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Abstract: Vision-based unmanned aerial vehicle (UAV) localization is capable of providing real-time
coordinates independently during GNSS interruption, which is important in security, agriculture,
industrial mapping, and other fields. owever, there are problems with shadows, the tiny size of
targets, interfering objects, and motion blurred edges in aerial images captured by UAVs. Therefore,
a multi-order Siamese region proposal network (M-O SiamRPN) with weight adaptive joint multiple
intersection over union (MIoU) loss function is proposed to overcome the above limitations. The
normalized covariance of 2-O information based on1-O features is introduced in the Siamese convo-
lutional neural network to improve the representation and sensitivity of the network to edges. We
innovatively propose a spatial continuity criterion to select 1-O features with richer local details for
the calculation of 2-O information, to ensure the effectiveness of M-O features. To reduce the effect of
unavoidable positive and negative sample imbalance in target detection, weight adaptive coefficients
were designed to automatically modify the penalty factor of cross-entropy loss. Moreover, the MIoU
was constructed to constrain the anchor box regression from multiple perspectives. In addition, we
proposed an improved Wallis shadow automatic compensation method to pre-process aerial images,
providing the basis for subsequent image matching procedures. We also built a consumer-grade UAV
acquisition platform to construct an aerial image dataset for experimental validation. The results
show that our framework achieved excellent performance for each quantitative and qualitative metric,
with the highest precision being 0.979 and a success rate of 0.732.

Keywords: UAV visual navigation; Siamese network; multi-order feature; MIoU

1. Introduction

UAVs are widely used in national defense, agriculture, mapping, and other industries,
with the advantages of autonomous flight, high flexibility, extensible function, low costs,
and so on [1,2]. Precise overhead localization is the foundation for UAV navigation and
other extended functions [3]. Currently, the dominant UAV localization and navigation
technologies in use are inertial navigation, Global Navigation Satellite Systems (GNSS),
and combinations of these technologies [4]. Inertial navigation is commonly considered an
auxiliary navigation technology attributed to high short-term accuracy but with large long-
term errors [5]. GNSS is susceptible to an electromagnetic environment and interference
attacks, with unstable signals and poor autonomy [6,7]. Without relying on external
information, scene matching-based UAV visual localization has the advantage of strong
independence and anti-interference ability, which has become a research hotspot [8,9].

The visual localization is realized by matching the aerial image collected by a UAV
in real time with the pre-stored reference image (usually a satellite image), where the
coordinates of the matched block in the reference image are the specific location of the
UAV [10]. The key to visual localization is feature extraction and matching of images,
whose performance directly determines the performance of the localization and naviga-
tion system. The combination of local features and classifiers or clusters enables visual
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localization. Liu et al. [11] designed a visual compass based on point and line features for
UAV high-altitude orientation estimation, using the appearance and geometry structure
of the point and line features in the remote sensing images. Majdik et al. [12] proposed a
textured three-dimensional model and similar discrete places in the topological map and to
address the air–ground matching problem. Obviously, it is necessary to design the local
features for specific tasks considering specific invariants, so experienced researchers and
time consumption are indispensable. Therefore, deep learning-based visual localization
is proposed to automate feature extraction and detection end-to-end [13,14]. In partic-
ular, the convolutional neural network-based architecture approach with strong feature
extraction capability has shown excellent performance in tasks such as target detection
and image retrieval, and has been applied as a general-purpose feature extractor for visual
localization tasks [15,16]. Wu et al. [17] introduced information theoretic regularization
into reinforcement learning for visual navigation and improved the success rate by 10%
over some state-of-the-art models. Bertinetto et al. [18]. first proposed a fully convolu-
tional Siamese network (SiamFC) by converting target matching into similarity learning.
Subsequently, a series of CNN-based Siamese networks has been proposed because of
their simple structure, end-to-end training, and high matching efficiency and speed. The
improved DSiam [19], SA-Siam [20], etc., have achieved excellent performance, where the
backbone networks are usually AlexNet [21], ResNet [22], or DenseNet [23] for feature
extraction and correlation. Among them, Li et al. [24] constructed SiamRPN by combining
the region proposal network (RPN) [25] in the Siamese network, and the matching accuracy
and speed were improved at the same time, which outputs the location and prediction
score of the target by box regression.

Although local feature and semantic-driven approaches are capable of visual localiza-
tion, the challenge of tiny targets in a large overall image has not been addressed. There
are still obvious drawbacks as follows:

• Pseudo-features caused by shadows: The height variation in the terrain and tall
buildings lead to shadows in the collected aerial images [26], and the flight time of the
UAV is uncertain, so the changing light conditions during a day cause different shadow
appearance. These non-ideal effects result in the original information being masked
and generating pseudo-edges, which make it difficult to extract the desired features.

• Blurred edge of tiny target: Because of the large size of aerial images, the target in
the hole image occupies a small number of pixels with tiny sizes, which are easily
disturbed by the background [27]. Since aerial images are usually acquired in motion,
there exist blurred edges of the target image due to shaking. The high-resolution
features and high-level semantic features of the deep network cannot be obtained at
the same time [28]. After multi-layer feature extraction, the features of small targets
may be lost. Consequently, it is necessary to explore feature extraction for blurred
edges of tiny targets.

