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Abstract: Monitoring the lake waterbody area in the Qinghai–Tibet Plateau (QTP) is significant in
dealing with global climate change. The latest released Landsat-9 data, which has higher radiation
resolution and can be complemented with other Landsat data to improve imaging temporal resolution,
have great potential for applications in lake area extraction. However, no study is published on
identifying waterbodies and lakes in large-scale plateau scenes based on Landsat-9 data. Therefore, we
relied on the Google Earth Engine (GEE) platform and selected ten waterbody extraction algorithms
to evaluate the quantitative evaluation of waterbody and lake area extraction results on the QTP and
explore the usability of Landsat-9 images in the relationship between the extraction accuracy and the
algorithm. The results show that the random forest (RF) algorithm performs best in all models. The
overall accuracy of waterbody extraction is 95.84%, and the average lake waterbody area extraction
error is 1.505%. Among the traditional threshold segmentation waterbody extraction algorithms,
the overall accuracy of the NDWI waterbody extraction method is 89.89%, and the average error of
lake waterbody area extraction is 3.501%, which is the highest performance model in this kind of
algorithm. The linear regression coefficients of NDVI and reflectance of Landsat-8 and Landsat-9 data
are close to 1, and R2 is more significant than 0.91. At the same time, the overall accuracy difference
of water extraction between the two data is not better than 1.1%. This study proves that Landsat-9
and Landsat-8 data have great consistency, which can be used for collaborative analysis to identify
plateau waterbodies more efficiently. With the development of cloud computing technologies, such
as Gee, more complex models, such as RF, can be selected to improve the extraction accuracy of the
waterbody and lake area in large-scale research.

Keywords: Landsat-9 data; Qinghai–Tibet Plateau; lake waterbody; GEE; algorithms comparison

1. Introduction

The Qinghai–Tibet Plateau (QTP), referred to as the ‘water tower of Asia’, is the
birthplace of many major rivers, such as the Yangtze River and the Yellow River. It is
about 2.6 million km2 in area, most of which lies at an elevation of more than 4 km above
sea level [1]. The unique alpine terrain of the QTP blocked and raised the warm and
humid South Asian monsoon [2], forming rich water resource reserves in the region. The
QTP contains approximately 1400 lakes of an area larger than 1 km2, with a total area
of about 50,000 km2. The area of lakes on the QTP affected by runoff and precipitation
reaches its maximum during a water-rich period around September. It then enters a
plateau after October until the subtidal period decreases to a minimum around April of
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the following year [3–6]. Studies show that the QTP is one of the most sensitive regions to
global climate change. The lakes, located in endorheic basins, are less affected by human
activities and are outposts of the cryosphere and climate change [7,8]. Accurately depicting
the lake area of the whole QTP is one of the concerns of the Intergovernmental Panel on
Climate Change (IPCC, https://www.ipcc.ch/srocc/, accessed on 20 February 2022), which
helps to enhance the understanding of climate change under the background of global
warming through the temporal and spatial changes of lake waterbodies in the plateau.
It provides scientific support for protecting and developing ecological resources in the
QTP lake area and adopting climate change countermeasures. However, the traditional
method of extracting the lake area by directly measuring water level and shoreline has
a high cost, poor timeliness, and spatial accessibility. Due to the way monitoring data
are acquired and stored varies from site to site, it is challenging to meet the requirements
of current global change research on the integrity of hydrological monitoring data [9,10].
Because of its advantages of comprehensive spatial coverage, strong cyclicality, and low
cost, remote sensing became an important means of lake waterbody area extraction. It has
also extensively promoted the dynamic monitoring of lake areas on the QTP.

From the data perspective, satellite remote sensing provides many multi-source data with
long-term series and high-spatial-resolution. The data sources commonly used in the research
mainly include MODIS [11,12], Landsat [13–15], SPOT [16,17], ALOSE [18], ASTER [19,20], HJ-
1A/1B [21,22], WorldView [23,24], QuickBird [25], IKONOS [26], GaoFen [27,28], ZY-3 [29,30],
SAR [31], and hyperspectral data [32,33]. To better monitor global climate change, studies
usually require an image covering the entire QTP at least once a year, with an image
resolution preferably no greater than 32 m (capable of identifying lakes with an area of
1 km2). In contrast, the image acquisition time is best in October, when the lakes are more
stable. The Landsat series provided by the USG (USGS, http://glovis.usgs.gov/, accessed
on 5 April 2022), due to its relatively high spatial resolution, long time series, free access,
and rich data, became the first choice for lake area extraction of the QTP [34]. Landsat-9
data, accessible by the USGS on 10 February 2022, are identical in band setting to the
Landsat 8 sensors, and include higher radiometric resolution (14-bit quantization increased
from 12 bits for Landsat-8). Since Landsat-9 is matched with Landsat-8 in track design,
if the two data are combined for analysis, the temporal resolution could be improved
from 16 days to 8 days [35]. For large-scale research, the acquisition of images with good
consistency and target recognition ability in the time window is pretty important. Landsat-9
data and Landsat-8 data, which are proved to be able to effectively identify waterbodies,
have good complementarity in the revisit cycle and consistency in parameter settings.
Therefore, Landsat-9 has great application potential in the field of large-scale lake mapping.
However, at present, there is no comprehensive research on water area extraction in QTP
based on Landsat-9 data. The research on water extraction based on Landsat-9 data is of
great significance to the protection and development of plateau ecological resources and
the research on global climate change.

Many scholars proposed various lake water feature extraction models for different
application scenarios with multiple data, mainly divided into the single-band threshold
method, spectral relation method, water index method, machine learning, and multiple
models assisted synthesis method [36]. The single-band threshold method mainly uses
the difference in reflectance between waterbodies and other ground objects in the infrared
band. It selects water features with thresholds, and is widely used when early remote
sensing data are scarce. For example, Frazier et al. [37] used the threshold method to
extract the waterbody of Wagga Lake with the TM4, TM5, and TM7 bands, and the results
show that the extraction method with TM5 band was better. The spectral relation method
mainly extracts the waterbodies by analyzing the spectral curves of the characteristic band
on multiple ground objects and constructing logical classification rules. For example,
Du et al. [38] and Yang et al. [39] extracted the waterbody information by building a
logical relation based on the characteristics of the gray value of the waterbody and the
difference in reflectivity reduction between the waterbody and shadow in the blue-green
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band, respectively. The spectral relation method can better distinguish between waterbodies
and mountain shadows, but the anti-noise interference ability is poor, and it is susceptible
to the influence of non-water noise, such as vegetation and buildings, which is the same as
the single-band threshold method [4,40].

