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Abstract: The estimation of forest aboveground biomass (AGB) using Landsat 8 operational land
imagery (OLI) images has been extensively studied, but forest aboveground biomass (AGB) is often
difficult to estimate accurately, in part due to the multi-level structure of forests, the heterogeneity of
stands, and the diversity of tree species. In this study, a habitat dataset describing the distribution
environment of forests, Landsat 8 OLI image data of spectral reflectance information, as well as
a combination of the two datasets were employed to estimate the AGB of the three common pine
forests (Pinus yunnanensis forests, Pinus densata forests, and Pinus kesiya forests) in Yunnan Province
using a parametric model, stepwise linear regression model (SLR), and a non-parametric model,
such as random forest (RF) and support vector machine (SVM). Based on the results, the following
conclusions can be drawn. (1) As compared with the parametric model (SLR), the non-parametric
models (RF and SVM) have a better fitting performance for estimating the AGB of the three pine
forests, especially in the AGB segment of 40 to 200 Mg/ha. The non-parametric model is more
sensitive to the number of data samples. In the case of the Pinus densata forest with a sample size
greater than 100, RF fitting provides better fitting performance than SVM fitting, and the SVM fitting
model is better suited to the AGB estimation of the Pinus yunnanensis forest with a sample size of
less than 100. (2) Landsat 8 OLI images exhibit superior accuracy in estimating the AGB of the three
pine forests using a single dataset. Variables, such as texture and vegetation index variables, which
can reflect the comprehensive reflection information of ground objects, play a significant role in
estimating AGBs, especially the texture variables. (3) By incorporating the combined dataset with
characteristics of tree species distribution and ground object reflectance spectrum, the accuracy and
stability of AGB estimation of the three pine forests can be improved. Moreover, the employment of a
combined dataset is also effective in reducing the number of estimation errors in cases with AGB less
than 100 Mg/ha or exceeding 150 Mg/ha.

Keywords: aboveground biomass; habitat dataset; Landsat 8-OLI images; pine forest; model comparison

1. Introduction

In addition to regulating the water supplies and climate, forests accumulate biomass
by absorbing light, water, carbon dioxide, and other compounds [1]. Forests are the largest
carbon source in terrestrial ecosystems [2], accounting for more than two-thirds of the
total carbon sequestration annually [3,4]. Therefore, it is crucial to accurately estimate
forest biomass to thoroughly understand the carbon cycle and carbon balance in terrestrial
ecosystems [5].

There are two types of forest biomass: aboveground biomass (AGB) and underground
biomass (UB) [6]. Because AGB accounts for 70% to 90% of the total forest biomass [7],
most previous studies have focused on AGB. The estimation methods of AGB include
destructive and non-destructive methods. The destructive harvest method is considered to
be the most accurate AGB estimation method. However, as this method poses a threat to
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the flora and fauna, it is inappropriate for large-scale AGB estimation [8]. Due to the multi-
scale and multi-band characteristics of remote-sensing (RS) technology, it can effectively
ensure the spatial integrity and temporal continuity of data. RS has become a common
method for large-scale non-destructive AGB estimation in recent decades [9]. Optical
remote sensing was developed first, and a large number of data sources have been used
to estimate thousands of forest AGBs [6,10–13]. The natural forest consisting of mature
stands, however, is characterized by a multi-layer canopy and high density, resulting in
the saturation of spectral reflectance in optical remote sensing and, in turn, leading to an
underestimation of large AGB values [1]. The AGB of young forests, on the other hand, will
be overestimated due to sparse canopy radiation combined with understory vegetation,
soil, and other radiation information. These are the main difficulties that have arisen in
estimating forest AGB using an optical RS dataset. As a result of their capability of obtaining
detailed information on forest structure, radar and LiDAR have become two of the main
techniques for forest AGB estimation in recent decades [13–21]. However, the number of
data sources of radar and LiDAR is relatively smaller than the number of optical RS datasets;
the working mechanism of these data sources also limits their application [6]. Thus, optical
RS still remains an effective data source for AGB estimation in a wide area. As a result,
Landsat images have been widely used in AGB estimation, in part due to their accessibility,
time continuity, and moderate spatial resolution [22–25]. It should be noted that in forest
AGB estimation using Landsat 8 OLI images, the problem of underestimating high values
and overestimating low values when using this data source is still challenging [26].

In order to overcome the uncertainty that can be caused by using only one remote-
sensing source in the estimation of forest AGBs, researchers have become increasingly
aware of the necessity of multi-source data to improve the accuracy of biomass estimation
in forests [6]. For example, by combining radar or UAV data with optical remote-sensing
data, it is possible to overcome the challenge of AGB estimation caused by changes in
the forest structure and the high heterogeneity of the forest landscapes [22,23,26–28]. The
complementarity between remote-sensing data can improve the estimation accuracy of
AGB to a certain extent. However, since radar and UAV data sources are limited, the
combination of non-remote-sensing datasets, such as field measurement and forest surveys,
with optical remote sensing can also contribute to the improvement of AGB estimation
accuracy [29–33]. In recent years, some scholars have emphasized the fact that trees have a
long growing season. Forest AGB estimations can be enhanced by incorporating long-term
data, such as climate [34,35] and phenology [36–38], into an optical remote-sensing dataset
to compensate for the lack of timeliness in remote-sensing data for forest AGB estimations.

Habitat [39] is a concept that was first proposed by Grinnel in 1917. In general, it refers
to the space in which an individual, a population, or a community can complete their life
processes [40]. In many studies, habitat has been shown to affect biomass accumulation
and plant allocation, as well as changes in vegetation genotypes [41–44]. While adapting
to the environment, vegetation also has varying carbon sequestration abilities due to the
accumulation and differentiation of biomass in different parts of the foliage, resulting in
the change of habitat [45]. There is a close relationship between species and habitat [46].
This relationship exists due to the statistical association of habitat information with species
abundance or the probability of occurrence [47]. The abundance of species in a region is
influenced by the community structure at different scales [48], and forests are no exception.
Studies have confirmed that the complexity of the vertical structure of forests is related to
forest biodiversity [49,50]. Thus, the habitat information that can indirectly measure the
biodiversity information in the region [51] can represent the vertical structure information
of the forest to a certain extent, especially on a large spatial scale [52].

Typical habitat data characteristics include climate, slope, aspect, elevation, soil type,
etc. The habitat suitability value (HSV) is determined by the comprehensive effects of
different habitat factors on species in a region. In ecology and conservation biology, species
distribution maps are often used to indicate the HSV of species in specific areas [53,54].
However, it is difficult to produce a map of the species distribution for all species. It is
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especially difficult to obtain the HSV of most species in areas where there are abundant
species [55]. Therefore, it is an effective method to import habitat data into species distri-
bution models (SDMs) to obtain the HSV of species. A number of common SDMs include
BIOCLIM, ENFA, HABITAT, Maxent, etc. Maxent is one of the most widely used and highly
accurate SDMs [56] and has been extensively used in species conservation and manage-
ment [57–59]. This model calculates the binding force of species distribution according to
the environmental factors of known distribution points; then, it estimates the probability of
species distribution in unknown distribution points [60] and ultimately obtains the HSV of
the species. However, the number of studies that use a habitat dataset as an independent
variable to estimate forest AGB is still too small [38], especially for pine forest AGBs.

