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Abstract: Rainfall-induced landslides pose a significant threat to the lives and property of residents in
the southeast mountainous and hilly area; hence, characterizing the distribution pattern and effective
susceptibility mapping for rainfall-induced landslides are regarded as important and necessary
measures to remediate the damage and loss resulting from landslides. From 10 June 2019 to 13 June
2019, continuous heavy rainfall occurred in Longchuan County, Guangdong Province; this event
triggered extensive landslide disasters in the villages of Longchuan County. Based on high-resolution
satellite images, a landslide inventory of the affected area was compiled, comprising a total of
667 rainfall-induced landslides over an area of 108 km2. These landslides consisted of a large number
of shallow landslides with a few flowslides, rockfalls, and debris flows, and the majority of them
occurred in Mibei and Yanhua villages. The inventory was used to analyze the distribution pattern of
the landslides and their relationship with topographical, geological, and hydrological factors. The
results showed that landslide abundance was closely related to slope angle, TWI, and road density.
The landslide area density (LAD) increased with the increase in the above three influencing factors
and was described by an exponential or linear relationship. In addition, southeast and south aspect
hillslopes were more prone to collapse than the northwest –north aspect ones because of the influence
of the summer southeast monsoon. A new open-source tool named MAT.TRIGRS(V1.0) was adopted
to establish the landslide susceptibility map in landslide abundance areas and to back-analyze the
response of the rainfall process to the change in landslide stability. The prediction results were
roughly consistent with the actual landslide distribution, and most areas with high susceptibility
were located on both sides of the river valley; that is, the areas with relatively steep slopes. The slope
stability changes in different periods revealed that the onset of heavy rain on 10 June 2019 was the
main triggering factor of these group-occurring landslides, and the subsequent rainfall with low
intensity had little impact on slope stability.

Keywords: heavy rainfall; shallow landslides; TRIGRS model; spatial distribution; susceptibility
assessment; Longchuan County; Guangdong Province

1. Introduction

In recent years, an increasing number of intense rainfall events have occurred in moun-
tainous areas due to the impact of global climate change, which has dramatically increased
the frequency of global rainfall-induced landslides [1,2]. Rainfall-induced landslides are
not only widely distributed in the world but also occur frequently and cause significant
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damage to humanity [3–6]. Therefore, a good understanding of the fundamentals of rainfall-
induced landslide occurrence, distribution patterns, and susceptibility assessments can
provide useful guidance for regional disaster prevention and mitigation, and landscape
evolution [7–9].

A new landslide inventory that is generated after a major triggering event (e.g., an
earthquake, volcanic eruptions, or heavy rainfall) is referred to as an event-based landslide
inventory. Owing to the advancements in earth observation technology, such as multi-
temporal high-resolution optical satellite remote sensing, more high-quality earthquake-
induced landslide inventories have been developed. In particular, since the 2008 Wenchuan
earthquake, the establishment of coseisimic landslide inventories has made great progress.
At present, there are roughly 46 detailed coseismic landslide databases mapped as poly-
gons [10–13]. However, unlike earthquake events, the construction speed of landslide
inventories triggered by heavy rainfall events is still relatively slow, and currently there
are only a few heavy rainfall-induced landslide inventories [14–16]. The main reason is
that clouds are often a major obstacle in the affected areas, which may limit the visibility of
satellite images and thus affect the visual interpretation of rainfall-induced landslides [15].
At present, there are 16 public landslide inventories triggered by heavy rainfall events
around the world, with the majority of these landslide databases being on a small scale.
The southeast coastal region in China is economically developed and densely populated.
Influenced by monsoon rainfall, this area is also considered a landslide-prone zone [17,18].
Once landslides occur, the social and economic losses in this area will be huge. A compre-
hensive rainfall-induced landslide database not only contributes to a deeper understanding
of the event occurrence but also provides data support for the subsequent in-depth analysis
of the formation and evolution of the geological disaster chain[15,19]. However, there are
few rainfall-induced landslide inventories for a single event in the southeast coastal region,
and thus more analyses are needed for rainfall-induced landslide inventories in this area.