• Information imbalance: The regions whose overlapping rate with the target region are
less than the threshold value are defined as negative samples, resulting in an unavoid-
able class imbalance in the target detection task [29]. The loss in backpropagation is
obtained by accumulating all samples in a batch, so the training process is dominated
by negative samples and the positive samples are not sufficiently trained.

To overcome these insufficiencies, we propose a stretched Wallis shadow compensation
method and a multi-order Siamese region proposal network (M-O SiamRPN) with weight
adaptive joint multiple intersection over union loss function. The former is used for aerial
image preprocessing, and the latter improves the edge detection of tiny targets and the
robustness of information imbalance. The contributions are summarized as follows:

• An improved Wallis shadow automatic compensation method is proposed. A pixel
contrast-based stretching factor is constructed to increase the effectiveness of shadow
compensation of the Wallis filter. The recovered images are used for searching and
matching to reduce the effect of shadows on localization results.
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• Multi-order features based on spatial continuity are generated to extract the blurred
edges of tiny targets. Here, a feature map selection criterion based on spatial continuity
is proposed to construct the second-order feature via a first-order feature map with
richer spatial information Normalized covariance is introduced in the Siamese network
structure to increase the second-order information and enhance the sensitivity of
features to edges.

• To improve the classification and location regression performance degradation caused
by positive and negative sample imbalance, we propose a weight adaptive joint
multiple intersection over union loss function. Depending on the number of positive
and negative samples, the weight adaptive scale automatically changes the loss penalty
factor for classification. In addition, multiple intersection over union (MIoU) based on
generalized intersection over union (GIoU) and distance intersection over union (DIoU)
are constructed to constrain the regression anchor box from different perspectives.

The rest of this paper is organized as follows. Section 2 is dedicated to describing the
proposed pre-processing shadow compensation and M-O SiamRPN with weight adaptive
joint multiple intersection over union loss function framework. In Section 3, the effective-
ness of the proposed framework is verified using aerial images acquired by a self-built UAV
platform with satellite images to construct the dataset. The discussion and conclusions are
in Sections 4 and 5, respectively.

2. Materials and Methods
2.1. Pre-Processing: Stretched Wallis Shadow Compensation Method

Due to the light angle, terrain undulation, and building blockage, light is blocked in
some regions of the UAV aerial image. The resulting shadows cover parts of the image,
so the associated pseudo-information is unavoidable [30]. Recovery of aerial images
by shadow recovery methods to remove shadow information is capable to improve the
subsequent matching accuracy.

Here, a stretched Wallis shadow compensation method is proposed. The pixel contrast-
based stretching factor is introduced in the Wallis filtering method, aiming for adaptive
compensation for different degrees of shadow occlusions, to improve the contrast within
the shadow region. Wallis is based on the property that the mean and variance of different
regions in the whole image (without shadows) are essentially constant. Using the mean
and variance of the image, the filter coefficients are constructed to achieve the shaded areas
being restored to the normal lighting situation [31]. With the shaded regions being restored,
the difference between these two parts is reduced and the brightness of the shaded regions
is increased. The Wallis is described as:

It(x, y) = αI(x, y) + β

α = σt

σt+ σ
a2

β = bmt + (1− b− α)m

(1)

where I denotes the pixel value of the original image at (x, y), It is the target pixel value, a,
b are hyperparameters, and the σ, m, σt, mt are variance in the neighborhood, pixel mean
in the neighborhood, target variance, and target pixel mean, respectively. Different α are
obtained via adjusting a, which is used to modify the variance of the shaded areas relative
to the whole image, contributing to the increase in contrast in the shaded areas. Similarly,
by changing the parameter β through b, the mean value of the shaded regions is increased
and the brightness is improved. The result of shading recovery is shown in Figure 1. It
can be observed that the recovery method based on the overall image does not address the
effects of different lighting in the shadow regions, suffering from inadequate compensation.
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Figure 1. Shadow compensation results using Stretched Wallis.

Considering the diversity of shadow intensities in different regions, a pixel contrast-
based stretching factor is proposed and integrated to α. The pixel value I is calculated as:

I(x, y) = R ·V(x, y) (2)

where R is the reflectance and V is the light intensity V at (x, y), which is determined by the
direct light intensity Vd and environmental light intensity Ve:

V = Vd + Ve (3)

Given the part of the obscured image, the shadow regions can be approximated as
if only the environmental light intensity is available. Thus, the mean pixel value I can be
written separately according to the shaded and unshaded areas as:

Ishadow− f ree = R · (Vd + Ve) =

n
∑

i=1
Is− f

i(x, y)

n
(4)

Ishadow = R ·Ve =

n
∑

i=1
Ii(x, y)

n
(5)

Therefore, the proportional relationship between environmental light intensity and
direct light intensity in an aerial image can therefore be defined as:

r =
Ishadow− f ree − Ishadow

Ishadow =
1
3
( ∑

R,G,B

m
∑

j=1
Is− f −

n
∑

i=1
I

n
∑

i=1
I

) (6)

It can be seen that a larger r means that the contrast between the shadow-free region
and shaded region is larger and more information needs to be recovered. Most of the r
values in the shaded regions are in the range of 2 to 6. To ensure adequate compensation
for strong shading and smoothness of stretching, the stretching factor S is defined as:

S = log(1 + er) (7)
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Then, with the addition of the stretching factor S, α can be expressed as:

α =
σt

σt + σ

(Sa)2
=

σt

σt + σ

(log(1+er)a)2
(8)

The region of width K around the shadow detected by reference [32] is represented
as the non-shaded region associated with this shaded region, which is obtained by mor-
phological expansion. The mean and variance of the shaded and non-shaded regions
are calculated according to the above regions to solve for the parameters α and β of the
stretched Wallis shading compensation. The recovery of the shaded area is shown in
Figure 1. Obviously, the overall brightness and contrast of the shadows are significantly
enhanced by the stretched Wallis compensation method. In addition, the pixel-based con-
trast stretching factor compensation is more adaptive and the contrast enhancement effect
is more targeted.

2.2. M-O SiamRPN with Weight Adaptive Joint Multiple Intersection over Union for
Visual Localization

Visual localization is accomplished by comparing real-time aerial imagery with pre-
stored satellite images, matching the most similar region in the satellite image to the target,
and marking the coordinate position. Considering the non-ideal effects of small target
size, blurred edges, and non-balanced information in aerial images, we propose an M-O
SiamRPN and a weight adaptive joint multiple intersection over union loss function. The
former is designed to address the localization task as a classification and detection problem
in satellite maps using real-time aerial images as a template through a SiamRPN backbone,
where multi-order with multi-resolution features is used to improve the expression ability
and sensitivity to edge textures. The latter balances the effectiveness of a large number of
negative samples and a small number of positive samples by simultaneously constraining
the anchor box with weight adaptive scale and multiple intersection over union.

2.2.1. M-O SiamRPN Framework

As shown in Figure 2, the proposed M-O SiamRPN consists of three critical compo-
nents: (1) Siamese ResNet backbone for feature extraction applied to the classification
branch and regression branch; (2) Multiple-order information generation module based on
selected first-order features; (3) Region proposal network (RPN) under multiple constraints:

• Siamese ResNet backbone: Inspired by SiamRPN, the first-order features used for
classification and regression to perform correlation are extracted by the Siamese
structure of shared weights. Here, to enhance the feature representation, AlexNet
is replaced with Resnet50 [22] in the original SiamRPN structure to increase the
network depth.

• Multiple-order information generation module is constructed to sufficiently exploit the
complementary characteristics of texture sensitivity of second-order information with
the semantic information of first-order features and the different resolution features.
For further increasing the representation of second-order features for texture, as well
as removing redundant information to avoid overly complex networks, a convolution
kernel selection criterion based on spatial continuity is proposed. Using this criterion,
first-order features with richer texture information are selected for the generation of
second-order information. The second-order information is introduced by adding the
covariance matrix to the residual module.

• RPN with multiple constraints: Corresponding to the Siamese structure used for
feature extraction, RPN also contains two branches: the classification branch and the
regression branch, where both branches are performed with correlation operations as:

Corcls = Tcls ⊗ Scls (9)
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Correg = Treg ⊗ Sreg (10)

where Corcls and Correg denote the correlation calculation of the classification branch and
regression branch, Tcls and Treg represent the features that the template branch fed into
RPN for classification and regression, Scls and Sreg are search branch features fed into
RPN for classification and regression, and ⊗ is correlation calculation. The RPN outputs
the location and category scores of the targets through different anchor boxes sliding the
features input into the two branches. In the above regression procedure, a weight adaptive
joint multiple intersection over union loss function is proposed to optimize the framework,
where the weight adaptive scale aims to balance the information between positive and
negative samples, and multiple intersection over union is used to improve the accuracy of
anchor boxes regression.
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Figure 2. M-O SiamRPN with weight adaptive joint multiple intersection over union framework.

2.2.2. First-Order Feature Selection Criteria Based on Spatially Continuity

The essence of convolution is to extract the efficient information of samples with
kernels, so the corresponding important feature can be selected through the reasonable
judgment of convolution kernels. In practical image processing, the large contiguous
region extracted by the convolution kernel represents the corresponding feature maps with
large blocks of contiguous pixels, which means that the feature map retains more essential
information. Attributed to the different emphases of the features extracted by the kernels
with different parameters, the spatial information contained in the convolutional kernel
weights is the key to texture and edge extraction.

Here, we propose the concept of spatial continuity of convolutional kernels to integrate
the originally scattered spatial information in the kernels, using the spatial information
extraction ability as measurement criteria. The spatial continuity coefficient is calculated
quantitatively and used to rank the convolution kernels, selecting the feature map with
richer spatial information, as shown in Figure 3. For convolutional layers close to the input,
this means that the top-ranked feature maps extract more sufficient local information, as
shown in Figure 4.
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The quantitative calculation of spatial continuity includes connected component anal-
ysis and weight information content. It is mathematically described as the sum of the
products of the connected areas of all connected domains and the Frobenius norm [33] of
the corresponding connected blocks in the matrix, and can be written as:

SC =
m

∑
k=1

Ck‖W‖F, (x, y) ∈ Ak (11)

‖W‖F =
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Tr(WTW) =
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∑ W2
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where W is the weight matrix corresponding to the convolution kernel, m is the total
number of connected blocks in W, Ak is the kth connected block of W, and Ck is the area of
the Ak.