Furthermore, in addition to the data used for estimation, AGB estimation is also
strongly influenced by the choice of modeling algorithms [61]. There are two types of
AGB modeling algorithms: parametric and non-parametric. The parametric model deter-
mines the relationship between AGB and independent variables through linear functions,
power functions, exponential functions, etc. Since this model requires fewer sample data
and can quantify the relationship between AGB and the variables [1], it has become the
most commonly utilized biomass modeling algorithm [6]. Due to the complex correla-
tion between the variables and AGB, the parametric model cannot provide an adequate
estimation [61,62]. However, the stepwise linear regression algorithm can differentiate
between the important variables in the modeling through the significance test, which, in
turn, improves the estimation performance of the parametric model to a certain extent [63].
In addition, non-parametric models are also capable of handling nonlinear relationships
and can be used to determine the most suitable model structure for the dependent variable
from the estimated data, which has been widely used in forest AGB estimation in the past
ten years [8,25,33,64]. Random forest and support vector machines are two of the most
commonly used non-parametric models. However, the non-parametric model has two
main shortcomings; the first is that it is sensitive to data [1,65], and the second is that its
interpretation for the estimation process is less clear than that of the parametric model [6].

In this study, the AGB of the three common pine forests (Pinus yunnanensis forests,
Pinus densata forests, and Pinus kesiya forests) was estimated in Yunnan Province, southwest
China, by employing varying datasets (e.g., a Landsat 8 OLI dataset, a habitat dataset, and
a combined dataset composed of them both) and modeling algorithms (e.g., stepwise linear
regression (SLR), random forest (RF), and support vector machine (SVM)). Further, the
performance of AGB estimations of different forests under different models was compared.

The purpose of this study was to answer the following questions:

(1) Do estimation models have an impact on the AGB estimation for pine forests?
(2) Is it possible to estimate the AGB for the three pine forests using the habitat dataset?
(3) Does the employment of a habitat dataset reduce the probability of overestimation

and underestimation of the AGB estimation?

2. Materials and Methods

The AGB estimations of pine forests included in this study were carried out using
different datasets from the following steps: (1) the selection of sample plots and calcu-
lation of AGBs; (2) habitat simulation of pine forests in order to obtain habitat datasets;
(3) preprocessing of Landsat 8 OLI images in order to obtain RS datasets; (4) analysis of
the correlation between habitat datasets and RS datasets and plot AGBs in order to select
independent variables; (5) combining data from selected habitat data and RS data; (6) the
development of AGB estimation models (e.g., SLR, RF, and SVM) using different datasets;
(7) comparing the modeling results of AGB estimations. The specific process is shown in
Figure 1.
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Figure 1. Flow chart of estimating aboveground biomass (AGB) of pine forest using different datasets
through parametric model and non-parametric model (Note: HSV, habitat suitability value; SLR,
stepwise linear regression; RF, random forest; SVM, support vector machine).

2.1. Study Area

Yunnan is located in southwest China. It is one of the three forest regions in China.
The pine forests in the province mainly comprise Pinus yunnanensis, Pinus densata, and
Pinus kesiya trees [30,65,66]. The forests play an important role in ecological services and
forest carbon sinks in the region [33,67], and forest biomass is the basis for forest carbon sink
estimation [68]. The study areas of this study were selected in Yongren County, Shangri-La
City, and Pu’er City, where the main distribution areas of the three pine forests are located
(Figure 2).

Yongren County is located in the central and northern parts of Yunnan Province. The
altitude of this area ranges from 1530 to 1700 m above sea level, and the terrain is relatively
flat. The climate of this region is classified as a north subtropical southwest monsoon,
and the precipitation season lasts from June to October, when the dry and wet seasons
are clearly distinguishable [69]. There are mainly two types of vegetation in this region:
sub-humid subtropical evergreen broad-leaved forests and Pinus yunnanensis secondary
forests. Pinus yunnanensis grows at an altitude of 1000–3200 m and can withstand drought
as well as barren soil. This tree species is native to this area, and it is one of the pioneer tree
species in southwest China. The Baima River Forest Farm in Yongren County is the largest
mother forest base for Pinus yunnanensis in China.
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Figure 2. (a) Location of the study area; (b) RGB true color composite image of Shangri-la City and
field plots of Pinus densata forest; (c) RGB true color composite image of Pu’er City and field plots
of Pinus kesiya forest; (d) RGB true color composite image of Yongren County and field plots of
Pinus yunnanensis forest.

Shangri-la, with an altitude of between 1503 and 5545 m above sea level, is located in
the northwest of Yunnan Province. The annual average temperature in this area is 5.5 °C,
and summer and autumn are the seasons with the most precipitation. This area is part
of the World Natural Heritage site, “Parallel Flow of the Three Rivers”, with rich forest
resources. Pinus yunnanensis, Pinus densata, Picea spp, Abies spp, and Quercus spp are the
dominant tree species in the Shangri-la region [70]. Among the tree species, Pinus densata is
considered to be a unique tree species in the alpine region of western China, and its vertical
distribution is slightly higher than that of Pinus yunnanensis.

Pu’er is located in the southwest of Yunnan Province, where the altitude ranges from
376 to 3306 m above sea level. In addition, more than 90% of the area is mountainous. In
most parts of this area, there is no frost all throughout the year, and the annual precipitation
is between 1100 and 2780 mm. In addition, its climate is classified as the plateau monsoon
climate of the south Asian tropics. The abundant precipitation keeps the relative humidity
in the region at 82% all throughout the year, resulting in favorable conditions for vegetation
growth [71]. Pu’er is the second largest forest region in the Yunnan Province. Over half of
the area is covered by Pinus kesiya, the dominant tree species. Pinus kesiya is also a main
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afforestation tree species that can be found at altitudes below 1800 m in southern, central,
and western Yunnan province.

2.2. Sample Plot Data and Forest AGB

In order to obtain the AGB of the pine, destructive samples were taken from
87 P. yunnanensis plots, 147 P. densata plots, and 45 P. kesiya plots in the study area from
2011 to 2017. The sample plots of 30 m × 30 m were selected and established according
to the stock state map based on tree age, altitude, slope, aspect, and sampling distance of
1 km. The coordinates, altitude, slope, aspect, DBH, and tree height of the sample plots
were recorded in the process of sampling.