Rainfall-induced landslide susceptibility can provide valuable information for land-
slide risk assessment. Currently, there are two quantitative methods for assessing the
susceptibility for rainfall-induced landslides, which include the data-driven methods based
on mathematical methods and physical-based methods that couple the hydrological models
and infinite slope stability models. For the data-driven method, the relationship between
the influencing factors and the landslide occurrence are analyzed by mathematical mod-
els [20–22]. Currently, many models have been widely used in landslide susceptibility
mapping, particularly with the development of machine learning technology, such as logis-
tic regression [23,24], random forest [25], artificial neural network [26], convolutional neural
network (CNN) [27], support vector machine (SVM) [28], and decision tree [29]. However,
the outcomes of landslide susceptibility mapping based on the data-driven method could
be subject to considerable uncertainties due to errors and variability in model choice, data
selection, system understanding of weighting factors, and human judgment [30,31]. Mean-
while, the data-driven model does not possess the timeliness of emergency assessment for
a single triggering event, because it requires sufficient landslide data to establish the sus-
ceptibility assessment model. As a consequence, assessment results frequently lag behind
practical application and cannot serve the emergency assessment in a short time [32,33].
Otherwise, due to the fact that the majority of these models are trained by regional landslide
data and are thus limited by regional geological and geomorphic characteristics [14,34,35],
the data-driven model’s applicability in different areas is greatly diminished. However, the
physically based landslide susceptibility assessment can better solve the above problems.

Unlike the data-driven method, the physically based method does not take into
account actual landslide data, but rather simulates the physical process of rainfall-induced
landslide occurrence by coupling the hydrological and infinite slope models [36]. The
physically based method has been pervasively used because of its high predictive capability
and the most acknowledged feasibility for a quantitative assessment of the effects of the
individual parameters that contribute to landslide initiation [37] and it is a useful tool
for determining the susceptibility zonation of rainfall-induced shallow landslides [38].
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In addition, the wide application of GIS technology facilitates the wide application of
physical models in large areas [39,40]. Due to its preferable practicability and wide regional
applicability, physically based models are popular in the spatial prediction of regional
rainfall-induced landslides [41–45]. In recent years, some physically based models for
rainfall-induced landslide susceptibility mapping have been developed, such as the TRIGRS
model [40], the Slip model [46–48], the GIS-TiVaSS model [45,49], the GIS-TISSA model [50],
the CRESTSLIDE model [51,52], and the HIRESSS model [53–55]. Among them, the TRIGRS
model, which accounts for transient pore water pressure, can predict the impact of heavy
rainfall on groundwater changes in a short period. At present, it is the most widely used
physically-based model of slope instability [41,56–58], and has been used in many countries
around the world, including Italy, the United States, China, South Korea, and Southeast
Asia [59–64]. However, the application of the TRIGRS model in China’s southeast area is
limited so it is necessary to investigate the applicability of the model in the spatio-temporal
prediction of rainfall-induced landslides in the southeast mountainous area.

Longchuan County experienced continuous heavy rainfall from 10 June 2019 to
13 June 2019. Extensive landslides, collapses, and debris flows occurred in the villages
of Longchuan county. A total of 352 villages of Longchuan County were devastated to
varied degrees, of which Mibei village in Beiling town was the most severely hit with
1571 individuals affected, 120 buildings fully collapsed, and more than 100 houses dam-
aged. The direct economic loss of this event reached CNY 110 million, exerting a significant
impact on the normal productivity and lives of local residents. Thus, the objectives of this
study are: (1) establishing a landslide inventory including landslides induced by the 2019
Longchuan heavy rainfall event and analyzing the spatial distribution of landslides with
topographical, geological, and hydrological factors; (2) conducting the physically based
susceptibility assessment based on a new open-source tool named MAT.TRIGRS(V1.0)
for predicting the spatiotemporal distribution of rainfall-induced landslides and back-
analyzing the response of the rainfall process on the change of landslide stability.

2. Study Area

Longchuan County is situated in the northeast of Guangdong Province, spanning from
23.8◦N to 24.7◦N of latitude and from 115.0◦ to 115.6◦E of longitude, and covers an area of
approximately 3089 km2 on the surface. The study area is Beiling Town, which is located
in the north of Longchuan County and the upper reaches of Dongjiang River. The climate
in the region is subtropical monsoon with abundant rainfall and sunshine. The annual
rainfall is 1500 mm, and the average temperature is about 22 ◦C. The study area experiences
the most rainfall in May, June, and July. The geomorphic unit of the study area is a hilly
landform with an elevation range from 100 m to 1100 m (Figure 1). The mountains are steep,
and the peaks are conical due to the relatively developed hydrographic nets and strong
topographic cutting in this area. As a result, numerous “V” shaped valleys developed in
this area, with slope angles ranging from 20 to 50 degrees. The main lithology of the study
area is acid intrusive rock of Ordovician and Silurian, mainly monzogranite (O3-S1), which
accounts for more than 70% of the rock in the whole study area (Figure 2a). In addition, tuff
of Yousheng formation of Middle Cretaceous (K2ys) and quartz mica schist of Daganshan
formation of Sinian(Z2djs) also developed in this area (Figure 2a). The main land use type is
forest, which accounts for 80% of the whole study area, followed by cropland, accounting
for more than 10% (Figure 2b).
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Figure 1. Mapping shows the location and elevation of the study area; (a) Guangdong Province; (b) 
location of Longchuan county; (c) the elevation and water net distribution of the study area. 
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several large or small rainstorms every year, making it one of most vulnerable zones to 
geological disasters. From 10 June 2019 to 13 June 2019, Longchuan County suffered con-
tinuous heavy rainfall; this rainfall event triggered a large number of landslides. As far as 
local people can recollect, since the evening of the 10 June 2019, transportation has been 
disrupted, communication has been lost, and electricity has been cut off. Meanwhile, the 
settlement below the mountain was engulfed in mist, and the sound of collapses and land-
slides was constant. 

