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Abstract: In synthetic aperture radar (SAR) images, ship targets are characterized by varying scales,
large aspect ratios, dense arrangements, and arbitrary orientations. Current horizontal and rotation
detectors fail to accurately recognize and locate ships due to the limitations of loss function, network
structure, and training data. To overcome the challenge, we propose a unified framework combining
triangle distance IoU loss (TDIoU loss), an attention-weighted feature pyramid network (AW-FPN),
and a Rotated-SARShip dataset (RSSD) for arbitrary-oriented SAR ship detection. First, we propose
a TDIoU loss as an effective solution to the loss-metric inconsistency and boundary discontinuity
in rotated bounding box regression. Unlike recently released approximate rotational IoU losses, we
derive a differentiable rotational IoU algorithm to enable back-propagation of the IoU loss layer, and
we design a novel penalty term based on triangle distance to generate a more precise bounding box
while accelerating convergence. Secondly, considering the shortage of feature fusion networks in
connection pathways and fusion methods, AW-FPN combines multiple skip-scale connections and
attention-weighted feature fusion (AWF) mechanism, enabling high-quality semantic interactions
and soft feature selections between features of different resolutions and scales. Finally, to address
the limitations of existing SAR ship datasets, such as insufficient samples, small image sizes, and
improper annotations, we construct a challenging RSSD to facilitate research on rotated ship detection
in complex SAR scenes. As a plug-and-play scheme, our TDIoU loss and AW-FPN can be easily
embedded into existing rotation detectors with stable performance improvements. Experiments show
that our approach achieves 89.18% and 95.16% AP on two SAR image datasets, RSSD and SSDD,
respectively, and 90.71% AP on the aerial image dataset, HRSC2016, significantly outperforming the
state-of-the-art methods.

Keywords: synthetic aperture radar (SAR) image; arbitrary-oriented ship detection; differentiable
rotational IoU algorithm; triangle distance IoU loss; attention-weighted feature pyramid network;
multiple skip-scale connections; attention-weighted feature fusion; Rotated-SARShip dataset (RSSD)

1. Introduction

As an active microwave sensor, synthetic aperture radar (SAR) enables all-day, all-
weather, and long-distance space-to-Earth observation without being limited by light and
climate conditions [1]. With the development of spaceborne SAR high-resolution imaging
technology, ship detection in SAR images has become a current research hotspot [2–8].

In recent years, with the breakthrough of convolutional neural networks (CNNs) [9]
in computer vision, CNN-based methods have been introduced into SAR ship detec-
tion [10–15]. Though these works have promoted the development of this field to some
extent, most of them simply apply the horizontal bounding box (HBB)-based methods used
in natural scenes to SAR scenes, which still encounter severe challenges, stated as follows:
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1. Complexity of SAR scenes—since SAR images are taken from a bird’s eye perspec-
tives, they contain diverse and intricate spatial patterns. As shown in Figure 1a,
instances of small ships tend to be overwhelmed by complex inshore scenes, which
inevitably interferes with the recognition of foreground objects, making it difficult for
HBB-based methods to accurately distinguish ships from other background compo-
nents;

2. Diversity of ship distribution—in SAR images, ship targets are characterized by
varying scales, large aspect ratios, dense arrangements, and arbitrary orientations. In
Figure 1b, the HBBs of ships with tilt angles and large aspect ratios contain consid-
erable redundant areas, which introduce background clutter. Moreover, two HBBs
of densely arranged ships have a high intersection-over-union (IoU), which is not
conducive to non-maximum suppression (NMS), leading to missed detection [16].
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Figure 1. Densely arranged ships in complex inshore scenes. Here, (a,b) show the detecting of
ship targets using the HBB-based RetinaNet [17]; (c,d) show the detecting of ship targets using the
OBB-based RetinaNet with the proposed TDIoU loss and AW-FPN. The red and green boxes denote
the detection results.

To eliminate the defects of HBB-based methods in detecting ships in SAR scenes, ori-
ented bounding box (OBB)-based methods have emerged [18–22]. As shown in Figure 1c,d,
OBBs can effectively avoid overlap and attenuate the influence of background clutter,
enabling more precise prediction of the location and orientation of ships.

However, OBB-based methods still have the following limitations in SAR scenes:

1. Problems of rotation detectors based on angle regression—most rotation detectors
adopt ln-norms as the regression loss in the training phase and intersection-over-
union (IoU) as the evaluation metric in the test phase, which will lead to loss-metric
inconsistency. In addition, due to the periodicity of the angle parameter, regression-
based rotation detectors usually suffer from angular boundary discontinuity [23];

2. Constraints of multi-scale feature fusion—due to the large variation in the shapes and
scales of ship targets in SAR images, the conventional feature fusion networks [24–27],
which are limited by their connection pathways and fusion methods, are not effective in
detecting ships with large aspect ratios or small sizes;

3. Deficiencies of existing SAR ship datasets—the vast majority of SAR ship detection
datasets [28–33] are still annotated by horizontal bounding boxes. Meanwhile, with
potential drawbacks, such as insufficient samples, small image sizes, and relatively
simple scenes, in these datasets, relevant research is hindered.

To overcome these bottlenecks, we propose a unified framework for rotated SAR ship
detection. Inspired by IoU-based losses in horizontal detection, we develop a triangle
distance IoU loss (TDIoU loss) and implement the forward and backward processes to
ensure its trainability. Thanks to its well-designed penalty term, TDIoU loss not only solves
the problems caused by angle regression but also dramatically improves convergence speed
and simplifies computation. Second, to enables more effective multi-scale feature fusion
for detecting ships with large aspect ratios and varying scales in complex SAR scenes, an
attention-weighted feature pyramid network (AW-FPN) combining multiple skip-scale
connections and the attention-weighted feature fusion (AWF) mechanism is proposed.
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Finally, to promote further research in this field, a novel dataset, the rotated-SARShip
dataset (RSSD), is released to provide a challenging benchmark for arbitrary-oriented ship
detection in SAR images. Extensive experiments and visual analysis on three datasets
prove that our approach achieves better detection accuracy than other advanced methods.

To sum up, the main contributions of this paper are summarized as follows:

1. To the best of our knowledge, TDIoU loss is the first IoU loss specifically for rotated
bounding box regression. To solve the non-differentiable problem of rotational IoU, we
derive an algorithm based on the Shoelace formula and implement back-propagation
for it. The TDIoU loss aligns the training target with the evaluation metric and is
immune to boundary discontinuity by measuring the sampling point distance and
the triangle distance between OBBs without directly introducing the angle parameter.
Furthermore, it is still informative for learning even when there is no overlap between
two OBBs or they are in an inclusion relationship, a common occurrence in small ship
detection;

2. Our AW-FPN outperforms previous methods in both connection pathways and fu-
sion methods. Skip-scale connections inject more abundant semantic and location
information into multi-scale features, facilitating the recognition and localization of
ships. The AWF mechanism generates non-linear fusion weights of the same size as
the input feature via a multi-scale channel attention module (MCAM) and multi-scale
spatial attention module (MSAM), enabling soft feature selections in an element-wise
manner, which is critical for detecting ships with large aspect ratios or small sizes;

3. We construct a large-scale RSSD for detecting ships with arbitrary orientations and
large aspect ratios in SAR images. To ensure data diversity, we collect original images
from three SAR satellites and select different imaging areas. With the help of the
automatic identification system (AIS) and Google Earth, 8013 SAR images, including
21,479 ships, are precisely annotated by rotated ground truths. Moreover, we conduct
comprehensive statistical analysis and provide results of 15 baseline methods on our
dataset. Notably, RSSD is the largest current dataset for rotated SAR ship detection;

4. We embed TDIoU loss and AW-FPN as plug-ins into baseline models and conduct
comparative experiments with a dozen popular rotation detectors on two SAR image
datasets, the RSSD and the SSDD, and one aerial image dataset, HRSC2016. The results
prove that our approach not only achieves state-of-the-art performance in SAR scenes,
but also that it shows excellent generalization ability in optical remote sensing scenes.

The rest of the paper is organized as follows: Section 2 reviews related works. Section 3
describes the problems in angle regression and conventional IoU-based losses. Section 4
introduces the proposed TDIoU loss and the AW-FPN for rotated SAR ship detection.
Section 5 presents details of the proposed RSSD. Extensive experiments and comprehensive
discussions are provided in Section 6. Section 7 summarizes the whole work.

