

 
Figure 11. The mulching rate change, which is the ratio of PMC area to total farmland area, in the
SRB from 2011 to 2021.

The PMC extraction results images of 2011, 2014, 2017, and 2020 in the SRB are shown
in Figure 12 to illustrate the spatial distribution of PMC. Farmland is distributed along the
Shiyang River from upstream to downstream. In the upstream, which is also the southwest
of the SRB, farmland accounts for more area than the northeast of the SRB. The distribution
of PMC also shows a similar variation in that the southwest of the SRB has more PMC than
the northwest of the SRB.
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2011 laid on the true color composition map of SRB, respectively. The black line is the boundary of
the SRB, the yellow part is filtered cropland using FROM-GLC datasets, and the red part is extracted
PMC area.

4. Discussion
4.1. The Advantages of the Methods

Two PMC extraction methods, including the plastic-mulched farmland mapping
algorithm (PFMA) proposed by Xiong et al. [17] and a decision-tree classifier proposed
by Lu et al. [8], were selected to extract the PMC in the SRB, and the results of these
three methods were compared. This was performed so that the effectiveness of the TPEM
could be demonstrated. In Lu’s method [8], the same spectral characteristic was carried
out. Five spectral features were used in the decision-tree classifier based on ENVI to
generate classification rules which can classify all major ground objects, not only PMC.
Remote sensing images of the SRB in 2020 were selected, and an isolated dataset including
1035 points of PMC and 1484 points of non-PMC was randomly selected and labeled by
visual interpretation, as Section 2.2.2 mentioned. This dataset was used to evaluate and
compare the extraction accuracy of the TPEM and other methods. Considering the PFMA
used two time periods, the seeding period and growing period, two conditions, including
the used and not used growing period, were tested to evaluate the effectiveness of PFMA
under the conditions of the just-applied PMC.

In Table 9, the extraction results and accuracy assessment indices are calculated using
the confusion matrix. The result shows that Lu’s decision-tree classifier does not apply to a
more complex mixed surface, such as the SRB. Xiong’s PFMA can perform a high extraction
accuracy, and the PFMA can obtain higher extraction accuracy using growing periods. At
the same time, the TPEM can reach the same extraction accuracy as Xiong’s PFMA.
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Table 9. The PMC extracted results using Lu’s decision-tree classifier, Xiong’s PFMA, and TPEM
proposed by this study. Xiong’ means using Xiong’s PFMA without using growing period data. The
fractions represent the corrected classified sample points in this category/whole sample points in
this category.

Method
Classification Result

OA QD AD
PMC Non-PMC

Lu 1022/1035 497/1484 0.6030 0.3867 0.0103
Xiong 1013/1035 1466/1484 0.9841 0.0016 0.0143
Xiong’ 1013/1035 976/1484 0.7896 0.1929 0.0175
TPEM 986/1035 1421/1484 0.9555 0.0056 0.0389

Figure 13 shows the extraction results in the SRB. Being influenced by the large area of
sand and snow-covered Qilian Mountain, Lu’s decision-tree classifier cannot distinguish
between these ground objects with PMC.
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Figure 13. The PMC extraction results using Lu’s decision-tree classifier, Xiong’s PFMA, and TPEM
proposed by this study. The black line is the boundary of the SRB. (a) is the filtered farmland using
FROM-GLC datasets, (b) is the PMC extracted by Lu’s decision-tree classifier, namely PMC_Lu, (c) is
the PMC extracted by Xiong’s PFMA using the growing period data, namely PMC_Xiong, (d) is the
PMC extracted by Xiong’s PFMA without using growing period data, namely PMC_Xiong’ (e) is the
PMC extracted by this study, namely PMC.

Xiong’s PFMA can obtain a precise extraction result as the distribution of extracted
PMC is consistent with that of farmland. However, under the conditions of not using
growing period data, the misidentification of sand will cause the overestimation of PMC.
Considering other ground objects except vegetation and PMC cannot reach a high NDVI
value in the growing period, it is expected that some misidentification will occur without
using growing period data.

Although there is misidentification, the TPEM performs well as the distribution of
extracted PMC is consistent with that of farmland. This method can extract the PMC under
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the condition of the PMC has just been applied and have an ideal performance with only
using a short period of data.

4.2. Error Analysis from the Point of Spectral

The spectral values of all ground objects were collected and analyzed to figure out
why some sample points cannot be extracted as PMC. Figure 14 shows the differences
in mPMCI, NDVI, and SWIR1 band among PMC, vegetation, impervious surface, sand,
farmland, snow, and water in the SRB based on the sample points. It is clear that in the
mPMCI band, PMC is significantly higher than other ground objects except for water. In
the NDVI band, vegetation is higher than others, and water is lower than them. In the
SWIR2 band, water and snow are lower than in others. However, the PMC, impervious
surface, sand, and farmland were similar in the NDVI and SWIR2 bands. The mPMCI band
plays a crucial role in distinguishing PMC with impervious surfaces, sand, and farmland.
As in Figure 14a, the value of these three ground objects was out of the box of the PMC
but within the error bar of the PMC, which means almost one-quarter of PMC share a
similar spectral characteristic with these ground objects, and that is why in Table 5 the
TPEM did not extract about a quarter PMC. Especially the impervious surface, its upper
quantile is almost equal to the lower quantile of the PMC. It explained why there are still
43 impervious surface points were classified as PMC in Table 6. Although mPMCI can
distinguish between these ground objects, there are still some sample points whose values
are relatively low and will be classified as non-PMC.
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Figure 14. Box plot of spectral features in different ground objects, including PMC, Vegetation,
Impervious Surface, Sand, Farmland, Snow, and Water. (a) is the box plot of mPMCI, (b) is the box
plot of NDVI, and (c) is the box plot of SWIR2.

5. Conclusions

The TPEM proposed by this paper was used to extract the PMC in the SRB between
1 April and 20 April 2020. This method modified an index to amplify the difference between
PMC and ground objects with the same spectral characteristics. This method obtained
0.9234 overall accuracy when applied over complex mixed underlying surfaces and reduced
the requirements of remote sensing data. Three main conditions, including large-scale
farmland, PMC mixing with the complex mixed surfaces, and PMC near the desert, were
considered for testing this method’s performance. The results showed that the user accuracy
of PMC and non-PMC are 0.9371 and 0.9094, which means high precision of classification
results. Only 0.0541 of QD and 0.0224 of AD revealed the TPEM can complete the correct
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classification of pixels. A slight adjustment of the thresholds does not significantly affect
the extraction results. Even in the worst situation, the OA can higher than 0.87, QD can
lower than 0.11, and AD can lower than 0.12. Then TPEM was used to extract the PMC in
the SRB from 2011 to 2021 to monitor local PMF area change over decade. The extraction
area was underestimated because about a quarter of the PMC and other ground objects
show similar values in the mPMCI index.

The TPEM was compared with other methods to test its effectiveness. The comparison
results show that TPEM can provide up to 0.9555 of OA only using remote sensing data
during the seeding period. However, in the case that timeliness is not critical, TPEM
may not obtain the highest extraction results. Limited by the short time window of PMC
extraction, it is necessary to obtain high spatial and temporal resolution. The former can
provide more precise ground truth and latter can provide more information during the
time window, avoiding the absence of images within the time window. Furthermore, we
did not test the performance of TPEM in other regions yet. Therefore, other ground objects
not considered may influence the effectiveness of TPEM. In future work, we would like to
analyze the regional climate response to plastic mulch.
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