Figure 1. Mapping shows the location and elevation of the study area; (a) Guangdong Province;
(b) location of Longchuan county; (c) the elevation and water net distribution of the study area.

Due to the unique geographical and climatic conditions, Longchuan area experiences
several large or small rainstorms every year, making it one of most vulnerable zones to
geological disasters. From 10 June 2019 to 13 June 2019, Longchuan County suffered
continuous heavy rainfall; this rainfall event triggered a large number of landslides. As
far as local people can recollect, since the evening of the 10 June 2019, transportation has
been disrupted, communication has been lost, and electricity has been cut off. Meanwhile,
the settlement below the mountain was engulfed in mist, and the sound of collapses and
landslides was constant.
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Figure 2. (a) Geological map of the study area obtained from 1:200,000 geological maps published 
by China Geological Survey (http://dcc.cgs.gov.cn/, accessed on 1 July 2022); (b) the land use type 
map of the study area derived from the 10-m resolution global land cover results [65]. 
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3.1. Landslide Mapping 

The availability of high-resolution satellite images on the Google Earth (GE) platform 
allowed us to conduct a detailed visual interpretation of landslides[66,67]. The remote 
sensing images used for landslide interpretation in this study are based on the GE plat-
form. It was important that the high-resolution satellite image covered the entire study 
area, and the dates of images before and after the rainfall event were mainly in January 
2019 and January 2021. Meanwhile, given the relatively long interval between the images 
before and after the rainfall event, we obtained the Sentinel-2 images with 10 m resolution 
as a supplementary (the pre- and post-events images were 17 April 2019 and 24 September 
2019, respectively) (Figure 3). The landslide inventory was checked by Sentinel-2 images 
to ensure that the interpreted landslides were caused by the 2019 rainfall event. The reason 
for selecting these two images was that they had the closest interval between rainfall 
events without cloud cover in the study area. Landslides were identified by visual inter-
pretation and mapped as polygons. Since the study area has high vegetation coverage, 
landslides can be better delineated by satellite images before and after this event. Figure 
3 depicts the Sentinel-2 satellite images before and after the rainfall. According to remote 
sensing images, most landslides triggered by this event were small and medium-scale 
shallow landslides, and a majority of them were located near Mibei village, showing ob-
vious group-occurring characteristics (Figure 4).  

Figure 2. (a) Geological map of the study area obtained from 1:200,000 geological maps published by
China Geological Survey (http://dcc.cgs.gov.cn/, accessed on 1 July 2022); (b) the land use type map
of the study area derived from the 10-m resolution global land cover results [65].

3. Data and Method
3.1. Landslide Mapping

The availability of high-resolution satellite images on the Google Earth (GE) platform
allowed us to conduct a detailed visual interpretation of landslides [66,67]. The remote
sensing images used for landslide interpretation in this study are based on the GE platform.
It was important that the high-resolution satellite image covered the entire study area, and
the dates of images before and after the rainfall event were mainly in January 2019 and
January 2021. Meanwhile, given the relatively long interval between the images before
and after the rainfall event, we obtained the Sentinel-2 images with 10 m resolution as a
supplementary (the pre- and post-events images were 17 April 2019 and 24 September
2019, respectively) (Figure 3). The landslide inventory was checked by Sentinel-2 images to
ensure that the interpreted landslides were caused by the 2019 rainfall event. The reason
for selecting these two images was that they had the closest interval between rainfall events
without cloud cover in the study area. Landslides were identified by visual interpretation
and mapped as polygons. Since the study area has high vegetation coverage, landslides
can be better delineated by satellite images before and after this event. Figure 3 depicts the
Sentinel-2 satellite images before and after the rainfall. According to remote sensing images,
most landslides triggered by this event were small and medium-scale shallow landslides,
and a majority of them were located near Mibei village, showing obvious group-occurring
characteristics (Figure 4).

http://dcc.cgs.gov.cn/


Remote Sens. 2022, 14, 4257 6 of 26Remote Sens. 2022, 14, x FOR PEER REVIEW 6 of 27 
 

 

