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Abstract: In the fields of positioning and navigation, the integrated inertial navigation system
(INS)/global navigation satellite systems (GNSS) are frequently employed. Currently, high-precision
INS typically utilizes fiber optic gyroscopes (FOGs) and quartz flexural accelerometers (QFAs) rather
than MEMS sensors. But when GNSS signals are not available, the errors of high-precision INS also
disperse rapidly, similar to MEMS-INS when GNSS signals would be unavailable for a long time,
leading to a serious degradation of the navigation accuracy. This paper presents a new AI-assisted
method for the integrated high-precision INS/GNSS navigation system. The position increments
during GNSS outage are predicted by the convolutional neural network-gated recurrent unit (CNN-
GRU). In the process, the CNN is utilized to quickly extract the multi-dimensional sequence features,
and GRU is used to model the time series. In addition, a new real-time training strategy is proposed
for practical application scenarios, where the duration of the GNSS outage time and the motion
state information of the vehicle are taken into account in the training strategy. The real road test
results verify that the proposed algorithm has the advantages of high prediction accuracy and high
training efficiency.

Keywords: INS/GNSS integrated navigation; CNN-GRU; CKF; GNSS outage

1. Introduction

Global Navigation Satellite systems (GNSS) can provide accurate position and velocity
information in outdoor environments, and its errors do not accumulate over time [1]. The
disadvantages are that it can only provide less accuracy attitude information, the output
frequency is low (1–20 Hz), and it is vulnerable to environmental interference. In contrast,
the Inertial Navigation System (INS) is less dependent on the environment, and relies
entirely on the angular velocity and acceleration information that is measured by the Inertial
Measurement Unit (IMU), which can provide high-frequency navigation information [2,3].
But the position error will disperse over time due to the integral acquisition of positional
information, resulting large errors in navigation results. Therefore, combining the respective
advantages of GNSS and INS to obtain the navigation results with high accuracy, high
interference immunity, and high frequency is a hot topic of research in the field of navigation
at present [4,5].

The Kalman filter (KF) and its upgrade variants are the most widely utilized algo-
rithms for INS and GNSS information fusion [6,7]. The traditional Kalman filter algorithm
can only be applied to linear systems, but most of the information in real navigation
systems are nonlinear. Bucy et al. [8] proposed the extended Kalman filter (EKF), which
linearizes the nonlinear function around the current estimate, and truncates the first-order
linearization of the Taylor expansion of the nonlinear function. The remaining higher-order
terms are ignored, and their performance depends on the degree of local nonlinearity.
The unscented Kalman filter (UKF) was proposed to further improve the performance
under nonlinear systems by making the nonlinear system equations applicable to linear
assumptions through lossless transformations [9,10]. By approximating the posterior prob-
ability density of the state with a series of deterministic samples, the problem of the EKF
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accuracy dispersion under a highly nonlinear system is avoided. But the UKF has low
accuracy in the high-dimensional case, the cubature Kalman filter (CKF) that is based
on the spherical radial volume criterion is applied to data fusion, which can effectively
approximate the Gaussian density function with higher accuracy, convenient parameter
selection, and good convergence effect [11–13]. In order to improve the fusion accuracy in
complex measurement environments, robust Kalman algorithms have also started to attract
the attention of researchers [14,15]. To solve the problem of error model that is caused by
measurement anomalies, Chen et al. [16] proposed a new cardinal maximum correlation
entropy Kalman filter, which uses the robust maximum correlation entropy criterion (MCC)
as the optimality criterion to solve the state estimation problem under outlier interference
by maximizing the correlation entropy between states and measurements. Yun et al. [17]
proposed a variational Bayesian-based state estimation algorithm to improve the CKF
accuracy under dynamic model mismatch and outlier disturbance.

