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Abstract: Rainfall erosivity is an important indicator for quantitatively representing the erosive power
of rainfall. This study expanded three satellite-based precipitation products (SPPs) for estimating
and mapping rainfall erosivity in a subtropical basin in China and evaluated their performance
at different rainfall erosivity intensities, seasons, and spaces. The results showed that the rainfall
erosivity data from GPM-IMERG had the smallest errors compared to the estimates from rain gauge
data on monthly and seasonal scales, while data from PERSIANN-CDR and TRMM 3B42 significantly
underestimated and slightly overestimated rainfall erosivity, respectively. The three SPPs generally
presented different strengths and weaknesses in different seasons. TRMM 3B42 performed best
in summer, with small biases, but its performance was less satisfactory in winter. The precision
of estimates from GPM-IMERG was higher than that from TRMM 3B42; the biases, especially in
winter, were significantly reduced. For different intensities, PERSIANN-CDR overestimated light
rainfall erosivity but underestimated heavy rainfall erosivity. In terms of space, TRMM 3B42 and
GPM-IMERG correctly presented the spatial pattern of rainfall erosivity. However, PERSIANN-CDR
tended to be less skillful in describing its spatial maps. Outcomes of the study provide an insight
into the suitability of the SPPs for estimating and mapping rainfall erosivity and suggest possible
directions for further improving these products.

Keywords: satellite-based precipitation product; TRMM 3B42; PERSIANN-CDR; GPM-IMERG;
rainfall erosivity

1. Introduction

Soil erosion and soil loss caused by rainfall is a global ecological and environmental
issue [1]. Soil erosion may deteriorate soil fertility and land productivity, lead to land degra-
dation, and negatively affect the water quality, sustainable agricultural production, carbon
sequestration, and reservoir capacity [1–4]. Severe soil erosion has resulted in significant
environmental deterioration and threatened global food security and the development
of human society [1,5]. Moreover, mounting evidence indicates that global warming is
accelerating the hydrological cycle and increasing the inhomogeneity and variability in
the spatial and temporal distribution of precipitation. Although extreme precipitation has
decreased in some regions, the frequency and intensity of torrential rains have increased in
others [6–10], which forebodes increasing soil erosion rates and the aggravation of soil loss.

Rainfall, topography and land use, and cover change are important factors influencing
soil erosion, including the vegetation cover, soil properties, slope, characteristics of runoff,
and climatic conditions [2,11–13]. Rainfall erosivity, as a key indicator for quantitatively
representing the erosive power of rainfall, combines the effects of various rainfall features
(intensity, duration, and amount) [14–16]. It can directly reflect and measure the degrees
of raindrops that erode the soil [2,16,17]. Thus, rainfall erosivity is widely included in
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numerous quantitative prediction models of soil erosion and sediment yield [18], includ-
ing the Universal Soil Loss Equation (USLE), as well as its revised version (RUSLE and
RUSLE2) [19–21], the European Soil Erosion Model (EUROSEM), and the Soil Erosion
Model for Mediterranean regions (SEMMED) [22,23]. Moreover, rainfall erosivity can
identify areas vulnerable to soil erosion or hotspot areas with higher erosivity potential [24],
where soil conservation structures or other appropriate measures are urgently needed
to control water-induced erosion [25,26]. Accordingly, the accurate estimation of rainfall
erosivity and the mapping of its spatial pattern are particularly important for soil erosion
risk assessment and soil loss prevention, and also critical for land-use planning and agri-
cultural management [27]. Actually, such efforts have been made in many areas across the
world [1,2,28,29]. In China, several studies on this issue have been conducted, either on
the national scale [15,27,30,31] or on the regional scale, such as in Beijing [32], the Yunnan
Plateau region [24], the Chinese Loess Plateau [33], and the dryland regions [34].

Recent developments in satellite technology and corresponding retrieval algorithms
for rainfall have greatly improved the quality and accuracy of satellite-based precipitation
products (SPPs) [35]. Several SPPs provide reliable precipitation data with wide spatial
coverage, high spatiotemporal resolution, and near real-time availability. Numerous re-
searchers have examined the quality of SPPs in various regions of the world. Levizzani
and Cattani presented an overview of the current status of the satellite remote sensing
of precipitation and identified some obvious gaps and future directions of satellite mis-
sions [36]. Li et al. evaluated and compared two widely used high-resolution SPPs (TRMM
3B42 and PERSIANN) with rain gauge data in the Poyang Lake basin and investigated
their spatial and temporal characteristics, including their relationship with the evaluation
and slope [37]. Chen and Li, Tang et al., and Guo et al. validated that the accuracy of
GPM-IMERG precipitation estimates was greatly improved compared to other SPPs in
China [38–40]. Similar studies have also been conducted in Canada, Pakistan, Singapore,
Bolivia, and Austria [41–45]. SPPs have been recognized as a good alternative to traditional
rain gauge observations in many research fields, such as for extreme precipitation analy-
sis [46,47], hydrological modeling [48–50], drought and flood monitoring [51,52], rainfall
characteristics [53], and weather processes [54]. Therefore, high-resolution SPPs have great
potential and inherent advantages for the large-scale mapping of rainfall erosivity [55].