 
Figure 3. Mapping shows the Sentinel-2 images before and after the rainfall event; (a) satellite image 
before rainfall event taken on 17 April 2019; (b) satellite image before rainfall event taken on 24 
September 2019. 
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Figure 3. Mapping shows the Sentinel-2 images before and after the rainfall event; (a) satellite
image before rainfall event taken on 17 April 2019; (b) satellite image before rainfall event taken on
24 September 2019.
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Figure 4. (a) Aerial photograph of Mibei village after the rainfall event, houses are damaged by
rainfall-induced landslides; (b) group-occurring shallow landslides; (c) the landslide damaged the
hillside residences, and the floors on the second floor crashed on the first floor; (d) road damage
caused by landslides (Picture source: http://www.gdlctv.com/Pc/index/new_detalis.html?id=3320,
accessed on 25 June 2022).

http://www.gdlctv.com/Pc/index/new_detalis.html?id=3320
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3.2. Rainfall Data

We collected the precipitation data over the past two decades from 2000 to 2020 in
Longchuan County (Figure 5). The results show that the average rainfall remained between
1200 and 2400 mm, with periodic fluctuations. The annual rainfall in 2006 and 2017 was
unusually high, reaching almost 2300 mm or more. In comparison, the annual rainfall in 2019
was low with 1500 mm, which was roughly the same as the recent 20-year average (Figure 5a).
Comparing the monthly rainfall in 2019 with the average value over the past two decades
(Figure 5b), we also found that the rainfall from March to June in 2019 was higher than the
monthly average rainfall in the last 20 years. The precipitation in June of 2019 was 300 mm,
slightly higher than the monthly average rainfall of 250 mm in previous years.
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Figure 5. Monthly rainfall data of Longchuan County in the past 20 years from 2000 to 2020;
(a) monthly and annual average rainfall data over the last 20 years; (b) comparing the monthly
rainfall in 2019 with the average value over the last two decades.

We obtained the data for the rainfall every 12 h based on the rainfall stations of China
Meteorological Administration. Eight national rainfall stations within 50 km of the study
area were utilized for interpolation, and the most popular Kriging interpolation algorithm
was used to obtain the spatial distribution of rainfall (Figure 6). The results show that
this rainfall event occurred primarily from 10 June 2019 to 13 June 2019 (Figure 7). The
cumulative rainfall was basically the same, remaining at 210 to 220 mm, with rainfall in the
west slightly higher than that in the east (Figure 6). Figure 8 shows the distribution of daily
rainfall from 10th to 13th of June during this rainfall event. The rainfall on 10 June 2019 was
the heaviest, peaking at around 120 mm, accounting for more than half of this rainfall event.
The rainfall for the next three days was expected to be around 20–40 mm. Otherwise, the
spatial change of daily rainfall in the study area from June 10 to 13 was relatively small, and
the difference of daily rainfall of the study area was essentially maintained within 10 mm.
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3.3. Data Related to Other Influencing Factors

To assess the role of topographic, geologic, and hydrologic factors on the distribution
of rainfall-induced landslides, we obtained several terrain metrics (i.e., elevation, hillslope
gradient, and topographic relief) and lithologic and hydrological data. The elevation data
were derived from ALOS PALSAR DEM with 12.5 m resolution, which were then resampled
into a 5 m resolution based on the bilinear algorithm. The hillslope gradient and slope aspect
were derived from the DEM data. In addition, we estimated the topographic relief from the
elevation range within a 1.0 km radius. TWI was computed using GRASS GIS and the DEM
data. Drainages were also derived from DEM by AcrGIS. The road data were downloaded
from the OpenStreetMap Data (https://master.apis.dev.openstreetmap.org/export#map=
11/35.2510/103.4308, accessed on 5 June 2022). The lithology data are obtained from
1:200,000 geological maps published by China Geological Survey (http://dcc.cgs.gov.cn/,
accessed on 1 July 2022). The land use type data were derived from the 10 m resolution
global land cover results [65]. The spatial distribution of the above influencing factors was
converted into a raster format with a grid cell size of 5 m. Finally, seven influencing factors
were considered for the statistical analysis, including the elevation, hillslope gradient, relief,
slope aspect, land use type, road density, and distance to river (Figure 9). Meanwhile, the
relationship between different influencing factors and the occurrence of landslides were
analyzed by the polygon feature.

https://master.apis.dev.openstreetmap.org/export#map=11/35.2510/103.4308
https://master.apis.dev.openstreetmap.org/export#map=11/35.2510/103.4308
http://dcc.cgs.gov.cn/
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3.4. TRIGRS Model

The TRIGRS model (Transient rainfall infiltration and grid-based regional slope-
stability model) is a widely used and effective evaluation model of rainfall-induced shallow
landslide susceptibility [68,69]; the model was developed by the United States Geological
Survey (USGS) [40,70] and written by Baum et al in FORTRAN [40], and it needs specific
input parameters, mainly including rainfall parameters, soil mechanics parameters, and
hydrological parameters of the study area. Following the determination of the parameters,
the grid stability caused by the change of transient pore water pressure of each grid during
the rainfall period is calculated based on the GIS platform for the purpose of evaluating the
slope stability of all grids in a certain rainfall period.

