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Abstract: Point cloud registration (PCR) is a vital problem in remote sensing and computer vision,
which has various important applications, such as 3D reconstruction, object recognition, and simulta-
neous localization and mapping (SLAM). Although scholars have investigated a variety of methods
for PCR, the applications have been limited by low accuracy, high memory footprint, and slow speed,
especially for dealing with a large number of point cloud data. To solve these problems, a novel local
descriptor is proposed for efficient PCR. We formed a comprehensive description of local geometries
with their statistical properties on a normal angle, dot product of query point normal and vector from
the point to its neighborhood point, the distance between the query point and its neighborhood point,
and curvature variation. Sub-features in descriptors were low-dimensional and computationally
efficient. Moreover, we applied the optimized sample consensus (OSAC) algorithm to iteratively
estimate the optimum transformation from point correspondences. OSAC is robust and practical
for matching highly self-similar features. Experiments and comparisons with the commonly used
descriptor were conducted on several synthetic datasets and our real scanned bridge data. The result
of the simulation experiments showed that the rotation angle error was below 0.025◦ and the transla-
tion error was below 0.0035 m. The real dataset was terrestrial laser scanning (TLS) data of Sujiaba
Bridge in Chongqing, China. The results showed the proposed descriptor successfully registered the
practical TLS data with the smallest errors. The experiments demonstrate that the proposed method
is fast with high alignment accuracy and achieves a better performance than previous commonly
used methods.

Keywords: point cloud registration (PCR); the optimized sample consensus (OSAC) algorithm; local
feature descriptor; feature matching; terrestrial laser scanning (TLS)

1. Introduction

In recent years, the research of computer vision and autonomous driving has received
more and more attention. Three-dimensional rigid PCR is a basic and critical problem in
the field of 3D vision, such as 3D modeling [1,2], localization for robot navigation [3–5],
object recognition [6–8], and surface alignment [9,10]. The purpose of PCR is to seek the
best transformation parameters that precisely aligns a pair of point in different coordi-
nate systems.

The iterative nearest point (ICP) algorithm is the most commonly applied PCR method
because the iteration is simple, and the convergence speed is fast [11–14]. It iteratively
calculates the optimum transformation until the function criterion converges to the specified
value. Unfortunately, the ICP algorithm is susceptible to local minima [15], so good
initialization is required to obtain satisfactory registration results. Therefore, the common
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practical solution is the “coarse to fine” strategy [16–18]; that is, a good initial position
is obtained by using the coarse registration, and then the ICP algorithm can achieve
an accurate alignment with a fast speed. Due to the original point cloud with unknown
orientations, coarse registration isis a challenging task and has attracted increasing attention
in the past few years. Our proposed algorithm belongs to the coarse registration category.
Generally, we categorize the coarse registration algorithms based on global features [19] and
local features [20]. The shape contexts [21] and extended Gaussian images [22,23] methods
which belong to global feature descriptors, have the advantage of rotation invariance.
Considering the complexity of the descriptor and memory footprint, the methods based on
local features are generally efficient in aligning the source and target point clouds [24–27].
Therefore, we mainly focus on the PCR method based on local features.

To date, the point pair feature (PPF) descriptor is the classical method for local surface
description [28]. Johnson and Hebert [29] designed spin image (SI) features, and the
local reference axis (LRA) is created by using 3D points with relevant directions. Then
according to the correlation coefficient of SI, the matching point pairs are established.
Although SI is one of the most commonly cited methods, it is highly disturbed by the
data resolution. The point feature histogram (PFH) descriptor has the advantages of high
discriminatory and descriptive power but is extremely time-consuming [30]. Then to
solve the problem, the fast point feature histogram (FPFH) [31] descriptor is proposed
by calculating the normal angle, weighting, and summing the features. It significantly
accelerates the PCR speed. The signature of histograms of orientations (SHOT) [32] method
first establishes LRA. Then dataset is fixed to LRA and is divided into different blocks. The
deviation angle of normal is summed in each block. Finally, the SHOT feature is obtained by
concatenating all the histograms. The SHOT method achieves good performance in terms
of efficiency, discrimination, and robustness [33]. The rotation projection statistics (RoPS)
feature descriptor is one of the best-performing feature descriptors in feature matching.
This method mainly consists of three processing steps: LRF definition [34], RoPS feature
construction, and 3D object recognition. The eigenvalue decomposition of the scatter matrix
formed three eigenvectors. Then the LRF establishment is based on the eigenvectors. Triple
orthogonal local depth images (TOLDI) [35] is a relatively new feature descriptor, three
orthogonal depth maps of a specified point are obtained by projection discretization. The
pixel values of depth mapping are directly spliced as a description of a specified point.