2. Related Work

In this section, we first review CNN-based SAR ship detection methods, then discuss
the related works dealing with the problems caused by angle regression and multi-scale
feature fusion, and finally analyze several existing publicly available SAR ship datasets.

2.1. SAR Ship Detection Methods Based on Convolutional Neural Networks

In the field of object detection, convolutional neural networks have become the main-
stream algorithm. In recently years, CNN-based methods have made significant progress
in SAR ship detection. As a pioneering work, Li et al. [10] discussed the defects of Faster
R-CNN [34] in SAR ship detection and proposed an improved framework based on feature
fusion and hard negative mining. Zhang et al. [11] proposed a novel concept of balance
learning (BL) for high-quality SAR ship detection. Zhang et al. [12] proposed a grid convo-
lutional network with depthwise separable convolution that accelerates ship detection by
griding the input image. To enhance the detailed features of ships, Liang et al. [13] proposed
a visual attention mechanism. Furthermore, the means dichotomy method and speed block
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kernel density estimation method were used for adaptive hierarchical ship detection. Gao
et al. [14] achieved better ship detection accuracy by using the anchor-free CenterNet [35]
based on an attention mechanism and feature reuse strategy. Zhang et al. [15] designed a
quad feature pyramid network consisting of four unique FPNs and verified its effectiveness
on five SAR datasets.

However, the above methods fail to take into account the large aspect ratio and multi-
angle characteristics of ships, leading to missed and false detection. Therefore, in recent
years, there has been some research on rotated ship detection. For instance, Wang et al. [18]
added the angle regression and semantic aggregation method to SSD. The attention module
was used to adaptively select meaningful features of ships. Chen et al. [19] presented a
feature-guided alignment module and a lightweight non-local attention module to balance
the detection accuracy and inference speed of single-stage rotation detectors. Pan et al. [16]
constructed a multi-stage rotational region-based network that generates rotated anchors
through a rotation-angle-dependent strategy. To reduce the false alarm rate, Yang et al. [20]
devised a novel loss to balance the loss contribution of various negative samples. To
enhance the detection of small ships, An et al. [21] proposed an anchor-free rotation
detector with a flexible frame. Sun et al. [22] applied the bi-directional feature fusion
module and angle classification technique to a YOLO-based rotated ship detector.

2.2. Loss-Metric Inconsistency and Angular Boundary Discontinuity

To eliminate the gap between the bounding box regression loss and the evaluation
metric, IoU-based losses have been introduced in horizontal detectors [36–40]. Unfortu-
nately, they cannot be simply applied to rotation detection, as the general rotational IoU
algorithm is non-differentiable for back-propagation. In addition, unlike other bounding
box parameters, the angle parameter is periodic in nature, which will lead to a surge in loss
value at the boundary of the angle definition range when using ln-norm losses.

Some studies have attempted to address part of the above issues from two perspec-
tives. One idea is to design differentiable approximate IoU losses for angle regression. To
control the loss value by the amplitude of IoU, Yang et al. [41] added an extra IoU factor
into the smooth L1 loss. Furthermore, PIoU [42] estimated the intersection area of two
rotated bounding boxes by roughly counting the number of pixels. Aiming to address
the uncertainty of convex shapes, Zheng et al. [43] presented an affine transformation
to estimate the intersection area. The GWD [23] converted the oriented bounding box
to two-dimensional Gaussian distribution, using the Gaussian–Wasserstein distance to
approximate the rotational IoU loss. Although these improved regression losses alleviate
the problems to some extent, their gradient directions are still not dominated by IoU, and
they cannot accurately guide training.

Another idea is to treat the angle prediction as a discrete classification task so as to
properly constrain the prediction results. Yang et al. [44] developed a circular smooth
label (CSL) technique that directly uses the angle parameter as the category label to tackle
the periodicity of the angle and improve the tolerance of adjacent angles. The DCL [45]
analyzed the problems of over-thick prediction heads in sparse coded labels and converted
the angle categories into dense codes, such as the binary codes and gray codes, to further
improve the detection efficiency. Although angle classification techniques avoid angular
boundary discontinuity, they are still limited by angular discretization granularity, which
inevitably leads to theoretical errors in high-precision angle prediction.

As of now, no full-fledged method exists to address all the above issues. In a sense,
the proposed differentiable rotational IoU algorithm opens up the possibility of using the
IoU-based loss for rotated bounding box regression, and the newly designed TDIoU loss
fundamentally eliminates all these problems in an ingenious manner.

2.3. Multi-Scale Feature Fusion

In CNNs, high-level features contain richer semantic information and broader recep-
tive fields, making them beneficial for detecting large ship targets. Low-level features are of
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high resolution and contain abundant shallow information, which is conducive to locating
small ship targets. One of the difficulties in SAR ship detection is how to effectively fuse
multi-scale features. Figure 2 displays several mainstream feature fusion networks [24–27].
Analysis shows that they still suffer from the following limitations in SAR scenes:
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1. Restricted connection pathway—the conventional feature pyramid network (FPN) [24]
is inherently limited by a single top-down information flow. Therefore, in PANet [25], an
extra bottom-up path aggregation network is added. The above two methods only con-
sider adjacent-level feature fusion. To solve this problem, BiFPN [27] added transverse
skip-scale connections from input nodes to output nodes. However, such single same-
level feature reuse ignores semantic interactions between cross-level features. Due to the
relatively long pathways between high-level features and low-level features, semantics
are likely be weakened during layer-to-layer transmission, which is not conducive to the
detection of ships with extreme shapes and scales;

2. Inappropriate fusion method—most works on feature fusion focus only on designing
complicated connection pathways. The fusion method, usually realized by simple
addition, is rarely mentioned. Due to the different resolutions of different feature
levels, their contributions to the output should also be unequal. The BiFPN added
learnable scalar weights to the input features of each node. However, such a rough
weighting method, which makes no distinction between all feature points, is still a
linear combination of feature maps. Since ship targets in the same image usually have
significant differences in scale, simple linear aggregation might not be the best choice.

In recent years, several investigations on visual attention have begun to focus on the
fusion method. In SKNet [46] and ResNest [47], the global channel attention mechanism [48]
is used to conduct dynamic weighted averaging of features from multiple kernels or groups.
Although these attention-based approaches achieve non-linear feature fusion, they only
show solicitude for the feature selections in the same layer, leaving no solution for fusing
cross-level features of inconsistent semantics and scales. Furthermore, global channel
attention only generates a scalar fusion weight for each channel of the feature map, which
is obviously not appropriate for scenes with large variations in target scale. Generally
speaking, multi-scale networks need to learn diverse feature representations, and a single
global channel interaction will weaken the context information of small targets. Recently,
aiming to provide a paradigm for cross-level feature fusion, Dai et al. [49] proposed an
attentional feature fusion (AFF) mechanism. Regrettably, as with previous approaches, AFF
only tends to focus on the salience representations of features in the channel dimension,
which might result in the loss of multi-scale spatial contexts.

Our AW-FPN has improved on both of the above. To enrich the semantic and location
information in feature maps, both transverse and longitudinal skip-scale connections are
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used. To generate high-quality fusion weights, a novel AWF mechanism is proposed. The
MCAM and MSAM in AWF aggregate both multi-scale channel and spatial contexts, so as
to emphasize the region around real ship targets and suppress background clutter.

