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Abstract: As the amount of ground-penetrating radar (GPR) data increases significantly with the
high demands of nondestructive detection methods under urban roads, a method suitable for time-
lapse data dynamic monitoring should be developed to quickly identify targets on GPR profiles and
compare time-lapse datasets. This study conducted a field experiment aiming to monitor one backfill
pit using three-dimensional GPR (3D GPR), and the time-lapse data collected over four months
were used to train U-Net, a fast neural network based on convolutional neural networks (CNNs).
Consequently, a trained network model that could effectively segment the backfill pit from inline
profiles was obtained, whose Intersection over Union (IoU) was 0.83 on the test dataset. Moreover,
segmentation masks were compared, demonstrating that a change in the southwest side of the backfill
pit may exist. The results demonstrate the potential of machine learning algorithms in time-lapse 3D
GPR data segmentation and dynamic monitoring.
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1. Introduction

Ground-penetrating radar (GPR) is a nondestructive detection technique that transmits
high-frequency electromagnetic waves and receives the backscattering from the medium,
which is suitable for defect inspection and dynamic monitoring of urban roads. To avoid
road collapses, GPR is used to detect underground targets, including pipelines, voids,
backfill pits, and high-water-cut areas. As it is known, it is not difficult to distinguish strong
reflections from other signals, such as the reflections of metal pipes and clear boundaries of
voids [1–3]. However, in many cases, the reason defects under roads are not discovered
in time is that the radar data do not provide a strong reflection feature before the defect is
generated, but cluttered weak scattering caused by loosening or deformation of the medium
may be evident. Therefore, cases containing weak reflections with extended ranges should
be approached seriously. Furthermore, to satisfy the goal of road safety maintenance,
defects should be identified and monitored timely and properly to know if any changes
occur or if actions are required to avoid road collapses. Identifying and locating regional
features on GPR data are crucial and remain challenging tasks, because of the amplitude of
the reflections as well as the regional characteristics that must be considered, which cannot
be measured by mathematical formulas or specific values. In addition, the large amount of
time-lapse data generated by GPR monitoring introduces difficulties in data processing and
target identification. Therefore, the development of a method for the quick identification
and monitoring of targets with regional features from time-lapse GPR data is necessary.

In recent years, convolutional neural networks (CNNs) and their neural network
models have been widely applied in object recognition, image segmentation, and face and
speech recognition owing to their powerful image processing abilities. Their advantage is
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that it is not necessary to know the quantitative characteristic parameters of the target; the
network can learn the discriminant basis of the target from data from multiple trainings. In
the user layer, this is represented as end-to-end mapping from the data to the target, hiding
the complex judgment basis and quantitative criteria in the middle [4–8]. In recent years,
CNNs have been used to identify hyperbolic features [9,10], manhole covers, reflective
interfaces, soil [11,12], and landmines [13,14] in GPR data images. However, for defects
in urban roads, research on object recognition and dynamic-change monitoring using
machine learning is not comprehensive. Studies based on simulated data are insufficient,
but the plausibility of real data must be discussed. In addition, both strongly and weakly
reflected local signals should be considered, because any change in the data might indicate a
change in the dielectric constant of the underground material. Therefore, with the necessity
to identify specific obvious features and weak signals with regional characteristics, an
appropriate neural network is required, which can achieve satisfactory recognition and
segmentation results from limited GPR datasets.

U-Net is a deep learning network based on CNNs. Through powerful data augmen-
tation, a reasonable weighted loss function, and full utilization of subunit neighborhood
information, it can accurately identify image features with available annotated samples
and realize end-to-end mappings between input data and segmentation units. Compared
with other networks, it has the advantages of a simple structure, faster operation speed,
and higher accuracy [15,16].

The main purpose of this study is to discuss a fast method for interpreting and com-
paring time-lapse GPR data in monitoring weak signal targets with regional characteristics.
Firstly, the 3D GPR data acquisition and preprocessing methods are presented. Afterwards,
the used neural network, U-Net, is presented along with how we used our data to train
it. Finally, the detection results from the time-lapse dataset are compared and the results
are discussed.