As mentioned above, the researchers have conducted detailed studies on the coarse
registration algorithm based on feature descriptors. Feature-based methods do not rely
on the initial pose, while good features will speed up the registration and improve the
accuracy of PCR. With the development of 3D scanner technology, the point cloud is more
and more convenient to acquire, and the capacity of data is large. Due to the large capacity
of point clouds, the dimension of feature, storage overload, and calculation cost is extremely
high. Meanwhile, wrong matching point pairs will occur because of self-similar features
derived from low-dimensional information [36]. In this paper, we analyze some typical
local features and integrate them into a new descriptor. Specifically, we use the geometric
features brought by normal information, dot product of normal and vector from specified
point to its neighborhood point, distance parameter, and curvature variation. We validate
our proposed method by conducting a comparison with popular methods on synthetic and
real scanning datasets. Experimental results show that the proposed registration method
based on the new descriptor has higher registration accuracy, fast calculation speed, and
low memory footprint. To summarize, the main contributions of the proposed method are
as follows:

(1) We analyze some typical local invariant features and integrate them into a new
descriptor. The proposed descriptor is highly descriptive. It contains rich information
by considering angle, dot product, distance, and curvature characteristics.

(2) Our method maintains a high registration accuracy with fast speed and low memory
footprint. Besides the original point cloud, only the 32-D descriptor is stored in the
memory. Hence, the proposed descriptor is time and memory efficient.
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(3) The new method can process directly on the scattered point clouds, which do not
require any prior information. It does not need error preprocessing steps which are
time-consuming.

The remainder of this paper is structured as follows. In Section 2, we introduce the
proposed feature descriptor and present the details of the registration method based on
the novel descriptor. We present the detailed description of experiment data in Section 3.
The results and comparisons are given to test the accuracy, effectiveness, and efficiency
of the proposed method, and we also discuss our results in Section 4. Finally, we draw
conclusions in Section 5.

2. Methodology

The proposed method in this paper mainly consists of four steps. First, the source
and target point clouds are simplified to 3D key points using the voxel grid method. We
present the local descriptor of 3D key points for feature description. Then, point corre-
spondences are established via feature matching. Finally, we utilize the OSAC algorithm
to eliminate false matching point pairs. A good alignment position is obtained by using
coarse registration.

2.1. Definition of Descriptor

Local feature-based methods for 3D registration align a pair of point clouds by using
point correspondences. The correspondences are usually obtained via matching feature
descriptors. Hence, in order to acquire a sufficient number of correct matching corre-
spondences, the feature descriptor should be descriptive, robust, and distinctive. More
importantly, it should be invariant to rigid transformation. In this chapter, we briefly intro-
duce a novel local feature descriptor by calculating the statistics of local invariant features.

Geometric features such as normal vector, distance parameter, and curvature variation
reflect the most basic geometry of the point cloud. They are vital to express the local
features of the point cloud. In addition, these specific features are invariant features with
rotation or translation. They are distinctive to allow for effective description and are easy
to calculate. We propose the use of a better system that combines several aspects of the
geometry of a point’s neighborhood for estimating a multi-value feature set.