2.4. SAR Image Datasets for Ship Detection

Due to the limitations of SAR imaging conditions, the datasets of SAR scenes are not
as diverse as those of natural scenes. Recent research has been committed to constructing
larger and more comprehensive SAR ship detection datasets. Table 1 shows the statistics of
six existing datasets [28–33]. However, they still suffer from the following defects:

1. Insufficient training samples—the existing SAR ship datasets, such as SSDD [28],
DSSDD [30], and AIR-SARShip [31], have a relatively small number of image samples
and, therefore, require a large amount of data augmentation before training, which is
not conducive to training a high-precision ship detection network;

2. Small image sizes and relatively simple scenes—in the SAR-Ship-Dataset [29], ship
slices are only 256 × 256 pixels in size. As a matter of fact, small ship slices are
more suitable for ship classification since they contain simpler scene information and
less inshore scattering. As a result, detectors trained on these ship slices may have
difficulty in locating ships near highly reflective objects in large-scale scenes [32];

3. Inappropriate annotations—most existing datasets in this field, which fail to con-
sider the large aspect ratio and multi-angle characteristics of ships, are still annotated
by HBBs without shape and orientation information. In contrast, OBBs can better
fit the approximate shape of ships and mitigate the effect of background clutter.
Notably, HRSID [32] and SSDD adopt the polygon annotation for ship instance seg-
mentation. Semantic segmentation divides each pixel of an image into a semantically
interpretable class and highlights instances of the same class with the same color.
On this basis, instance segmentation employs the results of object detection to per-
form an instance-level segmentation on different targets of the same class. Although
segmented polygons generated by pixel-wise masks enable more accurate contour
detection, they are costly in both annotation and detection. For ships in SAR images,
we prefer to learn about their general shapes, such as aspect ratio and orientation. On
balance, the OBB annotation is a relatively suitable choice. So far, only SSDD provides
OBB annotations. However, it contains only 1160 images with 2587 ships, which is
far from meeting the demands of ship detection in complex SAR scenes. Hence, it
is necessary to construct a large-scale dataset specifically for arbitrary-oriented SAR
ship detection.

Table 1. Statistics of the six SAR ship detection datasets released in references [28–33] and our
proposed RSSD.

Datasets Satellite Polarization Resolution (m) Image Size
(Pixel) Image Number Ship Number Annotations

SSDD [28]
RadarSat-2,
TerraSAR-X,

Sentinel-1

HH, HV,
VV, VH 1~15 (214~653) ×

(190~526) 1160 2587 HBB, OBB,
Polygon

SAR-Ship-
Dataset

[29]

Gaofen-3,
Sentinel-1

Single,
Dual, Ful 3, 5, 8, 10, 25, etc. 256 × 256 43,819 59,535 HBB

DSSDD [30]
RadarSat-2,
TerraSAR-X,

Sentinel-1
– 1~5 416 × 416 1174 – HBB

AIR-SARShip
[31] Gaofen-3 Single, VV 1, 3 1000 × 1000,

3000 × 3000 331 – HBB

HRSID [32] Sentinel-1,
TerraSAR-X HH, HV, VV 0.5, 1, 3 800 × 800 5604 16,951 HBB,

Polygon
LS-SSDD-v1.0

[33] Sentinel-1 VV, VH 5 × 20 about
24,000 × 16,000 15 6015 HBB

RSSD (ours)
Sentinel-1,

TerraSAR-X,
Gaofen-3

Single, HH,
HV, VV

0.5, 1, 3,
5 × 20 800 × 800 8013 21,479 OBB
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Our proposed RSSD acquires data from three SAR satellites with different resolutions,
polarizations, and imaging modes. The imaging areas are selected in ports and canals with
busy trade. All images have been meticulously pre-processed and split into 8013 ship slices
of 800 × 800 pixels. With the help of professional tools, 21,479 ships are precisely annotated
by OBBs. All these treatments contribute to the complexity and diversity of our dataset.

3. Analysis of Angle Regression Problems and Conventional IoU-Based Losses

In this section, we first discuss two major problems in the existing rotation detectors
mainly caused by angle regression. Then, we review the conventional IoU-based losses and
analyze the limitations they may encounter in rotated bounding box regression. Finally, we
summarize several requirements that should be met for the rotational IoU loss.

3.1. Problems of Rotation Detectors Based on Angle Regression

Figure 3 demonstrates two generic parametric definitions of oriented bounding boxes
(i.e., OpenCV definition and long-edge definition). According to the above two definitions,
any two-dimensional bounding box can be represented as a group of five parameters (cx, cy,
w, h, and θ), where (cx, cy) represents the centroid coordinate of the oriented bounding box, w
and h indicate the width and height, respectively, and θ denotes the rotation angle. To predict
the angle θ of the bounding box, most rotation detectors directly introduce an additional
output channel into the regression subnet and use ln-norms as the regression loss during the
training phase. However, in the testing stage, the performance is evaluated by IoU. Obviously,
such a mismatch may present some problems, which we will now summarize.
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Single, HH, 
HV, VV 

0.5, 1, 3,  
5 × 20 800 × 800 8013 21,479 OBB 

Our proposed RSSD acquires data from three SAR satellites with different resolu-
tions, polarizations, and imaging modes. The imaging areas are selected in ports and ca-
nals with busy trade. All images have been meticulously pre-processed and split into 8013 
ship slices of 800 × 800 pixels. With the help of professional tools, 21,479 ships are precisely 
annotated by OBBs. All these treatments contribute to the complexity and diversity of our 
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Figure 3. Two generic parametric definitions of oriented bounding boxes. (a) OpenCV definition,
where θ indicates the acute or right angle between the width w and the x-axis; (b) Long-edge definition,
where w and h signify the long side and short side of a bounding box, respectively. Here, θ denotes
the angle from the x-axis to the direction of the width w.

3.1.1. Loss-Metric Inconsistency

In Figure 4a, we compare the relationships between different regression losses and
angle differences. Despite the fact that they are all monotonic, only the IoU loss (the light
blue curve) and our TDIoU loss (the navy blue curve) are concave, indicating that the
gradient directions of ln-norms are inconsistent with that of IoU. Figure 4b displays the
relationship between the rotational IoU and angle differences under different aspect ratios.
For a target with a large aspect ratio, a slight angle difference will also lead to a rapid drop
in the IoU value. Figure 4c displays the relationships between different regression losses
and aspect ratios. All ln-norm losses remain constant regardless of aspect ratio variations,
while the IoU-based losses vary dramatically. The loss-metric inconsistency leads to the
conclusion that even a small training loss cannot guarantee high detection performance.
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3.1.2. Angular Boundary Discontinuity

The angular boundary discontinuity refers to the surge in loss at the boundary of the
angle definition range due to the periodicity of the angle (PoA) and the exchangeability of
edges (EoE) [23]. Figure 5a shows the boundary problem under the OpenCV definition.
Suppose there is a blue anchor/proposal and a green ground truth. The angle of the
anchor/proposal is exactly around the maximum or minimum of the defined range. The
ideal regression form is to rotate the anchor/proposal counterclockwise by a small angle to
the position of the red box. However, due to the angle periodicity, the angle of the predicted
box exceeds the defined range [−90◦, 0), and the width and height are interchanged relative
to the ground truth, leading to a large smooth L1 loss. At this point, the anchor/proposal
has to be regressed in a more complex way. For example, it should be rotated clockwise
by a larger angle, and its width and height should be scaled at the same time. A similar
phenomenon also occurs under the long-edge definition, as shown in Figure 5b.
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In essence, angular boundary discontinuity is a kind of manifestation of loss-metric
inconsistency. In the boundary case, even if the IoU between the predicted box and the
ground truth is very high, a considerable loss will be incurred. Based on the above analysis,
we can conclude that the ln-norms are inapplicable to rotated bounding box regression.

3.2. Limitations of Conventional IoU-Based Losses

It has been demonstrated in horizontal detection methods that the IoU-based losses [36–40]
can ensure that the training target remains consistent with the evaluation metric. In theory, they
should also work in the rotation case, as the only difference is that the IoU computation for
oriented bounding boxes is more complex than that for horizontal ones.

Compared to ln-norms, the IoU loss has several merits. Firstly, the IoU computation
involves all of the geometric properties of bounding boxes, including location, orientation,
shape, etc. Secondly, instead of treating the parameters as independent variables as in
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the case of ln-norms, IoU implicitly encodes the relationship between each parameter by
area calculation. Finally, IoU is scale-invariant, making it ideal for solving scale and range
disparities between individual parameters. The original IoU loss is defined as follows [37]:

LIoU = 1− IoU (1)

Here, LIoU is valid only when two bounding boxes have overlap and would not offer
any moving gradient for non-overlapping cases. Moreover, it cannot reflect the manner in
which the boxes intersect. In Figure 6, the relative positions between the predicted box and
the ground truth are obviously different, while the evaluation results of LIoU remain constant.
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Figure 6. Comparison between different IoU-based losses. (a) Different IoU-based loss curves versus
angle differences; (b) some examples from (a). When Bpb and Bgt with coincident centroids are in a
containment relationship and their widths and heights are constant, GIoU loss, CIoU loss, and EIoU
loss all degenerate into the original IoU loss. In contrast, our TDIoU loss (the navy blue curve) is still
able to stably reflect the angle difference and is informative for learning.