The connected domain is an effective analysis tool in the fields of pattern recogni-
tion and image segmentation, which mainly consists of four-neighborhood and eight-
neighborhood domains, as shown in Figure 5. Here we choose the eight-neighborhood
domain. To obtain the connected domain area Ck, the binarized weight matrix M firstly
needs to be calculated:

Mx,y =

{
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neighborhood; (c) 8-neighborhood.

Here, the threshold value is the hyperparameter. After calculating the M matrix, all
the eight-connected domains in the matrix are traversed, and the connected areas of all the
eight-connected domains are calculated at the same time. The exploration directions and
location during the search process are defined as:

directions = [[1, 1], [−1, 0], [−1, 1], [0,−1], [0, 1], [1,−1], [1, 0], [1, 1]] (14)
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{
x′ = x + directions[k][0]
y′ = y + directions[k][0]

, 0 ≤ k ≤ 8 (15)

where directions denotes the array of searching directions, x and y are the horizontal and
vertical coordinates of the current position, and x′, y′ are next position coordinates to be
explored. The visited elements larger than the threshold are added to the connected block,
and then the elements linked to the connected block continue to be explored. The total
number of elements larger than the threshold that has been explored is the area of the
concatenated domain Ck.

Finally, each convolutional kernel is sorted according to the value of spatial continuity,
and the corresponding features are selected according to the selection proportion p. In the
M-O SiamRPN framework, the first block in ResNet50 is chosen as a candidate to ensure
that the features retain sufficient local information, which is conducive to the representation
of texture by second-order features. Meanwhile, to combine the simplicity of the framework,
p is set to 30% after several experiments, i.e., the features corresponding to the top 30% of
the SC ranked convolutional kernels are selected.

2.2.3. Multiple-Order Feature for Blurred Edges of Tiny Target

The backbone of SiamRPN is replaced with a ResNet50, which increases the network
depth and improves the semantic representation of the features, but it is still essentially
a first-order feature. For the description of blurred edges of tiny targets, the assistance of
second-order features is required [34]. The second-order information based on normalized
covariance is added to the residual block as an embedded injection layer, shown in Figure 6b.
The first-order features applied to produce the second-order information are selected by
the SC proposed in Section 2.2.2. This subsection focuses on the generation of second-order
information with normalized covariance and the fusion of multi-order features.
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Figure 6. Generation of multi-order features in residual blocks: (a) Traditional residual block;
(b) proposed multi-information residual block.

After a pair of samples is fed into the Siamese frame, a set of first-order features, i.e.,
f 1-O ∈ h× w× c, is obtained after extraction and SC selection. f 1-O can be rewritten in vector
form according to the same position of different channels as f 1-O = X = {X1, X1, . . . , Xn},
then its corresponding covariance matrix f 2-O is calculated as:

f 2-O =
1
n
(

n

∑
i=1

XXT) + εI (16)



Remote Sens. 2022, 14, 4467 9 of 20

XXT =


cov(X1, X1) cov(X1, X2) · · · cov(X1, Xn)
cov(X1, X1) cov(X2, X2) · · · cov(X2, Xn)

...
...

. . .
...

cov(Xn, X1) cov(Xn, X2) · · · cov(Xn, Xn)

 (17)

cov(X, Y) = E[(X− X)(Y−Y)] (18)

where I is the unit matrix, ε denotes a small positive number, cov represents the covariance
calculation, and E(•) is the mean value. The second-order covariance with channel interac-
tions is obtained by transposed outer product calculations, whose powerful mathematical
statistical guarantees are verified in various classification applications. The vector used to
calculate the covariance contains descriptions of different channels for the same location,
as shown in Figure 7. Therefore, the obtained second-order information simultaneously
yields the higher-order characteristics and the channel complementary [35]. Different from
other second-order methods, feature maps with high spatial continuity are selected for
conducting second-order calculations, which do not involve dimensional surges and do
not require an additional dimensionality reduction step.
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Figure 7. The generation of 2-O information based on covariance.

The resulting second-order f 2-O belongs to Riemann flow and cannot be directly fused,
which needs to be decomposed into Euclidean space [36]. So, the f 2-O is normalized based
on eigenvalue decomposition, as shown in Figure 7. Since the covariance matrix f 2-O is the
symmetric and positive definite, it can be decomposed by the singular value decomposition
(SVD) as:

f 2-O = UΛUT (19)

where Λ = (λ1, λ2, . . . λn) is the diagonal matrix consisting of the eigenvalues λn and
U = [u1, u1, . . . , un] denotes the corresponding eigenvector. It can be seen from Equation
(19) that the power normalization processing of covariance matrix f 2-O can be expressed as
the power operation of eigenvalue:

( f 2-O)
ω
= UΛωUT (20)

When ω = 0.5, it is the square-root normalization of the matrix. Due to the slow
computational speed of GPU for matrix decomposition, the iterative method to calculate the
square root is employed to meet the demand for high real-time performance of localization.
Let the f 2-O = Z2, for the equation:

F(Z) = Z2 − f 2-O = 0 (21)
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Denman-Beavers [37] formula is applied to the iterative solution, avoiding the draw-
backs of the pathological case of SVD and poor support on the GPU. The mathematical
definition of Denman-Beavers is:

Kk+1 =
1
2
(Kk + O−1

k ) (22)

Ok+1 =
1
2
(Ok + K−1

k ) (23)

where the initial K0 is set to f 2-O, O0 is the unit array I, and Kk and Ok are converged
globally at (f 2-O)1/2 and (f 2-O)−1/2, respectively. Fifteen iterations have been experimentally
demonstrated to be sufficient.