When the GNSS signals are unavailable, KF operates in predictive mode and corrects
INS measurements according to the system error model. At this time, the accuracy of data
fusion that relies only on the KF is not effective and navigation performance deteriorates
rapidly. To improve the integrated navigation accuracy during GNSS outage, machine
learning has started to be applied to integrated navigation systems. Ning et al. [18] pro-
posed an optimal radial basis function (RBF)-based neural network that can improve the
overall positioning accuracy during short-term GNSS signal outages. Hang et al. [19]
proposed a new hybrid intelligence algorithm combining a discrete gray predictor (DGP)
and a multilayer perceptron (MLP) neural network that provides pseudo-GPS positions
during GNSS failures and uses GNSS position information from the last few moments to
predict positions for future moments. Compared with traditional artificial neural networks,
recurrent neural networks are more advantageous in combined navigation systems and
can make full use of historical information [20–22]. Liu et al. [23] proposed a multi-channel
long-short term memory (LSTM) network to predict the increments of vehicle position,
which reduces the navigation error in case of GNSS outages by an order of magnitude. In
practical applications, a large amount of historical data before the GNSS outage needs to be
trained when the GNSS outage occurs, so the training efficiency of neural networks also
has high requirements. Tang et al. [24] proposed a hybrid algorithm that was based on
the gated recurrent unit (GRU) and adaptive Kalman filter (AKF), and the experimental
results showed that GRU outperformed LSTM in terms of prediction accuracy and training
efficiency. Zhi et al. [25] proposed a convolutional neural network-long short-term memory
(CNN-LSTM) model, which uses convolutional neural network (CNN) to quickly extract
the features of the input and LSTM network to output the pseudo-GPS signal, further
improving the training efficiency. However, most of the current articles use the offline
simulation, assuming that the GNSS failure time is known and do not consider the time
that is required to train the model online. Al Bitar et al. [26] proposed a novel real-time
training strategy for regular training on the past one minute data, with the disadvantage
that only short historical data are used and the accuracy is poor when the time of GNSS
outage is long.

To overcome the shortcomings of the traditional methods, our paper proposes a new
AI-assisted method for the integrated high-precision INS/GNSS navigation system. The
method consists of two parts: first, CKF is used to provide more accurate neural network
training samples. Then, by building a CNN-GRU network to predict the position increments
during GNSS outage, the CNN is utilized to quickly extract the multi-dimensional sequence
features, and GRU is used to model the time series. In addition, a new real-time training
strategy is proposed for practical application scenarios, where the duration of the GNSS
outage time and the motion state information of the vehicle are taken into account in the
training strategy. The experiments verify that the proposed algorithm has the advantages
of high prediction accuracy and high training efficiency.

The rest of the paper is organized as follows: Section 2 introduces the INS error
propagation model and the integrated navigation model that is based on CKF, Section 3
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introduces the proposed CNN-GRU network, Section 4 performs the road test and result
analysis, and the conclusion is presented in Section 5.

2. Mathematical Integrated System Model

The INS and GNSS are loosely coupled as shown in Figure 1. The INS and GNSS can
complete position and velocity independently. Then, the position and velocity errors of INS
are estimated using CKF, and these errors are used to correct the navigation output of INS
and achieve the correction of gyro and accelerometer drift, thus reducing the impact of INS
errors. In this section, we derive the error propagation model of INS, and then introduce
the integrated navigation model that is based on CKF.
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Figure 1. Flowchart of the loosely coupled integrated system.

2.1. The Error Propagation Model

By integrating the angular velocity that is measured by gyro, the attitude direction
of the inertial component can be obtained. By using the directional cosine matrix of the
attitude direction, the specific force components of the accelerometer observations along
each axis of the carrier system can be converted to the navigation coordinate system, the
velocity and position can be calculated.

In the process of attitude calculation, the navigation coordinate system that is obtained
is regarded as the real navigation coordinate system. In practice, due to the interference of
various factors, the calculated navigation coordinate system will have deviations compared
to the real navigation coordinate system, and the attitude error equation can be expressed as:

.
φ = φ×ωn

in + δωn
in − δωn

ib, (1)

where δωn
in = δωn

ie + δωn
en is the angular velocity error in the navigation coordinate system,

δωn
ie is the angular velocity error of the Earth’s rotation, δωn

en is the rotation error of the

navigation system, δωn
ib = Cn

b δωb
ib = Cn

b

[
(δKG + δG)ωb

ib + εb
]

is the gyro measurement

error, εb is the gyro drift error, and δKG and δG are the gyro scale factor error and non-
orthogonal installation error, which can be expressed as:

δKG = diag
([

δKGx δKGy δKGz
])

δG =

 0 δGz −δGy
−δGz 0 δGx
δGy −δGx 0

 (2)

Both calibration residuals and installation errors can be considered as constants, while
random drift can be expressed as a cumulative model of random constants and a first-order
Markov model. In the presence of attitude error and specific force measurement error, the
velocity differential error can be expressed as:

δ
.
vn

= f n
s f × φ + (2δωn

ie + δωn
en)× vn − (2ωn

ie + ωn
en)× δvn + δ f n

s f + δgn (3)
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where δ f n
s f is the accelerometer measurement error, which can be expressed as the cumula-

tive model of accelerometer zero deviation and white noise.