The GIoU loss [37] alleviates the issue of gradient disappearance in the non-overlapping
case by adding an additional penalty term, which is expressed as follows:

LGIoU = 1− IoU +

∣∣∣C− Bpb ∪ Bgt
∣∣∣

|C| (2)

where Bpb and Bgt are the predicted box and the ground truth, and C denotes the smallest
enclosing box covering Bpb and Bgt. Research shows that GIoU first tries to increase the size
of Bpb to overlap Bgt and then uses the IoU term to maximize the intersection area of the
bounding boxes [40]. Moreover, GIoU loss requires more iterations to converge.

When designing the penalty term, CIoU loss [38] takes into account the centroid
distance and the aspect ratio of the bounding boxes, which is defined as follows:

LCIoU = 1− IoU +
ρ2
(

bpb, bgt
)

c2 + αv (3)

v =
4

π2

(
arctan

wgt

hgt − arctan
wpb

hpb

)
, α =

v
(1− IoU) + v

(4)

where bpb and bgt represent the centroids of Bpb and Bgt, respectively; ρ(·) indicates the
Euclidean distance; c denotes the diagonal length of the smallest enclosing box; wpb and hpb

signify the width and height of Bpb, respectively; wgt and hgt signify the width and height
of Bgt, respectively. In CIoU loss, v only reflects the difference in the aspect ratio, rather
than the actual difference between wpb and wgt (or hpb and hgt).
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To solve this problem, EIoU loss [39] proposes a more efficient form of penalty term:

LEIoU = 1− IoU +
ρ2
(

bpb, bgt
)

c2 +
ρ2
(

wpb, wgt
)

c2
w

+
ρ2
(

hpb, hgt
)

c2
h

(5)

where cw and ch indicate the width and height of the smallest enclosing box, respectively.
The EIoU loss directly minimizes the difference in the width and height between Bpb and
Bgt, leading to faster convergence and more accurate bounding box regression.

Recently, a new form of penalty term was released in CDIoU loss [40], which narrows
the difference between Bpb and Bgt by minimizing the distance between their vertices, as
follows:

LCDIoU = 1− IoU +
Bpb − Bgt

2

c2 (6)

where Bpb − Bgt
2 is the distance between the corresponding vertices of Bpb and Bgt.

However, the above IoU-based losses are all designed for horizontal detection. Due to
the introduction of the angle parameter, applying them to oriented bounding box regression
will bring some problems. As shown in Figure 6a,b, when Bpb and Bgt with coincident
centroids are in a containment relationship and their widths and heights are constant,
the values of GIoU loss, CIoU loss, and EIoU loss remain the same regardless of changes
in the angle of Bpb. At this point, they completely degenerate into the original IoU loss,
making the regression more difficult and the convergence slower. In other words, general
parameter-based penalty terms cannot effectively measure the angle difference between
Bpb and Bgt. A natural idea is to introduce the angle parameter into the penalty term.
Nevertheless, such a treatment will reintroduce the angular boundary discontinuity, which
goes against our original intention. In addition, we also find that the penalty term of CDIoU
loss based on the vertex distance is sensitive to the angle parameter. Unfortunately, the
denominator of its penalty term involves computing the smallest enclosing box covering
Bpb and Bgt, an extremely tricky task for two rotated boxes. Since the shape of the convex
hull formed by the vertices of Bpb and Bgt is not fixed, the oriented minimum bounding
box algorithm [50] requires exhaustive enumeration to obtain the final result, which will
consume a lot of computing time and delay the whole training process.

To sum up, a qualified rotational IoU loss should at least meet the following four
requirements:

1. Requirement 1—it should be differentiable for back-propagation;
2. Requirement 2—it should be continuous at the boundary of the angle definition

range;
3. Requirement 3—it should stably reflect the angle difference between bounding boxes;
4. Requirement 4—the computation of the penalty term should be as simple as possible.

4. The Proposed Method

This section elaborates on our proposed unified framework for detecting arbitrary-
oriented ships in SAR images, including the differentiable rotational IoU algorithm based
on the Shoelace formula, the triangle distance IoU loss (TDIoU loss), and the attention-
weighted feature pyramid network (AW-FPN) combining multiple skip-scale connections
and the attention-weighted feature fusion (AWF) mechanism.

4.1. Differentiable Rotational IoU Algorithm Based on the Shoelace Formula

Figure 7 visualizes the computation of the intersection-over-union (IoU) for horizontal
and oriented bounding boxes. For two-dimensional object detection, the IoU between the
ground truth Bgt and the predicted box Bpb is defined as follows [51]:

IoU
(

Bgt, Bpb
)
=

∣∣∣Bgt ∩ Bpb
∣∣∣∣∣Bgt ∪ Bpb
∣∣ = Areaintersect

Areaunion
=

Areaintersect
Areagt + Areapb −Areaintersect

(7)
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where
∣∣∣Bgt ∩ Bpb

∣∣∣ and Areaintersect signify the area of the intersection area, and
∣∣∣Bgt ∪ Bpb

∣∣∣
and Areaunion imply the area of the union area. Areagt and Areapb denote the area of Bgt

and Bpb, respectively. It can be found that how to calculate Areaintersect is the core is-
sue. However, as shown in Figure 7b, the IoU computation for OBBs is more complex
than that for HBBs, since the shape of the intersection area in the rotation case could be
any polygon with fewer than eight edges. In addition, the general rotational IoU algo-
rithm [52] is non-differentiable, as it uses triangulation to calculate Areaintersect. To address
the above issue, we derive a differentiable rotational IoU algorithm based on the Shoelace
formula [53], whose pseudo code is provided in Algorithm 1 (Pseudo code of the proposed
rotational IoU algorithm based on the Shoelace formula). To further apply it to the IoU
loss layer, we implement its forward and backward computation, as illustrated in Figure 8.

Algorithm 1: IoU computation for oriented bounding boxes

Input: Vertex coordinates of Bgt and Bpb

output: IoU value
1: Compute the area of Bgt and Bpb: Areagt ← RectArea(Bgt) ; Areapb ← RectArea

(
Bpb
)

;
2: Get the edges of Bgt and Bpb: Edgegt ← GetEdge(Bgt) ; Edgepb ← GetEdge

(
Bpb
)

;
3: Initialize A← 0 and the vertices of the intersection area V ← EmptySet ;
4: for i← 1 to 4 do
5: Get the vertices of Bgt inside Bpb: V ← V.add

(
DotProduct

(
Bgt(i), Bpb

))
;

6: Get the vertices of Bpb inside Bgt: V ← V.add
(

DotProduct
(

Bgt, Bpb(i)
))

;
7: for j← 1 to 4 do
8: Get the intersection of edges: V ← V.add

(
Bezier

(
Edgegt(i), Edgepb(j)

))
;

9: end for
10: end for
11: Sort the vertices of the intersection area: Indices← SortVertex(V) ;
12: Gather the sorted vertex coordinates according to indices: V’← Gather(V, Indices) ;
13: for n← 1 to len(V) do
14: Shoelace Formula: A← A + V’(n, 1)×V’(n + 1, 2)−V’(n, 2)×V’(n + 1, 1)
15: end for
16: Compute the area of the intersection area: Areaintersect ← A / 2 ;
17: return IoU← Areaintersect /

(
Areagt + Areapb −Areaintersect

)
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4.1.1. Forward Process

On the basis of Algorithm 1 and Figure 8, the forward process is as follows:
Step 1—convert the ground truth Bgt and the predicted box Bpb into vertex coordinate

representations and calculate their areas (i.e., Areagt and Areapb, respectively);
Step 2—find the vertices of the intersection area of Bgt and Bpb. These are located on

the basis of two cases, as follows: (1) from the vertex of Bgt and Bpb, which falls just inside
the other box, and (2) from the intersection point between the edges of two rotated boxes.

In the former case, we use the dot product to calculate the projection of each vertex
of Bgt and Bpb onto two adjacent edges of the other box, respectively, and then determine
whether the vertex falls inside the other box, by judging whether the projection exceeds
the extent of the corresponding edge. In the latter case, since each edge of rotated boxes
is a line segment defined by two vertices, the problem is transformed into locating the
intersection point between two line segments in two-dimensional space [54].