Since there is no calculation model for these three AGB of pine trees in the existing
biomass model, in this study, 3 to 5 stands with the average level of stands in the sample
plot were selected for cutting, and subsequently, the biomass of their trunks, bark, branches,
and leaves in the aboveground part was measured. The biomass of the wood and the bark
of the trees was measured by taking a 3 cm disk along the trunk of each tree at 2 m intervals,
and then, the density of the samples was measured using the drainage method. The disk
was dried in an oven at a constant temperature of 105 ◦C, and then, the biomass of the
disk was determined by comparing the weight before and after drying. In addition, the
volume of wood and bark from each sample tree was converted into biomass in 2 m units
according to the density of the samples. By using similar methods, the branches and leaves
were collected and weighed by grade, and the resulting biomass was measured accordingly.
The total AGB of each sample was obtained by adding the AGB from different parts of the
sampled trees. Finally, the power function was used to fit individual tree AGB data. The
AGB fitting formulae of Pinus yunnanensis [65], Pinus densata [1], and Pinus kesiya [66] were
obtained, as shown in Formula (1)–(3).

AGBi = 0.048 ∗DBH1.9276 ∗H0.9638 (1)

AGBi = 0.073 ∗DBH1.739 ∗H0.880 (2)

AGBi = 0.058 ∗DBH2.12 ∗H0.4668 (3)

In these formulae, DBH (cm) is the average diameter at breast height (1.3 m), H (m) is
the average tree height, and AGBi is the aboveground biomass of a single standing tree (kg).

In order to obtain the AGB of the sample plot, the unit was converted into the value
per hectare using equation (4). The final AGB statistical data of the three pine forests are
shown in Table 1.

AGBp =
AGBi × n

30× 30
× 10, 000

1000
(4)

Table 1. The statistical parameters of AGB in the sample plot.

Species Number of Plots Statistical Indicators AGB (Mg/ha)

Pinus yunnanensis 87
Min. 17.901
Max. 287.679
Mean 114.868

Pinus densata 147
Min. 2.114
Max. 344.382
Mean 121.474

Pinus kesiya 45
Min. 49.063
Max. 204.448
Mean 116.432

In this formula, AGBi is the biomass of individual trees, n is the number of trees in the
sample plot, and AGBp is the AGB of the sample plot (Mg/ha).
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2.3. Acquisition of Remote-Sensing Datasets

The Landsat 8 OLI images and DEMs employed in this study were downloaded from
http://www.gscloud.cn/ (accessed on 6 August 2022). The spatial resolution of these
data was 30 m, and the coordinate system was a Universal Transverse Mercator with zone
47 north as the spatial reference frame. The specific parameters of the Landsat 8 OLI
images are shown in Table 2. Radiometric calibration, FLASSH atmospheric correction,
and C-correction topographic correction were performed in ENVI in order to correct the
radiometric errors in the images. Subsequently, the corrected images were mosaicked and
clipped to obtain the Landsat 8 OLI image of the study area.

Table 2. The specific parameters of Landsat 8 OLI images.

Study Area Image ID Average Cloud
Cover (%) Start Time

Yongren LC81300422016030LGN00 0.00 30 January 2016

Shangri-la
LC81310412016325LGN00 0.40 20 November 2016
LC81320402016348LGN00 0.73 13 December 2016
LC81320412016348LGN00 0.76 13 December 2016

Pu’er

LC81290442015052LGN00 0.08 21 February 2015
LC81290452015052LGN00 1.87 21 February 2015
LC81310432015066LGN00 0.00 7 March 2015
LC81310442015066LGN00 0.00 7 March 2015
LC81300432015075LGN00 0.18 16 March 2015
LC81300442016046LGN00 0.00 15 February 2016
LC81300452016046LGN00 0.01 15 February 2016
LC81310452016069LGN00 0.41 9 March 2016

The corrected Landsat 8 OLI image includes seven multi-spectral bands, namely Band1-
Coastal, Band2-Blue, Band3-Green, Band4-Red, Band5-NIR, Band6-SWIR1, and Band7-
SWIR2. In this study, for the purpose of obtaining more data for the forest AGB estimations,
sixty-four conversion variables from remote-sensing images were also employed. A total of
five commonly used vegetation indices were calculated, namely the normalized difference
vegetation index (NDVI), simple vegetation index (SVI), enhanced vegetation index (EVI),
atmospherically resistant vegetation index (ARVI), and structurally insensitive pigment
index (SIPI), as well as three tasseled cap images, namely brightness, greenness, and
humidity. In addition, the first, second, and third principal component data, which can
reflect more than 75% of the image information, were also calculated by ENVI 5.3 software.
Additionally, a total of 56 Landsat 8 OLI texture variables were also calculated under 3 ∗ 3
Windows based on the gray co-occurrence matrix, including homogeneity, anisotropy,
mean, angle second moment, entropy, correlation, variance, and contrast. Subsequently,
a Pearson correlation analysis was conducted to screen the AGB-related candidates that
passed the significance test (p≤ 0.01) as the remote-sensing data. Finally, the RS dataset was
derived from the resulting remote-sensing data. The selected remote-sensing variables and
their correlation with AGB are shown in Figure 3. In the figure, the variables superscripted
with “-” are factors that show a negative correlation with AGB.

2.4. Acquisition of Habitat Datasets

When the species adapt to light and precipitation after a prolonged period of time,
they will form development rules that will increase their survival advantages in the habitat
conditions. The 19 bioclimatic variables downloaded from WorldClim (https://www.
worldclim.org/, accessed on 6 August 2022) are considered to be the most significant
habitat factors because they can reflect temperature, precipitation, and some other aspects.
Over 85% of habitat studies use these 19 bioclimatic factors [72], which are included in
Table 3. In this study, the HSV of pine forests and 19 bioclimatic environmental variables
were employed as habitat candidates to estimate the AGB.

http://www.gscloud.cn/
https://www.worldclim.org/
https://www.worldclim.org/
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Figure 3. Radar plot of RS data associated with forest AGB (a) Pinus yunnanensis forests;
(b) Pinus densata forests; (c) Pinus kesiya forests.

Table 3. The 19 bioclimatic environmental variables from WorldClim.