The water index method uses the bands with water reflection differences to construct
the ratio operation, which suppresses the vegetation information, weakens the influence of
soil, buildings, and shadows, and highlights the water information. Since Mcfeeters [41]
proposed the normalized difference water index (NDWI), many scholars proposed a va-
riety of improved water indexes according to different background features and water
characteristics, such as the modified normalized difference water index (MNDWI) [42],
enhanced water index (EWI) [43], automated water extraction index (AWEI) [14], shadow
water index (SWI) [44], and land surface water index (LSWI) [45]. They drove the rapid
development of water information extraction research [46–48]. Although the water index
methods are simple to operate and can eliminate shadows cast from mountains, buildings,
and vegetation, recognition errors of small waterbodies and the boundaries between water
and land are large. The machine learning methods regard waterbodies as a category, using
specific classification rules to classify them to obtain water features. Machine learning
methods, such as minimum distance (MD) [49], decision tree (DT) [50], support vector
machine (SVM) [51], neural network (NN) [52], random forest (RF) [53], and deep learning
(DL) [54], are widely used. Machine learning algorithms realize the effective use of the
spatial and texture information of high-spatial-resolution images and have a good effect
on the extraction of small waterbodies, but the process is relatively complex. For example,
Sui et al. [55] integrated three modules of initial extraction of water, iterative segmentation,
and change detection with the help of GIS technology to realize the automation of the
water extraction process; and Qiao et al. [56] proposed an adaptive extraction method of
“whole-local” progressive spatial scale transformation based on NDWI and combined with
the spectral feature fitting method and iterative algorithm to accurately extract the lake
range. The multiple model-assisted synthesis method is used to synthesize a variety of
models and methods to solve the problem of water extraction in large-scale and complex
background scenes, but the process is complex, and the generalization ability of the model
is poor. By expanding and analyzing the principles, advantages, and disadvantages of dif-
ferent water extraction methods, it is not difficult to see that the water extraction algorithm
has no absolute advantages and disadvantages, and the consistency with the data source
and applications will also affect the accuracy of the algorithm. The computational volume
of large-range water extraction is quite large, so most previous studies focused on the
threshold extraction algorithms with lower complexity, while relatively few studies focused
on the machine learning algorithms with higher complexity. The previous study shows
that the traditional NDWI method performed the best among the threshold extraction
algorithms in water extraction of the QTP [6], but the relevant conclusions are not clear for
Landsat-9 imagery, and the study did not include machine learning algorithms. Therefore,
it is of certain practical significance to carry out the comparative study of various types of
algorithms for plateau lake area extraction based on Landsat-9 images, which can provide
a useful reference for the follow-up related research.

To sum up, the research on the remote sensing extraction of spatial distribution in-
formation of lakes in the QTP has crucial scientific significance for coping with global
climate change. Although water extraction algorithms based on different resolutions and
types of remote sensing data combined with other principles are widely used in water
information extraction, there is not a comparative study of Plateau Lake area extraction
algorithms based on Landsat-9 images. Based on cloud technology, Google Earth Engine
(https://developers.google.cn/earth-engine, accessed on 1 April 2022) stores all kinds
of data, with a total amount of more than 5 Pt on the cloud, and allows users to call the
computing platform composed of tens of millions of computers through the web client
to visually retrieve, process, analyze, and download all kinds of data online. Compared
with the traditional data processing method based on local computers, the emergence of
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GEE dramatically improved the efficiency of big data processing research and reduced
the threshold of large-scale analysis [57–59]. Therefore, this paper uses GEE to conduct a
comparative study of Landsat-9 lake area extraction in combination with ten widely used
water extraction algorithms (including a single-band threshold extraction algorithm, two
spectral correlation algorithms, four water index algorithms, and two machine learning
algorithms). Through comparative research, this study quantitatively evaluates the con-
sistency between different algorithms and Landsat-9 data in the plateau lake extraction
scene to determine the algorithm for large-scale plateau lake area extraction suitable for
Landsat-9, and provides some references and suggestions for further research in subsequent
related fields.

This paper is structured as follows: Section 2 describes the study areas and the data;
Section 3 provides a detailed and complete description of the experimental procedures and
methods; Section 4 presents and analyzes the waterbody extraction results; Section 5 highlights
the main findings and the implications of this study, and is followed by our conclusion.

2. Materials
2.1. Study Region

The QTP region, as shown in Figure 1, is our study area, which locates between
67◦40′37′′E~104◦40′57′′E and 25◦59′30′′N~40◦1′0′′N. The region’s total area is over 3 million
km2, with an average altitude of about 4320 m, and it spans nine countries, including China,
India, Pakistan, Tajikistan, Afghanistan, Nepal, Liberia, Myanmar, and Kyrgyz. [60]. This
region is an important water resource reserve area in China. The annual outbound water
volume of the rivers in Southwest China, which mainly originate here, accounts for about
95% of China’s total annual water consumption (2020). In addition, there are many lakes in
the region, with a total area of about 50,000 km2, accounting for more than half of the lake
area in China [3,5].

2.2. Dataset

The Landsat-9 satellite was successfully launched on 27 September 2021, and Landsat
9 data were publicly available on 10 February 2022. The Landsat-9 satellite carries the
operational land imager (OLI) and the thermal infrared sensor (TIRS). The radiometric res-
olution of the sensor is improved to 14-bit quantization. Landsat-9 orbit has a time interval
with the Landsat-8 and Sentinel-2 orbit, so multi-source data analysis can be carried out to
improve time resolution [35]. This study uses the Landsat 9 Collection 2 surface reflectance
(L9C2_SR), which is geometrically and radiometrically corrected by USGS and downloaded
on the GEE platform. L9C2_SR provides data for eight spectral bands with a ground sam-
pling distance (GSD) of 30 m, includes ultra-blue (0.435–0.451 µm), blue (0.452–0.512 µm),
green (0.533–0.590 µm), red (0.636–0.673 µm), near-infrared (0.851–0.879 µm), shortwave
infrared 1 (1.566–1.651 µm), shortwave infrared 2 (2.107–2.294 µm), and surface temper-
ature (10.60–11.19 µm) bands. Landsat-9 was launched on 27 September 2021, and the
available data could not overlap with the best observation period (October). Considering
the influence of lake ice, the 1211 images used in this study are mainly from March and
April, and a few from January and February. The coverage of images is shown in Figure 1c.
The whole study area has image coverage, with a minimum of 6 times and a maximum of
45 times.



Remote Sens. 2022, 14, 4612 5 of 25Remote Sens. 2022, 14, x FOR PEER REVIEW 5 of 27 
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Study area boundary data were mainly based on TPBoundary_2021. The primary river data were 
collected from HydroRIVERS. The lake data were based on TPLA_V3. The topographic data were 
produced by NASA-provided SRTM DEM [61]; (b) the landcover data source was ESA_World-
Cover; (c) the coverage of Landsat-9 images in the study area was based on L9C2_SR. 
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Figure 1. Study region and dataset. (a) Locations of the study area and the terrain characterized.
Study area boundary data were mainly based on TPBoundary_2021. The primary river data were
collected from HydroRIVERS. The lake data were based on TPLA_V3. The topographic data were
produced by NASA-provided SRTM DEM [61]; (b) the landcover data source was ESA_WorldCover;
(c) the coverage of Landsat-9 images in the study area was based on L9C2_SR.