As an injection layer in the residual block, the second-order information based on
normalized covariance is segmentally differentiable, which is able to be trained end-to-end
by back-propagation. From the chain rule, the partial derivative of the loss function L with
respect to f 2-O can be described as:

∂L
∂ f 2-O = U{(QT � (UT ∂L

∂U
)) + (

∂L
∂Λ

)
diag
}UT (24)

where the Q is interleaved matrix consisting of elements q as:

qij =

{
1/(λi − λj), i 6= j

0, i = j
(25)

From the combination of the above equations, the different partial derivatives are
obtained as:

∂L
∂U

= { ∂L
∂Z

+ (
∂L
∂Z

)
T
}UΛ (26)

∂L
∂Λ

= (Λ)′UT ∂L
∂Z

U (27)

(Λ)′ = diag(
1

2
√

λ1
,

1
2
√

λ2
, . . . ,

1
2
√

λn
) (28)

In a similar manner to the summation of features in the residual module, second-order
features are fused by summing matrix elements after channel adjustment:

f M-O(x) = f 1-O(x)⊕ x⊕ f 2-O (29)

where x denotes the input of the current module, ⊕ is the sum of matrix elements, and
element alignment by convolution is omitted here. With the nonlinearity appearing through-
out the R2 space, the output of the overall network is further increased by adding second-
order information to enhance the expression of textures and edges.

2.2.4. Weight Adaptive Joint Multiple Intersection over Union Loss Function

During the training process, only anchor frame coverage exceeding the threshold is
determined as a positive sample, while all other cases are negative samples. This setting
leads to an imbalanced proportion of positive and negative samples [38]. In an attempt
to improve the overall classification performance, the classifier tends to focus less on the
minority class and favor the majority class, resulting in the minority samples being difficult
to be recognized [39]. In addition, the fast and accurate location regression of the anchor
box is also crucial to improving network optimization.

The loss function L of the framework based on SiamRPN consists of two parts, one
of which is classification loss Lcls represented by cross-entropy loss and the other is loss
function Lreg used to optimize the target position. Therefore, we redesign the loss function
for each of the two branches of classification and regression, and the weight adaptive
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joint multiple intersection over union loss function is proposed to cope with the issue of
imbalanced sample information.

For classification loss Lcls, the classical binary cross-entropy loss function is expressed as:

LCE(yi, pi) = −(yi · log(pi) + (1− yi) · log(1− pi)) (30)

where yi is the label of the sample xi and pi is the output probability. The errors are
accumulated equally for each sample, without considering the effect of the majority of
negative sample information on the training process. According to the cost-sensitive
principle, the penalty weight of minority category samples is additionally increased to
enhance the focus on positive samples, improving the identification efficiency of positive
samples. Here, a sample mean distribution coefficient AG is defined as:

AG = Sall/n (31)

where Sall and n are the numbers of sample categories. The implication of AG is the number
of samples contained in each category in the ideal case of a uniform sample. Then, a
weighting scale r is defined:

r = AG/nc (32)

where the nc denotes the number of samples actually classified into category c. For negative
samples, the number of samples within the category is larger than AG, so the scale r is less
than 1, which serves to reduce the weights. On the contrary, in the case of positive samples,
whose number is less than AG, the scale r is greater than 1 and the weight is increased. The
scaling of the weights is automatically adapted to the imbalance of the sample categories.
By adding the weight adaptive scale r to Lce, the new loss function of the classification
branch is:

Lcls = −
1
N

N

∑
i=1

ri[yi log(pi) + (1− yi) log(1− pi)] (33)

Deriving the above Equation (34), the gradient is obtained as:

g = ri[yi · (pi − 1) + (1− yi) · pi] (34)

It can be seen that the gradient values are scaled up when the samples are positive, so
that the total gradient contribution of both categories to the model optimization process
is balanced.

The second part of the loss function is Lreg for predicting the position of the target.
Smooth-l1 is used in SiamRPN for regression optimization, but the four important vertices
of the anchor boxes are not included in the optimization metric, which is less robust to
rotations, scale changes, and non-overlapping boundaries. The intersection over union
(IoU) [25] focuses on the overlap between the prediction anchor box and the groundtruth,
considering the whole process as a regression calculation, which is essentially the cross-
entropy of the overlap rate:

IoU =
S1 ∩ S2

S1 ∪ S2
(35)

LIoU = −p ln(IoU)− (1− p) ln(1− IoU) (36)

where S1 and S2 are prediction box and groundtruth, respectively, p is the corresponding
probability. IoU indicates the overlapping relationship of two borders, which obviously
ranges from 0 to 1. However, the case of non-overlapping is not captured by the IoU. In this
work, multiple intersection over union (MIoU) is proposed to optimize the regression of the
prediction anchor box, designing a more complete loss function, which contains generalized
intersection over union (GIoU) and distance intersection over union (DIoU) [40,41].