2. Experiment and Methods
2.1. Field Experiment and Data

As shown in Figure 1, the experiment was conducted at the gate of a construction
site with a fresh backfill pit. Considering the material in the backfill pit may be deformed
after being crushed, a time-lapse full-coverage (TLFC) 3D GPR acquisition containing four
group lines was arranged on the sidewalk, covering the backfill pit from inline profiles
P40 to P91, as shown in Figure 2. The MobyScan-V 3D GPR system with the 30-channel
antenna arrays (Figure 3) produced by DECOD Science & Technology Pte. Ltd. (Singapore).
was used in this experiment, and Table 1 lists the acquisition parameters. Fifteen time-lapse
detection sessions were conducted from 20 May to 25 October 2019 (Table A1).

The 3D data preprocessing methods listed in Table 2 were applied to the raw 3D GPR
data, in which the first arrive disagreed with the true time zero, and useful reflection signals
were buried by strong noise (Figure A1). Firstly, an antenna lifting test was carried out
to find the position of the ground as the true zero, as shown in Figure A2. Then, time
zero correction, background removal (BGR), and frequency filtering were applied in turn
(Figure A3). Finally, correlation was used to carry out the 3D time zero normalization and
3D data combination, which can be found in Figures A4 and A5 and [17]. The 3D GPR data
cube after preprocessing is shown in Figure A6.
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Figure 3. Antenna array of the MobyScan-V. There are 16 transmitters (blue triangles) and 16 receivers
(yellow triangles). Red dots with green borders indicate the GPR channels between transmitters and
receivers. The distance between channels 15 and 16 is 10 cm, and the data here were interpolated to
achieve uniform spatial sampling.

Table 1. The technical specifications of the MobyScan-V and data acquisition parameters.

Indicators Parameters

Antenna type Ground-coupled antenna arrays
Number of channels 30

Center Frequency 2 GHz
Channels spacing (crossline) 0.05 m

Scans spacing (inline) 0.02 m
Sampling points 512

Time window 15 ns

Table 2. Preprocessing steps and parameters.

Step Processing Method Parameter/Object

Time zero correction Antenna lifting test 2 ns
Background removal (BGR) Sliding window 150 scans

Frequency filtering Butterworth filter 500–1500 MHz
3D time zero normalization Correlation Direct-coupling

3D data combination Correlation Overlapping data

2.2. U-Net Structure and Model Training

Figure 4 illustrates the U-Net architecture. The entire network presents a symmetrical
“U” shape. It consists of contracting and expansive paths, which correspond to the left and
right sides of the figure, respectively.

• Contracting path: This path is used to obtain the context information. It has four layers,
and each layer consists of two identical 3 × 3 convolutions and rectified linear unit
(ReLU) activation functions. Downsampling is performed through a 2 × 2 max pooling
operation. The number of feature channels is doubled after each downsampling. On
this path, four max pooling operations are performed to extract the feature information
from the sample.

• Expansive path: This is the upsampling part used to locate the target. A 2 × 2
convolution is applied to half of the feature channels, and then two 3 × 3 convolutions
are used, each followed by a ReLU function. In the last layer, a 1 × 1 convolution
is used to map the feature vectors to the corresponding prediction classification to
complete the data segmentation and make the size of the output data consistent with
that of the input data.
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2.3. Data Segmentation

For 3D GPR, data can be interpreted and annotated from different profiles, such as
inline, crossline, and horizontal slices. In this study, the spatial resolution of inline profiles
along the acquisition direction was higher. Therefore, the target areas in the inline profiles
of the 3D GPR data were segmented pixel-wise to generate ground truths and show the
clear borders of the target. These inline profiles with ground truths were used as the
training and testing datasets.

2.4. Accuracy Evaluation

The IoU between the segmentation and manual ground truth was applied to evaluate
the network availability, as shown in Figure 5. The prediction results can be divided into
the following two grades:

• IoU > 0.6, good result;
• IoU < 0.6, unsatisfactory result, and the segmentation is invalid.
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2.5. Mask Comparison

The changes in the targets can be determined by overlapping the masks of the time-
lapse GPR data. P1 and P2 are assumed to be masks of the same target “X” at different
times (t1 and t2, as shown in Figure 6a,b, respectively). By taking P1 as a reference overlaid
with P2, the changes are determined as two types: changed (blue and yellow masks in
Figure 6c) and unchanged areas (red masks in Figure 6c).
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Figure 6. Changes in the target are shown by overlapping the masks. (a) Segmentation mask P1;
(b) segmentation mask P2; (c) results of comparison by overlapping P1 and P2. The blue mask
marked with “S” indicates the part in P1 which is not seen at the same position in P2; the yellow
mask marked with “E” indicates the part that does not appear in P1 but is seen in P2.