The Qinghai–Tibet Plateau Lake area data set (V3.0) (TPLA_V3, http://data.tpdc.ac.cn,
accessed on 15 February 2022) [62,63] released by the Institute of Tibetan Plateau Research
was used to construct lake samples as reference truth values. TPLA_ V3 contains a total
of 15 time series of lake boundaries data of the QTP with an area of more than 1 km2.
These boundaries were delineated from Landsat MSS/TM/ETM+/OLI data for the 1970s
(1972–1976, but mainly 1976), ~1990, ~1995, ~2000, ~2005, ~2010, and 2013–2021. The lake
boundaries in the 1970s, ~1990, ~2000, and ~2010 were divided wholly based on visual
interpretation of remote sensing images [63]. The other lake data sets were delineated by
using the NDVI with an appropriate threshold. Visual checking against the original Landsat
images and manual editing of incorrect lake boundaries were also employed [62]. Affected
by runoff and precipitation, lakes on QTP will have seasonal area changes. According to
the differences in lake types and area sizes, seasonal area changes are also considerable,
with the most significant area change of more than 80 km2 [6]. To reduce the uncertainty
caused by seasonal changes, TPLA_V3 mainly uses the images of October in the high-water
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season to extract the boundaries of lakes. Before 2013, the available images in October
were limited, and a small amount of data in September and November were inevitably
used. After 2013, the availability of the high-quality Landsat 8 data enabled annual lake
mapping to be achieved. In this study, the lake boundaries in 2021 in TPLA_V3 were used
as the parameter data. However, the data used for extracting the lake area in this study are
mainly concentrated in March and April (a small part of the data in January and February
are used for supplement) in the low-water season. To ensure that the reference truth data
are sufficiently representative, the Landsat and Sentinel images of the same period are used
for manual selection and adjustment when constructing the lake sample set for accuracy
verification and the lake boundary sample set for area relative error analysis.

In addition, the following datasets were also used in this study: QTP boundary data (TP-
Boundary_2021, http://www.geodoi.ac.cn, accessed on 15 February 2022) [60], WorldCover
data with 10 m spatial resolution published by European Space Agency (European Space
Agency WorldCover 10 m 2020 product, ESA_WorldCover, https://zenodo.org/record/
5571936, accessed on 15 February 2022), global river water data released by the WWF
Conservation Science Program and USGE in conjunction with several scientific institutions
(vectorized line network of rivers, HydroRIVERS) [64]. Among them, TPBoundary_2021
data were used to determine the research regions; ESA_WorldCove was used to gener-
ate samples for machine learning algorithm classification; and HydroRIVERS combined
ESA_WorldCover to construct non-lake waterbodies for post-classification processing.

3. Methods

The step-wise progression of waterbody area extraction is illustrated in Figure 2 and
encompasses four steps: data collection and processing, classification, and evaluation.

1 
 

 

Figure 2. The general workflow of the experiment.

Step 1: Landsat-9 images, lake data, river data, and landcover data were collected as
input data.

Step 2: The Landsat-9 images were processed by removing clouds and shadows and
mosaicked into a de-cloud map. The remaining data were used to generate lake samples,
landcover samples, and non-lake water regions, and finally formed the pre-processing
data results.

Step 3: The model parameters and the thresholds were adjusted according to the lake
and landcover samples. Based on specific model parameters and points combined with
multiple models, waterbody extraction in the QTP study area was realized. Further, the
waterbody extraction results were excluded by using non-lake waterbody data, and the
lake waterbody extraction results in the study area were obtained.
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Step 4: Finally, we evaluated the performance of algorithms with accuracy metrics
based on the extraction information derived from step 3.

3.1. Data Preprocessing

Data preprocessing includes image de-cloud mosaic, classification sample construction,
and non-lake water area extraction. To obtain high-quality cloud-free images covering
the study area, cloud removal becomes a significant preprocessing step and significantly
impacts waterbody extraction results. Landsat-9 images provided by GEE are organized in
a data structure called “Imagecollection”. Unlike traditional remote sensing images, which
emphasize the data organization structure of the scene, “Imagecollection” emphasizes
the concept of the real spatial location corresponding to the pixel. L9C2 contains all
downloadable Landsat-9 images and forms a “stack”-like structure at the spatial position
corresponding to the pixel. Users can use the functions provided by GEE to filter and sort
the “stack” representing a specific spatial location based on time, pixel value, and other
attributes. The spatial position of the cloud and the sun glint changes with time and is
shown as an abnormally high value of pixels on the image. Therefore, we use the function
to sort the values of all revisited images in the time range pixel by pixel, and select the
median value as the pixel value of the point to build an image without the influence of
cloud and sun glint. This study used the “CLOUD_COVER” attribute and the “QA_PIXEL”
band included in the L9C2_SR to detect clouds and cloud shadows as much as possible and
mask them [65], and then used functions such as median() and min() to mosaic the masked
image in order to synthesize a cloud-free image. Due to L9C2_SR having limited images in
the time interval from 1 January 2022 to 30 April 2022, the image cloud coverage in January
and February is large. Therefore, directly setting the attributes of “CLOUD_COVER”,
“QA_PIXEL”, or “IMAGE_QUALITY_OLI”, simply using functions such as median() and
mean() to mosaic cloud-free images, will lead to poor cloud shadow removal results or the
mosaic image no being able to cover the study area. Through the analysis of dataset images
and many comparative experiments, we found that by using “QA_PIXEL “ to obtain the
pixels affected by clouds and cloud shadows detected by the Cfmask algorithm [66] and
masking them without the “CLOUD_COVER” attribute setting, and we can then obtain
mosaic images with good cloud removal effect and complete coverage of the study area
through the following piecewise mosaic steps: adopting the minimum value in the area
with revisit times less than 12; taking the quartile in the area where the number of revisits
is greater than or equal to 12 and less than 30; and taking the median value of the area with
the number of revisits greater than or equal to 26 for image mosaic. The results are shown
in Figure 3.

Referring to the algorithm proposed by Deng et al. [57], the ESA_WorldCover (global
land cover dataset) and the TPLA_V3 QTP (lake dataset) were used for hierarchical au-
tomatic random sampling [58]. The details of sample construction are shown in Table 1.
ESA_Worldcover divides the land cover into 11 categories. After removing the mangroves
that do not exist in the Qinghai–Tibet Plateau, combined with TPLA_ V3 Lake data, strat-
ified random samples were generated. According to Landsat-9 images of Google Earth
cloud removal and Sentinel-2 images of the same period with higher spatial resolution,
the generated random samples were manually revised to eliminate wrong samples. The
samples were randomly divided into a test set, training set, and validation set according
to the ratio of 3:4:3. The test set was used for the search and optimization of model hyper-
parameters, the training set was used for model training, and the validation set was used
for model accuracy verification. In contrast, for non-machine learning models, the test set
and training set were used to determine the threshold, and the validation set was used for
accuracy evaluation.
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Figure 3. Mosaic images under removing clouds were synthesized in false color in bands 5, 4, and
3, and stretched with 2.5 standard deviations. (a) The cloud removal mosaic image with QA_PIXEL
band, IMAGE_QUALITY_OLI wat set to 9, and median function. However, there are still a lot of clouds
in the northwest and southeast regions. (b) The cloud removal mosaic image with QA_PIXEL band,
IMAGE_QUALITY_OLI wat set to 9, and min function. The result shows that the cloud removal effect is
better, but the shadow effect is enhanced. (c) The cloud removal mosaic image with QA_PIXEL band,
CLOUD_COVER wat set to 20, and min function. Mosaic results cannot cover the study area, and some
clouds are still obscuring the northwest. (d) The cloud removal mosaic image with QA_PIXEL band
and piecewise mosaic. The results show that the cloud removal effect is relatively apparent, the shadow
enhancement effect is relatively small, and the coverage of the study area is complete.