Several studies have applied SPPs for rainfall erosivity estimation and evaluated their
applicability and performance in various regions. Vrieling et al. applied Tropical Rainfall
Measuring Mission (TRMM) data (3B42) for estimating and mapping rainfall erosivity in
Africa [56]. Similar studies were subsequently conducted in different areas on national
or regional scales, including in Australia, Austria, China, and the United States [55,57–59].
Further, Li et al. quantified seasonal and annual rainfall erosivity using different TRMM
rainfall products (3B42 3-hourly, daily, and 3B43) in a subtropical basin in China [60]. Teng
et al. merged TRMM 3B42 data and daily rain gauge observations to estimate rainfall erosivity
across China and further improved the accuracy of rainfall erosivity [58]. Chen et al. evaluated
and compared the applicability of TRMM and its successor, the GPM-IMERG precipitation
product (Integrated Multi-satellite Retrievals for Global Precipitation Measurement Mission),
for mapping rainfall erosivity in China [16]. In addition, Kim et al. suggested a new approach
to depict the spatial pattern of rainfall erosivity using the CMORPH precipitation product
(CPC morphing technique) [55]. These preliminary studies suggest that SPPs have great
potential to estimate and map rainfall erosivity with relative accuracy. On the other hand,
numerous studies have shown that the accuracy of SPPs is affected by the regional topography,
rainfall types (i.e., convective or stratiform), and several other climatic factors [61,62], so
different SPPs may show various levels of accuracy in different areas, seasons, or rainfall
intensities. However, few of the previous studies have focused on the performance of SPPs in
various erosivity intensities and different seasons when they were used to estimate and map
rainfall erosivity. The strengths and weaknesses of different SPPs for estimating and mapping
rainfall erosivity remain unclear [24], which is not conducive to (or even has hindered) the
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further application of SPPs. It is therefore essential to fully assess the performance of SPPs for
mapping rainfall erosivity at different rainfall erosivity intensities, seasons, and spaces.

The Poyang Lake Basin, with its fertile soil and rich grain products, is an important
agricultural production base in China. However, the basin is suffering from serious soil
erosion and farmland degradation [63]. The increasingly serious soil erosion and soil loss
have significantly affected local agricultural production and even threatened national food
security to a great extent [64]. It is urgently needed in this region to apply high-resolution
SPPs to estimate and map rainfall erosivity and to quickly identify the critical areas prone
to erosion. This has become a vital prerequisite for soil erosion control, soil loss prevention,
sustainable land-use planning, and agricultural management [1,2,24]. Therefore, the objectives
of the study are (1) to estimate monthly, seasonal, and annual rainfall erosivity and map its
spatial pattern in a subtropical basin in China (Poyang Lake Basin), using three widely used
SPPs, i.e., TRMM 3B42, GPM-IMERG, and PERSIANN-CDR (Precipitation Estimation from
Remote Sensing Information using Artificial Neural Networks-Climate Data Record); and
(2) to explore the biases distribution and evaluate their performance and accuracy for different
rainfall erosivity intensities, seasons, and spaces, compared to the estimates from rain gauge
observations. The results of the study can provide useful references and deep insight into the
suitability of SPPs for estimating and mapping rainfall erosivity.

2. Materials and Methods
2.1. Study Area

The Poyang Lake Basin (PLB) is located in the middle reaches of the Yangtze River, China
(24◦32′–29◦58′N and 113◦45′–118◦29′E) (Figure 1) and covers a huge area of 16.22 ×104 km2.
There are five rivers in the basin (namely, the Ganjiang River, the Xinjiang River, the
Fuhe River, the Raohe River, and the Xiushui River), which converge to form the largest
freshwater lake in China. The basin is characterized by a subtropical monsoon climate
with frequent extreme precipitation events. April–June is the rainy season, and higher than
50% of the annual total rainfall occurs during this period. The topography of the basin is
complex, and the elevation varies from 2200m in the mountainous area to about 30m in
the alluvial plains. Moreover, the soil type is mainly red soil, which is easy to erode with
low infiltration rates [65]. According to a recent remote sensing survey [64], about 20.03%
(3.35 × 104 km2) of the watershed area is suffering from soil erosion and land degradation.
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2.2. Data

Three popular high-resolution SPPs are used for estimating and mapping rainfall ero-
sivity in this study, including the TRMM 3B42 V7, GPM-IMERG V06 Final, and PERSIANN-
CDR products. These precipitation products provide reliable rainfall data with different
temporal resolutions (up to 0.5–3 hourly) and high spatial resolutions (0.1–0.25◦), which
have been widely used in many hydrological and meteorological studies.

The TRMM satellite was launched in 1997 to explore and monitor tropical precipitation
conditions [66,67]. TRMM carried multiple rain sensors and provided rainfall estimates
with a temporal resolution of 3 h and spatial resolution of 0.25◦ × 0.25◦ at a global coverage
area of 50◦S–50◦N, from January 1998 to December 2019. TRMM 3B42 V7, as the most
representative level-3 SPP, has been validated to have satisfactory accuracy in many regions
of the world [66].

The GPM project (Global Precipitation Measurement Mission), as the successor of
TRMM, commenced in 2014 to provide a new generation of precipitation measurements
with higher spatiotemporal resolution [68]. IMERG is a new algorithm of GPM for pre-
cipitation estimation, which integrates information from any satellite in a specific time
and space to estimate the precipitation [69]. The GPM-IMERG products have advantages
compared to TRMM in terms of temporal resolution (0.5 h), spatial resolution (0.1◦ × 0.1◦),
and coverage area (60◦S–60◦N). More importantly, the latest Version 6 release can fuse
precipitation estimates from the TRMM product during 2000–2014 with new estimates
from the GPM satellite to extend the IMERG precipitation estimates from June 2000 to the
present [69].

PERSIANN is a satellite-based precipitation retrieval algorithm, which uses neural
network function classification procedures to convert the infrared brightness temperature
image at each 0.25◦ × 0.25◦ pixel, provided by geostationary satellites, to the rainfall
rate [70]. PERSIANN-CDR is generated, based on GridSat-B1 infrared data, by the PER-
SIANN algorithm and calibrated with the Global Precipitation Climatology Project monthly
products (GPCP v2.2) [71]. PERSIANN-CDR has provided daily rainfall estimates at a
0.25◦ × 0.25◦ spatial resolution at global coverage of 60◦S–60◦N from 1983 to the present.
This dataset supports climatologists, hydrologists, and hydro-meteorologists in various
forms of climate research [71].

