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Abstract: The performance of Global Navigation Satellite System (GNSS) and Inertial Navigation
System (INS) integrated navigation can be severely degraded in urban canyons due to the non-line-
of-sight (NLOS) signals and multipath effects. Therefore, to achieve a high-precision and robust
integrated system, real-time fault detection and localization algorithms are needed to ensure integrity.
Currently, the residual chi-square test is used for fault detection in the positioning domain, but it has
poor sensitivity when faults disappear. Three-dimensional (3D) light detection and ranging (LiDAR)
has good positioning performance in complex environments. First, a LiDAR aided real-time fault
detection algorithm is proposed. A test statistic is constructed by the mean deviation of the matched
targets, and a dynamic threshold is constructed by a sliding window. Second, to solve the problem
that measurement noise is estimated by prior modeling with a certain error, a LiDAR aided real-time
measurement noise estimation based on adaptive filter localization algorithm is proposed according
to the position deviations of matched targets. Finally, the integrity of the integrated system is assessed.
The error bound of integrated positioning is innovatively verified with real test data. We conduct
two experiments with a vehicle going through a viaduct and a floor hole, which, represent mid and
deep urban canyons, respectively. The experimental results show that in terms of fault detection,
the fault could be detected in mid urban canyons and the response time of fault disappearance is
reduced by 70.24% in deep urban canyons. Thus, the poor sensitivity of the residual chi-square test
for fault disappearance is improved. In terms of localization, the proposed algorithm is compared
with the optimal fading factor adaptive filter (OFFAF) and the extended Kalman filter (EKF). The
proposed algorithm is the most effective, and the Root Mean Square Error (RMSE) in the east and
north is reduced by 12.98% and 35.1% in deep urban canyons. Regarding integrity assessment, the
error bound can overbound the positioning errors in deep urban canyons relative to the EKF and the
mean value of the error bounds is reduced.

Keywords: GNSS/INS; 3D LiDAR; fault detection; localization; integrity assessment

1. Introduction

A reliable positioning system is the basis of autonomous driving [1]. Integrity is an
important indicator for ensuring the driving safety of vehicles. The integration of the
Global Satellite Navigation System (GNSS) and the Inertial Navigation System (INS) could
provide real-time and high-precision positioning and this approach is widely used in
military and civil fields [2,3]. However, positioning and navigation in urban canyons is still
a challenge [4] because multipath GNSS signals are received due to reflection or non-line-of-
sight (NLOS) signals are received due to diffraction; this eventually leads to unacceptable
GNSS measurement errors [5–7]. The comprehensive positioning performance of the
GNSS/INS integrated navigation system is seriously degraded. Therefore, to meet the
positioning performance requirements in urban canyons, such as viaducts, floor holes and
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tunnels, the real-time detection of GNSS/INS integrated system positioning performance
is essential. However, in urban canyons, there are a lot of satellites affected by NLOS and
multipath. With all four core GNSS constellations of the world in operation, the number of
affected satellites is ten or more. It is difficult to detect all the affected satellites and exclude
them from the localization solution by traditional algorithm such as Multiple Solution
Separation (MSS). Therefore, we detect faults in the positioning domain. After faults are
detected, a GNSS/INS integration algorithm can be designed based on the detection results
to improve the positioning accuracy and ensure the integrity of the system.

GNSS fault detection methods are mainly divided based on whether to detect specific
faulty satellites [8]. Blanch et al. only used GNSS measurement information to propose
a method combining a greedy search and L1 norm minimization to detect satellites with
pseudo range errors greater than 20 m that were affected by multipath and NLOS sig-
nals [9]. However, in urban canyons, rapid changes in observation satellites reduced the
performance of the method. Sun et al. proposed a dynamic detection and multiple fault
elimination algorithm based on pseudo range comparison [10]. Using inertial measurement
unit (IMU) and GNSS pseudo range data, a parallel fault detection and exclusion scheme
consisting of a sliding window and a detector was designed, which can detect multiple
faulty satellites in real-time. This scheme is suitable for the tightly and loosely coupled
architecture. Groves et al. proposed a likelihood-based 3D-mapping-aided (3DMA) GNSS
ranging algorithm and signals, which are predicted to be non-line-of-sight (NLOS) to
contribute to the position solution without explicitly computing the additional path delay
due to NLOS reception, which is computationally expensive [11]. Sun et al. proposed a
new measurement noise covariance update scheme, with the adaptive indicator generated
from pseudo range error prediction results, for a tightly coupled GNSS/IMU navigation
system in urban areas [12]. Shytermeja and Attia et al. proposed the method of using a fish-
eye camera to suppress NLOS signals and eliminate influenced satellites [13,14]. Fisheye
images are divided into sky and non-sky regions. The GNSS fault detection can be realized
by identifying GNSS satellites in the non-sky region received by the receiver. However,
satellites affected by multipath signals cannot be excluded by this method. Moreover, the
processing technique used for camera data is complex. Wen et al. proposed a similar
approach using a real-time 3D point cloud or a sliding window map for identifying edges
on the top of the given building [15,16]. Based on the relationship between the edges
on the top of the building or double-decker bus and all observed satellites, the satellites
influenced by the NLOS signals are detected and pseudo ranges are corrected. However,
only the satellites affected by NLOS signals are detected, and the environmental conditions
are highly demanding. All four of the above methods need to detect specific affected
satellites and exclude them from the positioning solution. However, in urban canyons, lots
of satellites are affected by NLOS and multipath signals, so it is difficult to exclude them
individually. The residual chi-square test is widely used for fault detection; it constructs
a fault detector via the innovation of the Kalman filter (KF) [17]. The test is performed at
the positioning domain to detect whether a positioning fault is present. The algorithm is
efficient and works in real-time, but the sensitivity of the residual chi-square test is poor
when faults disappear. As mentioned above, although the effectiveness of the existing
fault detection algorithms for detecting satellites affected by multipath and NLOS signals
in complex environments has been proven, challenges remain concerning the real-time
performance of dynamic applications [18,19]. Therefore, it is necessary to propose a new
real-time fault detection algorithm to improve the sensitivity of the residual chi-square test
to fault disappearances, and the integrity of this approach should be assessed in terms of
its false alarm rate and missed detection rate. LiDAR is an important sensor in autonomous
driving localization, which has good performance in ranging and perception [20]. As
the cost of solid-state LiDAR decreases, LiDAR has a wider range of applications [21].
LiDAR has robust performance in building high-precision map and object detection for
autonomous driving [22,23]. In this paper, we carry out fault detection algorithm aided
by LiDAR.
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The KF is a famous recursive algorithm for discrete linear systems and has been
widely used in many fields [24]. When the given system is linear and the observed noise
follows a Gaussian distribution, the KF can be proven to be optimal. However, Chang et al.
pointed out that the noise probability does not obey a Gaussian distribution in practice,
and it is difficult to determine the dynamic model and statistical information of the noise
distribution [25]. Many scholars have studied a series of filters for non-Gaussian-distributed
noise. Gordon et al. developed a particle filter (PF) to address the problem of non-Gaussian
Bayesian estimation [26]. However, high-dimensional state estimation may result in a heavy
computational burden. The H∞ filter was proposed for the uncertainty of measurement
noise, but Rigatos pointed out that it could not solve the problem that GNSS-measured
values were outliers [27]. The fading filter and adaptive filter are two widely used filters
that have been proposed to solve the uncertainty of the noise distribution characteristics
of dynamic systems. Chen et al. analyzed the difference between the adaptive filter and
fading filter in detail. The fading filter mainly sets the weight of the state covariance
matrix, while the adaptive filter mainly sets the weight of the measured noise [28]. Fagin
and Sorenson proposed the fading filter algorithm in the 1960s [29]. Lee and Sun et al.
proposed utilizing the fading filter method in the field of integrated navigation [30,31].
Although these methods improve the performance of the KF and the resultant positioning
accuracy, many matrix multiplication and inversion operations are involved, resulting in
poor practicability. Li et al. proposed a dynamic fading filter algorithm to solve problems
with difficult matrix multiplication operations, greatly improving the performance of the
algorithm [2]. Li et al. proposed a fading filter to defend against outliers. When a GNSS
fault occurred, the innovation of the last n epochs was used to estimate the innovation of
the current epoch, but the weights of the last n epochs were not considered [32]. Wang
et al. developed the Sage–Husa adaptive filter, designed a sliding window and determined
the covariance matrix of the current epoch based on an iterative method, but it was quite
difficult to choose the window length [33]. Zhou et al. proposed a new adaptive unscented
KF (N-AUKF) algorithm [34]. A covariance matching criterion was designed to judge
the filtering divergence, and an adaptive weighted coefficient was applied to restrain the
divergence. However, this approach requires adequate measurements. Li et al. extended
this definition to Kalman filtering to detect gross errors, explained its nature and its relation
with the currently adopted Chi-square variables of Kalman filtering in model and data
spaces and compared them with the predictive residual statistics, starting by defining an
incremental chi-square method of recursive least squares [35]. All of the above algorithms
are effective in complex environments. However, the measurement noise is estimated by
prior modeling with a certain error. Therefore, it is necessary to estimate the measurement
noise with multi-sensor redundant measurement information.