Table 1. Landcover samples.

Landcover Class Landcover ID Number Source

Tree cover 1 11,127 ESA_WorldCover
Shrubland 2 4345 ESA_WorldCover
Grassland 3 13,210 ESA_WorldCover
Cropland 4 7376 ESA_WorldCover
Build-up 5 1767 ESA_WorldCover

Bare/sparse vegetation 6 15,972 ESA_WorldCover
Snow and Ice 7 8409 ESA_WorldCover
Waterbodies 8 41,654 TPLA_V3 and ESA_WorldCover
Herbaceous 9 2437 ESA_WorldCover

Moss and lichen 10 10,726 ESA_WorldCover

A previous study combined the reservoir, dam database, river database, and other
non-lake waterbodies to extract the lake waterbody area based on the extraction results
of waterbodies [67]. Therefore, this study combined ESA_WorldCover, TPLA_V3, and
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HydroRIVERS data to establish a non-lake waterbody dataset for post-processing water-
body extraction. Non-lake permanent waterbodies were obtained by a geometric union
of waterbodies between TPLA_V3 and ESA_WorldCover after erasing the intersection
waterbodies. The buffer regions were built according to the inter-annual variations of the
lake [6], and the buffer regions were used to erase the HydroRIVERS data to obtain the
river dataset. Finally, we formed the non-lake waterbody dataset for post-processing.

3.2. Waterbody Extraction Algorithms

Waterbody extraction algorithms, such as the single-band threshold, spectral relation,
water index, and machine learning are widely used, especially the water index method and
machine learning [50]. Based on previous research [9,68], we selected the most commonly
used four water index models, two machine learning models, two spectral relationship
models, and a single-band threshold model as the target algorithm to explore the extraction
results of the waterbody and lake waterbody in the QTP based on Landsat-9 data and
to determine the best performance of waterbody area extraction algorithms under the
background of the large-scale study region. The detailed information of each model is
shown in Table 2. Where ρi represents the band i, which refers to Section 2.2. N1 and N2 are
the experience thresholds. X, C, gamma, nt, and m f represent the feature sets (including
8 bands of Landsat-9 image and various water indexes.), regularization parameter (known
also as penalty factor), kernel width, the number of decision trees, and the number of input
features used to split the nodes, respectively.

Table 2. Details of waterbody extraction algorithms.

Model Type Name Formulas/Parameters References

Single-band threshold
method SBT ρSWIR1 < N1 Frazier and Page [37]

Spectral relationship
method

SR ρgreen + ρred > ρNIR + ρSWIR1 Du and Zhou [38]

mSR (ρgreen + ρred)− (ρNIR + ρSWIR1)− (ρblue − ρgreen) > N2 Yang, et al. [39]

Water indices model

NDWI NDWI = (ρgreen − ρNIR)/(ρgreen + ρNIR) Mcfeeters [39]

mNDWI mNDWI = (ρgreen − ρSWIR1)/(ρgreen + ρSWIR1) Xu [41]

AWEIns/AWEIs

AWEIns =
4× (ρgreen − ρSWIR1)− (0.25× ρNIR + 2.75× ρSWIR2)

Feyisa, et al. [14]
AWEIs =

ρblue + 2.5× ρgreen− 1.5× (ρNIR + ρSWIR1)− 0.25× ρSWIR2

mAWEI mAWEI = 5× (ρgreen− ρNIR) + (ρblue + ρred − 4× ρSWIR2) Nie, et al. [67]

Machine learning model
SVM X, C, gamma Razaque, et al. [51]

RF X, nt, m f Ko, et al. [53]

3.3. Model Parameters and Thresholds

Previous studies show that the classification accuracy of the machine learning models
is mainly dependent on model hyper-parameters [69]. To effectively adjust the hyper-
parameters and optimize the model’s classification accuracy, drawing on the ideas proposed
by Porwal et al. [70], this study used the sklearn package, the open-source machine learning
toolkit. First, the RandomizedSearchCV searched for an optimal solution in the large-scale
range and then used GridSearchCV to search for a certain floating fine-tuning of the hyper-
parameters within the small-scale range. Further, the 5-fold cross-validation method was
used to verify the classification performance of the test set on the model, and the average
accuracy was regarded as the estimated value for fine-tuning the parameter optimization.

In Table 2 of Section 3.2, the SVM model uses radial basis function (RBF) kernel and
needs to search and optimize the parameters of C and gamma. The random forests (RF)
model uses classification and regression trees (CART) as the basic algorithm, and nt md
parameters must be adjusted and optimized.
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Appropriate thresholds are critical for water extraction models based on threshold
segmentation. The selection of points has a certain randomness, which varies with the type
of index, the identification scenario, and the subpixel water/non-water components [71].
The OTSU method [72] and its improved algorithms [73–75] are commonly used for water
index threshold automatic extraction. They use waterbodies and near-water land to present
a bimodal distribution in the frequency domain of the index to set the optimal threshold in
order to split the image into “foreground” and “background” to achieve the classification
of waterbodies and non-waterbodies [76]. However, for the extraction of waterbodies and
lake waterbodies in the QTP region, there are two problems with this threshold algorithm.
First, there is a huge difference in the proportion of waterbodies and non-waterbodies in
the region, which makes it impossible to effectively classify waterbodies in the frequency
domain when they are covered by other landcover classes [73]. Second, the area of the
study region exceeds 3 million km2, and using such threshold segmentation methods
requires high computing power. Therefore, this study uses lake samples to adjust the
threshold manually.

3.4. Evaluation Metrics

In this study, the extraction accuracy of water and lakes is verified by the confusion
matrix with a verification set, and the performance of the above water extraction model
is quantitatively evaluated through four evaluation metrics, including overall accuracy,
kappa, map-level accuracy, and user’s accuracy. Among them, the overall accuracy reflects
the overall effect of the algorithm. Kappa indicates the consistency between the ground
truth data and the predicted value. Map-level accuracy represents the probability that the
validation sample is correctly classified. Finally, the user’s accuracy means the ratio of the
inspection points falling on Category i on the classification diagram to be correctly classified
as Category i [74]. In addition, the error analysis formula is introduced to evaluate the
accuracy of area extraction.

δ =
|Ar − Ae|

Ar
(1)

where δ is the error result. Ar represents the ground truth area and Ae is the area extracted
by the algorithm.