Variable Code Variable Description Variable Code Variable Description

Bio1 Annual mean temperature Bio2 Mean diurnal range
Bio3 Isothermality Bio4 Temperature seasonality
Bio5 Max temperature of the warmest month Bio6 Min temperature of the coldest month
Bio7 Range of annual temperature Bio8 Mean temperature of the wettest quarter
Bio9 Mean temperature of the driest quarter Bio10 Mean temperature of the warmest quarter

Bio11 Mean temperature of the coldest quarter Bio12 Annual average precipitation
Bio13 Precipitation of the wettest month Bio14 Precipitation of the driest month
Bio15 Precipitation seasonality Bio16 Precipitation of the wettest quarter
Bio17 Precipitation of the driest quarter Bio18 Precipitation of the warmest quarter
Bio19 Precipitation of the coldest quarter

In order to avoid data disaster in subsequent analyses, a Pearson correlation analysis
was conducted among the 19 bioclimatic environmental variables in SPSS 22.0 for Windows
to select variables with a correlation coefficient absolute value lower than 0.9 and variables
with significance to the pine habitat. The habitat constraint factors of Pinus yunnanensis
forests included 10 variables, namely Bio1, Bio3, Bio4, Bio5, Bio6, Bio8, Bio10, Bio13, Bio14,
Bio15, and Bio16, while the variables of Pinus densata forests were Bio2, Bio3, Bio4, Bio5,
Bio6, Bio7, Bio14, Bio15, and Bio16. Furthermore, the significant variables for the growth of
Pinus kesiya forests included Bio1, Bio2, Bio4, Bio6, Bio7, Bio10, Bio13, Bio17, and Bio18.

Species distribution point data were obtained from the Chinese Virtual Herbarium
(https://www.cvh.ac.cn/, accessed on 6 August 2022) and the Global Biodiversity In-
formation Facility (https://www.gbif.org, accessed on 6 August 2022). However, these
downloaded points were difficult for unifying the collection time and the collector, and the
data description was not standard. Therefore, it was necessary to screen these points and
delete duplicate points and questionable points to ensure the accuracy of the data. Finally,
803 sample points were obtained, including 460 Pinus yunnanensis, 319 Pinus densata, and
24 Pinus kesiya.

The selected bioclimatic variables and species distribution points were imported into
Maxent, while 25% of them were set as random test points, and the model was repeatedly
applied ten times in order to obtain the HSV of the three pine forests located in southwest
China. The anticipated results were evaluated using the methods of the receiver operating
characteristic curve (ROC) and Jackknife. The results showed that the habitat fitting AUC
values of the Pinus yunnanensis forest, Pinus densata forest, and Pinus kesiya forest were
0.9889, 0.9906, and 0.9983, respectively. It is generally accepted that the predicted result
is accurate when the AUC value is greater than 0.9 [73,74]. The habitat simulation AUC
values for all three pine forests were higher than 0.98. Additionally, the fitted AUC standard
deviation of the Yunnan pine forest and Pinus densata forest was 0.0018, and Pinus kesiya
forest was 0.0004, all of which were less than 0.002. The accuracy was guaranteed. By

https://www.cvh.ac.cn/
https://www.gbif.org
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consulting with experts, the HSV variable values that were closest to the actual species
distribution were selected, as expert knowledge helped improve Maxent’s prediction
accuracy [55].

The candidate of habitat data was derived from the HSV of the pine forests and the
19 bioclimatic variables. Subsequently, a Pearson correlation analysis was conducted to
determine the AGB-related candidates that passed the significance test (p ≤ 0.01) as the
habitat data. Finally, the habitat dataset was derived from the resulting habitat data. The
selected habitat variables and their correlation with AGB are shown in Figure 4. In the
figure, the variables superscripted with “-” are factors that show a negative correlation
with AGB.

Figure 4. Radar plot of habitat data associated with forest AGB (a) Pinus yunnanensis forests;
(b) Pinus densata forests; (c) Pinus kesiya forests.

2.5. Acquisition of Combined Datasets

The combined dataset employed for the AGB estimation consisted of a habitat dataset
and an RS dataset, which correlated with the AGB (correlation coefficient > 0.1) and passed
the significance test (p ≤ 0.01).

The combined dataset of Pinus yunnanensis forests consisted of 13 habitat data and
11 remote-sensing data; the combined dataset of Pinus densata forests consisted of 10 habitat
data and 3 remote-sensing data; and finally, the combined dataset of Pinus kesiya forests
consisted of 15 habitat data and 4 remote-sensing data.

2.6. AGB Modeling Algorithms

In this study, a parametric model, SLR, and two additional non-parametric models,
namely RF and SVM, were used for AGB modeling based on a different dataset.

2.6.1. Stepwise Linear Regression (SLR)

The stepwise linear regression model builds a prediction model by first calculating the
significance of variables and then deleting the variables with low significance backward
or adding the variables with significance forward to the prediction model. Thereby, it
can effectively solve the collinearity problem between explanatory variables [75]. The
constructed model can be expressed using Formula (5).

Y = b0 + b1X1 + b2X2 + · · ·+ bnXn (5)

In this formula, b1, b2, . . . , bn are the regression coefficients of the prediction variables,
and b0 is the constant of the prediction model. The stepwise backward linear regression
model was utilized in this study.

2.6.2. Random Forest (RF)

A random forest is a machine-learning algorithm used for classification and regression.
Its basic idea is to generate a new training sample set by repeatedly performing random
extractions on two-thirds of the data from the original training set, and the remaining data
that are not extracted become the out-of-bag detection data. N regression decision trees
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were constructed for the newly generated sample set to fully grow into a random forest.
Finally, the best regression result was selected by voting on the prediction results of the
decision tree.

By employing the multi-branch combinative learning method of random forests, it is
possible to avoid the shortcomings of using only one classification [76], and the method
has a good tolerance for outliers and noise in large-scale datasets [53]. Random forest
has also been widely used in many other fields, such as agriculture and forestry, in recent
years [77–79].

2.6.3. Support Vector Machine (SVM)

The SVM is a machine-learning method based on the theory of small sample statis-
tics [64]. Its two main functions are, first, to find a hyperplane that fits the test data to the
best degree, and second, to perform a two-dimensional segmentation to maximize the iso-
lation edge of the data on both sides of the hyperplane in order to ensure the classification
accuracy of the data [80]. This method can be utilized to effectively solve the problems of
nonlinear data and high-dimensional pattern recognition [81]. The SVM model has a wide
range of applications in image recognition [82], time series prediction [83], and so on.

In order to simulate the relationship between AGB and the estimation variables of pine
forests, the “MASS”, “randomForest”, and “e1071” packages in R software were employed
to construct the models of SLR, RF, and SVM.

2.7. Model Evaluation

An RS dataset, a habitat dataset, and a combined dataset were applied to all models
of AGB estimation. In this study, the coefficient of determination (R2), the root mean
square error (RMSE), and the normalized root mean square error (NRMSE) were utilized to
evaluate the accuracy of model fitting. Furthermore, the mean error (ME), mean relative
error (MRE), and mean absolute relative error (MARE) were utilized to measure the overall
prediction accuracy and the segment prediction accuracy with a 50 Mg/ha interval (<50,
50–100, 100–150, 150–200, >200 Mg/ha).