The non-overlapping part of the two boxes is the concern of the GIoU, aiming to make
the two boxes infinitely close from the perspective of minimizing the non-overlapping area,
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as shown in Figure 8b. Firstly, it is necessary to find the smallest box S3 that completely
wraps S1 and S2, and then the area not occupied by the two boxes in S3 is calculated as:

GIoU = IoU − |S3 − (S1 ∪ S2)|
S3

(37)

LGIoU = 1− IoU +
|S3 − (S1 ∪ S2)|

S3
(38)
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Obviously, when the prediction box S1 and the groundtruth S2 do not overlap, i.e.,
IoU = 0, the value of GIoU is not zero, ensuring that the gradient of the loss function can be
propagated backwards. However, when S1 contains S2, GIoU degenerates to IoU and the
exact regression calculation cannot be implemented through both GIoU and IoU. Therefore,
DIoU is introduced and its visualization is shown in Figure 8c. Constraints on the distance
between the centers of the two boxes S1 and S2 are incorporated in the regression process
through DIoU to better characterize the overlap information, which is calculated as:

DIoU = IoU − d(S1, S2)

R(S3)
(39)

LDIoU = 1− IoU +
d(S1, S2)

R(S3)
(40)

where d(S1, S2) denotes the distance between the centroids of the two boxes and R is the
diagonal S3. Thus, the regression loss function Lreg based on MIoU is a combination of
DIoU of GIoU:

Lreg = α(1− IoU +
|S3 − (S1 ∪ S2)|

S3
) + β(1− IoU +

d(S1, S2)

R(S3)
) (41)

where α and β are hyperparameters. The loss function of the overall framework L can be
expressed as:

Loss = Lcls + Lreg (42)

Loss =
1
n

n

∑
i=1

L(yi, pi)+α(1− IoU +
|S3 − (S1 ∪ S2)|

S3
) + β(1− IoU +

d(S1, S2)

R(S3)
) (43)

2.3. Experiment Setup
2.3.1. Details about UAV Platform

The experimental platform is based on a DJI M600 UAV and a homemade camera
based on an Imx327 sensor with a resolution of 1080P and a frame rate of 60. The UAV
platform is shown in Figure 9.
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Figure 9. Homemade UAV platform based on DJI M600 and 1080P camera.

2.3.2. Dataset

The dataset is divided into two parts: aerial images and satellite maps. The aerial
images are collected by the self-built UAV platform mentioned above, with a total of
3960 images. The number of aerial images is then expanded to 10,000 by data enhancement
processes including panning, zooming, blurring, and flipping, which cover categories such
as mountains, forests, rivers, lakes, coastlines, urban intersections, playgrounds, factory
buildings, single-family buildings, neighborhood buildings, viaducts, parks, roads without
green belts, roads with green belts, etc. Satellite images corresponding to the aerial images
are taken from publicly available satellite images.

2.3.3. Network Parameters

Inspired by SiamRPN++ [42], the stride of Stage3 and Stage4 of the backbone ResNet50
are halved and combined with null convolution. The dimensions of the features input
to the RPN head for interaction are 25 × 25 and 25 × 25, as illustrated in Figure 2. The
threshold of IoU is set to 0.75, which is attributed to the fact that the final output is the
location rather than the proposed region.

The proposed framework is constructed on PyTorch with an epoch of 50 and batch size
of 128, and the framework is optimized by SGD with a momentum factor of 0.9 and weight
decay of 0.0001. The learning rate is increased from 0.005 to 0.01 using Warmup in the first
5 epochs, after which the learning rate decayed from 0.01 to 0.005 in exponential form. The
backbone is not trained for the first 10 epochs and the whole framework is trained after
the 10th epoch. The hardware platforms used for the experiments are Intel-Core i7-8700K
CPU@3.70GHz and NVIDIA GeForce RTX3090 GPU.

2.3.4. Evaluation Metrics

Reasonable evaluation metrics are an important task for UAV localization. Preci-
sion, success rate, frames per second (FPS), and center location error (CLE) are chosen to
demonstrate the performance of M-O SiamRPN with multi-optimization loss function.

3. Results
3.1. Training Process Results

During the experiment, we recorded the performance of the M-O SiamRPN with
a multi-optimization loss function. The losses in the training process are illustrated in
Figure 10. Obviously, the loss decreased rapidly within 10 epochs and leveled off after
the 15th epoch. It can be observed that the proposed framework did not suffer from
underfitting and overfitting problems, which indicates that our dataset is reasonable and
the proposed model is matched to the dataset.
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Figure 10. Losses of the M-O SiamRPN with multi-optimization: (a) The loss of classification branch; 

(b) The loss of location regression branch; (c) The total loss. 
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Figure 10. Losses of the M-O SiamRPN with multi-optimization: (a) The loss of classification branch;
(b) The loss of location regression branch; (c) The total loss.