3. Results

The aim of data segmentation is to track the backfill pit in the inline profiles. The masks
were compared to determine the changes in the backfill pit from 20 May to 26 September 2019.

3.1. Training and Segmentation

Data annotation was performed on the inline GPR profiles after 3D preprocessing,
as shown in Figure 7. The blue borders indicate the boundaries of the backfill pit. The
mask value within the border was set to 1, and the background was set to 0. In this study,
249 annotated profiles from Datasets (a) to (n) in Table A1 were randomly selected to train
the network, as shown in Figure 3. After training for 54.2 h on a PC with a CPU Intel(R)
Core(TM) I5-4460 @ 3.20 GHz and 8 GB of RAM (Santa Clara, CA, USA), the average IoU
of 0.96 was obtained on the 432nd training model, indicating a satisfactory segmentation of
the training dataset.
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Figure 7. Data annotation of the target backfill pit: (a) profile P44; (b) profile P54; (c) profile P69;
(d) profile P87.

All data collected and obtained on 25 October 2019 (Dataset (o) in Table A1) and their
manual annotations were used to test the 432nd network, as shown in Table 3.

Table 3. Information of the training and testing datasets.

Training Dataset Testing Dataset

Number 249 52
Sampling points of GPR data 16,434,000 3,432,000

Proportion of total data 19.5% 7.1%
Data acquisition date 20 May 2019–26 September 2019 25 October 2019

Furthermore, the predicted results of the testing dataset were compared with the
ground truth, and the IoU of the model on the testing dataset was calculated and divided
into two classes according to Section 2.4:
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1. When IoU > 0.6, a good prediction is obtained. The target region was successfully
segmented, and the borders fit well (the yellow arrows in Figure 8a–d). In a few cases,
as indicated by the red arrow on the right in Figure 8b, the output of U-Net was better
than the manual ground truth. The borders of the segmentation masks were slightly
different from the manual ground truth (the red arrows in Figure 8c,d) at times, but
the error was acceptable, with less than one wavelength.

2. When IoU < 0.6, the segmentation results are weak. Some of the segmentation
maps were incomplete, and the boundaries were incorrect, as the red arrows indicate
in Figure 8e,f.
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Figure 8. Typical examples of the accuracy of the testing dataset prediction results; the white curves
are the boundaries of the segmentation masks, and the blue curves are the boundaries of the manual
ground truth. (a) Profile P87, IoU = 0.89; (b) profile P62, IoU = 0.89; (c) profile P61, IoU = 0.87;
(d) profile P50, IoU = 0.80; (e) profile P69, IoU = 0.57; (f) profile P55, IoU = 0.64.

The average IoU of the testing dataset was 0.83, indicating that the model could
segment the target. The segmentation results of the data collected on 20 May were arranged
according to the sequence of profile numbers from small to large, as shown in Figure 9,
corresponding to west to east. In addition, the direction of each mask is from south to north.
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Figure 9. Segmentation results of data collected on 20 May. The horizontal axis represents the
y-coordinate and the number of inline profiles, and the segmentation masks of the backfill pit are
in red.

3.2. Monitoring

P50 profiles were used as an example to show the changes in the data. As shown in
Figure 10a–g, the borders were approximately “U”-shaped. However, a gradual change to
a “V” shape of the borders (yellow arrows) was observed, as shown in Figure 10h–j.
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Figure 10. Segmentation results of time-lapse data of the P50 profiles. (a–n) are the P50 profiles
from 20 May to 26 September. The date and subplot number correspond to those in Table A1. The
segmentation was not affected by interferences from multiple reflections (red arrow in (a–g)) or
a dead signal (red arrow in (j)). In a few cases, the segmentation slightly deviated from an ideal
performance (red arrow in (l)).

To further determine the changes in the 3D data, the overlapped masks on 4 June,
22 August, and 26 September are listed in a crossline direction, as shown in Figure 11, in
which changes are shown in blue and yellow, and unchanged areas in red.
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1. June 4: As shown in Figure 11a, changes in the left and right borders are noted on the
blue masks from Y = 1.95 m to Y = 2.25 m, and changes in the bottom borders can be
seen on the yellow masks from Y = 2.35 m to Y = 3.35 m.