4. Results and Discussion
4.1. Parameters and Thresholds Selection Results
4.1.1. Optimization Parameters in Machine Learning Methods

For the machine learning methods, we evaluated the importance of the sample features
involved in classification. We reduced the redundancy between sample features to improve
the efficiency and accuracy of the algorithms. The Gini index, also known as Gini impure,
is an indicator to measure the probability of random samples being misclassified in the
sample set. The smaller the Gini index, the smaller the probability that the selected samples
in the set will be misclassified. When all samples in the set are of one class, the Gini index is
0. Each tree in the random forest algorithm is a CART decision tree. When the tree chooses
to use a feature to split down, it needs to calculate the Gini index to measure the purity of
the sample set before and after the split. The smaller the Gini index of the left and right
branches after splitting, the higher the accuracy of separating using this feature. Suppose
that node m on a tree uses a feature to split down, the Gini index before splitting is GI, and
the Gini index of the left and right branches after splitting is GIL and GIR, respectively. On
this decision tree, this feature is split k times, and n trees in the whole forest use this feature,

so the importance of this feature in the entire forest is
n
∑

j=1

k
∑

i=1
[GI − (GIL + GIR)]

m
. The

importance score of this feature is obtained by dividing the calculated result of this feature’s
significance and the sum of the importance of all features. In the sample construction stage,
we used the test dataset constructed in Section 3.1 to construct the waterbody and non-
waterbody samples. We referred to [77] to evaluate the importance of eight bands and seven
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water indexes that participated in the calculation based on the Gini index. According to
the importance score, we successfully put the features into the classifier for cross-accuracy
verification to determine the optimal feature parameters for water extraction.

The evaluation and selection results of characteristic parameters are shown in Figure 4.
Among the features represented by the horizontal axis of Figure 4, the importance score
of features gradually decreases from left to right. The highest and lowest important
score features are SR_B5 and AEWIns, respectively. The low importance scores of AEWIs,
AEWIns, and SR_B6 may be due to these features entering the classifier late and having a
significant correlation with the previous parts, which leads to the information being judged
as useless information [77]. Further, according to the overall accuracy of cross-validation,
it can be seen that when the total number of features reaches six, the overall accuracy
reaches 93.80%, and the remaining features make a less cumulative contribution to the
improvement of accuracy. Based on the importance scores and overall accuracy results, the
feature sets for water extraction methods (RF and SVM classifiers) are defined as {SR_B5,
NDWI, SR_B7, mNDWI, mAEWI, and SR_B6}.
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Figure 4. Evaluation and selection results of characteristic parameters.

To improve the accuracy of machine learning models, we optimized the critical pa-
rameters of SVM and RF algorithms based on the above-constructed feature sets. The key
parameters of the SVM algorithm include the C regularization parameter, kernel function
types, and their related kernel parameters. Standard kernels with SVM classifiers include
the polynomial kernel, radial basis function (RBF) kernel, linear kernel, and more. Previ-
ous studies show that the RBF kernel has better performance for image recognition with
prominent non-linear characteristics [78]. Therefore, we selected the RBF kernel as the
kernel function and optimized the parameters of C and gamma. C is the relaxation vector
parameter in the SVM classifier. When the C value is small, the interface is smooth.

On the contrary, when it becomes large, the complexity of the model will increase. The
kernel parameter gamma defines the magnitude of the effect of a training sample, which is
the reciprocal of the width of the RBF kernel. When the gamma value is more significant, the
influence on the radius is more minor, and overfitting is easy. On the contrary, underfitting
easily occurs [79]. The effective range of the C value and gamma value is 10−8~108, but in
practical application, the possible optimal values are generally in the range of (0.1, 100) and
(0.0001, 10) [80]. Therefore, we used the RandomizedSearchCV function to search for the
optimal parameters C and gamma values in the interval of (0.1, 100) and (0.0001, 10) with
the multiple of 10 as the step size and determined that the optimal values appear around
10~100 and 0.01~0.1, respectively. Then, we used the GridSearchCV function to realize
grid search in steps 10 and 0.01 between (10, 100) and (0.01, 0.1). Figure 5a shows that the
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overall accuracy reaches the maximum value of 95.79% when C = 40 and gamma = 0.04.
Therefore, the experiment will train the SVM classifier with these parameters.
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The random forest (RF) classifier is widely used as an ensemble learning classifier in
remote sensing information extraction. Randomness in the RF model is mainly reflected
in the random selection of datasets and features used in each tree. The corresponding
parameters are the number of decision trees (nt) and the maximum number of features
(m f ) to be selected for the node split when growing the trees [81]. When nt is larger,
more decision trees are involved, and the algorithm is more complex. The m f parameter
allows each tree to be trained to use only some features at random, reducing the overall
operation and allowing each tree to focus on its chosen features. The research shows that
a larger nt and m f will reduce the randomness and operation efficiency of the RF model
and contribute less to the improvement of accuracy. Generally, the values of nt and m f will
not exceed 1000 and 50, respectively [81,82]. As mentioned above, two parameters need to
be set to produce the forest trees in this study. According to optimization methods of the
parameters in SVM, we determine that the optimal values of nt and m f appear from 80 to
100 and from 5 to 15, respectively. We performed a grid search on the parameters in steps 2
and 1, respectively. Figure 5b shows that the overall accuracy reaches the maximum value
of 94.97% when nt = 90 and m f = 6, or when nt = 100 and m f = 10. Considering that a
larger nt and m f will increase the complexity of the RF model and reduce the generalization
ability of the model, nt = 90 and m f = 6 are selected as RF parameters.

4.1.2. Selection of Waterbody Extraction Thresholds

We extracted the corresponding waterbody index information for the samples of the
test set and training set constructed in Section 3. We combined the sample labels and water-
body index information to generate a confusion matrix, quantitatively verify the accuracy of
waterbody extraction with different thresholds, and explore the best segmentation threshold
for other waterbody indexes to improve the accuracy of waterbody extraction and reduce
the subjectivity and contingency of the artificial threshold. To divide the threshold, we
rewrite the formula of the two spectral relationship algorithms into the equation form:
SR = (ρgreen + ρred)− (ρNIR + ρSWIR1) and mSR = (ρgreen + ρred) − (ρNIR + ρSWIR1) −
(ρblue − ρgreen). Among the eight waterbody extraction models based on threshold segmen-
tation, except for the single band threshold (SBT) extraction algorithm, which defines the
area less than the threshold as waterbodies, the other models represent the area greater than
the threshold as waterbodies. The variation in the waterbody extraction accuracy of each
algorithm model with the thresholds is shown in Figure 6.
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Figure 6. The threshold segmentation extracts the overall accuracy of the waterbody. The bottom X-axis
represents the landcover code (as shown in Table 1), corresponding to the Y-axis on the right and the box
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diagram in the figure, and the Y-axis on the right represents the value of different land classes in the
water index calculated according to the formula in Table 2. In these box diagrams, boxes are interquartile
ranges. Whiskers indicate the 1.5 times interquartile range. The horizontal line and cross sign in the
boxes represent the median and mean, respectively. The top X-axis is matched with the left Y-axis
to reflect the overall accuracy of segmentation results using different thresholds. The red dotted line
intersection coordinates represent the best threshold and overall accuracy of the model, and the yellow
dotted line represents the position of the best segmentation threshold on the box diagram. Each subfigure
(a–h) represents the threshold selection process of the algorithm identified in its upper left.