Suppose L1 is an edge of Bgt, defined by two vertices (x 1, y1) and (x 2, y2), and L2 is
an edge of Bpb, defined by two vertices (x 3, y3) and (x 4, y4). The line segments L1 and

L2 can be defined in terms of first-degree Bezier parameters, as follows [55]:

L1 =

[
x1
y1

]
+ t
[

x2 − x1
y2 − y1

]
, L2 =

[
x3
y4

]
+ u

[
x4 − x3
y4 − y3

]
(8)

where both t and u are real numbers, and can be expressed as follows:

t =
det
[

x1 − x3 x3 − x4
y1 − y3 y3 − y4

]
det
[

x1 − x2 x3 − x4
y1 − y2 y3 − y4

] , u =

det
[

x1 − x3 x1 − x2
y1 − y3 y1 − y2

]
det
[

x1 − x2 x3 − x4
y1 − y2 y3 − y4

] (9)

where det[ · ] represents the determinant computation. If, and only if, 0 ≤ t ≤ 1 and
0 ≤ u ≤ 1, an intersection point

(
Px, Py

)
exists as follows:(

Px, Py
)
= (x1 + t(x2 − x1), y1 + t(y2 − y1)) = (x3 + u(x4 − x3), y3 + u(y4 − y3)) (10)

In particular, when L1 and L2 are collinear (parallel or coincident), they do not intersect.
By traversing each edge of Bgt and Bpb, we obtain all the intersection points.

By computing the above two cases, we finally determine the vertices of the intersection
area. If the vertex does not exist, the IoU value is zero;

Step 3—sort the vertices of the intersection area. In general, the vertices of the inter-
section area form a convex hull. To compute its area, we need to sort its vertices. First,
calculate the mean value of the abscissa and the ordinate of these vertices, and note it
as the centroid of the polygon. Second, compute the vectors from the centroid to each
vertex and normalize them to simplify the sort operation. Finally, scan all the vertices in
counterclockwise order from the positive direction of the x-axis to obtain the sorted vertex
indices.

Step 4—perform the gather operation to successively fetch the actual coordinate values
of the sorted vertices from the unsorted vertex tensor according to the indices;

Step 5—compute the area of the intersection polygon using the Shoelace formula, as
follows [56]:

Areaintersect =
1
2

∣∣∣∣∣ n

∑
i=1

xi(yi+1 − yi−1)

∣∣∣∣∣ = 1
2

∣∣∣∣∣ n

∑
i=1

yi(xi+1 − xi−1)

∣∣∣∣∣ = 1
2

∣∣∣∣∣ n

∑
i=1

det
[

xi xi+1
yi yi+1

]∣∣∣∣∣ (11)

where n represents the number of edges of the intersection polygon; (xi, yi) indicate the
sorted vertices of the polygon, where i = 1, 2, · · · , n. Note that xn+1 = x1 and yn+1 = y1;

Step 6—compute the rotational IoU value of Bgt and Bpb according to Equation (7).
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4.1.2. Backward Process

During the forward process, the sort operation returns the indices of sorted vertices
in counterclockwise order. Since the return value is discrete (an integer number) rather
than continuous (a float number), it is non-differentiable and, therefore, cannot participate
in the backward process. However, the computation part of the rotational IoU is still
differentiable. This is because we only use the gather operation to obtain the coordinate
values of the sorted vertices on the basis of the indices returned by the sort operation, and
then adopt the Shoelace formula to compute the area of the intersection area. Throughout
the process, the sort operation is not really involved in the area calculation. In most existing
deep learning frameworks, the gather function is defined to gather values from the input
tensor along a specified dimension and according to a specified index. As its return value
is continuous by definition, it is differentiable. Furthermore, the computing process of IoU,
including the dot product, the line–line intersection algorithm, and the Shoelace formula,
only comprises some essential additive and multiplicative operations, ensuring that the
process is robust to the rotational case and feasible for back-propagation.

4.2. Triangle Distance IoU Loss

The proposed rotational IoU algorithm enables back-propagation of the IoU loss layer
and, thus, meets Requirement 1. In this part, we aim to design a rotational IoU-based loss,
which fulfills Requirements 2, 3, and 4 by constructing a proper penalty term.

Similarly to [37], we define the IoU-based loss as follows:

L = 1− IoU +R
(

Bpb, Bgt
)

(12)

whereR
(

Bpb, Bgt
)

is the penalty term for the predicted box Bpb and the ground truth Bgt.
Inspired by CDIoU, we apply the distance between corresponding sampling points

(i.e., centroids and vertices) of Bgt and Bpb to the penalty term to measure the overall
similarity between them, while avoiding the angular boundary discontinuity caused by the
direct introduction of the angle parameter. To reduce the computing complexity, a novel
reference term, namely triangle distance, is devised as the denominator of the penalty term
to replace the diagonal length of the smallest enclosing box. Following this idea, we design
a triangle distance IoU loss (TDIoU loss), which is defined as follows:

LTDIoU = 1− IoU +RTDIoU (13)

According to Figure 9a, the penalty term of TDIoU loss is defined as follows:

RTDIoU =
|AE|+ |BF|+ |CG|+ |DH|+ |PQ|∣∣∣∆AQ,EQ

AEQ

∣∣∣+ ∣∣∣∆BQ,FQ
BFQ

∣∣∣+ ∣∣∣∆CQ,GQ
CGQ

∣∣∣+ ∣∣∣∆DQ,HQ
DHQ

∣∣∣+ ∣∣∣∆AP,AQ
APQ

∣∣∣ (14)

where ABCD and EFGH indicate the corresponding vertices of the predicted box Bpb and
the ground truth Bgt. Here, P and Q represent the centroids of Bpb and Bgt, respectively.
Furthermore, |·| refers to the Euclidean distance between two sampling points, while∣∣∣∆AQ,EQ

AEQ

∣∣∣ indicates the sum of the two edges AQ and EQ of ∆AEQ (the same applies for
other similar terms).
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Figure 9. The schematic diagram of the TDIoU loss. (a) The computation of RTDIoU . The red and
blue boxes indicate the predicted box Bpb and the ground truth Bgt, respectively. The red and blue
lines denote the distance between sampling points; (b) the process of bounding box regression guided
by TDIoU loss. After back-propagation, the model tends to pull the centroids and vertices of the
anchor/proposal toward the corresponding points of the ground truth until they overlap.

Note that each group of corresponding sampling points is exploited to construct
independent triangles inRTDIoU. To illustrate this process, here we use the vertices A and
E. As shown in Figure 9a, we use A, E, and the centroid of Bgt, Q, to construct ∆AEQ, which
obviously satisfies |AE| < |AQ|+ |EQ|. Then, |AE| is put into the numerator of RTDIoU
to directly measure the distance between the vertices A and E, while |AQ| and |EQ| are
introduced into the denominator ofRTDIoU as part of the reference term. In this way, we
finally establish the entire reference term by traversing each group of sampling points,
specifically as follows:

|AE| < |AQ|+ |EQ|
|BF| < |BQ|+ |FQ|
|CG| < |CQ|+ |GQ|
|DH| < |DQ|+ |HQ|
|PQ| < |AP|+ |AQ|

(15)

In the denominator reference term ofRTDIoU, the triangle distance plays a similar role
to the diagonal length of the smallest enclosing box, ensuring that the value of the penalty
term is limited to [0, 1). The difference is that the computing process of the triangle distance
is much simpler than that of the latter as it only involves the computation of the distance
between two points, which is able to save more training resources and time.

Overall, our TDIoU loss is a unified solution to all the above requirements. Compared to
other bounding box regression losses, it has several advantages in rotation detection, as follows:

1. The TDIoU loss inherits all the virtues of existing IoU-based losses. As shown in Figure 4c,
though the width w and the height h are not directly used in RTDIoU, TDIoU loss can
reflect the overall difference between Bpb and Bgt, and is sensitive to aspect ratio changes.
As an improvement to CDIoU, the centroid distance is introduced inRTDIoU to speed
up bounding box alignment. As illustrated in Figure 9b, the bounding box regression
guided by TDIoU loss tends to pull the centroids and vertices of the anchor/proposal
toward the corresponding points of the ground truth until they overlap. This process
steadily matches the location, shape, and orientation of Bpb and Bgt;

2. By measuring the sampling point distance,RTDIoU realizes the implicit encoding of
the relationship between each parameter. As shown in Figure 6, even when Bpb and
Bgt are in a containment relationship, TDIoU loss is able to reflect the angle difference
without directly introducing the angle θ, thus, fundamentally immunizing the angular
boundary discontinuity. Hence, our TDIoU loss fulfills Requirements 2 and 3;
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3. The penalty term of TDIoU loss takes into account the computing complexity by using
triangles formed by each group of sampling points to construct the denominator,
which significantly reduces the training time and satisfies Requirement 4.