3.2. Performance Evaluation

To fairly validate the proposed framework, comprehensive comparison experiments
are conducted. Siamese structure networks similar to our approach i.e., SiamFC [18],
SiamRPN [24], SiamRPN++ [42], and other current best performing localization networks
such as CFNet [43] and Global Tracker [44]. Here, we record the precision and success rate
of all the matching networks, and the details of the different comparison results in different
networks are given below. From Figure 11, it is obvious that the M-O SiamRPN with
multi-optimization achieved significantly higher precision and success rate than those of
other frameworks improving 0.016 and 0.019 over the previous best result of SiamRPN++.
The results indicate that the multi-order features proposed in this work enhance the texture
representation as well as the weight adaptive multiple optimization being able to reduce
the influence of non-equilibrium information.
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Figure 11. (a) Precision and (b) success plots of M-O SiamRPN with multi-optimization and state-of-
the-art frameworks. The mean precision and AUC scores are reported for each framework.

The performance improvement of the network is usually accompanied by an increase
in time complexity. However, for a UAV visual localization task with a high real-time
requirement, the framework must complete inference quickly to guarantee localization
timeliness. Here, we compare the FPS and CLE of different localization frameworks to
verify the processing speed and robustness, and the results are shown in Table 1. Since
the proposed spatial continuity criterion is effective to select a small amount of significant
first-order features, the processing time of M-O SiamRPN with multi-optimization is not
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remarkably increased even with the additional injection of second-order information.
Compared to the structurally similar SiamRPN, our method is slightly slower, which is
attributed to the replacement of the first-order feature extraction network and the generation
of second-order information. In the proposed framework, 35 frames are processed per
second, which is faster than the SiamRPN++ with the same backbone ResNet50.

Table 1. The FPS and CLE of different localization frameworks.

Method FPS CLE

This work 35 5.47
SiamRPN++ [42] 30 5.98

SiamRPN [24] 37 6.26
CFNet [43] 47 6.11

SiamFC [18] 41 6.56
Global Tacker [44] 40 5.83

3.3. Contribution of Multiple-Order Feature

To illustrate the contribution of multiple-order features to promote performance, we
compare the AlexNet and ResNet, which are the backbone in SiamRPN and SiamRPN++,
respectively, with the backbone proposed in this paper. The results are listed in Table 2, em-
bedding the above-mentioned backbones in our framework and discussing the percentage
of the added second-order information. By comparing the first-order features, it can be
seen that as the depth increases, the network feature description capability is improved
and ResNet50 achieved better results than AlexNet with a 0.08 and 0.04 improvement in
precision and success rate, respectively. With the injection of second-order information,
the performance of the network increases significantly. The framework with 30% and 50%
second-order features obtained the highest precision of 0.979 and 0.980, an improvement
of 0.020 and 0.021 compared to the first-order Resnet50. The multi-order features ben-
efit the localization success rate, which was improved by 0.11 (p = 10%), 0.21 (p = 30%),
0.19 (p = 50%), and 0.19 (p = 100%), respectively, compared with the first-order backbone
ResNet50. Considering the processing speed and centering error, p = 30% is used in
practical applications.

Table 2. Ablation studies on the backbone of M-O SiamRPN with weight adaptive joint multiple
intersection over union loss function.

Backbone Precision Success Rate FPS CLE

AlexNet [21] 0.951 0.707 38 6.26
ResNet18 [22] 0.954 0.710 37 6.11
ResNet50 [22] 0.959 0.711 37 6.07

ResNet50 with M-O
feature (p = 10%) 0.968 0.722 33 5.54

ResNet50 with M-O
feature (p = 30%) 0.979 0.732 35 5.47

ResNet50 with M-O
feature (p = 50%) 0.980 0.730 32 5.43

ResNet50 with M-O
feature (p = 100%) 0.978 0.730 30 5.50

3.4. Contribution of Weight Adaptive Joint MIoU Loss Function

The uniform metric Average Precision (AP) is chosen for performance measurement
in order to demonstrate in detail the role of weight adaption and multiple intersection over
union. AP is the area under the curve of precision versus recall, which is a widely accepted
criterion for target detection tasks. We set different IoU thresholds, i.e., IoU = {0.5, 0.6, 0.7,
0.8, 0.9} and used IoU, DIoU, and GIoU as comparisons. The results are reported in Table 3.
LMIoU with weight adaptive gained the highest AP and LMIoU achieved the second-best
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results for all different thresholds of IoU. In addition, LMIoU with weight adaptive showed
the most significant improvement under the harsher conditions with higher thresholds.

Table 3. Quantitative comparison of M-O SiamRPN using LIoU, LCIoU, LDIoU, LGIoU, LMIoU.

Loss Function AP50 AP60 AP70 AP80 AP90

LIoU 82.46% 72.75% 60.26% 39.57% 8.75%
Relative improve 3.96% 4.70% 3.87% 3.09% 5.12%

LCIoU 83.31% 74.19% 60.71% 39.15% 8.62%
Relative improve 3.11% 3.26% 3.42% 3.51% 5.25%

LDIoU 83.57% 75.14% 61.43% 40.60% 8.81%
Relative improve 2.85% 2.31% 2.70% 2.06% 5.06%

LGIoU 84.18% 76.33% 61.87% 39.64% 9.22%
Relative improve 2.24% 1.12% 2.26% 3.02% 4.65%

LMIoU 85.36% 76.57% 62.61% 40.15% 9.81%
Relative improve. 1.06 0.88% 1.52 % 2.51% 4.06%