Specifically, the daily TRMM 3B42 V7 and GPM-IMERG V06 Final products from
1 January 1998 and 1 June 2000, respectively, to 31 December 2019 were used to calculate
rainfall erosivity in this study. These products are freely available at https://disc.gsfc.nasa.
gov/datasets (accessed on 1 May 2021). The PERSIANN-CDR daily rainfall estimates, from
1 January 1998 to 31 December 2019, were selected after considering the length of data
available from the TRMM and GPM-IMERG products. The PERSIANN-CDR precipitation
product is freely available at https://www.ncei.noaa.gov/erddap (accessed on 1 May 2021).
In addition, the daily observed rainfall data are collected from 76 traditional meteorological
stations in the PLB during the same period (from 1 January 1998 to 31 December 2019). The
qualities of these observed rainfall data have been proven in numerous previous studies
and can be used to evaluate and validate the accuracy of the SPPs [37,60,72].

2.3. Methodologies
2.3.1. Rainfall Erosivity

Zhang et al. developed and improved a quantitative method based on daily rainfall
data for calculating rainfall erosivity [73]. This model has been widely applied on the re-
gional or national scale in China, with an average relative error of only 4.2% [74]. Moreover,
this model was recommended for the first national survey of soil erosion and soil loss in
China and delivered a good performance [75]. Thus, this model is applied in this study to
estimate the variation of rainfall erosivity. The formula of the model is as follows [73]:

REi = α
k

∑
j=1

(
Pj
)β

(1)

https://disc.gsfc.nasa.gov/datasets
https://disc.gsfc.nasa.gov/datasets
https://www.ncei.noaa.gov/erddap
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where REi is the rainfall erosivity for i half-month (MJ·mm·ha−1 h−1); each month is
divided into two parts: the first part comprises the period from day 1 to 15, and the second
part is the rest of the month; Pj is the erosive rainfall, and 12mm/day is considered as the
threshold of erosive rainfall in China, according to the analysis of rainfall characteristics by
Xie et al. [76]. For daily rainfall of less than the threshold value of 12mm, Pj is set to be 0. α
and β are empirical coefficients and they can be determined by the following equations [73]:

α = 21.586β−7.1891 (2)

β = 0.8363 +
18.177
Pd12

+
24.455
Py12

(3)

where Pd12 and Py12 are the average erosive rainfall on the daily and annual scales during
the study period.

In addition, the erosivity density represents the erosivity per rainfall unit and can be
calculated from the ratio of rainfall erosivity to rainfall on a specific time scale (i.e., monthly,
seasonal, or yearly) (MJ·ha−1 h−1) [77]. The erosivity density is estimated as follows:

EDi =
REi
Pi

(4)

where EDi is the erosivity density for the i given month, season or year; REi and Pi are the
accumulated rainfall erosivity and erosive rainfall, respectively, during the same period.

2.3.2. Performance Evaluating Metrics

The four most commonly used evaluating metrics were selected to quantitatively
assess the performance and accuracy of the mentioned three SPPs for estimating rainfall
erosivity, including the correlation coefficient (R), root mean square error (RMSE), mean
error (ME), and relative bias (BIAS). These evaluating metrics are used to measure the
consistency of rainfall erosivity from the SPPs with that from the rain gauge data, and also
to evaluate their deviation degrees and systematic biases. These evaluating metrics can be
determined by the following equations:

R =
∑n

i=1
(

REsi − REs
)(

REgi − REg
)√

∑n
i=1 (REsi − REg)

2 ·
√

∑n
i=1 (REgi − REg)

2
(5)

ME =
1
n

n

∑
i=1

(
REsi − REgi

)
(6)

RMSE =

√
1
n

n

∑
i=1

(REsi − REgi)
2 (7)

BIAS =
∑n

i=1
(

REsi − REgi

)
∑n

i=1 REgi
× 100% (8)

where REsi is the rainfall erosivity obtained from the SPPs (i.e., TRMM 3B42, PERSIANN-
CDR and GPM-IMERG); REgi is the rainfall erosivity obtained from the rain gauge data;
REs and REg represent the average values.

Moreover, another four statistical indicators were adopted to evaluate the performance
of each SPP in depicting light and heavy rainfall erosivity: the frequency bias index (FBI),
probability of detection (POD), false alarm ratio (FAR), and equitable threat score (ETS).
These statistical indicators are calculated based on a contingency table with different
thresholds on monthly and seasonal scales. Specifically, the FBI indicates whether the
SPPs overestimate (with FBI > 1) or underestimate (with FBI < 1) the rainfall erosivity;
the FAR represents the fraction of rainfall erosivity which are actually false alarms; the
POD provides the proportion of correctly estimated rainfall erosivity; the ETS gives the
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fraction of rainfall erosivity which is correctly detected [78]. These evaluating metrics have
been widely used in numerous studies and can provide a powerful tool for the accurate
evaluation of rainfall erosivity detection [79]. The values of these evaluating indices are
calculated as follows:

FBI =
a + b
a + c

(9)

POD =
a

a + c
(10)

FAR =
b

a + b
(11)

ETS =
a− He

a + b + c− He
(12)

He =
(a + b)(a + c)

N
(13)

where a is the number of correct rainfall erosivity results obtained from the SPPs; b rep-
resents the number of false detections (presented in the estimates from the SPPs but not
in the estimates from the rain gauge data); c means the opposite of b—it is the number of
omitted signals (estimates not detected by the SPPs); N is the total number of estimates.