Integrity is an important indicator of GNSS positioning in the aviation field [36].
Integrity evaluation from the GNSS to the GNSS/INS integrated positioning. Protection
level is an important index of integrity monitoring, which represents the upper limit of
positioning error [37]. However, in the existing research, the protection level in GNSS/INS
integrated positioning is mainly based on simulation experiments [38], so it is necessary to
carry out the verification protection level using the real test data. The protection level can
meet the application requirement of autonomous driving.

The main contributions of this paper are as follows. (1) Regarding the problem that
the residual chi-square test has low sensitivity when faults disappear, a LiDAR aided
real-time GNSS/INS integrated fault detection algorithm based on the characteristics of
high-precision 3D LiDAR is proposed. The test statistic is constructed based on the mean
position deviation of the matched targets, and the dynamic threshold is constructed by a
sliding window based on the power series. (2) To solve the problem that the measurement
noise is estimated by prior modeling with a certain error, a LiDAR aided measurement
noise estimation and filtering algorithm is proposed. The mean position deviations of the
matched targets for the last n epochs are normalized, and an adaptive weight sequence
is built. The adaptive measurement noise factor is joined with the Extended Kalman
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Filter (EKF) innovation covariance. (3) For the problem that the integrated navigation
error bounds are calculated by simulations in the existing research, we innovatively verify
the error bounds of the integrated navigation system on real test data and optimize the
algorithm of error bounds by using the filter in (2).

The subsequent sections of this paper are organized as follows. An overview of
the proposed algorithm is given in Section 2. The proposed LiDAR aided real-time fault
detection algorithm is presented in Section 3. In Section 4, the LiDAR aided measurement
noise estimation adaptive filter algorithm is provided. Two experiments are performed to
verify the effectiveness of the proposed algorithm, and its integrity is assessed in Section 5.
Finally, Section 6 presents the conclusions and directions for future studies.

2. Overview of the Proposed Algorithm

An overview of the algorithm proposed in this paper is shown in Figure 1. First, based
on LiDAR’s high-precision ranging and its perception of the surrounding environment,
a LiDAR aided real-time GNSS/INS integrated positioning fault detection algorithm is
proposed. A 3D LiDAR global point cloud map based on the LiDAR odometry and
mapping (LOAM) [39] algorithm is established in this paper, and the map is processed in
Cloud Compare software to mark the detected targets and achieve target detection. The
targets in this study are mainly rods, including tree trunks and lampposts. Onboard the
LiDAR, real-time scanning of the surrounding environment is carried out to detect the
targets of interest based on the single frame point cloud. The targets detected based on
this single frame point cloud are matched with the targets marked on the global point
cloud map. A test statistic is constructed based on the mean position deviation of the
matched targets, and a dynamic threshold is constructed by a sliding window based on
the power series. A detector is used for the detection of GNSS/INS integrated positioning
faults affected by NLOS and multipath signals. The specific implementation and detailed
description of the fault detection algorithm is in Section 3.Remote Sens. 2022, 14, x FOR PEER REVIEW 5 of 30 

 

 

 
Figure 1. System framework of the proposed algorithm. 

Second, a LiDAR aided real-time measurement noise estimation adaptive filter posi-
tioning algorithm is proposed. Based on the proposed fault detection algorithm, the pro-
posed positioning algorithm is used to improve the performance of GNSS/INS integrated 
positioning. The adaptive measurement noise factor is joined with the EKF innovation 
covariance. The mean position deviations of the matched targets for the last n epochs are 
normalized, and an adaptive weight sequence is built. Then, the innovation of the current 
epoch is calculated. Thus, the adaptive measurement noise factor for the current epoch is 
determined to achieve the proposed filtering and localization algorithm. The specific im-
plementation and detailed description of the localization algorithm are in Section 4. 

Finally, the integrity of the proposed algorithm is assessed based on real test data; 
the evaluation metrics include the missed detection and false alarm rates for fault detec-
tion and the error bounds of the localization algorithm. The integrity assessment is real-
ized for the proposed LiDAR aided fault detection and localization algorithm under the 
influence of NLOS and multipath signals. 

  

Figure 1. System framework of the proposed algorithm.



Remote Sens. 2022, 14, 4641 5 of 28

Second, a LiDAR aided real-time measurement noise estimation adaptive filter po-
sitioning algorithm is proposed. Based on the proposed fault detection algorithm, the
proposed positioning algorithm is used to improve the performance of GNSS/INS in-
tegrated positioning. The adaptive measurement noise factor is joined with the EKF
innovation covariance. The mean position deviations of the matched targets for the last
n epochs are normalized, and an adaptive weight sequence is built. Then, the innovation
of the current epoch is calculated. Thus, the adaptive measurement noise factor for the
current epoch is determined to achieve the proposed filtering and localization algorithm.
The specific implementation and detailed description of the localization algorithm are in
Section 4.

Finally, the integrity of the proposed algorithm is assessed based on real test data; the
evaluation metrics include the missed detection and false alarm rates for fault detection
and the error bounds of the localization algorithm. The integrity assessment is realized for
the proposed LiDAR aided fault detection and localization algorithm under the influence
of NLOS and multipath signals.

3. LiDAR Aided Real-Time Fault Detection Algorithm
3.1. KF Architecture and the Residual Chi-Square Test
3.1.1. KF Architecture

The KF is composed of state prediction and measurement update equations, as shown
in Equations (1) and (2), respectively [35]. In these equations, Xk represents the state
vector of the system at the kth epoch, Φk/k−1 denotes the state transition matrix of the
system from the (k − 1)th epoch to the kth epoch, Wk represents the system noise, Zk is the
measurement vector of the system at the kth epoch, Hk represents the system measurement
matrix at the kth epoch, Vk is the measurement noise vector and Γk is the system noise
distribution matrix.