The feature description proposed in this paper is mainly divided into four steps:
(1) calculating the normal angles, (2) calculating the dot product, (3) calculating the dis-
tance between the specified point and neighborhood points, and (4) calculating curvature
variation. Figure 1 shows the schematic of the proposed method.
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2.1.1. Angle between Normals

Previous studies have shown that the angle between a pair of normals has a high dis-
criminative power [37]. To calculate the normal vector, we use the method in literature [38].
A brief introduction is as follows. The covariance matrix C for a data point p is given by,

C =

pi1 − p
. . .

pik − p

T

·

pi1 − p
. . .

pik − p

, ij ∈ Np (1)

where p is the centroid of the neighborhood point pij of point p.
Considering the eigenvector problem, Equation (1) can be expressed as follows,

C ·→v l = λl ·
→
v l, l ∈ {0, 1, 2} (2)

The eigenvalues λ0, λ1 and λ2 of C and the unit eigenvectors
→
e 0,
→
e 1 and

→
e 2 are

calculated. Note that the vector
→
e 0,
→
e 1 and

→
e 2 are normalized vectors from

→
v 0,
→
v 1 and

→
v 2,

respectively. The eigenvector corresponding to the minimum eigenvalue of C is defined as
the normal of p.

Given a query point pi, the points in the sphere with radius r excluding pi are the
neighborhood point of pi. We suppose pk is the neighborhood point of pi. The normal
direction of pi and pk is

→
n i and

→
n k, respectively. The cosine of the normal angle between

→
n i and

→
n k can be expressed as follows.

cos θ→n i
→
v k

=

→
n i ·

→
n k∣∣∣→n i

∣∣∣∣∣∣→n k

∣∣∣ (3)

where the value range of θ→n i
→
n k

is [0, 180◦]
The θ→

n i
→
n k

is defined as f1 in this paper. The sub-feature f1 is mainly distributed
between 0◦ and 60◦ in most cases. Hence it is divided into four intervals (0◦, 20◦), (20◦,
40◦), (40◦, 60◦), and (60◦, 180◦). The diagram of sub-feature f1 and f2 is shown in Figure 2.
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2.1.2. Dot Product of Normal and Vector from the Point to Its Neighborhood Point

For the neighborhood of a specified point, the angle of normal and vector from the
specified point to its neighborhood point generally differs. Therefore, the feature can be
described by the dot product of normal and vector from the data point to its neighborhood
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point. It is assumed that
→
p ki is the vector from the specified point pi to its neighborhood

point pk. The dot product of the normal vector
→
n i and

→
p ki is expressed as follows.

f2 =
→
n i ·

→
p ki (4)

2.1.3. Distance between Neighborhood Points

The distance between the key point and neighborhood point reflects the character-
istics of the point cloud data. Hence, we use the distance between the key points and
neighborhood points as the distance parameter.

f3 = ‖→p ki‖ (5)

The diagram of the distance parameter f3 is shown in Figure 3.
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2.1.4. Curvature Variation

The curvature variation is also vital information, and it is invariant to rotation, transla-
tion, and scale. The curvature value reflects the concavity degree of surface. The curvature
variation is calculated by eigenvalue analysis of the covariance matrix.

In Equation (2), we assume that λ0 ≤ λ1 ≤ λ2, λ0 describes the variation along the
surface normal, i.e., estimates how much the points deviate from the tangent plane. The
curvature variation is defined as follows [37],

τn(p) =
λ0

λ0 + λ1 + λ2
(6)

where τn(p) is the curvature variation at point p in a neighborhood of size n. If τn(p) = 0,
the point and its corresponding neighborhood points lie on the plane, otherwise τn(p) is
big, it demonstrates the point p is located in a sharp curve. The τn(p) is defined as the
sub-feature f4. After proposing three feature parameters, the sub-histograms are obtained:
the angle between normal, the dot product of normal and vector from data point to its
neighborhood point, the distance between neighborhood points and curvature variation.