Iverson [36] linearized the solution of the Richards equation and this serves as the
foundation for the infiltration models for wet initial conditions. It consists of a steady
component and a transient component of seepage. The steady seepage is determined by
the initial depth of the water table and steady infiltration rate. Under steady infiltration,
the slope is stable. Transient infiltration is the short-term change in pore water pressure
caused by rainfall. The infinite slope model is then applied using the computed transient
pore water pressure. The generalized solution in TRIGRS is:

ψ(Z, t) = (Z− d)β + 2 ∑N
n=1
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2

]
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[
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2[D1(t−tn+1)]
1
2

]} (1)

where ψ is the groundwater pressure head; t is time; N is the total number of time in-
tervals; Z is depth below the ground surface in the vertical coordinate direction; d is the
depth of steady-state water table; dLZ is the depth of the impermeable basal boundary;
β = cos2 δ− (IZLT/Ks), δ is the slope angle; IZLT is the steady surface flux; Ks is the sat-
urated hydraulic conductivity; InZ is the the surface flux or rainfall intensity for the nth
time interval; D1 = D0/ cos2 δ, D0 is the saturated hydraulic diffusivity; and H(t− tn) is
the Heaviside step function in which tn is the time at the nth time interval in the rainfall
infiltration sequence.

ier f c(η) =
1√
π

exp
(
−η2

)
− ηer f c(η) (2)

where er f c(η) is the complementary error function.
The model calculates infiltration (I) at each cell as the sum of precipitation (P) and any

runoff from upslope cells (Ru), with the caveat that infiltration cannot exceed the saturated
hydraulic conductivity (Ks):

I = P + Ru, i f P + Ru ≤ Ks (3)

I = Ks, i f P + Ru > Ks (4)

When P + Ru exceeds Ks in a cell, the excess is considered runoff (Rd) and is diverted
to nearby downslope cells.

Rd = P + Ru − Ks, i f P + Ru − Ks ≥ 0 (5)

Rd = 0, i f P + Ru − Ks < 0 (6)

The TRIGRS model calculates the slope stability using an infinite-slope stability analy-
sis (Equation (7)), as described in Iverson [36]. The ratio of resistant basal coulomb friction
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to gravitationally induced downslope basal driving stress characterizes the instability of an
infinite slope in the failure analysis [71]. This ratio Fs, is computed at depth Z by

Fs(Z, t) =
tan ϕ′

tan δ
+

c′ − ψ(Z, t)γw tan ϕ′

γsZ sin δ cos δ
(7)

where c′ is the cohesion of the soil, ϕ′ is the friction angle, γs is the unit weight, and
γw is unit weight of groundwater.

The flow chart of this study is shown in Figure 10.
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4. Rainfall-Induced Landslide Inventory
4.1. Basic Characteristics

This rainfall event triggered 667 landslides over an area of 108 km2, and the majority
of them (552 landslides) occurred in the Mibei and Yanhua villages (Figure 11a,b). The
types of landslides were various, including shallow landslides combined with a small
number of flowslides, rockfalls, and debris flows with a total landslide area of 0.75 km2.
The largest landslide area was approximately 20,000 m2, the smallest area was 50 m2,
and the average landslide area was about 1100 m2. According to the statistics, there
were 288 landslides with an area of less than 500 m2, accounting for approximately 43%
of all landslides. There were 291 landslides with an area of 500~2000 m2, accounting
for approximately 44%. The number of landslides with an area of 2000~5000 m2 and
> 5000 m2 was 71 and 17, respectively (Figure 10).
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We calculated the landslide number density (LND) and landslide area density (LAD)
within a 1.5 km-radius moving window using a Gaussian density kernel function. The
LND and LAD maps indicated that the maximum LAD and LND of the study area were
9.5% and 78/km2, respectively (Figure 11). Landslides had obvious cluster distribution
characteristics, and a large number of landslides were concentrated within 2 km of the
Mibei Village (Figure 12).