δgn =

 0
−β3(sin 2L·δh + 2h cos 2L·δL)

−[ge sin 2L(β− 4β1 cos 2L)δL− β2δh]

 (4)

where β is the gravity flattening, β1 = 2.32718 × 10−5s−2, β2 = 3.08 × 10−6s−2,
β3 = 8.08× 10−9s−2.

The position error is [27]:
δ

.
L = 1

RM+h δvN − vN
(RM+h)2 δh

δ
.
λ = sec L

RN+h δvE + vE sec L tan L
RN+h δL− vE sec L

(RN+h)2 δh

δ
.
h = δvU

, (5)

2.2. The Integrated Navigation Model Based on CKF

In the integrated navigation system, the CKF estimation is adopted to estimate the
system state vector which is a 15 array vector:

X = [ϕe ϕn ϕu δVe δVn δVu δL δλ δh ∇x ∇y ∇z εx εy εz
]T (6)

where ϕe, ϕn, and ϕu denote the attitude error angles of the INS in the east, north, and
zenith directions. δVe, δVn, and δVu denote the velocity error of INS in the three directions.
δL, δλ, and δh denote the latitude error, longitude error, and altitude error. ∇x, ∇y, and
∇z are the accelerometer bias vectors, and εx, εy, and εz are the gyro bias vectors.

The equation of state and measurement equation of the system can be expressed as:{ .
X = FX + GW
Z = HX + V

(7)

where F is the system state transfer matrix, which consists of the INS system error. G is the
system noise matrix. Z is the measurement vector, which is set to the position error vector
and velocity error vector of INS and GNSS. H is the observation matrix. W is the process
noise vector. V denotes the measured noise vector.

The CKF is based on the 3rd order volume rule and is suitable for high-dimensional fil-
tering problems. The computation consists of two steps: the time update and measurement
update phase, as shown in Algorithm 1.
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Algorithm 1: Cubature Kalman Filter.

Require: x̂k−1|k−1, Pk−1|k−1, Qk−1, Rk
for i = 1, . . . , N do

xi
k−1 = Sk−1|k−1ξi + x̂k−1|k−1

wi
k−1 = 1/N

end for
Prediction phase:
^
xk|k−1 =

N
∑

i=1
wi

k−1f
(

xi
k−1

)
Pk|k−1 =

N
∑

i=1
wi

k−1

(
f
(

xi
k−1

)
− ^

xk|k−1

)(
f
(

xi
k−1

)
− ^

xk|k−1

)T
+ Qk−1

for i = 1, . . . , N do
xi

k|k−1 = Sk|k−1ξi + x̂k|k−1

wi
k|k−1 = 1/N

end for
Update phase:

ẑk|k−1 =
N
∑

i=1
wi

k|k−1 h
(

xi
k|k−1

)
Pzz

k|k−1 =
N
∑

i=1
wi

k|k−1

(
h
(

xi
k|k−1

)
− ẑk|k−1

)(
h
(

xi
k|k−1

)
− ẑk|k−1

)T
+ Rk

Pxz
k|k−1 =

N
∑

i=1
wi

k|k−1

(
xi

k|k−1 −
^
xk|k−1

)(
h
(

xi
k|k−1

)
− ẑk|k−1

)T

3. CNN-GRU

The overall architecture of our method is shown in Figure 2. In this paper, we use a
loosely coupled integrated navigation scheme that is based on the combination of CKF
and CNN-GRU. The CKF module provides highly accurate position, velocity, attitude, and
IMU error information. The inputs and outputs of the network are shown in Figure 2,
where WI and FI are the angular velocity and specific force that are provided by the IMU,
AINS and VINS are the attitude and velocity information that is calculated by the INS. The
outputs of the network are the position increments δP output by the CKF module, which
are integrated as the pseudo-GNSS position information. When the GNSS signals are avail-
able, the CNN-GRU module operates in learning mode. When the GNSS signals become
unavailable, the CNN-GRU module operates in prediction mode, and the pseudo-GNSS po-
sition increments are predicted to ensure navigation accuracy. Specifically, three operating
modes are included: learning mode when the GNSS signals are available, prediction mode
and learning mode during GNSS short-term outage, and prediction mode during GNSS
long-term outage. When the GNSS signals are available, the length of each learning sample
is 2 min and the learning interval is controlled in 1 min. The reason for choosing – min is
that most GNSS interruption scenarios last less than 2 min, and the purpose of the learning
interval is to reset the CKF filter. When the GNSS signals are unavailable, the model that
was trained in the previous phase is used for prediction, while the previous historical data
are used for training the new fine model, and the model is switched to the new fine model
to improve the prediction accuracy when the GNSS signals that are interrupted exceed
2 min. In order to ensure that the training of historical data can be completed within 2 min,
we consider the differences of the model under different motion states of the vehicle and
reduce the length of the training data. The decision is done using the vehicle motion state
according to the output data of INS, which are zero speed, zero angular speed, zero lateral
speed, and zero vertical speed, and stop saving data when a period of continuous motion
state exceeds five minutes, thus improving the training efficiency.
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The CNN-GRU networks consist of a one-dimensional version of CNN, GRU, and a
fully connected layer. Since the inputs involve multiple sensors and the coupling of multi-
dimensional motion information, the intake features need to be extracted more accurately,
so the CNN is used to quickly extract features from the sensor sequences. Since the vehicle
motion and IMU sensor errors are time-dependent, the GRU is adopted to extract deeper
hidden information from the sensor history data. Finally, a fully connected layer is used to
obtain the final navigation information.

The structure of CNN is shown in Figure 3. CNN is one of the common network
models in the field of deep learning, which is a multi-layer feedforward neural network
with high generalization ability and robustness by local connectivity, weight sharing, and
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pooling operation [28]. The pooling layer is used to compress the high-dimensional features
of the input after processing in the convolutional layer to reduce the parameter matrix
dimension, which reduces the computational workload by reducing the parameters of the
network. The fully connected layer can combine all of the local features into global features.
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The GRU neural network is an improvement on the LSTM neural network. The LSTM
neural network provides a new solution to the short-term memory problem and solves
the problem of gradient disappearance and gradient explosion when the RNN exists to
handle longer sequences. The GRU is simplified for the same estimation accuracy and
higher training efficiency compared to the LSTM. The GRU model consists of two gates:
the update gate and the reset gate. The update gate determines how much information
from the previous state is brought into the current state. The larger the update gate is, the
more the previous state is brought into the current state. The reset gate determines how
the new input information is combined with the previous memory. The smaller the reset
gate is, the more information about the previous state is ignored. The schematic diagram of
GRU is shown in Figure 4.
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GRU undertakes the most important task of sequence analysis, and the time-dependent
nature of GRU makes training more difficult. Therefore, the core parameters are the size
and structure of the GRU network. The hyperparameters that have the greatest impact
on the performance include the number of GRU layers, the number of neurons, and the
step size. Too many neurons lead to an overfitting phenomenon and degradation of the
generalization performance, while insufficient number of neurons cannot fully extract
the relationship between the input and output sequences, and too many GRU layers also
lead to instability of the model. Considering the prediction accuracy and computation
time, the number of GRU layers, the number of neurons, and the step size are set to 2,
48, and 2, respectively. The training time of the network increases with the above three
hyperparameters. Two layers of GRU are sufficient to extract the hidden information, and
too many layers can lead to overfitting.
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4. Experiment Results

The road experiments were carried out on a vehicle platform using an INS/GNSS
system, as shown in Figure 5. The INS system uses high-precision fiber optic gyroscope
and quartz flexible accelerometer that was developed by our group. The GNSS receiver is
Ublox NEO-M8T. The sampling frequency of the INS is set to 400 Hz, and the sampling
frequency of the GNSS is 10 Hz. RTK GNSS provides the ground truth values. The specific
parameters are shown in Table 1. Two typical road experiments were carried out. After the
initial alignment, the INS/GNSS was started in a loosely coupled integrated navigation
mode. The experimental locations were in Zhejiang Province, China:

(1) Experiment 1: Urban roads as shown in Figure 6: the duration of the experiment is
1 h, and the road conditions include straight lines, turns, and lane changes. There
were three segments of simulated GNSS signals interruptions that were introduced,
and the signal interruption durations were 60 s, 180 s, and 300 s, respectively.