If f1 belong to [0◦, 20◦], [20◦, 40◦], [40◦, 60◦] and [60◦, 180◦], k1 is set 1, 2, 3, 4
respectively. k2 is defined 0 if f2 < 0 and 1 otherwise. k3 is defined 0 if f3 < r/2 and 1
otherwise. k4 is defined 0 if f4 < τth and 1 otherwise. τth is the threshold of f4. Empirically,
we set τth = 1/3 [38]. The proposed descriptor consists of four feature ( f1, f2, f3 and f4).
The sub-features f1, f2, f3, and f4 are divided into 4, 2, 2, and 2 intervals, respectively.
The concatenation operation of each sub-feature is multiplication. It is consistent with
well-known methods [39], such as SI, SHOT, and ROPS. Therefore, our descriptor can be
established as follows.

idx = k1 + 4× k2 + 4× 2× k3 + 4× 2× 2× k4 (7)
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where the symbol × represents multiplication. For each neighborhood point of a specified
keypoint, the sub-features f1, f2, f3 and f4 can be obtained by using the corresponding
formula mentioned above. The value of idx is determined. It is obvious that the minimum
value of k1~k4 is 1, 0, 0, 0, respectively, then the minimum value of idx is 1. Meanwhile,
the maximum value of k1~k4 is 4, 1, 1, 1, respectively, and the maximum value of idx is
32. Thus the parameter idx is a scalar value with the range of 1~32. The total dimension is
4 × 2 × 2 × 2 = 32 dimensions.

The data point p belongs to a certain histogram bin determined by the idx value. The
same operation is done for each neighbor point of p. Finally, the ratio of points in one bin is
obtained by the total number divided by the number of each bin. The source and target
point cloud obtain the feature histograms with the same operation.

Given a source data PS and target data PT , we first establish the feature descriptor.
However, the capacity of the raw point cloud is extremely large. It leads to a high memory
footprint and calculation cost. We use the voxel grid method to simplify the point cloud
PS and PT . Then we calculate the feature descriptor for each point in PS and PT , which are
denoted as FS =

{
f i
S|i = 1, 2, · · · , NS

}
and FT =

{
f i
T |i = 1, 2, · · · , NT

}
.

2.2. Matching

The correspondence is matched based on descriptors. We use the Euclidean distance
between descriptors as the matching criterion. Because the point clouds may have non-
overlapping parts, there are some points without corresponding matching points [40]. To
obtain a robust parameters estimation, at least three matching points are required [41]. The
KD-tree algorithm is used for efficient search in the novel feature space, and the L2 norm is
applied as the criterion for comparing the similarity of descriptors. Then the point pairs for
all points in PS are determined, and we finally obtain an initial matching correspondence
set C,

C =
{
(ci

S, ci
T)
∣∣∣ci

S ∈ PS, ci
T ∈ PT

}
, i = {1, 2, · · · , num(C)} (8)

where num(C) is the number of correspondence set C.

2.3. Mismatch Rejection of OSAC

Once the initial matching point pairs are extracted by the Euclidean distance constraint
of the descriptor, one-to-many point pair matching will occur. The classic random sample
consensus (RANSAC) [42] method is difficult to identify the correct correspondence when
the input dataset is highly self-similar. RANSAC is especially difficult to address in
the case of symmetric models, which have points with similar geometric features on
both sides [42]. Therefore, we used the OSAC algorithm to reject the mismatched point
correspondences [40]. The error metric of the OSAC algorithm is defined as follows [43],

Davg(P1, P2) =

 1
N̂

N̂
∑

i=1
d( p̂i

1, P2), i f N̂
min{N1,N2}

> δ

∞, otherwise
(9)

where P1 =
{

pi
1, i = 1, 2, · · · , N1

}
and P2 =

{
pi

2, i = 1, 2, · · · , N2
}

are two given point
clouds, respectively, N̂ is the qualified points, and δ is used to judge if P1 and P2 are
spatially close.

In Equation (9), d( p̂i
1, P2) is defined as the point-to-surface distance in the literature [38].

It is defined as follows.
d( p̂i

1, P2) = min
j=1,2,··· ,N2

‖ p̂i
1 − pj

2‖ (10)

Ideally, d( p̂i
1, P2) would be close to zero if P1 and P2 have overlapping regions and

precisely registered. Empirically, we set δ = 0.3 [43]. We suppose the initial matching point
pair set is c. The processing steps of the OSAC algorithm are as follows,

Step 1: We randomly select three non-collinear samples from c.
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Step 2: Supposing the initial matching point pair set is c, we randomly select x(x ≥ 3)
non-collinear samples from c. It is necessary to ensure that the pairwise distances of{

c1
S, c2

S, · · · , cx
S
}

and
{

c1
T , c2

T , · · · , cx
T
}

are larger than dmin.
Step 3: As for the ith iteration, we use the samples to estimate the rotation matrix Ri

and translation vector
→
t i.