4.2. Factor Analysis

In order to analyze the relationship between different influencing factors and the oc-
currence of landslides, we calculated the frequency distribution of landslides and landscape
(i.e., non-landslide area) and the LAD of different influencing factors. Figure 13 shows
the frequency density distribution of landslide and non-landslide areas, and Figure 14
shows the LAD in different intervals of six influencing factors (the higher the LAD, the
more likely the landsliding will occur). For elevation, the frequency density distribution
of landslide area and non-landslide area was basically the same (Figure 13a), the peak
LAD was situated at elevations from 300 to 450 m, indicating that landslides were more
likely to occur within this elevation range (Figure 14a). For the slope angle, the landscape
area was clustered between 5 and 20◦, while most of the landslides occurred on slopes
with the inclination of 15–35◦ (Figure 13b). Overall, the LAD increased with the increase
in the slope angle and was described by an exponential relationship of y = e(0.21+0.08x),
(where x is the slope angle and y is the LAD, Figure 14b), suggesting that with the increase
in the slope angle, the landslide occurrence possibility also increased. In terms of topo-
graphic relief, the relief of non-landslide area was primarily concentrated in the 200~250
m range, whereas the landslide area was primarily clustered in the range of 250~350 m
(Figure 13c). Overall, there was a negative logarithmic relationship between the LAD and
relief, indicating that the LAD decreased with the increase in relief (Figure 14c). On the
part of TWI, landslides were most commonly seen in the range with TWI values between
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4 and 6, and there was a positive exponential relationship between the LAD and TWI of
y = e(−12.16+1.18x) (where x is the TWI and y is the LAD), and the LAD increased as the
TWI increased (Figure 14d). For road density, landslides were primarily distributed in
the road density interval between 2 and 4 (Figure 13d). In general, LAD and road density
had a linear relationship of y = 0.14x + 0.45 (where x is the road density and y is the
LAD), which shows that landslides were more likely to occur in areas with a high road
density (Figure 14e). For the distance to river, landslides were more likely to occur in the
range of 100~400 m, and there was no obvious correlation between the LAD and the river
distance (Figure 14f).
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areal density (LAD); (a) elevation; (b) slope angle; (c) topographic relief; (d) TWI; (e) road density;
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Figure 15 shows the statistical results of the landslides and the slope aspect. Figure 15a
shows the frequency density of the landslides and landscape (i.e., non-landslide area) on
different slope aspects. The result demonstrates that the non-landslide area was evenly
distributed in all aspects, but most of the landslide area was concentrated in the aspect of
110◦~180◦ (SE to S). The statistical results of LAD show that the peak LAD of 1.4% was
present at the aspects from SE to S for the landslides.

Figure 16 shows the distribution of the landslide and non-landslide area, and the
average landslide area in each land use unit. The result shows that the predominant land
type was forest, which accounts for 80% of the study area, followed by cropland land,
which accounts for more than 10%. The area of urban area and bare land was less than
1%. Among all land types, shrubland was the most prone to landslides, with roughly 10%
of landslides occurring in the 5% area. Landslides were the least developed in cropland,
maybe due to the relatively gentle slope of this unit. Furthermore, statistics on the average
landslide area of different units suggest that bare land had the largest average landslide
area, with more than 1600 m2, followed by forest land, which had an average landslide
area of 1200 m2, and cropland had a relatively small average landslide area, only 600 m2.
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5. Physically Based Landslide Susceptibility Assessment
5.1. Brief Description of MAT.TRIGRS(V1.0)

To address the issues of the manual modification of plentiful model parameters and
complex data processing in the traditional TRIGRS model, Ma, et al. [72] proposed a new
TRIGRS model using Matlab®programming. It can directly read the grid data of TIF
format as the input, and then directly exports the prediction results of grid files, which
greatly simplifies data preparation and parameter setting. It includes the script files INPUT
DATA.m and TRIGRS.m. The INPUT DATA.m file is used to read the TIF input files, and
TRIGRS.m is the executable program that can be used to calculate the pressure head and
Fs. The minimum Fs and the corresponding pressure head are generated in the TIF format
by calculating the pressure head and Fs at various soil depths. More description can be
obtained in [72].

In the physically based model, in order to obtain accurate landslide prediction results,
sufficient and accurate input data are required [68,73–75]. For the soil thickness distribution,
the Z-model developed by Saulnier, et al. [76] was used to evaluate the soil thickness.
We assumed that the maximum thickness of the soil in the study area was 5 m and the
minimum thickness was 0.5 m based on previous studies [17,77]. Soil thickness can be
estimated and calculated by Equation (8). The bedrock in the study area is monzogranite
(O3-S1), and the landslide occurred primarily in the weathered soil layer on the bedrock’s
surface. The soil type of the weathered soil layer is sandy clay loam. Therefore, combined
with previous studies [17,52,78], we assigned the corresponding values to mechanical and
hydrological parameters including cohesion, internal friction angle, and soil weight of this
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soil type (Figure 17 and Table 1). Based on previous experience [57,79], saturated hydraulic
diffusivity D0 was set to D0 = 200Ks and the initial surface flux (IZLT) was generally less
than the Ks to one power or more and was set to IZLT = 0.01Ks.

hi = hmax −
(

Zi − Zmin
Zmax − Zmin

)
(hmax − hmin) (8)Remote Sens. 2022, 14, x FOR PEER REVIEW 18 of 27 
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Table 1. Mechanical properties of the soil.