Xk = Φk/k−1Xk−1 + ΓkWk (1)

Zk = HkXk + Vk (2)

In our research, the KF is used for integrating the GNSS and the INS and the loosely
coupled architecture is used. According to [40], we estimate a 15-dimensional state vector X,
which includes the position error δp, velocity error δvn, attitude error φn, static accelerome-
ter bias δba and static gyroscope bias δbg, each of which possesses a 3D vector. The state
vector X is given by

X =
[
δp δvnφnδbaδbg

]T (3)

The measurement vector Z is 3-dimensional, which includes the deviation between
the position of GNSS and INS. pGNSS and pINS are the GNSS position and INS position,
respectively. The pGNSS is the GNSS position of the output of Newton-M2 receiver with
onboard RTK.

Z = [pGNSS − pINS] =

 pX
GNSS − pX

INS
pY

GNSS − pY
INS

pZ
GNSS − pZ

INS

 (4)

The system noise vector W is 6-dimensional, which includes the gyroscope and ac-
celerometer noise. The matrix Q is the covariance of W.

Q = diag
[
σ2

gR σ2
gF σ2

gU σ2
aR σ2

aF σ2
aU

]
(5)

The measurement noise vector V is 3-dimensional, which includes the GNSS uncer-
tainty. The matrix R is the covariance of V.

R = diag
[
σ2

X σ2
Y σ2

Z
]

(6)

In the GNSS/INS integrated positioning, the Q is set by IMU sensor information and
the R is set by the GNSS uncertainty of the output of Newton-M2 receiver, which changes
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with time. When the GNSS positioning quality is degraded, the uncertainty becomes
significantly larger. The uncertainty of the output is in the Earth-North-Up (ENU) frame
and it is transformed to Earth-Centered and Earth-Fixed (ECEF) frame.

When the initial state information, the state vector X0 and the initial value of the one-
step prediction covariance matrix P0 is given, the optimal estimation of the state parameters
can be achieved according to the time prediction and measurement update processes by
using the state prediction and measurement update equations of the system in [31].

3.1.2. The Residual Chi-Square Test

According to [17], the test statistic of the residual chi-square test qk at the kth epoch is
constructed as

qk =
k

∑
i=1

γT
i S−1

i γi (7)

γk is the innovation of KF and Si is the covariance matrix of γk at the ith epoch.
In the residual chi-square test, the mean value of innovation is 0 under the no-fault

hypothesis H0. The test statistic follows the central chi-square distribution. In contrast,
under the fault hypothesis H1, the mean KF innovation value is not 0 and the test statistic
obeys the non-central chi-square distribution.{

H0: E(γk) = 0, qk ∼ χ2(n)
H1: E(γk) 6= 0, qk ∼ χ2(n, λ)

(8)

For a determined false alarm probability PFA, the residual chi-square test threshold TD
is determined by the inverse of the chi-square cumulative distribution function (CDF) [3],
which is given by

P(qk ≤ TD/H0) =
∫ T

0
fχ2(n+1)(x)dx = 1− PFA (9)

The residual chi-square test algorithm is used to detect faults in this study. The
performance of this algorithm is compared with that of the proposed algorithm.

3.2. LiDAR Aided Real-Time Fault Detection
3.2.1. The Theory of the Fault Detection Algorithm

The fault detection algorithm is realized by calculating the mean position deviation of
all matched targets. The positions of the detected targets can be determined by establishing
a global point cloud map. When no fault occurs, the vehicle can be located by GNSS/INS
integrated positioning. The observed position of each target can be obtained by jointly
exploiting the single frame point cloud target detection process of LiDAR. The position
deviation of the matched targets between the real-time observed positions and the detected
targets based on the 3D LiDAR map is very small. When the GNSS signals are affected by
NLOS and multipath signals, the GNSS/INS integrated positioning results are biased; thus,
large position deviations occur among the matched targets. A schematic diagram of the
fault detection procedure aided by LiDAR is shown in Figure 2.

3.2.2. Three-Dimensional LiDAR Mapping and Target Detection Based on a Map

An a priori 3D LiDAR global point cloud map is established based on IMU and LiDAR
data produced by LOAM [39]. First, the feature points are extracted, including the corner
points and flat points. Thus, the odometry is obtained by interframe matching. Then,
the map is obtained by matching the current frame with the built 10 Hz odometry to
obtain more accurate mileage information and update the 3D LiDAR map. Rods, including
lampposts and tree trunks, are extracted from the 3D LiDAR map using Cloud Compare
software [41]. They are used as the targets to be detected based on the 3D LiDAR map.



Remote Sens. 2022, 14, 4641 7 of 28Remote Sens. 2022, 14, x FOR PEER REVIEW 8 of 30 
 

 

 
Figure 2. Schematic diagram of the fault detection process aided by LiDAR. 

3.2.2. Three-Dimensional LiDAR Mapping and Target Detection Based on a Map 
An a priori 3D LiDAR global point cloud map is established based on IMU and Li-

DAR data produced by LOAM [39]. First, the feature points are extracted, including the 
corner points and flat points. Thus, the odometry is obtained by interframe matching. 
Then, the map is obtained by matching the current frame with the built 10 Hz odometry 
to obtain more accurate mileage information and update the 3D LiDAR map. Rods, in-
cluding lampposts and tree trunks, are extracted from the 3D LiDAR map using Cloud 
Compare software [41]. They are used as the targets to be detected based on the 3D LiDAR 
map. 

3.2.3. Single Frame Point Cloud Target Detection 
Real-time single frame point cloud target detection is mainly achieved based on a 

point cloud library (PCL) [42]. First, the detection area of the single frame point cloud is 
set, and then, a voxel grid filter is used to filter the single frame point cloud. Second, the 
point cloud is segmented based on the road plane and obstacles by random sample con-
sensus (RANSAC). Third, the obstacles on the road are clustered by Euclidean clustering, 
and a K-dimensional (KD) tree is used to conduct a nearest-neighbor search. Finally, the 
bounding boxes are associated with the detected targets based on the single frame point 
cloud [43]. 

3.2.4. The Construction of the Test Statistic 
The targets detected by the single frame point cloud are matched with the targets 

detected by the global map, and the test statistic is constructed based on the mean position 
deviation of the matched targets, where the number of matched targets is f. 

The real position of the jth matched target jX  can be obtained from the 3D LiDAR 
map at the kth epoch without faults. The observed position j

kX  can be obtained through 
the vehicle position k

carP , which is estimated by GNSS/INS integrated positioning, and the 
relative positioning k

targetL , which is estimated by single frame point cloud target detection. 
The real position jX  and the observed position j

kX  are approximately equal, as shown 
below: 

j j k k
k car targetX X P L≈ = +  (10)

Figure 2. Schematic diagram of the fault detection process aided by LiDAR.

3.2.3. Single Frame Point Cloud Target Detection

Real-time single frame point cloud target detection is mainly achieved based on a
point cloud library (PCL) [42]. First, the detection area of the single frame point cloud is set,
and then, a voxel grid filter is used to filter the single frame point cloud. Second, the point
cloud is segmented based on the road plane and obstacles by random sample consensus
(RANSAC). Third, the obstacles on the road are clustered by Euclidean clustering, and a
K-dimensional (KD) tree is used to conduct a nearest-neighbor search. Finally, the bounding
boxes are associated with the detected targets based on the single frame point cloud [43].