3. Results
3.1. Intra-Annual Distribution and Seasonal Variation

The monthly rainfall erosivity and erosivity density in the PLB were estimated, based
on the TRMM 3B42, PERSIANN-CDR, and GPM-IMERG precipitation products, respec-
tively. Their consistency, deviation degrees, and systematic biases were compared to the
estimates from rain gauge data and are summarized in Table 1. It is seen that the average
monthly rainfall erosivity estimated from the rain gauge data was 884.2 MJ·mm·ha−1 h−1,
compared to 983.5, 577.9, and 853.4 MJ·mm·ha−1 h−1 from the three SPPs, respectively,
which suggests that the GPM-IMERG precipitation product produced the closest estimates
to that of the gauge-based rainfall erosivity, while the PERSIANN-CDR significantly under-
estimated and the TRMM 3B42 slightly overestimated the rainfall erosivity. The R-values
between the rainfall erosivity estimated from the three SPPs and that from the rain gauge
data were all high, at 0.89, 0.90, and 0.90, respectively, indicating that all three SPPs effec-
tively captured the changing characteristics of monthly rainfall erosivity. However, large
errors were presented in estimates from the PERSIANN-CDR precipitation product, with
the ME of −306.3 MJ·mm·ha−1 h−1, and BIAS of −34.6%. Relatively, the rainfall erosivity
obtained from the GPM-IMERG precipitation product showed the smallest values of ME,
RMSE, and BIAS.

Table 1. Performance comparison of the three SPPs for rainfall erosivity and erosivity density on the
monthly scale.

Datasets
Rainfall Erosivity (MJ·mm·ha−1 h−1) Erosivity Density (MJ·ha−1 h−1)

Mean R ME RMSE BIAS (%) Mean R ME RMSE BIAS (%)

Gauge 884.2 / / / / 6.18 / / / /
TRMM 3B42 983.5 0.89 99.3 360.9 11.2 6.91 0.81 0.72 1.40 11.7
PERSIANN-CDR 577.9 0.90 −306.3 486.4 −34.6 4.76 0.83 −1.42 1.73 −22.9
GPM-IMERG 853.4 0.90 −30.9 297.2 −3.5 6.48 0.83 0.30 1.08 4.1

It is also seen from Table 1 that the average erosivity density estimated from the rain
gauge data was 6.18 MJ·ha−1 h−1, compared to 6.91, 4.76, and 6.48 MJ·ha−1 h−1 for the
TRMM 3B42, PERSIANN-CDR, and GPM-IMERG precipitation products, respectively. R
between the erosivity density estimated from the three SPPs and the rain gauge data were
0.81, 0.83, and 0.83, respectively, which were slightly lower than that of the rainfall erosivity.
Similarly, the erosivity density from PERSIANN-CDR exhibited the largest error, with
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an ME of −1.42 MJ·ha−1 h−1, RMSE of 1.73 MJ·ha−1 h−1, and BIAS of −22.9%, while
GPM-IMERG showed the smallest systematic biases, with an ME of 0.30 MJ·ha−1 h−1,
RMSE of 1.08 MJ·ha−1 h−1, and BIAS of 4.1%. In general, the GPM-IMERG precipitation
product had the best performance, TRMM 3B42 slightly overestimated rainfall erosivity
and erosivity density on the monthly scale, and the PERSIANN-CDR precipitation product
presented significant systematic biases.

Figure 2 shows the monthly variation of the R, ME, RMSE, and BIAS of rainfall erosivity
and erosivity density from the three SPPs. It is seen that the correlation coefficient varied
greatly in different months, with the R-value ranging from 0.65 to 0.95 for rainfall erosivity,
and from 0.53 to 0.91 for erosivity density. All three SPPs showed poor consistency for
rainfall erosivity during January–February and for erosivity density during April–June, and
August (Figure 2a,b). Moreover, the large errors of rainfall erosivity from the PERSIANN-
CDR product were mainly derived from its significant underestimation of rainfall erosivity
in June (with the largest ME and RMSE values) (Figure 2c,e), while systematic biases of
erosivity density were principally due to its obvious deviation during June–August and
November (Figure 2d,f). It can be seen from Figure 2g,h that the estimates from the TRMM
3B42 and GPM-IMERG products had large errors during December–February (with the
BIAS of 20–75%); however, they generally performed well in estimating monthly rainfall
erosivity and erosivity density.
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Table 2 compares the performances of the three SPPs for rainfall erosivity and ero-
sivity density on the seasonal scale. It is found that the average seasonal rainfall erosiv-
ity from the rain gauge data was 2652 MJ·mm·ha−1 h−1, compared to 2951, 1713, and
2538 MJ·mm·ha−1 h−1 for the TRMM 3B42, PERSIANN-CDR, and GPM-IMERG precip-
itation products, respectively. In addition, the seasonal rainfall erosivity from the three
SPPs showed significant correlations with that from the rain gauge data, with R-values
of 0.91, 0.94, and 0.93, respectively. However, the PERSIANN-CDR product significantly
underestimated and TRMM 3B42 slightly overestimated seasonal rainfall erosivity in terms
of the ME, RMSE, and BIAS values. In contrast, the GPM-IMERG precipitation product
presented a high accuracy for seasonal rainfall erosivity. For seasonal erosivity density, the
three SPPs showed similar accuracies, i.e., PERSIANN-CDR underestimated the erosivity
density, with a BIAS of 23.0%, and GPM-IMERG produced the lowest bias (4.6%).

Table 2. Performance comparison of the three SPPs for rainfall erosivity and erosivity density on the
seasonal scale.

Datasets
Rainfall Erosivity (MJ·mm·ha−1 h−1) Erosivity Density (MJ·ha−1 h−1)

Mean R ME RMSE BIAS (%) Mean R ME RMSE BIAS (%)

Gauge 2652 / / / / 6.18 / / / /
TRMM 3B42 2951 0.91 297.8 783.1 11.2 6.91 0.82 0.72 1.14 11.7
PERSIANN-CDR 1713 0.94 −939.7 1226.0 −35.4 4.76 0.89 −1.42 1.54 −23.0
GPM-IMERG 2538 0.93 −114.2 575.9 −4.3 6.46 0.87 0.28 0.75 4.6