Input
Parameters

Cohesion
(Kpa)

Friction Angle
(◦)

Unit Weight
(kN/m3)

Saturated
Hydraulic

Conductivity (m/s)

29 20 15 6.59 × 10−6

Simultaneously, in order to account for the uncertainties in the physical process that
lead to slope failure, the Monte Carlo simulation, which is a robust and well-known
approach in applications concerning probability analyses and reliability studies, was used
in this study [56,80]. We considered the uncertainties of two main parameters (cohesion
and internal friction angle) that primarily influence the slope failure. To characterize the
probability density function (PDF) of the two random variables, the normal PDF was
adopted. We assumed that the average and standard deviation of the cohesion were 29 kPa
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and 9 kPa and those of the internal friction angle were 20◦ and 6◦. Based on the Monte Carlo
simulation, the input data were calculated by the TRIGRS model, yielding 1000 predicted
pictures of potential landslides in the study area. Finally, the slope failure probability (Pf)
of the study area was obtained.

5.2. Landslide Susceptibility Assessment

Figure 18 shows the distribution of the average value of 1000 predicted pictures
calculated by rainfall data over different time periods. From the calculation results, we
can observe that the Fs of all raster cells were greater than that before the rainfall event,
indicating that all slopes were stable (Figure 17a). In addition, after 12 h of the rainfall
(at 8:00 on 10 June 2019) 12-h rainfall reached 86 mm), the Fs of some grid cells in the
study area decreased. Particularly, some grid cells with a large slope angle began to fail
(Figure 17b). Then, although continuous rainfall occurred in the subsequent stage (after
11 June 2019), the change of Fs in the study area was relatively small, and few new grid
units became unstable.
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We calculated the Fs results in the various slope interval over different time periods
(Figure 19). The result shows that the Fs of the grids with slope angles between 30 and 40◦

was mostly distributed between 1.3 and 2.5, with an average value of around 1.6. After
the onset of heavy rain on 10 June 2019, the Fs of raster cells rapidly decreased, and the Fs
of most grids ranged between 0.9 and 1.7, with an average value of about 1.2. From 8:00
on 10 June 2019, although there was rainfall every day at a subsequent stage, the average
rainfall was less than 2 mm/h. The low rainfall intensity had a little impact on the slope
stability. Rainfall increased to some extent on 12 June 2019, reaching 45 mm in 12 h, and the
Fs decreased slightly. For grids with a slope larger than 40◦, we also found the same trend
that the Fs of most grid units decreased rapidly after heavy rainfall, and then basically
remained unchanged. Overall, the Fs of grids with a slope greater than 40 degrees was
much smaller than grids with a slope between 30 and 40 degrees.
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Figure 20 shows the probability distribution of slope failure in different time periods.
Obviously, the prediction results of Pf were roughly consistent with the actual landslide
distribution. Most areas with a high probability (blue areas) were located on both sides of
the river valley, that is, the areas with relatively steep slopes. Before rainfall, almost all the
grids in the study area were less than 0.1, indicating that the slope before rainfall was stable.
After 12 h of rainfall (at 8:00 on 10 June 2019), the area with steep slopes began to show the
instability phenomenon, and the Pf of some grids reached more than 0.6. In the following
continuous rainfall, with the decrease in rainfall intensity, there was a slight increase in the
area with a high probability of failure.
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To quantitatively analyze the susceptibility results, we counted the class area, landslide
area, and the corresponding LAD of different susceptibility classes before and after rainfall
(Figure 21). Based on the natural breaks, the susceptibility level was divided into four
classes (i.e., very low, low, moderate, and high). The result shows that before the occurrence
of rainfall, most areas belonged to the low susceptibility area, and the majority of landslides
were concentrated in very low and low susceptibility areas. With the occurrence of rainfall,
the area of low susceptibility areas decreased, while the area of high susceptibility areas
increased. The statistical result reveals that 12.1% of the total landslides occurred in the
25.0% of the area which were classified as moderate and high. Meanwhile, the LAD
increased with the increase in the susceptibility level, which also shows that the model can
effectively predict the potential landslide-prone zone.
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6. Discussion