3.2.4. The Construction of the Test Statistic

The targets detected by the single frame point cloud are matched with the targets
detected by the global map, and the test statistic is constructed based on the mean position
deviation of the matched targets, where the number of matched targets is f.

The real position of the jth matched target X j can be obtained from the 3D LiDAR
map at the kth epoch without faults. The observed position X j

k can be obtained through
the vehicle position Pk

car, which is estimated by GNSS/INS integrated positioning, and the
relative positioning Lk

target, which is estimated by single frame point cloud target detection.

The real position X j and the observed position X j
k are approximately equal, as shown below:

X j ≈ X j
k = Pk

car + Lk
target (10)

The observed position X j
i of the jth matched target at the ith epoch with GNSS faults

can also be obtained, and a large error is present between the 3D LiDAR map position X j

and the matched position X j
i .

X j 6= X j
i = Pi

car + Li
target (11)

The test statistic is then constructed by calculating the mean horizontal difference ∆Xi

between the real target position X j and the observed target position X j
i at each epoch for all

f matched targets, i.e.,

∆Xi =
1
f

f

∑
j=1

(
X j − X j

i

)
horizontal

(12)
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With the equations described in this section, the test statistic is constructed. In the next
section, a threshold calculation approach is provided.

3.2.5. The Threshold Constructed by an Adaptive Sliding Window

An adaptive sliding window approach is proposed to construct a dynamic threshold
for fault detection. An adaptive weight sequence is set up to determine the weight of each
value in the sliding window.

The threshold of the ith epoch is constructed by selecting the mean position de-
viation ∆X over the previous m epochs to construct a sliding window, which is de-
fined as {∆Xi−m · · ·∆Xi−2, ∆Xi−1}. The adaptive weight sequence is selected as {αn} =
{α1, α2, · · · αm}, which satisfies the condition

m
∑

i=1
αn = 1. Each value in the adaptive weight

sequence {αn} is determined by a geometric sequence:

b1 + b2 + b3 · · ·+ bm =
(

1− bm+1
)

/(1− b) (13)

As 0 < b < 1, Equation (13) can be transformed into(
b1 + b2 + b3 · · ·+ bm

)
(1− b)/

(
1− bm+1

)
= 1 (14)

Assuming that (1− b)/
(
1− bm+1) = δ, Equation (14) is redefined as(

b1 + b2 + b3 · · ·+ bm
)

δ = δb + δb2 · · ·+ δbm = 1 (15)

Thus, the weight sequence can be determined by

{αn} = {α1, α2 · · · , αm} =
{

δb, δb2 · · · , δbm
}

(16)

The threshold can be constructed as

TD =
m

∑
n=1

αn∆Xi−n (17)

To avoid false alarms when the threshold is too small while considering the measure-
ment errors of LiDAR and the lateral and longitudinal positioning accuracy standards
stated in [44], we set a threshold of 0.5 m when there are no NLOS and multipath effects.

Therefore, the final threshold is given by

TD = max

{
0.5,

m

∑
n=1

αn∆Xi−n

}
(18)

Finally, with the test statistic and threshold, the hypothesis test is constructed as{
H0 : no f ault, ∆Xi ≤ TD

H1 : f ault, ∆Xi > TD
(19)

With the hypothesis test given by Equation (19), GNSS positioning faults are detected
in this study.

4. LiDAR Aided Measurement Noise Estimation Adaptive Filter Algorithm
4.1. Existing Adaptive Filter Algorithms
4.1.1. Single Fading Factor Adaptive Filter

Li et al. proposed an adaptive filter against outliers in [32] and designed a sliding
window with length n to save the innovation of the filter γk. If the GNSS fault is detected
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at the kth epoch, the innovation γk is replaced by the average value of the last n innovation
sequences and calculated as follows:

γk = (γk−1 + γk−2 · · ·+ γk−n)/n (20)

γk is brought into the KF calculation, and the modified innovation of the filter is saved
in the sliding data window.

4.1.2. Optimal Fading Factor Adaptive Filter

When the GNSS of an integrated navigation system has abnormal errors, the observa-
tion noise increases, which leads to an increase in the state covariance matrix P. Therefore,
Geng et al. proposed an optimal fading adaptive filter algorithm, adding a fading factor Sk
to the state prediction step of the state covariance matrix P [45]:

Pk/k−1 = SkΦk/k−1Pk−1ΦT
k/k−1

+ Qk−1 (21)

The convergence criterion of the KF is:

γT
k γk ≤ κtr

(
E
(
γkγ

T
k

))
(22)

where γk is the KF innovation, κ is the regulating coefficient and κ ≥ 1. The strictest
convergence condition is κ = 1, and γT

k γk takes the minimum value satisfying Equation (22).
To realize the optimal fading factor, it must meet the strictest convergence condition:

κ = 1, γT
k γk = tr

(
E
(
γkγ

T
k

))
(23)

This factor can be obtained from the properties of the innovation sequence:

E
(
γkγ

T
k

)
= HkPk/k−1HT

k + Rk (24)

We substitute Equation (21) into Equations (23) and (24) to obtain:

γT
k γk = SkHkΦk/k−1Pk−1ΦT

k/k−1
HT

k + HkQk−1HT
k + Rk (25)

Equation (25) is traced and simplified, and the formula of Sk is obtained:

Sk =
γT

k γk − tr
(
HkQk−1HT

k + Rk
)

tr
(

HkΦk/k−1Pk−1ΦT
k/k−1

HT
k

) (26)

It can be seen from Equation (26) that when the observed data are abnormal, the
sum squares of the innovation γT

k γk increase. Since the other parameters of the system
remain unchanged in Equation (26), the current Sk is increased correspondingly, which is
equivalent to increasing the state error covariance matrix P in Equation (21).

4.2. LiDAR Aided Real-Time Measurement Noise Estimation of Adaptive Filter

Single fading factor adaptive filter and optimal fading factor adaptive filter algorithms
are used to solve the uncertainty of measurement noise when GNSS is affected by multipath
and NLOS. The above algorithms can realize the optimal estimate in theory, but are based
on prior modeling. The real measurement noise is not considered.

Taking advantage of the above two algorithms and considering the specific problem,
we propose a LiDAR aided real-time measurement noise estimation adaptive filter algo-
rithm. In the proposed algorithm, a sliding window with a length of n is constructed. The
data in the sliding window are determined by the normalization of the mean position
deviation of the matched targets. The innovation of the filter at the fault epoch is estimated
in real-time. The value of the adaptive measurement noise factor is determined based on
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the strict theoretical derivation of the filter with the optimal fading factor. Real-time mea-
surement noise estimation is realized. Finally, the accuracy and robustness of GNSS/INS
integrated positioning are improved.

When faults are detected by the LiDAR aided real-time fault detection algorithm,
the LiDAR aided real-time measurement noise estimation adaptive filter is applied for
GNSS/INS integration. When faults are not detected, the EKF is applied. The algorithm
flow chart is shown in Figure 3.
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Figure 3. Schematic diagram of the LiDAR aided measurement noise estimation adaptive filter.

The specific implementation of the LiDAR aided real-time measurement noise estima-
tion adaptive filter algorithm is shown in the following steps.