Additionally, as a novel training metric, TDIoU loss has the following properties:

1. Here, 0 ≤ RTDIoU < 1. The lower the value of RTDIoU, the higher the similarity
between two boxes; the higher the value ofRTDIoU, the higher the difference between
two boxes.

2. Here, 0 ≤ LTDIoU < 2. When two bounding boxes are completely coincident,
LTDIoU = 0. When two bounding boxes are far apart, LTDIoU → 2 .

4.3. Attention-Weighted Feature Pyramid Network

In this part, we introduce the main idea of the proposed attention-weighted feature
pyramid network (AW-FPN), which improves the conventional feature fusion networks
from the following two aspects: the connection pathway and the fusion method.

4.3.1. Skip-Scale Connections

First used as the identity mapping shortcut in residual blocks [57–59], the skip connec-
tion has been a significant component in convolutional networks. In BiFPN, same-level
features at different scales are fused via transverse skip-scale connections. However, this
single same-level feature reuse neglects the semantic interactions between cross-level fea-
tures and fails to avoid the semantic loss during layer-to-layer transmission. To search for
better network topology, NAS-FPN uses the neural architecture search (NAS) technique.
Although it has a haphazard structure that is difficult to interpret, it can guide us in design-
ing a more preferable feature network. As shown in Figure 2c, NAS-FPN contains not only
transverse skip-scale connections but also longitudinal skip-scale connections.

Motivated by the above analysis, we devise a more effective feature pyramid network
structure, as demonstrated in Figure 10. First, we retain transverse skip-scale connections
used in BiFPN for the same-level feature reuse while avoiding adding much cost. Second,
to enhance semantic interactions between features of different resolutions, two types of
longitudinal skip-scale connections are added in the bi-directional pathways, as follows:

1. Top-down skip-scale connections, which integrate higher-level semantic information
into lower-level features to improve the classification performance;

2. Bottom-up skip-scale connections, which incorporate shallow positioning informa-
tion into higher-level features to locate small ship targets more accurately.
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4.3.2. Attention-Weighted Feature Fusion (AWF)

When fusing features of inconsistent semantics and scales, a common approach is to
directly add them together. The BiFPN assigns a learnable scalar weight for each connection
pathway. Nevertheless, in the case of considerable variations in target scales, these linear fusion



Remote Sens. 2022, 14, 4676 16 of 37

methods still face obstacles. The AFF [49] provides a non-linear attentional feature fusion
scheme. To some extent, our proposed attention-weighted feature fusion (AWF) mechanism
can be regarded as its follow-up work, but differs in at least three aspects, as follows:

1. While AFF focuses only on the channel attention, neglecting the spatial context
aggregation, our AWF gathers global and local feature contexts in both a multi-scale
channel attention module (MCAM) and multi-scale spatial attention module (MSAM);

2. The attentional feature fusion strategy in AFF is restricted to two cross-level features,
while our AWF extends it to circumstance of multiple input features;

3. To extract the global channel descriptor, AFF employs only average-pooled features.
However, a single average-pooling squeeze may result in the loss of specific spatial
information. Hence, to capture finer grained global descriptors, the proposed MCAM
and MSAM adopt both average-pooling and max-pooling operations.

Figure 11 describes the process of implementing the AWF. The given N input features
from different pyramid levels Fn ∈ RC×Hn×Wn (n = 1, 2, · · · , N). As they are of different
widths and heights, we resize them to the same resolution in advance, as follows:

Resize: Fn → F′n ∈ RC×H×W (16)

where Resize is an upsampling or downsampling operation. To integrate the information flows
of different scales from multiple inputs, we first combine them to construct a fully context
aware initial integration U ∈ RC×H×W, where ⊕ is an element-wise summation, as follows:

U = F′1 ⊕ F′2 ⊕ · · · ⊕ F′n (17)
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and multi-scale spatial attention Sn.

Then, to aggregate global and local feature contexts, the initial integration U is trans-
mitted to two parallel multi-scale attention modules MCAM and MSAM, as shown in
Figure 12.

MCAM—to polymerize global spatial information for each channel, we employ both
average-pooling and max-pooling operations to squeeze the spatial dimension of U, so as
to generate two distinct channel-wise statistics. Next, we merge them via an element-wise
summation to obtain a refined global channel descriptor. Meanwhile, we follow the idea of
AFF to aggregate local channel contexts by altering the pooling size. A simple approach is
to directly use U as the local channel descriptor. After that, the global and local channel
descriptors are fed into two independent excitation branches. As the fully connected layer
used in [46,48] cannot be directly performed on the three-dimensional tensor, we adopt
the convolution operation with a kernel size of 1 × 1, which only uses point-wise channel
interactions at each spatial location to learn the non-linear association between channels.
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The global channel context Cg(U) and the local channel context CL(U) are defined as
follows:

Cg(U) = B
(

Conv1×1
2

(
δ
(
B
(

Conv1×1
1 (AvgPool(U)⊕MaxPool(U))

))))
(18)

CL(U) = B(Conv1×1
2

(
δ
(
B
(

Conv1×1
1 (U)

)))
(19)

where Cg(U) ∈ RNC×1×1 and CL(U) ∈ RNC×H×W . Here, B denotes the batch normaliza-
tion [60]. Additionally, δ is the ReLU function, and Conv1×1 is the 1 × 1 convolution. To
simplify computation, the first convolution of each branch is used for channel reduction,
while the second is used to restore the channel dimension. Hence, the numbers of filters of
Conv1×1

1 and Conv1×1
2 are set to C/r and NC, where r is the channel reduction ratio. Then,

Cg(U) and Cl(U) are fused via the broadcasting mechanism to construct the multi-scale
channel context C(U). This can be seen as follows:

C(U) = Cg(U)⊕Cl(U) (20)
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Since C(U) ∈ RNC×H×W is a channel context aggregation of N input features, it is
subsequently split into Cn ∈ RC×H×W as the multi-scale channel attention for each input.

MSAM—similarly to MCAM, to learn the global and local cross-spatial relationships
of the initial integration U, we use two parallel branches. First, to obtain a refined global
spatial descriptor, we perform the average-pooling and max-pooling operations along the
channel dimension and concatenate them, while the initial integration is simply treated
as the local spatial descriptor. Then, the convolution layer with a kernel size of 7 × 7,
which has a broader receptive field, is selected as the spatial context aggregator to encode
emphasized or suppressed positions of spatial descriptors. On this basis, the global spatial
context Sg(U) and the local spatial context Sl(U) can be defined as follows:

Sg(U) = Resize
(

Conv7×7
1 (AvgPool(U)} MaxPool(U))

)
(21)

Sl(U) = Resize
(

Conv7×7
2 (U)

)
(22)



Remote Sens. 2022, 14, 4676 18 of 37

where Sg(U) ∈ Rn×1×H×W and Sl(U) ∈ Rn×C×H×W. Here, } indicates a concatenate
operation. The numbers of filters of Conv7×7

1 and Conv7×7
2 are set to N and NC. As the

convolution outputs of the two branches cannot be added directly, we resize them and
then fuse them via the broadcast mechanism to obtain the multi-scale spatial context
S(U) ∈ Rn×C×H×W.

S(U) = Sg(U)⊕ Sl(U) (23)

We split S(U) into Sn ∈ RC×H×W as the multi-scale spatial attention, and the integrated
attention descriptor An ∈ RC×H×W can be computed by An = Cn ⊕ Sn. Next, to generate
the non-linear fusion weight an for each input feature, a softmax operation is executed on
each group of corresponding elements of all attention descriptors An.

an =
eAn

eA1 ⊕ eA2 ⊕ · · · ⊕ eAn
(24)

Each element ax, y, z
n of an is a real number between 0 and 1 and fulfills ∑n

n=1 ax, y, z
n = 1.