2. August 8: As shown in Figure 11b, a significant change in the lateral boundaries can
be seen from Y = 2.10 m to Y = 2.65 m and from Y = 3.00 m to Y = 4.50 m (yellow
masks in Figure 11b). The bottom borders also change from Y = 2.10 m to Y = 2.65 m
(yellow masks) and from Y = 3.90 m to Y = 4.40 m (blue masks).

3. September 26: Significant changes are noted on the bottom borders from Y = 1.95 m to
Y = 3.70 m (yellow masks in Figure 11c). Apparently, the change in the left borders
from Y = 2.10 m to Y = 3.00 m is clearer compared to that in Figure 11a,b.
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Figure 11. Comparison between segmentation masks: (a) 4 June, at Y = 4.45 m, yellow and blue
masks within the red mask indicate the incompleteness of the reference mask rather than the change
in the target; (b) 22 August; (c) 26 September, the blue masks in the upper left at Y = 2.15 m and in the
middle at Y = 3.40 m are caused by mis-segmentation in the 26 September data, rather than changes.

4. Discussion
4.1. Did the Backfill Pit Really Change?

The time-lapse changes in this study refer to the segmentation masks in the prepro-
cessed radar data, as mentioned in Section 2.5. They provide a sense of lateral variation in
the shallow targets, but the changes cannot be accurately calculated because the two-way
travel time is not linked to depth, which is crucial information for interpreting GPR data,
as the propagation velocity is unknown. For a two-layer model with a horizontal interface,
the propagation velocity of the first layer can be calculated using the common middle
point (CMP). However, the bottom of this backfill pit was neither irregular nor clear; thus,
the speed cannot be calculated using this nondestructive detection method. Moreover,
experimental conditions prevented the sampling and laboratory analysis of the material in
the backfill pit. Given that the goal of this study was to discuss the fast segmentation of
GPR data using U-Net and provide an idea of data comparisons, the study of velocity is
not the focus of this study.
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For all time-lapse detections, we attempted to avoid rainfall and select similar dry
weather for data collection to avoid the influence of water content on speed as much as
possible. However, for the rainy season, such as August, the water content and dielectric
constant of the subgrade could be higher than during other times; thus, the main frequency
and speed of the radar signal may be reduced. On the radar profile, the position of the
upper border may be seen further downward, creating a “deepening” illusion, such as
the significant expansion of bottom borders from Y = 1.95 m to Y = 3.70 m in Figure 11c.
However, if the propagation velocity has not changed dramatically, this phenomenon must
be caused by the deepening of the backfill pit. In this case, the backfill pit may have been
refilled in August, because it expanded significantly more in September than in May, unlike
in August or earlier. Settlement may have occurred in the backfill pit after being rolled,
leading to the deformation of the road, and the subgrade may have been filled to facilitate
the passage of engineering vehicles. Nonetheless, lateral changes are still valuable since
the positions of survey lines were kept unchanged among the time-lapse detections.

4.2. Outlook

Previous studies have used neural networks to recognize targets [5] instead of seg-
mented images [15,16]. The goal of GPR is to identify the range of a target; thus, the
network should be capable of both recognition and segmentation. However, most studies
remain focused on recognizing strong reflected signals, such as diffraction waves and
antenna ringing [9,11]. This is because the result of semi-supervised segmentation is highly
dependent on ground truths, which are manually annotated. The complex signals and
variable features of GPR data introduce difficulties in annotation and segmentation; thus,
methods are expected to be applied to identify the features. For instance, the texture
feature coding method was used to extract texture-based features from GPR B-scans [9],
and the detection results from the neural network may be more satisfactory with these
strong features.

In further research, a dynamic 3D underground database should be realized using
TLFC 3D GPR. In this study, TLFC 3D GPR was successfully used to monitor a small field,
but the samples and data used to train U-Net were only from the backfill pit in this study.
That is, the neural network trained in this study may be inapplicable to targets with other
characteristics. If the time-lapse detection can be conducted in a large area to collect more
target samples, a more universal neural network model can be established to achieve the
segmentation and monitoring of multiple targets.