Step 4: We transform the remaining points in the source point cloud, that is PS to P′Si
,

where P′Si
= R · PS +

→
t , PS is the source point cloud.

Step 5: Davg(P′Si
, PT) is calculated by using Equation (9), where PT is the target point

cloud. We put Davg(P′Si
, PT) to the set

{
Davg(P′Si

, PT), Davg(P′S2
, PT), · · · , Davg(P′Si

, PT)
}

.

Step 6: Repeating the above process until Davg(P′Si
, PT) < Dτ or the iteration number

exceed a specified maximum iteration number, then stop the iterative calculation.
The parameter dmin is a user-defined minimum distance [43]. We set this parameter

as a criterion for the point pair samples selection suggested in [31]. Dτ and the maximum
iteration number are two conditions for stopping the iterative calculation. For each iteration,
we validate the correctness of the current transformation by computing Davg(P′Si

, PT) and
then choose the transformation that yields the minimum error metric to coarse registration.

3. Experiments Data

In order to evaluate the performance of our method, we compared the descriptor
proposed in this paper with the well-known descriptors FPFH, SHOT, and RoPS. We
employed a CPU with an Intel(R) Core(TM) CPU i7-6700@ 3.4 GHz and 8GB RAM with a
Windows10 64-bit system.

To make the experiments more convincing, we performed experiments on simula-
tions and real datasets. The simulation datasets were from various popular synthetic
datasets [44,45]. The Bunny, Dragon, and Horse point clouds were used in simulation
experiment 1. We first manually rotated and translated the dataset randomly and recorded
the angle of rotation and translation distance as the ground truth. The experimental perfor-
mance was evaluated by the error values of rotation and translation in three coordinate
axis directions. The smaller the value, the better the matching performance. Second, we
performed the same experimental operations when we applied the FPFH, SHOT, and RoPS
methods. Finally, the time spent by different methods was calculated. The Happy Buddha
point cloud from the Bologna dataset is used in simulation experiment 2. The real data is
the TLS data of Sujiaba Bridge which is a high-pier concrete bridge. It should be noted that
we only used a single thread to measure the running time.

3.1. The Simulation Expriments Datasets

In simulation experiment 1, every point set was rotated 10, 20, 20 degrees and trans-
lated 0.05, 0.1, 0.1 m in x-, y- and z-directions, respectively. For the most practical appli-
cations where the point cloud was not 100% overlap, we also matched the several point
clouds with partial overlap.

In simulation experiment 2, we used Happy Buddha point clouds from the Bologna
dataset. This dataset is generated by randomly rotating and translating three to five models,
which are from the Stanford 3D scanning warehouse, to create clutter variances. The Happy
Buddha point clouds from different sample scenes are shown in Figure 4.
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3.2. The Real Experiment Dataset

The real dataset was the TLS data of Sujiaba Bridge. The bridge is located in Nan’ an
District, Chongqing, China. It is the highest ramp bridge in China, with the height of 72 m.
In this study, we used a Leica P50 laser scanner to acquire data. The scanner is a ground-
based 3D laser scanner that has the advantages of a long scanning range with minimal
noise. The object studied, and photos showing Sujiaba Bridge are shown in Figure 5. Table 1
lists the technical parameter of the Leica P50 laser scanner.
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Table 1. Parameter of Leica P50 3D laser scanner [46].