(1) An adaptive measurement noise factor λk is added to the innovation covariance Ak to
produce Equation (27):

Ak = E
(
γkγ

T
k

)
= HkPk/k−1HT

k + λkRk (27)

(2) According to the filter convergence conditions for Equations (23) and (24), the adaptive
measurement noise factor λk can be calculated [43].

λk =
γT

k γk − tr
(
HkPk/k−1HT

k
)

tr(Rk)
(28)

(3) The filter innovation in a fault epoch is calculated based on the sliding window.
λk is only related to γk from Equation (28), and γk in the kth epoch is constructed
by selecting the γ obtained with the previous n epochs to construct a sliding win-
dow, which is defined as {γk−1,γk−2 · · · ,γk−n}. The adaptive weight sequence is

selected as {βi} = {β1, β2, · · · βn}. The mean value ∆
¯
X of the corresponding epochs{

∆Xk−1
target, ∆Xk−2

target · · · , ∆Xk−n
target

}
is normalized, and the adaptive weight sequence

is determined.

βi =
∆Xi

target − ∆X

max
{

∆Xi
target

}
− ∆X

(29)

γk = β1γk−1 + β2γk−2 · · ·+ βnγk−n (30)

(4) Intelligent switching between the LiDAR aided real-time measurement noise estima-
tion adaptive filter algorithm and the EKF algorithm is realized to adapt to real-time
environmental changes.

(5) Finally, the proposed algorithm is compared with the optimal fading factor adaptive
filter (OFFAF) and the EKF.
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5. Experimental Results and Discussion
5.1. Introduction to the Experiment
5.1.1. Sensor Setups

In both experiments, Newton-M2, a low-accuracy GNSS/INS integrated navigation
system, was used to collect real-time kinematic (RTK) GNSS data at a frequency of 1 Hz
and INS data at a frequency of 100 Hz. A 3D LiDAR sensor (Velodyne 16) was to collect
raw 3D point clouds at a frequency of 10 Hz. In addition, the NovAtel SPAN-CPT7, a
high-accuracy GNSS (GPS, Global Navigation Satellite System (GLONASS), and Beidou)
RTK/INS integrated navigation system, was used to provide the ground truth positioning
data. The RTK is onboard and runs in real-time. The NovAtel SPAN-CPT7 is also affected
by multipath and NLOS, but the accuracy is higher and our research focuses on low-
precision and cheap integrated navigation devices. Therefore, the SPAN-CPT7 was used for
providing the ground truth. The coordinate systems between all the sensors were calibrated
before conducting the experiments. The experimental equipment is shown in Figure 4.
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Figure 4. The experimental equipment for data collection. (a) The vehicle used for data collection
and the installation positions of the sensors. (b) Local magnification of the Newton-M2 and NovAtel
Span CPT7.

The Apollo 5.5 was used to collect GNSS and INS data from Newton-M2 and LiDAR
data from Velodyne 16. The data format is Protobuf. The Novatel SPAN-CPT7 saves the
data through the serial port. The data format is OEM7. The Newton-M2 and the Novatel
SPAN-CPT7 are synchronized to the GNSS and INS through GPS timing, and the LiDAR is
synchronized by the pulse per second (PPS) of the GPS timing.

5.1.2. Experimental Scenes

Since the residual chi-square test is widely used to detect faults in the positioning do-
main and the traditional EKF is the most commonly used GNSS/INS integrated navigation
algorithm, the proposed algorithm was compared with the EKF to verify its performance.
Two experiments were carried out in typical urban canyons in Beijing. The scenarios are
shown in Figure 5a,b, representing mid and deep urban canyons, respectively. We first
tested the situation in which the vehicle went through the narrow viaduct and the GNSS
signals were slightly affected for a short time, as shown in Figure 5a. Then, we carried out
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another experiment in which the vehicle went through a wide floor hole, and the GNSS
signals were seriously affected for a long time, as shown in Figure 5b.
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Figure 5. The experimental scenes of cases 1 and 2. (a) Case 1: The GNSS was slightly affected when
the vehicle passed the narrow viaduct. (b) Case 2: The GNSS was seriously affected when the vehicle
passed the wide floor hole.

5.2. Case One: The Narrow Viaduct

In case one, the GNSS signal was slightly affected by multipath and NLOS signals
when the vehicle went through the narrow viaduct. The trajectory of the vehicle is shown
in Figure 6a. In our analysis, the positioning error is higher in the period from 149th s to
164th s. It happens to be similar that according to the onboard RTK data, the solution type
of GNSS positioning in the period from 149th s to 164th s was not “NARROW INT” (the
“NARROW INT” indicates that the multi-frequency RTK is a fixed solution in the NovAtel
receiver). Therefore, we needed to perform fault detection in this period. The positioning
errors in the east and north are shown in Figure 6b. The maximum errors in the east and
north were 1.1156 m and −0.84 m, respectively.
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Figure 6. Trajectory and positioning errors in the east and north. (a) The trajectory of the vehicle in
case 1. (b) The positioning errors in the east and north.
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The top view of the 3D LiDAR global point cloud map built by the LOAM algorithm is
shown in Figure 7. Figure 8 shows 31 tree trunks and lampposts marked in the 3D LiDAR
global point cloud map as detection targets. These targets are marked with colored points
in Figure 8 and numbered 0–30 from left to right in the east view.
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Figure 7. Three-Dimensional LiDAR global point cloud map in case one.
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Figure 8. Target detection in map numbered 0–30, including tree trunks and lampposts, derived from
the east view.

Two frame point clouds are randomly selected to present the point cloud target
detection results, as shown in Figure 9. Figure 9a shows the 645th frame, and a total of
10 targets were detected, including targets No. 8–10 marked in Figure 8. Figure 9b shows
the 1023rd frame, and a total of four targets were detected, including targets No. 17–18
marked in Figure 8.
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Figure 9. Single frame point cloud target detection. (a) The 645th frame and No. 8–10 targets in
Figure 8. (b) The 1023rd frame and No. 17–18 targets in Figure 8.

Figure 10a shows the matched targets between the single frame target detection
outputs and the global map-based target detection results. Figure 10b shows the number of
detected targets and matched targets in each frame. It can be seen that at least one matched
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target is present in each frame. This meets the time continuity requirement of matched
targets and can support subsequent fault detection processes. Table 1 summarizes the
number of detected targets and matched targets obtained with single frame detection.
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Figure 10. Matched targets between the single frame and map-based target detection results. (a) The
No. 0–30 of matched targets for target detection in global map. (b) The number of detected and
matched targets in each frame.

Table 1. The number of detected and matched targets for single frame target detection.

Mean Max Min

The number of detected targets 9.297 20 2
The number of matched targets 2.092 5 1

The position deviations of all matched targets in each frame in the east and north
directions are shown in Figure 11a,b, respectively. Figure 12 shows the mean position
deviation of the matched targets in each frame, which is used as the test statistic for the
proposed fault detection algorithm.
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Figure 11. The position deviations of the matched targets in the east and north. (a) The position
deviation of the matched targets in the east. (b) The position deviation of the matched targets in
the north.
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Figure 12. The mean position deviations of the matched targets in the east and north in case one.