As an ∈ RC×H×W have the same size as resized features F′n, they preserve and emphasize
the subtle details in all inputs, enabling high-quality soft feature selections between F′n.

O =
(
a1 ⊗ F′1

)
⊕
(
a2 ⊗ F′2

)
⊕ · · · ⊕

(
an ⊗ F′n

)
(25)

Here, O signifies the final fused feature and ⊗ implies an element-wise multiplication.

4.3.3. The Forward Process of the AW-FPN

Our ultimate AW-FPN combines both multiple skip-scale connections and attention-
weighted feature fusion. As shown in Figure 10, it takes level 3–7 features extracted by the
backbone network as the input Cin = {C3, C4, C5, C6, C7}, where Ci denotes a feature level
with a resolution of 1/2i of the input image. The top-down and bottom-up aggregation
pathways are constructed successively. Here, we take level 5 as an example to illustrate
the forward process. On the top-down pathway, the intermediate feature of level 6 (P′6) is
upsampled 2 × and then fused with C5 via AWF, followed by a 3 × 3 convolution to generate
the intermediate feature P′5. On the bottom-up pathway, the outputs of levels 3 and 4 (P4 and
P3) are subjected to 4 × and 2 × downsampling operations, respectively, and then fused with
C5 and P′5. The final output P5 is generated by the 3 × 3 convolution, as follows:

P′5 = Conv
(
AWF

(
C5, Resize

(
P′6
)))

(26)

P5 = Conv
(
AWF

(
C5, P′5, Resize(P4), Resize(P3)

))
(27)

where Conv implies the 3 × 3 convolution, which is followed by a batch normalization
operation and a ReLU function. All other feature levels are constructed in a similar way.

5. Rotated-SARShip Dataset

In this section, we introduce the collection process and data statistics of our proposed
rotated-SARShip dataset (RSSD) for arbitrary-oriented ship detection in SAR images.

5.1. Original SAR Image Acquisition

Table 2 provides detailed information of the original SAR imageries used to establish
our RSSD. First, from the Copernicus Open Access Hub [61], we downloaded three raw
Sentinel-1 images with a resolution of 5 m × 20 m, characterized by large scales and wide
coverages (25,340 × 17,634 pixels on average). As shown in Figure 13, the imagery acquisi-
tion areas are selected in the Dalian Port, Panama Canal, and the Tokyo Port (these ports
have huge cargo throughputs, and the canal has busy trade). In general, the polarization,
imaging mode, and the incident angle of sensors tend to influence the imaging condition
of SAR images to a certain extent. For the Sentinel-1 images, the basic polarimetric com-
bination is VV and VH. The imaging mode is interferometric wide swath (IW), which is
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the primary sensor mode for data acquisition in marine surveillance zones. Furthermore,
to minimize redundant interferences, such as foreshortening, layover, and shadowing of
vessels, we choose an incident angle of 27.6~34.8◦ [32].

Table 2. Detailed information of the original SAR imageries used to establish our RSSD.

No. Data Source Polarization Imaging
Mode Incident Angle (◦) Resolution (m) Image Size

(Pixel) Location Date and
Time

1 Sentinel-1 VV, VH IW 27.6~34.8 5 × 20 25,313 × 16,704 Dalian Port 5 October 2021,
09:48:20

2 Sentinel-1 VV, VH IW 27.6~34.8 5 × 20 25,136 × 19,488 Panama Canal
30 September

2021,
11:06:41

3 Sentinel-1 VV, VH IW 27.6~34.8 5 × 20 25,480 × 16,709 Tokyo Port 1 October 2021,
08:41:23

4~256
Gaofen-3

(AIR-
SARShip)

Single, VV SpotLight,
SM – 1, 3 1000 × 1000,

3000 × 3000 – –

257~5792
Sentinel-1,

TerraSAR-X
(HRSID)

HH, HV, VV S3-SM,
ST, HS

27.6~34.8,
20~45,

20~60, 20~55
0.5, 1, 3 800 × 800

Barcelona,
Sao Paulo,

Houston, etc.
–
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To ensure complex and diverse image scenes, we also screen 252 and 5535 SAR images
from AIR-SARShip [31] and HRSID [32], respectively. As shown in Table 2, the HRSID
images shot by Sentinel-1 and TerraSAR-X have resolutions of 0.5 m, 1 m, and 3 m. The
polarizations are HH, HV, and VV, and the imaging modes are S3-StripMap (S3-SM),
Staring SpotLight (ST), and High-Resolution SpotLight (HS). The AIR-SARShip images
from Gaofen-3 have resolutions of 1 m and 3 m, polarizations of single and VV, and imaging
modes of SpotLight and StripMap (SM). Since these images have different resolutions and
imaging conditions, ships in them usually appear in different forms. Notably, images with
a resolution of less than 3 m can retain the detailed features of ships, while images with a
resolution of 5 m × 20 m can increase the number of small ship targets.

5.2. SAR Image Pre-Processing and Splitting

The above original SAR imageries still need to be pre-processed before annotation. To
display recognizable features of ships, we first apply the Sentinel-1 toolbox [62] to convert
the raw Sentinel-1 data into grayscale images in the 16-bit tag image file format (TIFF),
followed by geometrical rectification and radiometric calibration operations. Since images
selected from AIR-SARShip and HRSID have already undergone the above processing,
we directly perform the de-speckling operation on all the original images to suppress the
influence of background noise. Finally, we transform all images into portable network
graphics (PNG) files in the same format as the DOTA dataset [63].

Due to the side-scan imaging mechanism of SAR satellites, the original SAR imagery
generally has a huge size and should be split into ship slices to fit the input size of CNN-based
detectors. First, to avoid duplicate splitting, the offshore areas with a relatively dense ship
distribution are separated from the images in advance [32]. After that, a sliding window of
800 × 800 pixels is used to shift over the whole image with a stride of 600 pixels in width
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and height (25% overlap rate) to preserve the relatively intact features of ships. Since the
images screened from HRSID have already been cropped to the expected size matching the
network input, the splitting operation is performed only on the images from Sentinel-1 and
AIR-SARShip. Furthermore, we reserve the complex inshore scenes containing ships and
artificial facilities and remove the negative samples with only pure background.

5.3. Dataset Annotation

With the assistance of the official document and the Sentinel-1 toolbox, we can easily
acquire the precise imaging time and geographic location of each Sentinel-1 image, which
will help the automatic identification system (AIS) and Google Earth to provide support for
the annotation work. As shown in Figure 14, we first identify the approximate location of
the imaging area of each Sentinel-1 image in AIS and Google Earth. Since AIS provides the
movement trajectories of most ships around the time the images were shot, it is possible
to grasp the approximate distribution of ships and estimate their possible positions in
the imaging area. Subsequently, we match the AIS message with each Sentinel-1 image
and determine the topographical features and marine conditions of the coverage area
with the help of Google Earth. On this basis, we adopt RoLabelImg [64] to annotate the
oriented bounding boxes of ships, obtaining relatively accurate ground truths. To ensure
that the annotations meet the requirements of most rotation detectors, we convert them to
the DOTA format, using four ordered vertices to represent ship ground truths, as shown
in Figure 15. In fact, there are still some islands and reefs incorrectly labeled as ships.
Thus, we employ Google Earth for further in-depth inspection and correction to ensure the
accuracy of the annotations. Note that since the specific shooting information of the images
from AIR-SARShip and HRSID cannot be acquired directly, we first refer to their original
horizontal ground truths and carefully check whether there are errors and omissions. Then,
we annotate them with more elaborate oriented bounding boxes.
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So far, we have established the RSSD, and there have been 8013 SAR images with
corresponding annotation files, including 21,479 ship targets annotated by rotated ground
truths. Figure 16 displays ship ground truth annotations of diverse SAR images in RSSD.
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Figure 16. Ship ground truth annotations of diverse SAR images in RSSD. Real ships are accurately
marked in green OBBs. (a) Offshore single ship; (b) offshore multiple ships; (c,d) densely arranged
ships; (e) ships lying off the port; (f) ships with large aspect ratios; (g,h) small ships in the canal.