(2) Experiment 2: Expressway including tunnels as shown in Figure 7: the duration of the
experiment is 1 h, the road conditions are mainly long straight lines, and the driving
trajectory contains multiple tunnels of different lengths to verify the performance of
the proposed method in the case of real GNSS signals outage scenarios.
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Table 1. The parameters of the sensors.

Fiber optic gyroscope
Bias

Scale factor
Angular Random walk

0.02◦/h
10 ppm

0.002◦/
√

h

Quartz Flexible Accelerometer Bias
Scale factor

10 ug
20 ppm

GNSS(Ublox NEO-M8T) Position accuracy
Velocity accuracy

2.5 m
0.05 m/s

RTK GNSS
(NovAtel ProPak6) Position accuracy 3 cm
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In order to verify the performance of the CNN-GRU-CKF that is proposed in our
paper, we selected two typical road experiments, Experiment 1 focuses on urban roads,
simulating GNSS interruptions by artificially turning off GNSS, while RTK is still working
normally and can provide the ground truth of the position for verifying the algorithm
accuracy. The GNSS signals interruption duration is 1 min, 3 min, and 5 min, respectively.
In order to better reflect the effectivity of the algorithm, the trajectory containing the turn is
deliberately chosen. When the GNSS signals are unavailable, the position information that
is obtained by CNN-GRU prediction is used instead of the true GNSS information, and the
measurement update process of CKF is carried out. Meanwhile, the performance of pure
INS, MLP, and GRU is compared.

Due to the short GNSS outage time in the first period, the INS that is based on high
precision fiber optic gyro shows high accuracy, as shown in Figures 8 and 9, the position
errors in the east and north direction during the 60 s GNSS outage are within 2 m. The
horizontal direction error of 60 s outage is shown in Figure 10. It can be seen that when
the horizontal error is at its maximum, its east and north errors are not necessarily the
maximum. Due to the high accuracy of INS, the overall horizontal error is within 2 m, and
the difference between the accuracy of different algorithms is not significant, and the turning
point of error dispersion mainly occurs at the vehicle corners. The trajectories during this
period are shown in the Figure 11, and it can be seen that the position errors are mainly
generated at the corners. The maximum position errors are shown in Table 2. The proposed
method in our paper reduces the maximum position error in the east direction by 58.61%,
67.05%, and 63.35% compared to pure INS, MLP, and GRU, respectively. The maximum
position error in the north direction is similar, increasing by 4.44% and 12.74% compared
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to pure INS and GRU, reducing by 46.34% compared to MLP, and the maximum position
in the horizontal direction error is reduced by 16.86%, 45.29%, and 35.34% compared to
pure INS, MLP, and GRU, respectively. It can be seen that the accuracy of the RNN is
significantly better than that of the MLP.
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Table 2. Maximum position error of 60 s outage of Experiment 1.

East Error
(m)

North Error
(m)

Horizontal Error
(m)

Pure INS 1.38 0.96 1.38

MLP 1.74 1.86 2.10

GRU 1.56 0.89 1.78

Our method 0.57 1.00 1.15

Figures 12 and 13 show the position errors of the different algorithms in the east and
north directions during the 120 s GNSS outage. It can be seen that the north position error
of the pure INS has started to decrease. The horizontal direction error of 180 s outage is
shown in Figure 14, and it can be seen that as the GNSS outage time increases to 3 min,
the accuracy of the pure INS starts to dissipate, and the MLP method does not perform
well, starting to dissipate from around 100 s. The trajectories during this period are shown
in Figure 15. The maximum position errors are shown in Table 3. Compared to the pure
INS, MLP, and GRU, the proposed method in this paper reduces the maximum position
errors in the east direction by 92.00%, 89.95%, and 81.10%, in the north direction by 37.39%,
80.45%, and 56.96%, and in the horizontal direction by 86.66%, 86.08%, and 72.18%.
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Table 3. Maximum position error of 180 s outage of Experiment 1.