Sensitivity is an important fault detection performance evaluation index, and the
missed detection rate and false alarm rate are important integrity assessment indices.
Figure 13a shows the fault detection result produced by the residual chi-square test, and
Figure 13b is the result of the proposed LiDAR aided real-time fault detection algorithm.
The fault detection performance of the two algorithms is compared in Table 2. The fault
could not be detected by the residual chi-square test, while the proposed algorithm could
detect the fault from 160.02th to 164.75th s. Therefore, it can be proven that the proposed
algorithm has higher sensitivity. The percentages of false alarms and missed detections were
reduced by 42.67% and 31.2%, respectively, relative to those of the residual chi-square test.
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fault detection result of the residual chi-square test. (b) The LiDAR aided real-time fault detection
result. (c) Local magnification for fault detection of proposed algorithm.
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Table 2. The fault detection performance of the chi-square test and the proposed algorithm.

The Residual Chi-Square Test Proposed Algorithm

The period of the fault From 149th to 164th s

Time of the first detected fault - 160.02nd s

Time of the last detected fault - 164.75nd s

Missed detection epochs 1600 1102

False alarm epochs 132 75

Response time of fault occurrence - 11.02 s

Response time of fault disappearance - 0.75 s

Percentage of false alarm 0.75% 0.43%

Percentage of missed detection 100% 68.88%

The proposed algorithm can mainly be used to solve the existing problems faced by the
EKF algorithm during the fault period. The positioning errors of the EKF, OFFAF and the
proposed algorithm in the east and north are shown in Figure 14. The results are analyzed
in Table 3. Compared with the EKF, the mean, maximum and root mean square error
(RMSE) positioning errors of the proposed algorithm were reduced by 67.66%, 51.9% and
71.58% in the east and 12.93%, 27.02% and 33.6% in the north, respectively. Compared with
the OFFAF, the mean, maximum and root mean square error (RMSE) positioning errors
of the proposed algorithm were reduced by 51%, 39.1% and 60.3% in the east and −5.2%,
21.1% and 19.2% in the north, respectively. The proposed algorithm is more effective than
the OFFAF.

Remote Sens. 2022, 14, x FOR PEER REVIEW 18 of 30 
 

 

analyzed in Table 3. Compared with the EKF, the mean, maximum and root mean square 
error (RMSE) positioning errors of the proposed algorithm were reduced by 67.66%, 51.9% 
and 71.58% in the east and 12.93%, 27.02% and 33.6% in the north, respectively. Compared 
with the OFFAF, the mean, maximum and root mean square error (RMSE) positioning 
errors of the proposed algorithm were reduced by 51%, 39.1% and 60.3% in the east and 
−5.2%, 21.1% and 19.2% in the north, respectively. The proposed algorithm is more effec-
tive than the OFFAF. 

Table 3. The GNSS/INS integrated positioning performance of the EKF and the proposed algorithm. 

 East North 
 Mean (m) Max (m) RMSE (m) Mean (m) Max (m) RMSE (m) 

GNSS/INS EKF 0.303 1.156 0.387 0.232 0.84 0.247 
OFFAF 0.2 0.9132 0.2768 0.192 0.777 0.203 

Proposed Algorithm 0.098 0.556 0.11 0.202 0.613 0.164 

 
Figure 14. Positioning errors in the east and north for the EKF, OFFAF and the proposed algorithm. 

The error bound, which is the upper limit of positioning error, is an important integ-
rity assessment index. When the positioning error exceeds the error bounds, an alarm is 
triggered. The existing research on integrated navigation error bounds were mainly per-
formed by simulation experiments in [38]. In this study, the error bound of integrated 
navigation is innovatively verified with real test data. The error bounds and horizontal 
positioning error for the EKF and the proposed algorithm are shown in Figure 15a,b, re-
spectively. In the two algorithms, the error bounds could overbound the horizontal error. 
From Table 4, the mean value and maximum value of the error bounds of the proposed 
algorithm were reduced by 53.03% and 57.88%, respectively, relative to the EKF during 
the fault period. 

Figure 14. Positioning errors in the east and north for the EKF, OFFAF and the proposed algorithm.



Remote Sens. 2022, 14, 4641 17 of 28

Table 3. The GNSS/INS integrated positioning performance of the EKF and the proposed algorithm.

East North

Mean (m) Max (m) RMSE (m) Mean (m) Max (m) RMSE (m)

GNSS/INS EKF 0.303 1.156 0.387 0.232 0.84 0.247
OFFAF 0.2 0.9132 0.2768 0.192 0.777 0.203

Proposed
Algorithm 0.098 0.556 0.11 0.202 0.613 0.164

The error bound, which is the upper limit of positioning error, is an important integrity
assessment index. When the positioning error exceeds the error bounds, an alarm is trig-
gered. The existing research on integrated navigation error bounds were mainly performed
by simulation experiments in [38]. In this study, the error bound of integrated navigation is
innovatively verified with real test data. The error bounds and horizontal positioning error
for the EKF and the proposed algorithm are shown in Figure 15a,b, respectively. In the two
algorithms, the error bounds could overbound the horizontal error. From Table 4, the mean
value and maximum value of the error bounds of the proposed algorithm were reduced by
53.03% and 57.88%, respectively, relative to the EKF during the fault period.
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Figure 15. The error bounds and horizontal error of the EKF and the proposed algorithm in case one.
(a) The error bounds and horizontal error of the EKF. (b) The error bounds and horizontal error of the
proposed algorithm.

Table 4. The error bounds of the EKF and proposed algorithm during the fault period.

Error Bounds GNSS/INS EKF Proposed Algorithm

Fail to overbound epochs 0 0
Mean (m) 10.1346 4.76
Max (m) 14.6365 6.165

5.3. Case Two: The Wide Floor Hole

In case two, the GNSS signal was seriously affected by multipath and NLOS signals
when the vehicle went through the wide floor hole. The trajectory of the vehicle during
data collection is shown in Figure 16a. The vehicle circled twice around the red trajectory
in Figure 5b. In our analysis, the positioning error is higher in the period from the 179th
to 198th s and from the 377th to 401st s. It happens to be similar according to the onboard
RTK data, the solution types of the GNSS positioning results in this period were not
“NARROW INT”. It is believed that the GNSS was affected by multipath and NLOS
signals. The positioning errors induced in the east and north during data collection are
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shown in Figure 16b. The maximum errors in the east and north were −4.2601 m and
−19.5848 m, respectively.
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Figure 16. Trajectory and positioning errors in the east and north. (a) The trajectory of the vehicle in
case 2. (b) The positioning errors in the east and north.

Figure 17 shows the top view of the 3D LiDAR global point cloud map built by the
LOAM algorithm. Figure 18 shows 26 tree trunks and lampposts marked as detection
targets in the 3D LiDAR global point cloud map. They are marked with colored points in
Figure 18 and numbered from 0–25.
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Figure 18. Detection targets in the map numbered 0–25, including tree trunks and lampposts.

Figure 19 shows the results of single frame target detection. We took two frames as the
vehicle went through the floor hole. Figure 19a shows the 1742nd frame, and a total of nine
targets were detected, including targets numbered twenty-three to twenty-four marked in
Figure 18. Figure 19b shows the 1856th frame, and a total of twelve targets were detected,
including targets numbered twenty-three to twenty-five marked in Figure 18.

Remote Sens. 2022, 14, x FOR PEER REVIEW 21 of 30 
 

 

 
Figure 18. Detection targets in the map numbered 0–25, including tree trunks and lampposts. 