In the overall accuracy of waterbody extraction results based on the threshold seg-
mentation models, it can be found that except for the SBT model, the best overall accuracy
of other threshold segmentation models for water extraction reached more than 70%. The
NDWI threshold segmentation model has the highest overall accuracy for waterbody
extraction at 83.62%, followed by mAEWI (82.02), AEWIs (76.89%), AEWIns (75.21%),
mNDWI (74.90%), SR(74.51), and mSR (71.32%). The ranking of the overall accuracy of
waterbody extraction results is highly consistent with the conclusions obtained in the
previous study [6]. The SBT model relies on the low reflection of water at the 1.5~1.6 µm
spectrum to extract waterbody, but the 1.5~1.6 µm spectrum is also at the absorption peak of
vegetation [38]. As shown in Figure 6a, it can be seen that the threshold selection of−0.0137
cannot effectively distinguish water from landcover class 1 (tree) and class 3 (grassland),
so its overall accuracy is only 58.09%. In addition, when the threshold value is −0.06, the
overall accuracy of the SBT extraction result reaches its highest, at 63.77%. However, there
are many true negative (TN) samples in this waterbody extraction result, and all samples
are classified as non-waterbodies, so the threshold segmentation results fail to reach the
requirements of waterbody extraction.

Additionally, the optimal segmentation thresholds selected by the overall accuracy
can effectively distinguish waterbodies from other landcover classes except for snow and
ice, which can be mutually confirmed with some conclusions of reaches [6,83]. At the
same time, it also shows that the threshold selection method, based on the overall accuracy,
has high accuracy. By analyzing the selection of threshold values of each model, it can
be seen that the thresholds of mAEWI, SR, mSR, AEWIs, and AEWIns models are close
to zero, which are −0.0085, 0.0086, 0.0189, 0.0397, and 0.0233, respectively, with strong
anti-interference, consistent with the principle of each algorithm design [14,38,39,67].

Finally, comparing the blue boxes in Figure 6e,f, it can be seen that when the thresh-
olds of NDWI and mNDWI models are close to −1 and 1, the overall accuracy is signif-
icantly distorted. This is because there are many abnormal values higher than one and
some lower than −1 in the waterbody samples when using the surface reflection data for
the division band operation. During the abnormal value processing, the values more sig-
nificant than 1 and less than −1 are reclassified as 1 and −1, resulting in the accumulation
of many waterbody samples at the thresholds of 1 and −1. A large number of outliers may
be due to the influence of lake ice and the use of the min function in major areas during
band cloud removal synthesis, which expands the shadow effect and increases abnormal
low values.

4.2. Analysis of Waterbody Extraction Results

Based on the above optimization results of the machine learning model parameters, we
used the training samples to train and classify the SVM classifier and RF model, reclassified
the results into waterbodies and non-waterbodies, and calculated the confusion matrix on
the validation set to evaluate the accuracy of waterbody extraction. Based on the optimal
thresholds determined using the test set in 4.1.2, the whole study area was subjected to
threshold segmented water extraction, and the extraction results of each algorithm were
validated with accuracy using the validation set.
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The accuracy validation results and the running time for various algorithms are
shown in Table 3. By analyzing the overall accuracy of different algorithms, it can be seen
that the accuracy validation results are highly consistent with parameter optimization and
threshold selection results. On the one hand, RF and SVM algorithms have the highest
classification accuracy, achieving an overall accuracy of over 95%. This is significantly
better than other threshold segmentation waterbody extraction algorithms, which are
essentially linear in the spectral domain. At the same time, the RF and SVM with RBF
kernel can realize the non-linear segmentation extraction in the spectral domain by using
ensemble learning and non-linear kernels, which have more robust adaptability and
generalization to the non-linear spectral domain features of different landcover classes. On
the other hand, the order of the overall accuracy of each threshold segmentation waterbody
extraction algorithm is consistent with the threshold selection results. Generally, it has
an improvement of about 5%, and the overall accuracy of SBT model increased by about
10%. This is because in the threshold segmentation waterbody extraction algorithms, the
landcover classes of ice and snow, moss and lichen, tree cover (as shown in Figure 6),
which are greatly confused with the waterbody threshold, account for a large proportion
in the samples. Therefore, we selected 70% of the samples to calculate the overall accuracy
when selecting thresholds. As a result, the sample imbalance is large, and the overall
accuracy is low. The data set used for validation accounts for 30% of the samples, and the
sample imbalance is reduced, so the overall accuracy is improved.

Table 3. Accuracy and running time of waterbody extraction with different models.

Model Cover Type Producer’s
Accuracy (%)

User’s
Accuracy (%)

Overall
Accuracy (%)

Kappa
Coefficient

Running Time
(min)

SBT
Non-water 64.21 85.97

68.93 0.5331 22 ± 3Water 75.42 52.01

SR
Non-water 74.75 89.99

76.26 0.4880 22 ± 3Water 79.91 56.69

mSR
Non-water 70.36 91.34

74.31 0.4663 22 ± 3Water 83.87 53.92

NDWI
Non-water 87.81 97.66

89.89 0.7720 22 ± 3Water 94.91 76.31

mNDWI
Non-water 77.41 87.35

76.09 0.4654 22 ± 3Water 72.89 57.16

AWEIns
Non-water 80.42 93.57

82.24 0.6099 22 ± 3Water 86.64 64.67

AWEIs
Non-water 78.73 97.24

83.37 0.6461 22 ± 3Water 94.59 64.79

mAWEI
Non-water 94.52 88.57

87.50 0.6828 22 ± 3Water 70.50 84.19

SVM
Non-water 95.60 99.55

96.59 0.9198 154 ± 40Water 98.96 90.30

RF
Non-water 95.21 98.87

95.84 0.9021 76 ± 15Water 97.36 89.38
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Secondly, analyzing the user’s accuracy and producer’s accuracy of different models,
it can be seen that almost all models have relatively high producer accuracy and low user
accuracy of waterbody extraction. In contrast, the user accuracy of non-waterbodies is high,
and the producer accuracy is low. This shows that in large-scale regions of the QTP, the
omission error of waterbody extraction is not high, and the commission error is mainly
concentrated in the misclassification of a large number of non-waterbodies (ice, snow,
vegetation, and shadows) into waterbodies. Comparing the kappa coefficients of different
models, it can be seen that the prediction results of machine learning models are highly
consistent with the actual results, indicating that the models are relatively stable. In the
threshold segmentation waterbody extraction algorithms (except NDWI and mAEWI), the
predicted results are less consistent with the actual results, indicating that the models are
highly random and unstable.