East Error
(m)

North Error
(m)

Horizontal Error
(m)

Pure INS 49.42 8.58 50.03

MLP 39.35 27.49 47.93

GRU 20.92 12.49 23.98

Our method 3.95 5.37 6.67

Since the GNSS outage time reached 300 s, the model was switched to the fine model
when the GNSS outage time increase to more than two minutes. Figures 16 and 17 show
the position errors of the different algorithms in the east and north directions during the
300 s GNSS outage. It can be seen that the prediction performance of MLP for the north
position error was unsatisfactory, while the effect of the direction that was proposed in our
paper is obvious. Horizontal direction error of 300 s outage is shown in Figure 18. It can be
seen that as the GNSS outage time increases to 5 min, the accuracy of both the pure INS
and the MLP method begin to diverge, while the GRU and CNN-GRU accuracy is better
maintained. The trajectories during this period are shown in the Figure 19. The trajectory
that is predicted by the method that is proposed in our paper is close to the real trajectory.
The maximum position errors are shown in Table 4. Compared to the pure INS, MLP, and
GRU, the proposed method in our paper reduces the maximum position errors in the east
direction by 93.96%, 77.60%, and 61.27%, in the north direction by 86.34%, 82.87%, and
57.67%, and in the horizontal direction by 93.36%, 84.58%, and 66.81%.
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Table 4. Maximum position error of 300 s outage of Experiment 1.

East Error
(m)

North Error
(m)

Horizontal Error
(m)

Pure INS 111.48 55.81 124.67

MLP 30.08 44.51 53.72

GRU 17.40 18.01 24.96

Our method 6.74 7.62 8.28

As shown in Figure 20, Experiment 2 contains five tunnels, with lengths of 1.3 km,
1.7 km, 3.2 km, 5.2 km, and 1.7 km, respectively. The first three sections of the tunnel
are closely spaced which is specifically designed to more accurately show the algorithms’
effectiveness. As shown in Figure 21, the compensation effect of different algorithms for the
first three tunnel sections can be seen. Since RTK cannot obtain position information in the
tunnel, we choose the horizontal position error at the end of the tunnel as the evaluation
index, and the results are shown in Table 5. Compared with pure INS, MLP, and GRU, the
method that was proposed in this paper reduces the average horizontal position error at
the end of the tunnel by 66.07%, 59.85%, and 36.50%.
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Table 5. Horizontal position error at the end of the different tunnels.

#1
(m)

#2
(m)

#3
(m)

#4
(m)

#5
(m)

Pure INS 2.56 5.27 6.82 18.91 6.57

MLP 7.46 6.94 5.77 9.62 4.12

GRU 3.96 5.82 3.49 5.52 2.65

Our method 1.90 3.02 2.52 4.36 1.81

5. Conclusions

In order to improve the positioning accuracy of integrated INS/GNSS navigation
during GNSS outage, our paper proposes a new AI-assisted method. The method consists
of two parts: first, CKF is used to provide more accurate positioning results. Then, by
building a CNN-GRU network we can predict the position increments during GNSS outage.
In the process, the CNN is utilized to quickly extract the multi-dimensional sequence
features, and GRU is used to model the time series. In addition, a new real-time training
strategy is proposed for practical application scenarios, where the duration of the GNSS
outage time and the motion state information of the vehicle are taken into account in the
training strategy. The experimental results show that compared with pure INS, MLP, and
GRU, the proposed method reduces the maximum position error in the horizontal direction
by 93.36%, 84.58%, and 66.81% in the 5 min simulated GNSS disruption experiments
compared to the pure INS, MLP, and GRU, respectively. In the real GNSS failure scenario,
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the average horizontal position error at the end of the tunnel using our method is reduced by
66.07%, 59.85%, and 36.50%. The algorithm can provide real-time high-precision navigation
results with high efficiency and has a good reduction effect on the error dispersion that is
caused by prolonged GNSS failure.
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