R2 = 1−

n
∑

i=1

(∧
yi − yi

)2

n
∑

i=1
(yi − y)2

(6)

RMSE =

√√√√√ n
∑

i=1

(
yi −

∧
yi

)2

n
(7)

NRMSE =
RMSE

y
(8)

ME =
∑n

i=1 (yi − ŷi)

n
(9)

NRMSE =
RMSE

y
(10)

MARE =

n
∑

i=1

∣∣∣∣ yi−
∧
yi

∧
yi

∣∣∣∣
n

× 100% (11)

In this table,
∧
yi and yi are the predicted AGB and the corresponding AGB in the sample

plot; y is the mean AGB of the sample plots; and n is the number of samples.
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3. Results

To compare the role of the model and the dataset in AGB estimation, the sample data
were randomly divided into two groups: 70% of the sample data were fitting data for
model construction, and the remaining 30% were testing data for model validation. Due to
the differences in the number of sample plots in pine forests, some appropriate adjustments
were made to the datasets of different pine forests. The aforementioned processing was
performed in order to ensure the validity of model fitting and validation. The final statistical
values of the modeling and testing samples are shown in Table 4.

Table 4. Statistics of sample plot data used in this research.

Fitting Testing

Species Number
AGB

Range
(Mg/ha)

AGB Mean
(Mg/ha)

AGB Std.
Dev.

(Mg/ha)
Number

AGB
Range

(Mg/ha)

AGB Mean
(Mg/ha)

AGB Std.
Dev.

(Mg/ha)

Pinus yun-
nanensis 57 17.9–287.7 115.1 56.9 30 40.6–270.2 114.4 53.1

Pinus
densata 117 2.1–344.4 119.3 70.6 30 11.1–344.4 107.6 76.3

Pinus kesiya 30 49.1–204.4 116.2 40 15 70.1–192.2 116.8 33.6

3.1. Model Performance

AGB fitting was performed on the SLR, RF, and SVM of the three pine forests using
the habitat dataset, RS dataset, and combined dataset, respectively. The R2 by the SLR
model for the AGB estimation of Pinus yunnanensis forests ranged from 0.1039 to 0.2514;
the R2 value of Pinus densata forests ranged from 0.0742 to 0.1650, and that of Pinus kesiya
forests ranged from 0.0872 to 0.5331. The R2 of the SLR was primarily below 0.6. When an
RF model was implemented, the resulting R2 of AGB fitting of Pinus yunnanensis forests
ranged from 0.2028 to 0.7268, while Pinus densata forests ranged from 0.1903 to 0.7511, and
Pinus kesiya forests ranged from 0.4617 to 0.8316. The R2 distribution was mostly higher
than 0.7. The R2 of the SVM for the AGB fitting of the pine forest was mostly higher than
0.5. The R2 of the Pinus yunnanensis forests ranged from 0.1791 to 0.8100; the Pinus densata
forests ranged from 0.1559 to 0.7285; and the Pinus kesiya forest was concentrated between
0.5034 and 0.7956.

To further analyze the impact of different algorithms on AGB estimation, a boxplot
of the three algorithms (SLR, RF, SVM) for AGB estimation was constructed, as shown in
Figure 5. It can be seen that the median fitting coefficients of SLR, RF, and SVM were 0.1650,
0.7286, and 0.5361, respectively. The RF was significantly higher than the other two models,
and the interquartile range (IQR) of RF was smaller than that of SVM. The median NRMSE
of the three algorithms was 0.4350, 0.2634, and 0.2409, respectively. SLR had the largest
error value, and RF was slightly higher than SVM. The IQR of RF was the smallest among
the three models, and the RF model had the smallest estimation error dispersion. RF had
the best performance of AGB estimation in the fitting data, followed by SVM and SLR,
indicating that the non-parametric model had better AGB estimation characteristics for
pine forests.
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Figure 5. Boxplot of three algorithms for AGB estimation of the Pinus forest.

According to the results of a certain model, the dataset that provided the highest R2 in
the fitting data was applied to the AGB estimation of the test data; that is, the combined
dataset was used for all, except for the RF, estimations of the Pinus densata forests and the
SVM estimation of the Pinus yunnanensis, for which the RS dataset was used. Thereby, the
errors of the varying forests were determined. Additionally, the independence test index
of the model (Table 5) was represented by the mean value of each individual model error
measurement index. It is evident that the fitting performance of AGB estimation in the test
data was similar to that of the fitting data. Among the three models in question, RF had
the lowest score of ME, MRE, and MARE. It was also found that the ME and MRE of the
SLR were smaller than the predicted values of the SVM. However, the MARE, which is
measured by the absolute value of the error, was higher than that of the SVM.

Table 5. Fitting and testing statistics of the three models.

Model
Fitting Testing

R2 RMSE (Mg/ha) NRMSE ME (Mg/ha) MRE (%) MARE (%)

SLR 0.3165 47.1631 0.4035 −3.0224 3.2818 39.8129
RF 0.7698 27.1188 0.2320 −1.8477 −1.8103 30.5218

SVM 0.7840 26.1543 0.2238 −4.5969 −3.9566 35.5108

Furthermore, the prediction performance of the models was explained by the scatter
diagram (Figure 6), which was formed by utilizing the estimated value of the model and
reference data. It can be seen that the fitting performance of the non-parametric models (RF
and SVM) was higher than that of the parametric models (SLR). SLR had estimation errors
in all AGB segments, while RF and SVM had a higher estimation accuracy in cases with
40~200 Mg/ha, but in cases with AGB < 40 Mg/ha, the estimated value was significantly
higher than the actual value; and in cases with AGB > 200 Mg/ha, the estimated value was
significantly lower than the actual value. Although the SVM had a good fitting performance
on some data, the estimation error in other cases was considerable. Compared with the
SVM, the scatter points of the RF of Pinus yunnanensis forests and Pinus densata forests
were distributed within a certain range around the complete fitting line. The distribution
range of the SVM was larger than that of the RF, as was expressed in Figure 6. This shows
that the overall estimation performance of the RF model was better than that of the SVM.
However, in the case of Pinus kesiya forests, the scatter distribution of the RF and SVM
models was similar.
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Figure 6. The predicted results of the SLR, RF, and SVM models of the different forests.
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3.2. AGB Estimation Based on Different Datasets

In order to explain how the AGB estimation of pine forests is affected by a dataset, an
RF with a higher accuracy performance for an AGB estimation was selected to perform
AGB estimation of a habitat dataset, an RS dataset, and a combined dataset of them both.

It is evident from Table 6 that the AGB estimation performance of Pinus yunnanensis
forests that utilized a different dataset under an RF, which was organized from high to
low, was the combined dataset, the RS dataset, and the habitat dataset, respectively. In
the case of Pinus densata forests, the habitat dataset had the lowest fitting performance.
Although the fitting performance of the RS dataset was higher than the combined dataset,
the error rate of the test data was also higher than the combined dataset. In the case of Pinus
kesiya forests, the AGB estimation performance using the combined dataset was the highest,
followed by the habitat dataset. However, the test error of the habitat dataset was higher
than the RS dataset. On the whole, the combined dataset consisting of a habitat dataset
and an RS dataset under RF significantly improved the accuracy of the AGB estimation
performance.