Figure 3 shows the seasonal changes in the R, ME, RMSE, and BIAS of rainfall erosivity
and erosivity density from the three SPPs. The consistency of estimates from the GPM-
IMERG product with those from the rain gauge data was unsatisfactory, especially the
correlation coefficient, which was lower than 0.7 for rainfall erosivity during the summer
and winter, and lower than 0.65 for erosivity density during the spring. The seasonal rainfall
erosivity and erosivity density obtained from the PERSIANN-CDR product presented great
systematic biases, especially during the summer, when the values of ME and RMSE were
at their maximum. In addition, the TRMM 3B42 product significantly overestimated
rainfall erosivity and erosivity density during the winter (BIAS values up to 72.2% and
31.6%, respectively). It is noteworthy that the systematic biases of seasonal estimates from
the GPM-IMERG product in winter cannot be ignored, with a BIAS of 27.8% for rainfall
erosivity, and 16.3% for erosivity density.
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3.2. Performance at Different Rainfall Erosivity Intensities

Figure 4 shows the frequency of rainfall erosivity in different intensity categories and
its contribution to the annual rainfall erosivity on monthly and seasonal scales. It is seen
that, on the monthly scale, the small intensity category (<500 MJ·mm·ha−1 h−1) had the
highest frequency of occurrence (approximately 38.3%). However, its contribution to the
total annual rainfall erosivity was low (10.1%). As the intensity category of rainfall erosivity
changed from 500–1000 MJ·mm·ha−1 h−1 to 2000–2500 MJ·mm·ha−1 h−1, its frequency
decreased from 27.3% to 6.4%, and the contribution rate decreased from 21.7% to 16.3% for
the estimates from the rain gauge data. In particular, although the frequency was very low
(3.8%) in the heavy rainfall erosivity group (>2500 MJ·mm·ha−1 h−1), the corresponding
contribution rate was still high (13.8%). As for the estimates from TRMM 3B42 and GPM-
IMERG, the distributions of rainfall erosivity and their corresponding contribution rates
in different intensity groups were almost consistent with that of the gauge-based rainfall
erosivity. However, the PERSIANN-CDR product significantly overestimated the frequency
and contribution rate of light rainfall erosivity, such as in the categories of <500 and
500–1000 MJ·mm·ha−1 h−1, but underestimated them for heavy rainfall erosivity, such as
in groups of 2000–2500 and >2500 MJ·mm·ha−1 h−1 (Figure 4a).

On the seasonal scale, the gauge-based rainfall erosivity showed the highest occur-
rence (37.5%) in the <1500 MJ·mm·ha−1 h−1 group, but the largest contribution rate
(41.2%) in the 3000–4500 MJ·mm·ha−1 h−1 group. However, although the frequency
of the gauge-based rainfall erosivity was very low (5.6%) in the heavy intensity group
(>6000 MJ·mm·ha−1 h−1), its contribution rate was higher than 13.8%. The PERSIANN-
CDR product obviously overestimated light rainfall erosivity but underestimated heavy
rainfall erosivity in terms of their frequency and contribution rate. In addition, it is also
seen from Figure 4b that the TRMM 3B42 and GPM-IMERG products significantly underes-
timated the frequencies and corresponding contribution rates of rainfall erosivity in groups
of <1500 and >6000 MJ·mm·ha−1 h−1.

Figure 5 shows the changes in the Mean, ME, RMSE, and BIAS of monthly rainfall
erosivity in different intensity categories. It is seen that the PERSIANN-CDR product signif-
icantly underestimated the mean values of monthly rainfall erosivity in each intensity cate-
gory. Correspondingly, its systematic bias was bigger for larger rainfall erosivity, especially
the value of ME exceeded−1100 MJ·mm·ha−1 h−1 in the group of >2500 MJ·mm·ha−1 h−1.
Unlike the performance of PERSIANN-CDR, the TRMM 3B42 and GPM-IMERG products
underestimated the mean values of the monthly rainfall erosivity only in the heavy intensity
group, with corresponding large values of ME and RMSE. However, in terms of the relative



Remote Sens. 2022, 14, 4292 10 of 21

error, the estimates from TRMM 3B42 and GPM-IMERG showed large biases for light
rainfall erosivity, with the BIAS reaching 28.7–54.2% in the <500 MJ·mm·ha−1 h−1 group.
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The distributions of the Mean, ME, RMSE, and BIAS of seasonal rainfall erosivity
in different intensity categories are shown in Figure 6. It is seen that the distribution
characteristics of these metrics at different rainfall erosivity intensities on the seasonal scale
were similar to those on the monthly scale. For instance, the PERSIANN-CDR product
underestimated the mean values of seasonal rainfall erosivity in each intensity group,
which resulted in large ME and RMSE values, especially for the heavy rainfall erosivity
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group (>6000 MJ·mm·ha−1 h−1). The relative errors for light rainfall erosivity obtained
from TRMM 3B42 and GPM-IMERG were also remarkable.

Remote Sens. 2022, 14, x FOR PEER REVIEW 12 of 22 
 

 

 
Figure 5. Distribution of the Mean (a), ME (b), RMSE (c), and BIAS (d) of rainfall erosivity in differ-
ent intensity categories on the monthly scale. 

 
Figure 6. Distribution of the Mean (a), ME (b), RMSE (c), and BIAS (d) of rainfall erosivity in dif-
ferent intensity categories on seasonal scale. 

Furthermore, the performance and accuracy of the TRMM 3B42, PERSIANN-CDR, 
and GPM-IMERG products for estimating rainfall erosivity were evaluated based on the 
FBI, FAR, POD, and ETS scores, and their changes at different rainfall erosivity thresholds 
are shown in Figure 7. It was found that the FBI values from the PERSIANN-CDR product 
decreased from 0.71 to 0.11, the POD decreased from 0.70 to 0.11, and the ETS decreased 
from 0.46 to 0.11 when the threshold increased from 500 to 2500 MJ·mm·ha−1 h−1. These 
changes indicate that the PERSIANN-CDR product was less skillful in correctly estimat-
ing the monthly rainfall erosivity, especially for heavy rainfall erosivity. The FAR kept 
changing around 0, which implied that PERSIANN-CDR presented very few false detec-
tions for the monthly rainfall erosivity. In addition, TRMM 3B42 and GPM-IMERG had 
FBI values of 0.78–0.89, POD values of 0.56–0.67, and ETS values of 0.44–0.53 at the thresh-
old of 2500 MJ·mm·ha−1 h−1. Relative low values of the FBI, POD, and ETS indicated that 

Figure 6. Distribution of the Mean (a), ME (b), RMSE (c), and BIAS (d) of rainfall erosivity in different
intensity categories on seasonal scale.