China’s southeast area is situated in a subtropical monsoon climate zone with frequent
typhoons and rainstorms. The most common types of geological hazards in this area
are landslides and debris flows caused by rainfall, which have the characteristics of a
small scale of individual hazard point, a large number of groups, and a wide distribution
range [18,19]. In mountainous areas, the effect of the orographic amplification of rainfall and
the projection of rainfall-vector on hillslopes [81,82] might result in the windward hill-slope
receiving more rainfall, leading to more landslides on the hillslope scale [83]. Due to the
influence of the monsoon depression and tropical cyclone, the southeast monsoon prevails
in the Longchuan area during the summer (June and July). The landslide distribution
of this rainfall event indicates that the southeast and south aspect hillslopes are more
prone to collapse than the northwest-north aspect ones (Figure 14). The main reason for
this phenomenon is that the south slope is mostly windward, which causes more rainfall
and splash erosion in the area. Otherwise, the bedrock weathering degree of the south
slope will also be high due to the influence of environmental factors such as soil moisture
content, surface temperature, light time, and so forth, leading to relatively weak mechanical
parameters of rock and soil mass. Therefore, under the condition of heavy rainfall, the
south slope is more prone to landsliding.

Slope angle is an important topographic factor affecting the occurrence of landslides.
From the spatial distribution of the landslides, we can observe that the landslides were
mainly distributed in low mountainous areas, with the sections at elevations within
300~450 m and slopes ranging from 15 to 35◦ (Figure 12). The LAD increased with the
increase in slope angle and was described by an exponential relationship, indicating that
the landslides of this event more easily occurred in areas with steep slopes (Figure 13b).
TWI reflects how surface morphology affects soil groundwater level and moisture content,
which is represented by a theoretical measure of the accumulation of flow [84,85]. Accord-
ing to the statistical results, there was an exponential relationship between the LAD and
TWI, and the LAD increased as the TWI value increased. Especially when the TWI was
greater than 10, the LAD increased rapidly (Figure 14f). Higher soil moisture causes higher
pore water pressure and reduces the strength of rock and soil mass. As a result, when it
rains, the pore water pressure in these areas rises rapidly, resulting in slope failure.

Anthropogenic factors (such as land-use change, deforestation, hill cutting, etc.) play
a significant role in the initiation of landslides in active mountain ranges [86–88]. The
construction of roads has significantly altered the slope stability of mountainous areas,
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making them prone to landslides. When a road is built, the toe of the slope is excavated or
the weight of the slope is increased, and the overall stability above the slope is reduced,
resulting in the occurrence of new landslides or the reactivation of old landslides[89]. From
Figure 13d, we can observe that the landslides of this event were more likely to occur in
areas with high road density, illustrating that anthropogenic factors have accelerated the
instability of the slope in this area. Furthermore, in the Longchuan area, the majority of local
residents have excavated mountains to build houses, leading to a number of nearly vertical
artificial slopes. Meanwhile, human activities will fragment surrounding natural slopes
and increase the degree of rock weathering, which will also exacerbate slope instability in
mountain areas.

The formation lithology of the slope is the material basis of landslides. Granite
layers are one of the most common strata in China’s southeast coastal regions. Long-term
weathering of granite results in widely distributed residual soil layers. For the Longchuan
area, the bedrock is monzogranite (O3-S1), and the landslides occurred primarily in the
weathered soil layer on the bedrock surface [17,77]. The major influence depth of heavy
rainfall was limited to the superficial zone of slopes due to the difference in rainfall intensity
and permeability of granite residual soil. This is why the shallow surface zone was severely
affected by landslides [17]. A saturated seepage field was formed in the shallow surface
zone of slopes as a result of prolonged heavy rainfall. The mechanical strength of saturated
soil diminished, and slide failure occurred at the shallow surface saturation zone.

7. Conclusions

In this work, we established a landslide inventory including all the landslides induced
by the 2019 Longchuan heavy rainfall event in Guangdong Province, China. We described
the topographical, geological, and hydrological control of landslide hazards. Furthermore,
we conducted the physically based susceptibility assessment of shallow landslides based
on the MAT.TRIGRS (V1.0) tool. The following conclusions can be drawn: (1) This rainfall
event triggered about 670 landslides with a total area of 0.75 km2; the landslides had obvious
cluster distribution characteristics, and a large number of landslides were concentrated
within 2 km of the Mibei village. (2) The landslide abundance was closely related to slope
angle, TWI, and road density but had a low correlation with elevation and distance to rivers.
Among them, the LAD increased with the increase in the slope angle and TWI and was
described by an exponential relationship. Otherwise, the statistical results of the landslides
and the slope aspect showed that most of the landslide area was concentrated in the aspect
of 110◦~180◦ (SE to S). (3) The physically based susceptibility assessment results indicated
that the prediction results were roughly consistent with the actual landslide distribution,
and most areas with a high susceptibility were located on both sides of the river valley. The
onset of heavy rain on 10 June 2019 was the main triggering factor of this group-occurring
landslides. Our study will be beneficial for understanding the distribution pattern and
cause of rainfall-induced shallow landslides in the Longchuan area, and it can provide
data and technical support for the prevention of rainfall-induced geological disasters in the
southeast mountainous area of China.
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