Table 6. Fitting and testing statistics of the three datasets using RF model. Habitat: habitat dataset;
RS: remote-sensing dataset; Combined: combined dataset; R2: coefficient of determination; RMSE:
root mean square error; ME: mean error; MRE: mean relative error; and MARE: mean absolute
relative error.

Species Dataset
Fitting Testing

R2 RMSE NRMSE ME (Mg/ha) MRE (%) MARE (%)

Pinus
yunnanensis

Habitat 0.2028 50.8261 0.4416 4.65 4.0639 38.2588
RS 0.7074 30.7922 0.2675 −0.3226 −0.2819 34.8031

Combined 0.7268 29.7535 0.2585 0.0963 0.0842 35.682

Pinus densata
Habitat 0.1903 63.5056 0.5322 −13.776 −12.797 45.9524

RS 0.7511 35.2124 0.2951 −9.4358 −8.7654 30.5785
Combined 0.7343 36.3738 0.3048 −5.7433 −5.3352 28.1384

Pinus kesiya
Habitat 0.7553 19.7669 0.1701 4.6127 3.9489 25.6779

RS 0.4617 29.3169 0.2522 3.9373 3.3708 23.7645
Combined 0.8316 16.3906 0.1410 3.7964 3.2502 25.3048

The maps of the predicted AGB for the three forests were generated using three
datasets (habitat dataset, RS dataset, and combined dataset) under RF, as shown in Figure 7.
For the Pinus yunnanensis forests and Pinus densata forests, the estimated AGB maps using
the RS and the combined dataset were more heterogeneous than the estimated AGB
maps using habitat datasets. However, for the Pinus kesiya forests, the heterogeneity of the
estimated AGB map using the habitat dataset was higher than that of the other two datasets.

In order to further analyze the impact of a dataset on AGB estimation, the means
and standard deviations of the residuals of test data under RF were calculated for the
overall and different AGB segments, and the results are presented in Table 7. The AGB
residuals of all predicted values showed similar trends. For instance, the means of the
model residuals were highest in a case where only a habitat dataset was involved, followed
by an RS dataset. Additionally, the means of the model residuals were lowest in a case
where a combined dataset was involved, which was also closest to the measured value of
the AGB. Furthermore, in cases where a combined dataset was used for AGB estimation
of pine forests, the AGB standard deviation of the Pinus densata forests and Pinus kesiya
forests was in the lowest grade, while that of the Pinus yunnanensis forests was in the
middle grade. This result concludes that the prediction results of the model involving the
combined dataset were more stable.
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Figure 7. The spatial distributions of the predicted forest AGB values using the three datasets.

Table 7. Summary of the mean (µ) and standard deviation (σ) values of the residuals at different
AGB classes for the three datasets based on the test dataset.

Species Dataset

<50
(Mg/ha)

50–100
(Mg/ha) 100–150 (Mg/ha) 150–200 (Mg/ha) >200 (Mg/ha) Overall

µ σ µ σ µ σ µ σ µ σ µ σ

Pinus yun-
nanensis

habitat 51.08 - - - 34.29 19.46 −13.41 31.10 −49.54 12.97 −128.17 0.67 −4.65 50.52
RS 43.89 - - - 41.74 30.38 −10.79 25.18 −39.83 29.24 −128.59 27.03 0.32 53.68

combined 40.67 - - - 40.00 28.85 −10.07 30.36 −41.96 19.46 −122.51 2.59 −0.11 51.86

Pinus
densata

habitat 70.84 38.02 46.59 33.09 −33.36 15.85 1.08 27.10 −158.37 36.04 13.78 73.88
RS 50.37 32.01 26.42 28.24 −13.86 19.58 −17.81 36.80 −86.73 37.73 9.44 48.52

combined 34.57 13.82 26.42 34.54 −21.11 13.18 −7.61 31.36 −92.04 25.92 5.74 47.23

Pinus kesiya
habitat - - - - - - 11.71 11.99 −2.33 32.63 −61.54 6.84 - - - - - - −4.61 33.19

RS - - - - - - 26.34 15.86 −14.74 16.23 −56.95 20.45 - - - - - - −3.94 32.79
combined - - - - - - 12.65 12.25 −3.68 34.32 −53.54 9.46 - - - - - - −3.80 32.56

On the basis of the statistical value of the predicted residuals for different AGB
segments, in cases where the AGB was less than 100 Mg/ha, the predicted AGB values
were all higher than the actual values. With the reduction in AGB values, the overestimation
errors of the model tended to increase. However, when the AGB of pine forests exceeded
100 Mg/ha, the underestimation of the AGB prediction became increasingly clear. The
estimated value of the AGB was more accurate in the range of 100 to 150 Mg/ha for the
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Pinus yunnanensis forests and Pinus kesiya forests, while that of the Pinus densata forests was
most accurate in the range of 150 to 200 Mg/ha.

In order to further analyze the impact of a dataset on AGB estimation for different
AGB segments, the segmentation of P. kesiya forests with the smallest AGB span among the
three forests was used as the standard to redefine the AGB segment, which was divided
into < 100 Mg/ha, 100—150 Mg/ha, and > 150 Mg/ha. The means of residuals under
RF at different AGB segments were calculated, and the result is shown in Figure 8. It is
evident that the means of residuals using a combined dataset were lower than those using
an optical remote-sensing dataset only in the two segments with larger AGB estimation
errors (AGB < 100 Mg/ha or AGB > 150 Mg/ha). In the range of 150 to 200 Mg/ha, the
same trend was revealed for the Pinus yunnanensis forests and Pinus kesiya forests, except for
the Pinus densata forests. Based on this result, it is concluded that incorporating the habitat
dataset into the optical RS dataset will reduce the number of estimation errors in cases with
AGB < 100 Mg/ha or AGB > 150 Mg/ha compared to relying only on the Landsat 8 optical
remote-sensing dataset.

Figure 8. The means of residuals under RF at different AGB segments.

Table 8 indicates the top six most significant variables for AGB estimation by RF
using a combined dataset. Thus, it also indicates the differences in significant variables
for AGB estimation among tree species. The significant variables of AGB estimation of
Pinus yunnanensis forests only came from the RS dataset; it mostly consisted of texture
variables, and only one vegetation index was selected. For the Pinus densata forests, three
important variables were obtained from the RS dataset, and the other three were obtained
from the habitat dataset, which consisted of two temperature variables and one annual
precipitation index. The habitat dataset was more important in the case of AGB estimation
of the Pinus kesiya forests, since it required three precipitation indices, two seasonal variation
coefficients of temperature, and one texture variable. Texture variables appeared in AGB
estimation of both the Pinus yunnanensis forests and Pinus kesiya forests.