Furthermore, the performance and accuracy of the TRMM 3B42, PERSIANN-CDR,
and GPM-IMERG products for estimating rainfall erosivity were evaluated based on the
FBI, FAR, POD, and ETS scores, and their changes at different rainfall erosivity thresholds
are shown in Figure 7. It was found that the FBI values from the PERSIANN-CDR product
decreased from 0.71 to 0.11, the POD decreased from 0.70 to 0.11, and the ETS decreased
from 0.46 to 0.11 when the threshold increased from 500 to 2500 MJ·mm·ha−1 h−1. These
changes indicate that the PERSIANN-CDR product was less skillful in correctly estimating
the monthly rainfall erosivity, especially for heavy rainfall erosivity. The FAR kept changing
around 0, which implied that PERSIANN-CDR presented very few false detections for
the monthly rainfall erosivity. In addition, TRMM 3B42 and GPM-IMERG had FBI values
of 0.78–0.89, POD values of 0.56–0.67, and ETS values of 0.44–0.53 at the threshold of
2500 MJ·mm·ha−1 h−1. Relative low values of the FBI, POD, and ETS indicated that the
estimates from TRMM 3B42 and GPM-IMERG had significant biases for heavy rainfall
erosivity. Moreover, the value of FAR increased to 0.25–0.29, which meant the proportion
of false detection increased at the 2500 MJ·mm·ha−1 h−1 threshold.
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On the seasonal scale, the changing characteristics of the FBI, FAR, POD, and ETS
scores (Figure 8) were similar to those on the monthly scale. Thus, the PERSIANN-CDR
product was less skillful in correctly estimating heavy rainfall erosivity, while the perfor-
mances of TRMM 3B42 and GPM-IMERG for heavy rainfall erosivity were worse than
those for light rainfall erosivity, especially for the false detection, which was significantly
high at the 5000 MJ·mm·ha−1 h−1 threshold (FAR values of 0.2 and 0.44).
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3.3. Annual Rainfall Erosivity and Spatial Patterns

The average annual rainfall erosivity estimated from the rain gauge data was
10,611 MJ·mm·ha−1 h−1, compared to 11,802, 6853, and 10,027 MJ·mm·ha−1 h−1 obtained
from the TRMM 3B42, PERSIANN-CDR, and GPM-IMERG products, respectively. It means
that the PERSIANN-CDR precipitation product significantly underestimated the annual
rainfall erosivity while TRMM 3B42 slightly overestimated it, as in the cases of the monthly
and seasonal scales. Tables 3 and 4 summarize the performances of the three SPPs for
estimating the annual rainfall erosivity and its density. The values of R between the annual
rainfall erosivity from the three SPPs and those from the rain gauge data were 0.87, 0.93,
and 0.84, respectively, which indicates that all three SPPs showed good consistency for
rainfall erosivity on the annual scale. However, the deviation was significant in estimates
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of the PERSIANN-CDR precipitation product, with the ME of −3758 MJ·mm·ha−1 h−1,
and BIAS of −35.4% (Table 3). Relatively, the GPM-IMERG product performed best for its
annual rainfall erosivity estimation, and its ME, RMSE, and BIAS values were the lowest of
the three SPPs. Similar performances of the three SPPs are also presented in the estimation
of annual erosivity density (Table 4).

Table 3. Performance comparison of three SPPs for rainfall erosivity at different sub-catchments.

Sub-Catchment
R ME (MJ·mm·ha−1 h−1) RMSE (MJ·mm·ha−1 h−1) BIAS (%)

T P G T P G T P G T P G

Ganjiang 0.91 0.85 0.88 1900 −2114 67 2838 3229 1219 23.0 −32.8 0.7
Fuhe 0.81 0.89 0.83 1650 −2963 225 2974 4287 2207 15.3 −33.8 1.9
Xinjiang 0.49 0.62 0.51 −119 −3158 −1404 3577 5170 3175 −1.0 −33.9 −11.5
Raohe 0.15 0.33 0.20 −2039 −4533 −2804 4828 6485 4021 −15.7 −42.6 −21.6
Xiushui 0.16 0.33 0.24 −320 −3055 −1373 3980 5056 3304 −3.2 −40.0 −13.6
PLB 0.87 0.93 0.84 1191 −3758 −584 1796 3844 1399 11.2 −35.4 −5.5

T: TRMM 3B42, P: PERSIANN-CDR, G: GPM-IMERG.

Table 4. Performance comparison of the three SPPs for erosivity density at different sub-catchments.

Sub-Catchment
R ME (MJ·ha−1 h−1) RMSE (MJ·ha−1 h−1) BIAS (%)

T P G T P G T P G T P G

Ganjiang 0.77 0.87 0.87 1.10 −1.24 0.53 1.29 1.23 0.55 20.6 −21.0 8.9
Fuhe 0.73 0.80 0.81 0.78 −1.53 0.55 0.95 0.55 0.69 12.1 −23.7 8.5
Xinjiang 0.78 0.82 0.78 0.47 −1.20 0.34 0.64 1.24 0.55 7.5 −19.1 5.4
Raohe 0.67 0.54 0.61 −0.54 −2.05 −0.56 0.76 2.08 0.76 −7.8 −29.7 −8.1
Xiushui 0.53 0.54 0.65 0.10 −1.64 −0.08 0.73 1.73 0.57 1.6 −26.5 −1.3
PLB 0.87 0.93 0.92 0.72 −1.42 0.30 0.80 1.40 0.37 11.7 −22.9 4.9

T: TRMM 3B42, P: PERSIANN-CDR, G: GPM-IMERG.