Additionally, compared with other threshold segmentation waterbody extraction
studies [6,14,37–39,41], it can be seen that the accuracy of threshold segmentation waterbody
extraction models in this paper is relatively low. Comparing the experimental design and
process of each study, we consider that there are two main reasons for this phenomenon. The
first reason is the scale. Compared with other studies, the range of threshold segmentation
waterbody extraction in this study exceeds 3 million km2, is more extensive, and the
background structure is more complex, so the accuracy of waterbody extraction is reduced.
The second reason is the data pre-processing in this study. To reduce the cloud cover and
improve the coverage of the Landsat-9 images in the study region, the method of segmented
synthesis is used in this experiment by using the min function, which produces some low-
value noise and reduces the data quality, thus affecting the accuracy of the threshold
segmentation of waterbody extraction. It should be emphasized that the generation of
low-value noise is balanced for various models. During waterbody extraction, the lake
ice is in a state of melting, but not completely melting, making the transmission process
of electromagnetic waves more complex and having a certain impact on the extraction of
lakes. Although it will affect the accuracy of waterbody extraction, it does not affect the
reliability of algorithm comparison results.

Finally, to better evaluate each algorithm’s efficiency, we conducted four experiments
on each algorithm and recorded its running time. Comparing the running time of different
algorithms, it can be seen that the running time of the threshold extraction algorithm is the
shortest, all of which are 22 ± 3 min. RF is also faster and can control the running time
within one and a half hours. SVM has the lowest efficiency, and the longest running time
is more than three hours. The threshold extraction algorithm can be divided into three
steps: water index calculation, threshold determination, and water extraction. Water index
calculation and extraction are completed on the GEE platform, which can be completed in
2 to 5 min according to the network speed and the GEE’s computing power distribution.
Threshold determination needs to import the sample into Excel and be calculated by a
formula. The time is generally controlled at 19 min. Machine learning algorithms can also
be divided into three steps: classification feature calculation, parameter adjustment, and
water extraction. Similar to the threshold extraction algorithm, parameter adjustment must
be calculated by importing samples into Python. The time required for RF and SVM is
about 25 and 42 min, respectively. In comparison, the running time for classification feature
calculation and water extraction is controlled at 36–66 min and 72–152 min, respectively,
according to the network speed and computing power distribution. For large-scale research,
such as lake extraction on the QTP, which has less strict requirements on running time, a
machine learning algorithm with higher accuracy is a better choice.
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To more intuitively show the effect and performance of each model for water extraction,
this study selects Qinghai Lake Yamzho (the largest lake in the QTP), Yumco Lake (complex
lake bay morphology), Yellow River (complex river morphology and background), and
Brahmaputra River (complex river morphology and background) to compare the results
of lake waterbody extraction. From left to right, the white oval areas on the imageries in
Figure 7 are A1, A2, A3, a4, A5, A6, A7, A8, and A9. Dark areas are evident in large lakes
with more extensive water surfaces, and the following three reasons most likely explain
the occurrence of these areas: first, shadowing is enhanced by the min () function used in
cloud-free image synthesis; second, the reflectance in the deep water zones of large lakes
is intrinsically low; and third, lake ice within the lake is unfused. The occurrence of black
areas is also one of the important reasons for the low extraction accuracy in waterbodies.
Comparing the marine areas from A1 to A5 prone to omission error, it can be seen that
SVM and RF algorithms can identify and extract these waterbody areas well.

In contrast, the threshold segmentation waterbody extraction algorithm has more
omission errors. However, NDVI and AEWIs perform relatively better as threshold seg-
mentation waterbody extraction algorithms. There are small waterbodies and prominent
shadows in the A6 area. Except for the NDVI and AEWIs methods, all algorithms can
better identify the shades in this area, but MSR and mNDWI models perform poorly in
identifying small waterbodies. There are apparent floodplain wetlands in A7, A8, and
their upstream areas due to the lateral movement of rivers. Except for the SVM, RF, NDWI,
and AEWIns algorithms, other algorithms have commission errors to recognize wetlands
as waterbodies. Finally, the A9 area is an abnormal area caused by the image synthesis
algorithm. Different algorithms can better resist these abnormal values, except the mAEWI,
mNDWI, MSR, and SBT models. In conclusion, we found that the SVM, RF, and NDWI
models can better recognize waterbodies in different lake waterbody regions.
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abnormality may occur, which are A1, A2, A3, A4, A5, A6, A7, A8, and A9 from left to right. The
coordinates of the central points of the four images are (100◦10′29.0′′E, 36◦54′6.9′′N), (90◦44′44.1′′E,
28◦59′22.7′′N), (90◦45′34.8′′E, 29◦20′5.3′′N), and (102◦27′50.5′′E, 33◦27′20.8′′N) from left to right.
Regions colored in blue are waterbody areas, and gray are non-waterbodies.

4.3. Analysis of Lake Waterbody Area Extraction Results

The non-lake waterbody dataset produced the lake waterbody dataset, and the SRTM
DEM had this research. The former was constructed in Section 3.1 and was used to
eliminate the non-lake waterbodies in the extraction results [68], and the latter was used
to correct the shadow influence [44]. Referring to the classification of lake waterbody, the
area distribution of lake waterbody in the QTP region the resolution of lake waterbody
extraction in the previous study [3], the lake waterbody area in this study is divided into
30–100 km2 (type 1), 100–500 km2 (type 2), and over 500 km2 (type 3). As shown in Table 4,
we randomly selected ten lakes in each category to build a lake waterbody area validation
set to quantitatively analyze the extraction results of the lake waterbody area to measure
the accuracy of extracting the lake waterbody area of three types by different algorithms.

Table 4. Extraction results of lake waterbody area by different models.

ID Central Location (◦) Area/km2 Type ID Central Location/◦ Area/km2 Type

01 89.4541E, 32.3388N 34.7176 1 16 83.0601E, 35.2735N 246.6113 2
02 90.5172E, 28.9495N 38.6561 1 17 88.7222E, 31.5855N 268.9577 2
03 88.6920E, 32.3169N 44.1437 1 18 90.1922E, 35.7528N 294.7249 2
04 82.3336E, 31.6280N 54.4298 1 19 89.4425E, 36.3302N 386.9375 2
05 86.2695E, 35.2978N 62.2600 1 20 73.4069E, 39.0290N 413.4563 2
06 88.1369E, 36.1962N 65.5249 1 21 88.9544E, 34.5827N 511.8270 3
07 86.7384E, 31.5679N 67.8710 1 22 97.2666E, 34.9309N 549.8463 3
08 85.2322E, 31.5679N 71.8135 1 23 88.2833E, 31.1572N 555.8818 3
09 85.8104E, 33.6649N 73.8108 1 24 88.3989E, 37.0775N 599.5535 3
10 95.8114E, 36.7416N 80.8892 1 25 97.5895E, 38.2928N 639.1734 3
11 91.1596E, 31.7089N 148.5164 2 26 97.7020E, 34.9062N 656.0598 3
12 87.1744E, 34.5513N 167.8379 2 27 90.4774E, 34.7984N 693.1980 3
13 89.9783E, 32.4493N 188.9746 2 28 85.6116E, 30.9289N 1048.9105 3
14 92.1340E, 35.2207N 203.0216 2 29 90.0623E, 33.4379N 1137.2408 3
15 84.5659 E, 35.4053N 221.7653 2 30 100.1977E, 36.8884N 4538.2366 3