Parameter Value

Scan range mode

0.4~120 m,
0.4~270 m,
0.4~570 m,

>1 km
Scan Rate Maximum 1,000,000 points/s

Vertical/horizontal field-of-view 360◦/290◦

Range noise * 0.4 mm @ 10 m
0.5 mm @ 50 m

Dual-axis compensator 1.5”
* at 78% albedo.
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We collected TLS data of Sujiaba Bridge in two stations on 8 July 2021. The Sujiaba
Bridge TLS data acquisition in scan station 1 is shown in Figure 6. The Leica P50 scanner
was set near the bridge, the scanning range mode was set at 0.4~270 m, and the scanning
resolution was set at 3 mm @ 10 m. The original point clouds of the bridge are shown in
Figure 7.
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4. Results and Discussions
4.1. The Result of Simulation Experiments

The experimental result of point sets with an overlap percent of 0.6 is shown in Figure 8.
It can be seen from Figure 8 that FPFH, SHOT, RoPS, and our descriptor all successfully
register the datasets. The visual result of our descriptor has less distinctive patches of red
or blue except for the non-overlap area. More explicitly, the enlarged registration result
of the Bunny based on three descriptors is shown in Figure 9. The details of the ears and
backs of the Bunny, based on our descriptor, achieve the best performance. Moreover, the
details of other point clouds, such as the beards and tails of the Dragon, hooves, and mouth
of the Horse, also visually show that the performance of our descriptor is better than FPFH,
SHOT, and RoPS.
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the green box shows details of the rabbit’s ears.

Table 2 lists the rotation and translation errors along the x-, y-, and z-directions by
using three different methods. It can be seen from Table 2 that the registration error of our
method on three-point sets is very small. It further demonstrates the effectiveness of our
algorithm. If a fine PCR is conducted, especially the commonly applied ICP algorithm, our
algorithm provides a good initial pose. It will speed the ICP iterative convergence by only
fewer iterations. Note that our method significantly outperforms than FPFH, SHOT, and
RoPS methods.
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Table 2. Registration error with FPFH, SHOT, RoPS, and Our method on simulation experiment.

Dataset Method
Rotation Error (◦) Translation Error (m)

x y z x y z

Bunny

FPFH 0.027 −0.018 0.034 −0.0032 0.0039 0.0028
SHOT 0.021 −0.019 0.028 −0.0034 0.0025 0.0020
RoPS 0.028 −0.017 0.023 −0.0029 0.0026 0.0024

Our method 0.019 −0.013 0.021 −0.0019 0.0021 0.0017

Dragon

FPFH −0.031 0.028 −0.043 0.0038 0.0026 −0.0036
SHOT −0.028 0.019 −0.036 0.0041 0.0024 −0.0029
RoPS −0.029 0.022 −0.038 0.0034 0.0025 −0.0031

Our method −0.023 0.014 −0.021 0.0032 0.0018 −0.0029

Horse

FPFH −0.026 −0.025 0.023 0.0021 −0.0033 −0.0031
SHOT −0.023 −0.026 0.031 0.0025 −0.0036 −0.0029
RoPS −0.024 −0.023 0.027 0.0023 −0.0028 −0.0026

Our method −0.014 −0.016 0.017 0.0018 −0.0029 −0.0024

The registration result of the Happy Buddha based on FPFH, SHOT, RoPS, and our
proposed method is shown in Figure 10. The FPFH, SHOT, RoPS, and our descriptor also
successfully register the real datasets. The visual result of our descriptor has less distinctive
patches of red or blue. The details of the Happy Buddha edge also visually show the
performance of our descriptor is better than FPFH, SHOT, and RoPS.
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Figure 10. Comparison Happy Buddha registration result based on four descriptors. From left to
right is the result of FPFH, SHOT, RoPS and our descriptor respectively. The source point cloud is
shown in blue, and the target point cloud is shown in red.

4.2. The Result of Real Experiment

The PCR result of FPFH, SHOT, RoPS, and our proposed method on Sujiaba TLS data
is shown in Figure 11. It can be seen from Figure 11 that FPFH, SHOT, RoPS, and our
descriptor also successfully register the real datasets. Moreover, our descriptor also has less
distinctive patches of red or blue except for the non-overlap area. The comparison of the
detailed registration result of Sujiaba Bridge based on four methods is shown in Figure 12.
From the enlarged details of specified cross-section in bridge piers with top view and in
main girders with side view, we clearly see that the distance between registration result
based on our descriptor (blue) and the target point cloud (red) is the closet. It shows that
our descriptor has the smallest translation error corresponding to the target point cloud.
In addition, the purple line (FPFH), orange line (SHOT), and green line (RoPS) intersect
with the blue line (target) at a large angle. It demonstrates that the result of FPFH, SHOT,
and RoPS have a bigger rotation angle error than our descriptor. It further demonstrates
that our descriptor significantly outperforms FPFH, SHOT, and RoPS methods in the real
scan dataset.
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orange, green, and blue, respectively.