5. Conclusions

In this study, U-Net was used to segment the inline GPR profiles and divide the
boundary of the target backfill pit. After 432 training sessions, an effective and available
network model was obtained with IoUs of 0.96 and 0.83 on the training and testing datasets,
respectively. This network was used to segment all radar data collected from 20 May
to 26 September, and the comparison of segmentation masks with the same location but
different acquisition dates provides a method to determine the change in the target.
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Appendix A

Table A1. Dataset and acquisition date (year: 2019; date: MM. DD).

Datasets Date Datasets Date Datasets Date

(a) 05.20 (f) 08.02 (k) 08.30
(b) 06.04 (g) 08.05 (l) 09.05
(c) 06.18 (h) 08.08 (m) 09.12
(d) 07.22 (i) 08.14 (n) 09.26
(e) 07.30 (j) 08.22 (o) 10.25

Appendix A.1. Raw Data and Misalignments
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Figure A1. Three-dimensional display and time zero misalignments of GPR data. (a) The data cube
is displayed as an intensity cube. The colored arrows in (b,c) indicate the position and orientation of
the profiles in the data cube, corresponding to that in (a). (b) The red arrow indicates the time zero
misalignments of the inline, where scans were collected by one antenna. (c) The red dash line indicates
the time zero misalignments of the crossline, where scans were collected by an antenna array.

Appendix A.2. Antenna Lifting Test

This test was performed in the field prior to each survey by raising the antenna slowly
from the ground surface and then returning it to the ground while observing the reflected
waveforms as a V-shaped return on a B-scan (Figure A2a). A horizontal BGR filter was
applied (Figure A2b) to distinguish positive and negative polarity reflections. Using this
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method, the direct wave on the ground was separated from the direct wave in the air by
picking the first positive peak in the air. Note that there was a slight shift to an earlier
time position in the direct wave when the antenna was on the ground surface, as the green
dashed line shows on the right side of Figure A2b. The antenna lifting test was conducted
several times, and the average reflection time was set as the time zero.
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Figure A2. Antenna lifting test. (a) Direct wave in air (red arrow) and reflected wave on the ground
(green arrow) in the raw data. (b) BGR filter and time zero (green dashed line).
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Figure A3. Raw data and preprocessed data of inline profile. (a) Raw data. (b) After time zero
correction. (c) After BGR filter. (d) After frequency filter.
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Appendix A.4. Three-Dimensional Time Zero Normalization

The cross-correlation sequence of the direct wave between xre f (n) and xmat(n) was
calculated according to Equation (A1), where the value K is obtained when rrm is maximum.

rrm(m) =
N

∑
n=1

xre f (n)xmat(n − m) (A1)

where xre f (n) is a reference GPR signal with a known direct wave travel time, and xmat(n)
is the signal to be matched.
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Figure A4. Raw data and preprocessed data of crossline profile. (a) Raw data. (b) After 3D time
zero correction.

Appendix A.5. Three-Dimensional Data Combination and Imaging

The correlation coefficient of all the overlapping scans was calculated according to
Equation (A2).

ρrc(mr, mc) =
∑N

n=0 xr(mr, n)xc(mc, n)[
∑N

n=0 xr2(mr, n)∑N
n=0 xc2(mc, n)

]1/2 (A2)

where mr and mc are the scan numbers, N is the number of sampling points of each scan,
and xr(mr, n) and xc(mc, n) denote the reference signals and the signals to be spliced,
respectively. When the maximum value of ρrc(mr, mc) is obtained, it is considered that the
scan mc in xc corresponds to the same position of the trace mr in xr, and the scan numbers
of mc and mr are recorded as Mi and i, respectively. The scan numbers corresponding to
the same position were subtracted and averaged according to Equation (A3) to obtain the
relative offset ∆n.

∆n =
1
M

M

∑
i=1

(Mi − i) (A3)

The offset between adjacent group lines was successively calculated and moved along
the Y direction to obtain the data cube after combination.
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Figure A5. Time slice of 3D GPR data at t = 1.6 ns. The blue boxes indicate the boundaries of
two square backfill pits, and the red dash lines indicate the borders of the backfill pit which was
segmented in this study. (a) Time slice before data combination. There is a significant misplacement
at Y ≈ 2.5 m and Y ≈ 3.5 m, as data were collected from different group lines. (b) Time slice after
data combination. The misplacement was rectified by the correlation applied to the overlapping data
of adjacent group lines. The backfill pits marked by the blue boxes are clearly visible and easy to be
located on the radar slice and can be used to match the position of the time-lapse data. (c) The square
backfill pit.
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