LMIoU with weight adaptive 86.42% 77.45% 64.13% 42.66% 13.87%

3.5. Qualitative Evaluation

The qualitative results of the M-O SiamRPN with multi-optimization and state-of-the-
art methods are compared in Figure 12. The left column shows pairs that were correctly
localized by all frameworks, and the right column shows pairs that were successfully
localized by M-O SiamRPN with multi-optimization but failed to be localized by other
frameworks. It can be seen that all methods perform well when obvious features (e.g.,
bright colors, special edges) appear in the image. In contrast, when the target in the search
image is blurred or has similar contours to the surroundings, other localization methods
are prone to mislocalization or missed detection, while our framework can still localize
correctly. The improvement in localization performance can be attributed to the following
aspects. Firstly, the fusion of the second-order covariance information enables the backbone
CNN to extract the target features more effectively and characterize the blurred edges more
adequately. Secondly, the negative impact of information imbalance on the classifier is
reduced due to the integration of weight adaptive scale into the classification branch loss
function. Finally, the intersection over union constrains the anchor boxes from different
aspects, resulting in more accurate localization of the location regression branches.
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4. Discussion

Autonomous high-precision real-time localization in the case of GNSS and other
navigation module failures is extremely important for the safe and full-scene application
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of UAVs. By matching aerial images with satellite maps, vision-based UAV localization
can acquire precise coordinates without additional auxiliary information. However, the
real-time collected aerial images are limited by non-ideal effects such as shadow occlusion,
few pixels occupied by the target to be matched, and blurred edges caused by flight jitter,
resulting in vision-based localization that is still challenging. The experimental results
show that the M-O SiamRPN with weight adaptive joint multiple intersection over union
loss can achieve accurate pure visual localization with an accuracy of 0.974 and a success
rate of 0.732.

ResNet50 embedded with second-order information as the backbone of feature extrac-
tion can significantly improve the feature representation of the framework. The increase
in precision and success rate can be attributed to two aspects: (1) edges are essentially
mutations of pixels, and second-order information is more sensitive to mutations. This is
consistent with the effectiveness of second-order pooling [45] and second-order features in
bilinear CNN [46] in fine-grained classification. In addition, the proposed spatial continuity
as an evaluation criterion for first-order features can select feature maps that retain more
adequate local information. (2) The fusion of multi-order features enhances the overall
nonlinearity of the neural network at the feature map level, enabling better performance
of network fitting. In the optimization phase of the framework, we designed a new loss
function to address the sample imbalance problem. For the classification branch of the
Siamese frame, the penalty coefficient of cross-loss is automatically adjusted to increase the
contribution of a few samples to the loss by comparing the distribution of positive samples
within the batch to the ideal equilibrium distribution. In the regression branch, the perfor-
mance of the prediction box and groundtruth box inclusion, as well as non-overlapping
cases, is improved by constraining from both the non-overlapping area and the diagonal of
the anchor boxes.

Although the proposed model has proven to be accurate and efficient, it does have
limitations. By analyzing the failure samples, the precision and success rate of localization
are lower in densely vegetated mountainous areas. This is due to the small spacing and
dense canopy in mountainous and forested areas, where even different tree species have
similar canopy shapes and colors. In addition, the different slopes of the terrain are not
clearly reflected in the aerial images due to the absence of other significant references,
further increasing the difficulty of localization. Currently, UAV vision provides mainly
visible images. In some special applications, it can be supplemented with information from
other wavelength bands, such as adding multispectral through hyperspectral cameras. With
other spectral information, the UAV obtains both flight altitude and terrain slope features
in visual localization, enriching the information contained in aerial images in complex
environments. Among them, the reconstruction of targets by multispectral information
and the effective fusion of multi-source features will be worth further investigation.

5. Conclusions

In this paper, we focus on the challenge of a tiny target and blured edge detection
problem in UAV visual localization. M-O SiamRPN with weight adaptive joint multiple
intersection over union loss and a stretched Wallis shadow compensation method are pro-
posed. The pre-processed aerial images significantly reduce the effect of shadows and are
the basis for subsequent image matching procedures. M-O SiamRPN with weight adaptive
joint multiple intersection over union loss consists of three parts: a dual-stream Siamese
first-order framework based on ResNet50; a covariance-based second-order information
generation module; and an RPN module under weight adaptive multiple constraints. To
exploit the first-order features adequately, we used Resnet50 as the backbone and proposed
the concept of spatial continuity to rank the convolution kernels and select the features
with richer local information for 2-O feature generation. For the blurred edges of tiny
targets, we presented M-O features, which incorporate second-order information obtained
by normalized covariance calculation of selected 1-O features to enhance the network
description capability. To address the problem of positive and negative sample imbalance
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in the detection task, a weight adaptive cross-entropy loss and MIoU were designed to im-
prove the regression precision. The former automatically adjusts the penalty coefficient of
the loss function according to the number of positive and negative samples, while the latter
constrains the interest anchor box from multiple perspectives. We built a consumer-grade
UAV acquisition platform to construct an aerial image dataset for experimental validation.
The results show that our framework obtained excellent performance for each quantitative
and qualitative metric.

The proposed visual framework is only based on a UAV platform, which is capable
of autonomously achieving high-precision real-time localization in the event of GNSS
and other navigation module failure. This provides the basis for higher-level extended
functionality, which is important for safe, full-scene applications of UAVs.
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