Figure 19 shows the results of single frame target detection. We took two frames as 
the vehicle went through the floor hole. Figure 19a shows the 1742nd frame, and a total of 
nine targets were detected, including targets numbered twenty-three to twenty-four 
marked in Figure 18. Figure 19b shows the 1856th frame, and a total of twelve targets were 
detected, including targets numbered twenty-three to twenty-five marked in Figure 18. 

  

(a) (b) 

Figure 19. Single frame point cloud target detection results. (a) The 1742nd frame and No. 23–24 
targets in Figure 18. (b) The 1856th frame and No. 23–25 targets in Figure 18. 

Figure 20a shows the matched targets between the single frame target detection out-
puts and the global map-based target detection results. Figure 20b shows the number of 
detected targets and matched targets in each frame. It can be seen that at least one matched 
target was observed in any epoch. This outcome meets the time continuity requirement of 
matched targets and can support subsequent fault detection processes. Table 5 summa-
rizes the number of detected targets and matched targets obtained with single frame tar-
get detection. 

Figure 19. Single frame point cloud target detection results. (a) The 1742nd frame and No. 23–24
targets in Figure 18. (b) The 1856th frame and No. 23–25 targets in Figure 18.

Figure 20a shows the matched targets between the single frame target detection
outputs and the global map-based target detection results. Figure 20b shows the number
of detected targets and matched targets in each frame. It can be seen that at least one
matched target was observed in any epoch. This outcome meets the time continuity
requirement of matched targets and can support subsequent fault detection processes.
Table 5 summarizes the number of detected targets and matched targets obtained with
single frame target detection.
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Figure 20. Matched targets between the single frame and map-based target detection results. (a) The
No. 0–25 of matched targets for target detection in the global map. (b) The number of detected and
matched targets in each frame.

Table 5. The number of detected targets and matched targets.

Mean Max Min

The number of detected targets 8.40 27 2
The number of matched targets 2.19 6 1

The position deviations of all matched targets in each frame in the east and north
directions are shown in Figure 21a,b, respectively. Figure 22 shows the mean position
deviation of the matched targets in each frame, which is used as the test statistic for the
proposed fault detection algorithm.
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Figure 21. The position deviations of the single frame matched targets in the east and north. (a) The
position error of the matched targets in the east. (b) The position error of the matched targets in
the north.
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Figure 22. The mean position deviations of the matched targets in the east and north in case two.

Similar with Figure 13, Figure 23a shows the fault detection results produced by
the residual chi-square test. The results of the two fault detection algorithms are locally
magnified in Figure 24a,b. Figure 23b is the result of the proposed LiDAR aided real-time
fault detection algorithm. The results of the two fault detection approaches are locally
magnified in Figure 24c,d. The fault detection performances of the two algorithms are
compared in Table 6. The response time of fault disappearance was 8.94 s and 6.62 s for the
residual chi-square test, but they were reduced by 5.465 s on average with the proposed
algorithm. Therefore, the low-sensitivity problem of the residual chi-square test for the fault
disappearance case is effectively ameliorated. Furthermore, the percentages of false alarm
and missed detection were 6.26% and 0.69% for the proposed LiDAR aided real-time fault
detection algorithm, which are reductions of 76.49% and 79.03% relative to the residual
chi-square test results, respectively.
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Figure 23. Fault detection results of the residual chi-square test and the proposed algorithm. (a) The fault
detection results of the residual chi-square test. (b) The LiDAR aided real-time fault detection results.
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Figure 24. Local magnifications of Figure 23 for the fault detection algorithm. (a) The first fault
detected by the residual chi-square test. (b) The second fault detected by the residual chi-square
test. (c) The first fault detected by the LiDAR aided fault detection algorithm. (d) The second fault
detected by the LiDAR aided fault detection algorithm.

Table 6. The fault detection performance of the residual chi-square test and the proposed algorithm.

The Residual Chi-Square Test Proposed Algorithm

The fault period From 179th to 198th s From 377th to 401th s From 179th to 198th s From 377th to 401th s

Time of the first
detected fault 179.71th s 379.34th s 179.34th s 377.51th s

Time of the last
detected fault 206.94th s 407.62th s 200.91th s 402.72th s

Missed
detection epochs 1145 269

False alarm epochs 1287 271

Response time of
fault occurrence 0.71 s 2.34 s 0.34 s 0.51 s

Response time of
fault disappearance 8.94 s 6.62 s 2.91 s 1.72 s

Percentage of
false alarm 26.63% 6.26%

Percentage of
missed detection 3.29% 0.69%
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Similar with Figure 14, the positioning errors of the EKF, OFFAF and the proposed
algorithm in the east and north for case two are shown in Figure 25. The results are analyzed
in Table 7. Compared with the EKF, the mean, maximum and RMSE positioning errors of
the proposed algorithm were reduced by 7.4%, 20.49% and 12.81% in the east and 79.12%,
68.22% and 73.31% in the north, respectively, during the fault period. Compared with
the OFFAF, the mean, maximum and RMSE positioning errors of the proposed algorithm
were reduced by 26.2%, 3.7% and 12.98% in the east and 51.7%, 18.8% and 35.1% in the
north, respectively, during the fault period. The proposed algorithm is more effective than
the OFFAF.
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Figure 25. Positioning errors of the proposed algorithm in the east and north in case two.

Table 7. The GNSS/INS integrated positioning performance of the EKF, OFFAF and the proposed algorithm.

East North

Mean (m) Max (m) RMSE (m) Mean (m) Max (m) RMSE (m)

GNSS/INS EKF 1.094 4.26 1.007 8.876 19.5848 6.137
OFFAF 1.372 3.517 1.009 3.84 7.669 2.524

Proposed
Algorithm 1.013 3.387 0.878 1.853 6.224 1.638

Similar with Figure 15, the error bounds and positioning errors induced by the EKF and
the proposed algorithm in the horizontal direction in case two are shown in Figure 26a,b,
respectively. The error bounds of the EKF could not overbound the horizontal errors in
some epochs. However, the error bound of the proposed algorithm could overbound
the horizontal error in all epochs. From Table 8, the error bounds failed to overbound
the horizontal error in 1490 epochs. The mean value and maximum value of the error
bounds yielded by the proposed algorithm were reduced by 56.35% and 73.2%, respectively,
relative to the EKF during the fault period. Therefore, the integrity of the system could be
guaranteed by the proposed algorithm.



Remote Sens. 2022, 14, 4641 24 of 28

Remote Sens. 2022, 14, x FOR PEER REVIEW 26 of 30 
 

 

  
(a) (b) 

Figure 26. The error bounds and horizontal error of the EKF and the proposed algorithm in case 2. 
(a) The error bounds and horizontal error of the EKF. (b) The error bounds and horizontal error of 
the proposed algorithm. 

Table 8. The error bounds of the EKF and the proposed algorithm during the fault period. 

Error Bounds GNSS/INS EKF Proposed Algorithm 
Fail to overbound epochs 1490 0 

Mean (m) 11.771 5.137 
Max (m) 28.546 7.649 

5.4. Discussion 
In our research, the LiDAR aided GNSS/INS integration fault detection and localiza-

tion algorithm is proposed. The proposed fault detection algorithm could effectively im-
prove the sensitivity of residual chi-square test when the fault disappears. The response 
time for fault disappearance is an important indicator. The localization algorithm could 
reduce the positioning error compared to EKF. Finally, the integrity of the proposed algo-
rithm is evaluated including false alarm rate, missed detection rate and error bounds. The 
algorithms proposed in this paper are oriented to the autonomous driving for level four 
(L4) or level five (L5). However, due to the limitation of experimental conditions, some 
problems should be considered. 