On the sub-catchment scale, the correlation coefficient varied greatly in different sub-
catchments. The estimates from the three SPPs in the Ganjiang and Fuhe sub-catchments
presented significant correlations with the gauge-based rainfall erosivity (R > 0.8). However,
the TRMM 3B42 and PERSIANN-CDR products presented large systematic biases in these
two sub-catchments. The former overestimated the annual rainfall erosivity and erosivity
density, while the latter significantly underestimated them. It is worth mentioning that,
in the Xiushui and Raohe sub-catchments, all three SPPs showed poor performance in
estimating rainfall erosivity and erosivity density on the annual scale. In these cases, the
correlation coefficients were very low and their systematic biases were large, especially for
the PERSIANN-CDR and GPM-IMERG precipitation products.

The inverse distance weighting (IDW) method is used to interpolate the annual rainfall
erosivity to assess its spatial distribution by using the rain gauge data. Figure 9 compares
the spatial maps of rainfall erosivity obtained from the rain gauge data and the three SPPs,
respectively. It is seen that the annual rainfall erosivity from the rain gauge data varied
strongly in different areas of the PLB and presented an increasing gradient from the south-
west to the northeast of the basin. Light rainfall erosivity mainly occurred in the southwest
of the PLB (approximately less than 8000 MJ·mm·ha−1 h−1), while heavy rainfall erosivity
was mostly distributed in the northeast (greater than 11,000, even 13,000 MJ·mm·ha−1 h−1)
(Figure 9a). Visual inspections of the results from the three SPPs revealed that, although
regions with large rainfall erosivity values covered a wider area in cases of TRMM 3B42
and GPM-IMERG, they showed good spatial consistencies with the map of annual rainfall
erosivity from the rain gauge data. These spatial consistencies were also confirmed by the
large values of R (0.90 for TRMM 3B42 and 0.75 for GPM-IMERG) between the estimates at
every rain gauge and corresponding satellite pixel (Figure 10). However, the performance
of PERSIANN-CDR was unsatisfactory in depicting the spatial pattern of rainfall erosivity,
i.e., the southwest–northeast gradient of the annual rainfall erosivity was not reproduced,
and the area with the median values of rainfall erosivity in the northwest of the basin was
significantly narrowed (Figure 9c).
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Figure 11 shows the spatial patterns of average annual erosivity density, estimated
from the rain gauge data and the three SPPs. Likewise, the spatial distribution of erosivity
density from the rain gauge data was obtained by spatial interpolation, based on the IDW
method. It is obvious that the spatial pattern of erosivity density is similar to that of
rainfall erosivity; for instance, large values of erosivity density are mainly distributed in
the northeast, while small values are distributed in the southwest of the PLB. Moreover, the
TRMM 3B42 and GPM-IMERG precipitation products characterized the spatial patterns
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of annual erosivity density well, with the spatial correlation coefficients of 0.87 and 0.65,
respectively (Figure 10). In contrast, the PERSIANN-CDR precipitation product tended to
show an insufficient ability to describe the spatial pattern of erosivity density.
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4. Discussion

The TRMM 3B42, GPM-IMERG, and PERSIANN-CDR precipitation products have
different accuracies in different areas, seasons, or rainfall intensities; they also present
varying strengths and weaknesses for estimating and mapping rainfall erosivity. The
performance assessment on the monthly and seasonal scales revealed that the TRMM
3B42 precipitation product performed best for estimating rainfall erosivity and erosivity
density, with small BIAS values (−8.3% and −0.8%) in summer. However, the performance
was unsatisfactory in winter because the rainfall erosivity and erosivity density were
significantly overestimated by TRMM 3B42 during December–February, with large BIAS
values (72.1% and 31.6%). This seasonality of biases was primarily related to the varying
accuracies of the TRMM 3B42 product in different seasons. Many previous studies have
shown that the season, climatological factors, and rainfall type can affect the accuracy of
the TRMM precipitation product [37,80]. Wang et al. compared and evaluated several SPPs
and re-analysis precipitation datasets and noted that the precision of the TRMM data was
higher than that of other precipitation products during the wet season [81], while rainfall in
the dry season was usually underestimated by the TRMM 3B42 product [82]. Similar results
were also reported in studies of Li et al. [37] and Wang et al. [83]. Therefore, seasonality in
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the accuracy of the SPPs undoubtedly resulted in seasonal variation of biases of rainfall
erosivity and erosivity density.

The PERSIANN-CDR precipitation product showed poor performance for estimating
rainfall erosivity and erosivity density in this study, compared to TRMM 3B42 and GPM-
IMERG, in most evaluated aspects. PERSIANN tended to detect false precipitation and
generally showed a large systematic underestimation of rainfall [84], which were the
main reasons why it significantly underestimated rainfall erosivity and erosivity density
in all seasons. In addition, from the comparison of the TRMM 3B42 and GPM-IMERG
precipitation products, the accuracies of rainfall erosivity and erosivity density derived
from GPM-IMERG were better than those from TRMM 3B42, and the biases in winter were
significantly reduced (27.8% and 16.3%). Similarly, Chen et al. also found that GPM-IMERG
generally performed better than the TRMM 3B42 product in the Yangtze River Basin,
when they evaluated the applicability of these two SPPs for assessing rainfall erosivity in
different sub-regions of China [16]. Generally, as the successor of TRMM, the GPM-IMERG
product is predictably more accurate than the TRMM product, which has been confirmed
by numerous studies.