Table 8. Important variables for AGB estimation from different datasets.

Species Variables R2

Pinus yunnanensis B6_homo, B4_entro, B7_homo, SIPI, B4_semo, B7_diss 0.7268
Pinus densata ARVI, SRI, EVI, bio4, bio7, bio12 0.7343
Pinus kesiya B4_mean, bio4, bio14, bio17, bio19, HSV 0.8316

4. Discussion
4.1. The Selection of Modeling Algorithms

In this study, SLR was used to estimate the AGB of three pine forests with varying
fitting datasets. The result showed that the estimation performance of AGB by SLR was not
high, and the R2 of more than 75% of them was below 0.3, and the highest R2 was only 0.53.
The mean NRMSE, ME, MRE, and MARE of the SLR model were larger than those of the
other two non-parametric models, except for the MRE of SVM. Since a linear regression
model can only analyze the relationship between a variable and independent variables from
the linear point of view, it is difficult to obtain a favorable fitting performance by using a
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linear model [76]. Although SLR can determine the important factors for regression through
a significance test, it reduces the number of modeling variables and improves the estimation
accuracy of the model only to a certain extent. However, due to the complex relationship
between the variables and the AGB, it is difficult to use a linear regression model to explain
such a complex nonlinear relationship, and for that purpose, non-parametric machine-
learning algorithms, such as RF and SVM, are necessary [84]. In this study, the mean of
R2 using the non-parametric model for AGB estimation was all above 0.5, indicating a
better fitting performance than the SLR. The fitting results for the two non-parametric
models (RF and SVM), including the mean, maximum, and the standard deviation of R2

and NRMSE, showed the estimation performance using RF was slightly better than that of
SVM. Additionally, this trend was also reflected in MAE and MARE, which used absolute
values as the measurement standard of test data errors.

The overall estimation performance of the AGB differed by about 5% between the
two non-parametric models, although there was a certain gap in the estimation of AGB for
different forests. In this study, the fitting performance of AGB estimation was measured
by the mean value of R2 of different fitting datasets of a certain forest under a specific
estimation model. Under SLR, the result indicates that the cases with the highest R2 of
the AGB fitting estimation were the Pinus kesiya forests, Pinus yunnanensis forests, and
Pinus densata forests, in descending order, which was inversely proportional to the sample
sizes of AGB fitting. Additionally, the R2 difference of this model among different forests
was the highest among the three models. The R2 of AGB estimation using RF were the
Pinus kesiya forests, Pinus densata forests, and Pinus yunnanensis forests, in descending order.
The AGB estimation of the Pinus densata forests with a larger data volume was significantly
better, and the difference of R2 among the varying forests was the lowest among the three
models. This indicates that RF has a good interpretation and a strong degree of robustness
for AGB estimations. This is consistent with the study of Zhang [85]. The descending
order of R2 using SVM was Pinus kesiya forests, Pinus yunnanensis forests, and Pinus densata
forests, respectively, which was consistent with the SLR model. However, the variation
coefficient of AGB estimation using SVM was significantly smaller than that of SLR. In
other words, AGB estimation using SVM was less affected by the forest type than that of
SLR. This indicates that SVM is better suited for small sample data as compared to SLR
and RF, which is consistent with previous research conclusions [86,87].

4.2. Selection of Suitable Variables for AGB Modeling

In cases where a single dataset was used to estimate the AGB, estimation using an RS
dataset performed better, except for the case of Pinus yunnanensis forests using a habitat
dataset under SLR and Pinus kesiya forests using a habitat dataset under RF. This result
indicates that in comparison with a habitat dataset, an RS dataset had excellent AGB
estimation ability for a large area, which is consistent with previous studies [75,87,88].

In cases where an RS dataset was used for AGB estimation, texture variables were most
frequently used in model construction, followed by the vegetation indices, which were
obtained through ground object reflection data, as presented in Table 9. Therefore, texture
information was of great significance for AGB estimations because texture information has
the ability to describe the complex canopy structure of subtropical forest [61].

Table 9. Important variables in AGB estimation using remote-sensing dataset.

Species Model Important Variables

P. yunnanensis SLR B7_homo
RF B6_homo, B4_entro, B7_homo

P. densata
SLR SRI
RF ARVI, SRI, EVI

P. kesiya SLR B4_mean
RF B4_mean, B2_corr, B2_con
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4.3. AGB Estimation by Incorporating the Habitat Dataset into the Models

The AGB fitting performance conducted through combining a habitat dataset with a
remote-sensing dataset was, to a certain extent, higher than that of the cases using a single
dataset. Particularly in the SLR, the R2 of AGB estimation using a combined dataset was
more than twice as high as that of an RS dataset. In the non-parametric AGB estimation
using a combined dataset, only the Pinus densata forests based on RF and Pinus yunnanensis
forests based on SVM were slightly lower than the R2 of an RS dataset, and the difference in
R2 was within 0.02. Recent studies have shown that the spatial pattern of AGB distribution
of vegetation is consistent with the response of its habitat [89]. Integrating a habitat
dataset representing environmental characteristics into an AGB estimation can compensate
for an RS dataset’s problem of low time span and improve the performance of AGB
estimation. As early as 1996, Phinn et al. emphasized the importance of habitat to the
ecosystems [90]. Habitat is the result of long-term development of vegetation, and accurate
estimation of forest biomass requires knowledge of the characteristics of long-term forest
development [91].

The employment of a habitat dataset not only improved the performance of AGB
estimation on the whole but also reduced the number of overestimation errors in AGB
estimation. The decreasing degree of overestimation errors was greatest in the case of
Pinus densata forests, followed by Pinus kesiya forests, and finally, Pinus yunnanensis forests,
respectively. As for the underestimation errors in AGB estimations, in comparison to the
RF model using only the Landsat 8 OLI optical RS dataset, the combined dataset could
reduce the underestimation errors across all segments of Pinus yunnanensis forests and
Pinus kesiya forests with AGB greater than 100 Mg/ha, in addition to Pinus densata forests
with AGB higher than 150 Mg/ha. A combined dataset can significantly improve the AGB
estimations of pine forests [23], and a combined dataset is not necessarily the result of
combining different remote-sensing datasets but also of combining a habitat dataset and
an optical remote-sensing dataset. The combination of a habitat dataset and an optical
remote-sensing dataset is more suitable for low AGB estimation (AGB < 100 Mg/ha) in
cases where non-parametric modeling methods are used. Based on the fact that habitat has
a profound impact on the richness and spatial distribution of species in a region [92], at least
to a certain extent, the habitat dataset can represent the structural information of a forest
in a region. Therefore, combining a habitat dataset with an RS dataset can compensate
for the unreliability of an optical remote-sensing dataset for AGB estimation. In the case
of AGB estimations of pine forests using a combined dataset, the habitat variables of
Pinus yunnanensis forests did not rank among the top six most significant variables in the
RF model, and the habitat variables of Pinus densata forests accounted for 50%, while those
of Pinus kesiya forests accounted for 83%. Therefore, whether the estimated differences
among the forests were related to the number of habitat variables that were included still
needs further discussion.