Firstly, in terms of prior point cloud map, the map constructed by LOAM has errors. 
However, in our experiments, the map is built on a small scene and the error of the map 
established by LOAM is less than 0.3 m, which is very small compared with the error 
caused by multipath and NLOS. Therefore, the error of LOAM is acceptable and it has 
little effect on the performance of the algorithm. The cost of construction of a prior global 
point cloud map is high only for the proposed algorithm. However, a high-precision point 
cloud map is an indispensable part of autonomous localization in the existing research. In 
the future, the HD map can be produced in the industry which is cheaper and more accu-
rate. The proposed algorithm can be applied with the help of HD map and produce more 
effect. The map is established offline and will not affect the real-time performance of our 
algorithm. Storing maps takes up a lot of memory, but is not a major direction in our 
research. We believe this problem of memory will be solved with the autonomous driving 
implementation. 

Secondly, in terms of point cloud processing being involved in target detection, in 
this paper, the target detection of a single frame point cloud is carried out by clustering. 

Figure 26. The error bounds and horizontal error of the EKF and the proposed algorithm in case 2.
(a) The error bounds and horizontal error of the EKF. (b) The error bounds and horizontal error of the
proposed algorithm.

Table 8. The error bounds of the EKF and the proposed algorithm during the fault period.

Error Bounds GNSS/INS EKF Proposed Algorithm

Fail to overbound epochs 1490 0
Mean (m) 11.771 5.137
Max (m) 28.546 7.649

5.4. Discussion

In our research, the LiDAR aided GNSS/INS integration fault detection and local-
ization algorithm is proposed. The proposed fault detection algorithm could effectively
improve the sensitivity of residual chi-square test when the fault disappears. The response
time for fault disappearance is an important indicator. The localization algorithm could
reduce the positioning error compared to EKF. Finally, the integrity of the proposed al-
gorithm is evaluated including false alarm rate, missed detection rate and error bounds.
The algorithms proposed in this paper are oriented to the autonomous driving for level
four (L4) or level five (L5). However, due to the limitation of experimental conditions, some
problems should be considered.

Firstly, in terms of prior point cloud map, the map constructed by LOAM has errors.
However, in our experiments, the map is built on a small scene and the error of the map
established by LOAM is less than 0.3 m, which is very small compared with the error
caused by multipath and NLOS. Therefore, the error of LOAM is acceptable and it has
little effect on the performance of the algorithm. The cost of construction of a prior global
point cloud map is high only for the proposed algorithm. However, a high-precision point
cloud map is an indispensable part of autonomous localization in the existing research.
In the future, the HD map can be produced in the industry which is cheaper and more
accurate. The proposed algorithm can be applied with the help of HD map and produce
more effect. The map is established offline and will not affect the real-time performance
of our algorithm. Storing maps takes up a lot of memory, but is not a major direction in
our research. We believe this problem of memory will be solved with the autonomous
driving implementation.

Secondly, in terms of point cloud processing being involved in target detection, in
this paper, the target detection of a single frame point cloud is carried out by clustering.
Object detection of single frame is required in the perception module of autonomous
driving. Our algorithm can reuse relevant results in the application process. Therefore,
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we believe that real-time performance could be guaranteed when the autonomous driving
is implemented. In the meanwhile, time delay is also our main research direction in the
future, and proposed algorithms need more lightweight processing. The research on the
time delay model in [46–48] provides us with a good reference.

Thirdly, in terms of target matching, in this paper, target matching is used instead
of scan matching. On the one hand, the target is generally marked in the high-precision
semantic map of autonomous driving. We hope that the proposed algorithm can make
better use of high-precision semantic map information in future autonomous driving
applications. On the other hand, the real-time performance of the proposed algorithm is
considered. There are many feature points to be matched on scan matching, reducing the
efficiency of the algorithm. Therefore, we apply target matching.

Fourthly, in terms of GNSS/INS integration device and ground truth. In our research,
we focus on solving the error problem of the low-cost GNSS/INS integration device so that
the low-cost device has a better application value in autonomous driving. The NovAtel
SPAN-CPT7 is also affected by multipath and NLOS, but it is more expensive and the
positioning accuracy is higher compared to the Newton-M2. Therefore, the SPAN CPT7 is
used for providing the ground truth. We are also looking forward to better ground truth
solutions in dynamic scenarios for urban canyons positioning.

Finally, in terms of data collection. Due to the limitation of experimental conditions,
we conducted tests in two scenarios in this paper with small data samples. In the future,
we will collect a large amount of data in urban canyons to verify the performance of our
algorithm and make further improvements.

6. Conclusions

GNSS/INS integrated positioning is widely used in intelligent transportation systems
(ITS). However, in urban canyons, due to the reception of NLOS and multipath, GNSS
positioning performance is significantly affected, which in turn seriously affects the perfor-
mance of GNSS/INS integrated positioning systems. First, a 3D LiDAR aided real-time
fault detection algorithm was proposed. Then, a LiDAR aided real-time measurement noise
estimation algorithm with an adaptive filter was proposed. Finally, the integrity of the
proposed algorithms was assessed. To verify the performance of the proposed algorithm,
experiments were carried out to compare it with the current method; the test scenario
involved a vehicle going through a narrow viaduct and a wide floor hole in case one and
case two, respectively. The experimental results were as follows.

(1) In terms of the fault detection performance evaluation, the response time for fault
disappearance is an important indicator. A slight fault could be detected by the
proposed algorithm, but not by the residual chi-square test in case one. Therefore, the
slight fault could be detected by our proposed algorithm. The response time of fault
disappearance was reduced by 5.465 s on average in case two. Therefore, the low-
sensitivity problem of the residual chi-square test with respect to fault disappearance
was effectively ameliorated.

(2) In terms of localization, the horizontal positioning error is an important indicator.
Compared with the EKF, the RMSEs in the east and north were reduced by 71.58%
and 33.6% in case one and 12.98% and 35.1% in case two, respectively, by the proposed
positioning algorithm. Compared with the OFFAF, the RMSEs in the east and north
were reduced by 60.3% and 19.2% in case one and 12.81% and 73.31% in case two,
respectively, by the proposed positioning algorithm.

(3) In terms of the integrity assessment, the false alarm rate, missed detection rate and
the error bounds are the three important indicators. The percentage of false alarm
and missed detection were reduced by 42.67% and 31.2% in case one and 76.49% and
79.03% in case two, respectively. The performance of the proposed fault detection
algorithm was better in more complex environments. The error bounds of the EKF
and the proposed algorithm could effectively overbound the positioning errors in case
one. However, the error bound of the proposed algorithm could tightly overbound
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the positioning errors, and the mean value of the error bounds was reduced by 53.03%.
In case two, the error bound of the EKF could not overbound the positioning errors in
1490 epochs. However, the error bounds of the proposed algorithm could overbound
the positioning errors in all epochs, and the mean value of the error bounds was
reduced by 56.35%.

In general, the proposed algorithm can achieve significantly improved positioning
performance in terms of accuracy and integrity. It is necessary to verify the performance of
the proposed algorithms in different scenarios to satisfy industrial requirements, and this
will be the focus of future work.
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