The time consumption of our descriptor is obtained with similar accuracy. However,
it should be noted that the time of our descriptor is the smallest. It is mainly because the
method proposed has a low calculation dimension. The dimension of our descriptor is 32.
Meanwhile, the FPFH is 33, the SHOT is 352, and the RoPS is 135. Although FPFH has only
33 dimensions, the extraction time is high because SPFH is calculated twice [47].

In general, the FPFH, SHOT, RoPS, and our proposed method successfully register
the synthetic and real datasets. The PCR error of our method is the smallest. Additionally,
the PCR speed of the method proposed herein is the fastest. The proposed method aims to
establish a fast descriptor for PCR. After the experiment on the simulation and real datasets,
the advantages of our method are summarized as follows.

(1) In terms of precision, our method achieves a better performance than FPFH, SHOT,
and RoPS. The wrong matching correspondences will occur because of high self-
similar features. The classic algorithm RANSAC is mostly used for rejecting mis-
matches [48,49]. However, the RANSAC struggles to identify the mismatches. There-
fore, it still has room for improvement in terms of precision. We selected the typical
feature of the point cloud, which is invariant for transformation. Then we integrated
the sub-feature into a new comprehensive descriptor. More importantly, we used the
OSAC algorithm to eliminate wrong matching correspondences. The test results show
that the new descriptor proposed herein has high precision and low dimension. In



Remote Sens. 2022, 14, 4346 13 of 15

addition, our method does not rely on the good initial pose of the point cloud. It is
practical for real data with unknown orientation.

(2) In terms of consuming time, the well-known descriptors, such as FPFH, SHOT, and
RoPS, occupy a large amount of data memory [50–52]. Meanwhile, most processes in
our method are based on 3D key points. Besides the original point cloud, only the
32D descriptor are stored in the memory. Moreover, FPFH, SHOT, and RoPS have
lower matching efficiency because of their feature dimensions [53]. Due to the low
memory footprint and high PCR speed, our method has significant advantages.

The proposed method also has some limitations; we used an empirical equation to
integrate the four sub-features. It is simple, easy to implement and strict in theory. However,
it is not compact and may cause redundancy. In particular, to meet the requirements of
bridge health monitoring, the quality of the bridge point cloud should be very high. The
characteristics of the bridge point cloud are very particular. For example, the x-o-y plane
of bridge TLS data should be an absolute horizontal plane. The dual-axis compensator of
the Leica P50 scanner can achieve an accuracy of 1.5” [11]. We try to decorrelate the values
based on the characteristics of the bridge point cloud in the future. The sub-feature fusion
algorithm should be further studied to obtain a more reasonable descriptor.

5. Conclusions

In this paper, we proposed a PCR method based on a novel local feature descriptor
for point clouds. First, a new feature descriptor was designed by combining normal
information, dot product, neighborhood distance, and curvature. Second, we established
point-to-point correspondences based on feature descriptors via the popular distance metric
L2 norm and apply the OSAC algorithm to eliminate false matching correspondences.
Finally, we performed experiments on simulation and real datasets. We compared the
performance of our proposed descriptor with well-known methods FPFH, SHOT, and RoPS.

In the first experiment, FPFH, SHOT, RoPS, and our descriptor all successfully register
several synthetic datasets. The result of simulation experiments shows that the rotation
angle error is below 0.025◦, and the translation distance error is below 0.0035 m. Our
method achieves an encouraging result, especially in detail. The real data test shows that
the PCR errors based on our descriptor are smaller than FPFH, SHOT, and RoPS methods.
Compared with the existing popular method, our proposed algorithm maintains a similar
accuracy level with higher efficiency.

In general, considering the complexity of feature description and the high demands
on calculating resources in practical applications, our method maintains a high registration
accuracy with fast speed and low memory footprint. It is more suitable for practical
TLS data.
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