An analysis of the rainfall erosivity intensity revealed that the PERSIANN-CDR pre-
cipitation product overestimated light rainfall erosivity but underestimated heavy rainfall
erosivity, regardless of the occurrence frequency and contribution rate. In particular,
PERSIANN-CDR was unable to correctly estimate the mean values of rainfall erosivity in
the heavy intensity groups (>2500 MJ·mm·ha−1 h−1) and exhibited large negative errors
(ME exceeded −1100 MJ·mm·ha−1 h−1). This was mainly attributed to the overestimation
of moderate precipitation (10–25 mm/day) and the underestimation of violent precipitation
events (>50 mm/day) [84]. As for the TRMM 3B42 and GPM-IMERG precipitation prod-
ucts, although they generally performed better than PERSIANN-CDR, they still showed
weaknesses in estimating heavy rainfall erosivity. This result is consistent with the finding
of Chen et al. [16]. Villarini and Krajewski believed that heavy and extreme precipitation
may cause signal attenuation and consequently affect the accuracy of the precipitation
product [85]. TRMM 3B42 and GPM-IMERG achieved relatively poor performances in
capturing extreme precipitation events [84] and therefore failed to accurately estimate
heavy rainfall erosivity.

In addition, spatial performance analysis revealed that the spatial patterns of rainfall
erosivity and erosivity density were generally reproduced by TRMM 3B42 and GPM-
IMERG (with spatial correlation coefficients of 0.90 and 0.87 for TRMM 3B42, and 0.75 and
0.65 for GPM-IMERG, respectively), and this is mainly due to their remarkable ability for
detecting the spatial characteristics of precipitation [60,84,86]. However, the PERSIANN-
CDR precipitation product performed worse in capturing the spatial distributions of rainfall
erosivity and erosivity density (with spatial correlation coefficients of 0.63 and 0.43). These
spatial biases may be associated with, on one hand, the weak ability of PERSIANN-CDR to
accurately detect extreme rainfall events, which frequently occur in the Raohe and Xinjiang
sub-catchments of the PLB [87]. On the other hand, the topography of the PLB is complex,
and its western and southern parts are mostly occupied by mountains and hills, which may
significantly affect the accuracy of the PERSIANN precipitation product.

Finally, the current study has several uncertainties regarding the suitability evaluation
of the SPPs for estimating and mapping rainfall erosivity. The data reliability and biases of
the satellite-based precipitation products largely determine the accuracy of rainfall erosivity
and erosivity density. In particular, only erosive rainfall greater than 12 mm was considered
in this study [73]. The accuracy of the SPPs for heavy and extreme precipitation varies
greatly in different atmospheric regions or complex topographic areas, which undoubtedly
affected the assessment results. In addition, different models of rainfall erosivity estimation
and parameter values also impact the results. Many methods based on the routine rain
gauge records of daily, monthly, or annual rainfall data for estimating rainfall erosivity
have been developed [3], and there may be some differences in the estimates from different
models. Moreover, the values of weight coefficients (i.e., α and β) of the Zhang model used
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in this study were considered to be related to regional climate characteristics. Richardson
et al. suggested using different values for α for the warm and cool seasons [88]. Therefore,
future studies should focus on collective research through multiple models to reduce the
uncertainty caused by this model. Moreover, the Hurst phenomenon is important in the
long-term analysis of the changes in hydroclimatic processes. The intensity, frequency,
and duration of extreme precipitation events have changed significantly compared to their
distribution characteristics in the past, due to the impacts of climate change and human
activities. Future studies should pay attention to the uncertainty of results derived from
the Hurst phenomenon.

5. Conclusions

Three widely used SPPs (TRMM 3B42 V7, GPM-IMERG V06 Final, and PERSIANN-
CDR) were used to estimate the rainfall erosivity and map its spatial pattern in the PLB.
Their accuracy and performance in different rainfall erosivity intensities, seasons, and
spaces were evaluated. The main conclusions are summarized as follows:

(1) For average monthly and seasonal rainfall erosivity, the GPM-IMERG precipitation
product obtained the closest estimates to gauge-based rainfall erosivity (with a BIAS
of −3.5–4.3%), while PERSIANN-CDR significantly underestimated (−34.6–35.4%) and
TRMM 3B42 slightly overestimated (11.2%) the rainfall erosivity.

(2) TRMM 3B42 performed best for estimating rainfall erosivity and erosivity density
in summer with small BIAS values (−8.3% and −0.8%), but its performance was less
satisfactory in winter. The precision of estimates obtained from GPM-IMERG was better
than those from TRMM 3B42, especially the biases in winter, which were significantly
reduced. PERSIANN-CDR presented a poor performance in most of the evaluated aspects,
and the rainfall erosivity and erosivity density showed large systematic biases during
the summer.

(3) Regardless of the occurrence frequency and contribution rate, PERSIANN-CDR
overestimated light rainfall erosivity (<1000 MJ·mm·ha−1 h−1) and underestimated heavy
rainfall erosivity (>2000 MJ·mm·ha−1 h−1). TRMM 3B42 and GPM-IMERG also underesti-
mated the mean rainfall erosivity in the heavy intensity groups. However, they had the
largest biases for light rainfall erosivity in terms of relative error (about 20%).

(4) TRMM 3B42 and GPM-IMERG correctly presented the spatial pattern of rainfall
erosivity and erosivity density with high values of spatial correlation coefficients. However,
PERSIANN-CDR tended to be less skillful in correctly describing its spatial maps.

Overall, the SPPs had good potential for estimating and mapping rainfall erosivity. In
particular, GPM-IMERG provides a new generation of precipitation data, and its high spatial
and temporal resolutions and high accuracy are favorable for estimating and mapping
rainfall erosivity. The outcomes of the study provide insight into the suitability of the SPPs
for rainfall erosivity estimation. Further, it is important to recognize that some errors and
biases still exist in the estimates of rainfall erosivity from the SPPs, especially for heavy
rainfall erosivity in summer. This provides possible directions for further improving these
products by improving the algorithms and incorporating additional information to reduce
false alarms and correctly capture heavy rainfall. Conversely, extensive efforts to assess the
performance of SPPs for rainfall erosivity must continue, while considering the influence
of climate characteristics and complex topography.
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