4.4. Comparison and Implication of Similar Studies

In order to further analyze the research conclusions of this paper, we compared two
papers that also applied Landsat images to estimate the AGB of Pinus densata forests in
Shangri-la. Zhang et al. [33] used Landsat time series images and national forest survey
data from 1987 to 2007 to produce parametric and non-parametric AGB estimations. In
Zhang’s study, i.e., AGB estimation without continuous image participation, the R2 of SLR
and RF were 0.46 and 0.87, respectively, and the MAE of the validation data were 20.48 and
22.47. The R2 of the AGB estimation with the participation of 5-year sequence images were
all increased to above 0.9, and the MAEs were reduced to below 10. In this study, the R2s of
AGB estimations that utilized a combined dataset were 0.17 and 0.73, and the MAEs were
58.82 and 34.68 under SLR and RF, respectively. The R2 was lower than that in Zhang’s
study, but the result of the model fitting comparison was consistent. In other words, in the
case of the Pinus densata forests, the AGB estimation of an RF model was more accurate
than that of an SLR model. The estimation performance of this study was lower than that
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of Zhang for the following reasons. First of all, Zhang not only used spectral variables and
spectral conversion variables of RS data but also used terrain variables to reduce the impact
of the slope on AGB estimation. The type of the forest ecosystem and the change in terrain
both affect the estimation performance of AGB estimations [23]. However, this study only
integrated the habitat dataset derived from bioclimatic data into the remote-sensing dataset
for AGB estimation while ignoring the fact that the lack of topographic variables may
reduce the estimation performance, especially in the case of the Shangri-La region with
large terrain fluctuations. Secondly, the climate data from WorldClim used in this study
were the mean values of various bioclimatic indicators obtained from 1970 to 2000. This
time interval was significantly larger than the 5-year time interval estimated by the optimal
AGB in Zhang’s study. In addition to temporal resolution, the spatial resolution (1 km2) of
climate data was also significantly lower than that of the image data. Finally, the sample
size of the Pinus densata forests used in this study (147 samples) was significantly larger
than the 53 samples used by Zhang, which may have led to a lower estimation accuracy.

Ou et al. [30] incorporated age data as a dummy variable into a Landsat 8 optical
image to estimate the AGB of Pinus densata forests. As a result, the RMSE of the linear
regression dropped from 50.163 to 33.020, and the RMSE of RF dropped from 40.108 to
23.311. This proves that the age-fused optical RS combined dataset significantly improved
the AGB estimation performance. It also indicates that the combined dataset that could
improve the fitting performance of AGB estimations included the combination of different
remote-sensing data sources [23,93], as well as the combination of remote-sensing data and
non-remote-sensing data. For example, the combination of a habitat dataset and Landsat
optical images in this study also significantly improved the overall estimation performance
of the AGB and was able to reduce the number of overestimation and underestimation
errors in cases where only an optical remote-sensing dataset was used for AGB estimation.
Ou’s study concluded that the estimation models that use age as a dummy variable perform
best when AGB < 70 Mg/ha and AGB > 180 Mg/ha, while this study was the most accurate
when the AGB was 150–200 Mg/ha, and the prediction accuracy was also slightly lower
than Ou’s study. However, in forests where the age of stands is difficult to obtain, such
as pure forests with uneven ages and mixed forests with multiple dominant tree species,
the habitat dataset used in this study can be regarded as an effective way to improve the
performance of AGB estimation.

4.5. Limitation and Future Research

This study confirms that a nonlinear algorithm (RF and SVM) is more suitable for
AGB estimation of the pine forests than SLR, and the integration of habitat information can
improve the estimation accuracy of AGB estimation using Landsat optical images. However,
to some extent, the following limitations still exist. Firstly, the three pine forests, which
were selected for AGB estimation in this study, are located in different regions of the study
area, and the environmental information, such as topography, climate, and physicochemical
properties of the soil, varies. This difference will inevitably affect the habitat suitability
for tree growth in the forest. Although none of the other factors play a significant role
compared to the effects of climate [94], the inclusion of information on the elevation, land
cover, and landscape spatial alignment, which have an impact on biodiversity [48,52,95],
can reduce the uncertainty in habitat suitability calculations. Therefore, in later studies, we
will try to combine more variables to improve the expressiveness of the habitat information.

Secondly, the data size of the estimated sample is not only related to the selection of
the estimation model but also affects the estimation performance of the model. Due to the
different distribution ranges of the three pine forests, there are differences in the number of
trees obtained by the same sampling method. However, a sample size of 30 can meet the
requirements for AGB estimation. Bao et al. emphasized that a minimum of 30 samples
should be ensured in AGB estimation [96]. Rafaela et al. estimated the AGB of mangroves
with a sample size of 30 and obtained a good estimation [97]. Moreover, in order to clarify
the effect of sample size on AGB estimation using the combined dataset, we will select
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different sample size data to study the AGB estimation of a specific pine forest in a certain
area in the next step. Technology and means such as growth cones and LiDAR can also be
used to obtain more samples to facilitate the smooth progress of research.

5. Conclusions

In this study, three common pine forests (Pinus yunnanensis forests, Pinus densata
forests, and Pinus kesiya forests) in Yunnan Province, southwest China, were taken as
examples for AGB estimation. The estimation was performed under a parametric model
(SLR) and a non-parametric model (RF and SVM) based on a habitat dataset, Landsat8
OLI optical remote-sensing dataset, and a combined dataset produced by combining the
two. The results indicate that (1) the non-parametric models of RF and SVM are capable of
predicting the AGB of the three pine forests more accurately than the parametric model of
SLR. RF is suitable for AGB estimation with a large sample size, while SVM is better suited
for AGB estimation with a small sample size. (2) When a single dataset is employed for
AGB estimation of the three pine forests, the resulting estimation performance of the habitat
dataset is lower than that of the RS dataset, and the texture variables in the RS dataset are
more significant in AGB estimation. (3) As compared to the overall fitting performance
of the AGB estimations, which only use a single dataset, the combined dataset resulting
from the combination of the habitat dataset and the RS dataset can improve the estimation
performance to a certain extent. In particular, combining datasets can reduce the number
of estimation errors in cases with AGB lower than 100 Mg/ha or exceeding 150 Mg/ha
using RF.
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