Figure 8 shows the error analysis results of lake waterbody extraction. Among all
algorithms, the accuracy of the lake waterbody area extracted by the RF model is the
highest (1.505%), followed by the SVM model (1.624%). In the threshold segmentation
algorithm, the NDWI (3.501%) is the most accurate model, followed by AEWIs (6.789%).
Comparing the area extraction accuracy of different types of lakes, we found that in almost
all models, the error of the large lakes is the largest and that of the medium lakes is the
smallest. The reasons for the significant lake errors are analyzed in combination with the
identification results of Qinghai Lake (the largest lake in the QTP) in Figure 7. The errors
mostly appear in the dark areas within the lakes. During the experiment, we also found
that the dark regions mainly appear in large lakes with larger surfaces and deeper depths.
This is because deep water areas of large lakes are more prone to hyperreflective and dark
spots, while larger spaces are also vulnerable to lake ice and shadowing, leading to the
emergence of the dark regions. Therefore, the identification error is more significant for
large lakes. In addition, the spatial resolution of L9C2_SR data is 30 m. When identifying
small lakes, it is easy to generate commission errors at the mixed pixels of the waterway
junction. Therefore, error analysis of small lakes is greatly influenced by error classification,
resulting in large error fluctuations.
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Figure 8. The error analysis (See Section 3.4 for error analysis formula) of different waterbody
extraction algorithms for various types of lake area extraction. The X-axis of the histogram is the
model’s name, and the percent labels are the average extraction error of different lake areas under
various models. The percent labels behind the legend are each algorithm’s average lake waterbody
area extraction error.

4.4. Analysis of Comparison with Landsat-8 Data

The Landsat-9 image attracted much attention in the field of plateau water and lake
extraction because it has almost the same band setting as the widely recognized Landsat-8
image, and they have good consistency in theory. Therefore, they can complement each
other and improve the time resolution of data. To verify the consistency and availability of
Landsat-9 and Landsat-8 data, we selected an area of more than 24,000 square kilometers
in the study area for comparative study.

The imaging time is controlled in May and June to reduce the impact of environmental
transformation on data. The cloud removal and mosaic of data were carried out according
to the above process, and the images of Landsat-8 and Landsat-9 were obtained, as shown
in Figure 9a,b. It can be seen that Landsat-8 data have higher cloud coverage in this area (as
shown in the circled area in Figure 9a) due to the differences in track settings and shooting
time, and Landsat-9 data can complement it. After eliminating the missing and abnormal
pixels, the reflectance and NDVI of Landsat-9 and Landsat-8 data were linearly regressed,
and the results are shown in Figure 9c,d. It can be seen that the linear regression coefficients
of reflectance and NDVI of the two data tend to be 1, and R is also greater than 0.91, which
shows that they have good consistency and can be used jointly for the extraction of water
and lake areas.

Then, the RF and NDWI algorithms, which performed best in machine learning and
threshold extraction algorithms, were selected for water extraction and accuracy verification.
According to the above technical process, the accuracy of the two data is shown in Table 5
below. Firstly, due to the smaller classification range and the reduced complexity of the
environment, each algorithm’s recognition accuracy and kappa coefficient are improved
compared to the extraction of the whole plateau. In addition, it can be seen that the
maximum differences in the OA and kappa coefficient of the two images are 1.1% and
0.025, respectively. This shows that Landsat-9, similar to Landsat-8, can recognize plateau
waterbodies well. At the same time, it is also proven that although the radiation resolution
of Landsat-9 is improved to 14 bits, it has no apparent advantage in relatively simple tasks,
such as waterbody recognition.
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Table 5. Comparison of the overall accuracy of water extraction.

Mode Indicator Landsat-8 Landsat-9 Difference *

RF
OA(%) 97.92 96.82 1.10

Kappa coefficient 0.922 0.947 −0.025

NDVI
OA(%) 92.27 92.95 −0.68

Kappa coefficient 0.857 0.871 −0.014
* The difference refers to the OA/kappa coefficient of Landsat-8 minus the OA/kappa coefficient of Landsat-9.

5. Conclusions

It is of great significance for global climate change to quickly and accurately obtain
information on the changes of lakes in the QTP based on remote sensing technology,
but there is a specific relationship between the performance of different lake waterbody
extraction algorithms and application scenarios with remote sensing data. To explore the
interaction between Landsat-9 data and the accuracy of varying algorithm models for QTP
lake waterbody extraction and determine the algorithm for large-scale QTP lake waterbody
area extraction suitable for Landsat-9 imagery, this study selected 10 models widely used
in waterbody extraction, carried out comparative research leveraging the GEE platform,
and found the following conclusions:

Affected by clouds and shadows, the Landsat-9 data with limited quality, and only
30 m resolution, the waterbody extraction model still achieved the best 96.59% overall
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accuracy and 1.505% average error in the extraction of QTP waterbody and lake waterbody
area extraction. It is proven that those algorithms can effectively extract and identify QTP
waterbodies using Landsat-9 data. With the publication of 15 m panchromatic data and
the acquisition of high-quality images, there is still more significant improvement in the
accuracy of waterbody and lake waterbody area extraction. Moreover, compared with
the threshold segmentation algorithms, the machine learning algorithms have significant
advantages in extracting large-scale QTP waterbody and lake waterbody areas. Comparing
the two machine learning algorithms, under equal overall accuracy and average error, the
operation efficiency of RF on the GEE is significantly higher than that of the SVM classifier.
Therefore, the RF algorithm is more recommended in similar studies. With the development
of the GEE platform, the constraint of computing power on model selection will be greatly
reduced. More models with complex calculations but higher accuracy can be considered in
future related research. Finally, among the traditional threshold segmentation waterbody
extraction algorithms, the best extraction result is the NDWI method. The overall accuracy
of waterbody extraction is 89.89%, and the average lake waterbody area extraction error is
3.501%. The NDWI method is a recommended practice in scenarios with limited samples
or high operational efficiency.

This study also has some areas that need further research and improvement. First, be-
cause Landsat-9 data were just released, the data used in the study are mainly concentrated
in January–April. During this period, there was still a part of incomplete melting lake
ice in the lakes of the QTP, which makes the radiation transmission of waterbodies more
complex and affects the accuracy of waterbody identification. However, due to limited
data sources and relatively complex experiments, this study did not explore and eliminate
the impact of lake ice. Secondly, to ensure the complete cloudless coverage of the whole
study area as much as possible in the case of limited images, we used the min () function
for image synthesis, which enhanced the influence of shadows on the image. Finally, the
optimal thresholds for different underlying surfaces and scales are different for large-scale
water extraction. Therefore, dividing the study area into different scale zones for threshold
selection can further improve the accuracy of waterbody recognition. In the follow-up, we
will further research the above problems and deficiencies when the data and computing
power is improved.
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