5.4. Statistical Analysis on the RSSD

Figure 17 visualizes the comprehensive statistical comparison between our RSSD and
SSDD, both of which adopt OBB annotations. As Table 3 shows, 70% of the RSSD images are
randomly selected as the training set, and 30% are selected as the test set. For the SSDD, we
divide all images in the ratio of 8:2 according to [28]. As shown in Table 1, SSDD contains
1160 SAR images with 2587 annotated ships, indicating that each image contains only 2.2
ships on average, while in our dataset, each image contains about 2.7 ships. Figure 17a,e
display the width and height distribution of ship ground truths. Compared to the extreme
funnel-like distribution of SSDD, our RSSD features a more uniform ship size distribution
and more prominent multi-scale characteristics. As per Figure 17b,f, the aspect ratio of ship
ground truths in the SSDD is generally below 3, whereas it is concentrated in the range
of 2~5 in the RSSD, indicating that most instances in our dataset are with relatively high
aspect ratios. Since the difficulty in detecting ships typically increases with the aspect ratio,
our RSSD is more challenging compared to other datasets. As per Figure 17c,g, according to
the MS COCO evaluation metric [65], the numbers of small ships (AreaOBBs < 1024 pixels),
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medium ships (1024 < AreaOBBs < 9216 pixels), and large ships (AreaOBBs > 9216 pixels)
in the RSSD are 13,369, 7741, and 369, respectively, (62.24%, 36.04%, and 1.72% of all
ships, respectively), while in the SSDD, the proportions are 71.12%, 28.30%, and 0.58%,
respectively. Ships in both datasets are relatively small in size but have large variations
in scale. As shown in Figure 17d,h, the angle distribution of ship ground truths in the
RSSD is more balanced than that in the SSDD. This ensures that rotation detectors learn the
multi-angle features better.
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Figure 17. Statistical comparison between the proposed RSSD and the SSDD. Here, (a) and (e)
show the width and height distribution of ship ground truths in RSSD and SSDD, respectively;
(b) and (f) display the aspect ratio distribution of ship OBBs; (c) and (g) indicate the area distribution
of ship OBBs; (d) and (h) show the rotation angle distribution of ship OBBs.

Table 3. Details of dataset division.

Dataset Train Test All Inshore (Test) Offshore (Test)

RSSD (ours) 5692 2321 8013 479 1842
SSDD 928 232 1160 46 186

HRSC2016 617 444 1061 – –

Based on the above analysis, it is obvious that the ship targets in our RSSD not only
differ significantly in orientation degrees but also have multi-scale characteristics, which
provides a challenging benchmark for arbitrary-oriented ship detection in SAR images.

6. Experiments and Discussion

In this section, we first present the benchmark datasets, implementation details, and
evaluation metrics. Then, extensive comparative experiments with existing methods
are carried out to verify the superiority and robustness of our approach. Meanwhile,
comprehensive discussions are provided to analyze and interpret the experimental results.

6.1. Benchmark Datasets and Implementation Details

The proposed rotated-SARShip dataset (RSSD) and the public SAR ship detection
dataset (SSDD), specific information about which is provided in Section 5, are used to
evaluate the performance of the proposed method. In our experiments, all SSDD images
are resized to 512 × 512 pixels, with padding operation to avoid distortion, while the RSSD
images of 800 × 800 pixels are directly used as the network input. The ratio of training set
to test set for the RSSD is set to 7:3, while that for the SSDD is set to 8:2. To better assess the
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performance of our approach in different SAR scenes, we further divide the test sets into
inshore and offshore scenes. Figure 18 and Table 3 show the details of dataset division.
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Furthermore, a public benchmark for OBB-based ship detection in optical remote
sensing images, the HRSC2016 dataset [66], is used to verify the generalization ability of
the proposed method across different scenarios. It contains 1061 high-resolution aerial
images, including 2976 different types of ships annotated by oriented bounding boxes,
with the image size ranging from 300 × 300 to 1500 × 900 pixels. We employ the training
(436 images) and validation (181 images) sets for training, and the test set (444 images) for
testing. All images are resized to 800 × 512 pixels without altering the original aspect ratio.

The experiments are conducted on the platform with Ubuntu 18.04 OS, 32 GB of RAM,
and a NVIDIA GTX 1080Ti GPU. For all datasets, we train the models in 72 epochs. The
SGD optimizer is adopted with a batch size of 2 and an initial learning rate of 0.0025.
The momentum and weight decay are 0.9 and 0.0001, respectively. As for the learning
schedule, we apply the warmup strategy for 500 iterations, and the learning rate is dropped
10-fold at each decay step. If not specified, ResNet50 [57] is employed as the default
backbone network. Its parameters are initialized by ImageNet pretrained weights. For fair
comparisons with other methods and to avoid over-fitting, we only use random flipping
and rotation for data augmentation in the training phase. If not specified, no extra tricks
are used.

6.2. Evaluation Metrics

To qualitatively and quantitatively evaluate the detection performance of different
methods in our experiments, two normative metrics, the precision–recall curve (P–R curve)
and average precision (AP), are leveraged. Specifically, the precision and the recall can be
expressed as follows:

Precision =
TP

TP + FP
(28)

Recall =
TP

TP + FN
(29)

where TP (true positives), FP (false positives), and FN (false negatives) represent the number
of correctly detected ships, false alarms, and undetected ships, respectively. The P–R curve,
with precision as the y-axis and recall as the x-axis, reveals the relationship between these
two metrics. The AP is defined as the area under the P–R curve, as follows:

AP =
∫ 1

0
P(R)dR (30)

where P and R indicate the precision and recall, respectively. The AP evaluates the overall
performance of detectors under different IoU thresholds (0.5 by default) and, the larger the
value, the better the performance. Furthermore, we use the total training time as a metric
to evaluate the computing complexity and training efficiency of different losses.
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6.3. Ablation Study

In this part, we first introduce two robust rotation detectors as baselines. On this basis,
a series of component-wise experiments on the RSSD, the SSDD, and the HRSC2016 are
carried out to validate the effectiveness of the proposed TDIoU loss and AW-FPN.

6.3.1. Baseline Rotation Detectors

Two rotation detectors, RetinaNet [17] and CS2A-Net [67], are selected as baselines
in our experiments. As a typical single-stage detector, RetinaNet consists of a backbone
network, a feature pyramid network, and detection heads. It uses a ResNet [57] to generate
a multi-scale feature pyramid and attaches a detection head to each pyramid level (P3
to P7). Each detection head is made up of a classification sub-network and a regression
sub-network. To implement a RetinaNet-based rotation detector (RetinaNet-R), we modify
the regression output to an OBB (cx, cy, w, h, and θ) under the long-edge definition, where
(cx, cy), w, h, and θ denote the centroid, the width, the height, and the angle, respectively,
and θ ∈ [–45 ◦, 135◦). Accordingly, the angle θ is taken into consideration in the anchor
generation. At each pyramid level, we set anchors in three aspect ratios, {1:2, 1:1, and 2:1},
three scales, {1, 21/3, and 22/3}, and six angles, {–45◦, –15◦, 15◦, 45◦, 75◦, and 105◦}. The
proposed TDIoU loss and AW-FPN can be easily embedded into RetinaNet-R, as shown in
Figure 19a.

Remote Sens. 2022, 14, x FOR PEER REVIEW 25 of 39 
 

 

  
(a) RetinaNet-R with TDIoU loss and AW-FPN (b) CS2A-Net with TDIoU loss and AW-FPN 

Figure 19. Architectures of two baselines. As a plug-and-play scheme, TDIoU loss and AW-FPN can 
be easily embedded into the above rotation detectors. (a) The regression output of RetinaNet is 
modified to an OBB under long-edge definition. Here, ‘C’ denotes the number of categories, and ‘N’ 
denotes the number of anchors on each feature point; (b) the CS2A-Net head consisting of the FAM 
and ODM can be cascaded to improve accuracy. The number of cascade heads is set to 2 by default. 

The CS2A-Net is an advanced rotation detector based on the RetinaNet architecture. 
Its detection head consists of a feature alignment module (FAM) and an oriented detection 
module (ODM), which can be cascaded to improve accuracy. The FAM uses an anchor 
refinement network (ARN) to generate refined rotated anchors, and then sends refined 
anchors and input features to an alignment convolution layer (ACL) to learn aligned fea-
tures. In ODM, the active rotating filter (ARF) learns orientation-sensitive features, and 
then a pooling operation extracts the orientation-invariant features for classification and 
regression. Our TDIoU loss and AW-FPN can also be integrated into CS2A-Net, as shown 
in Figure 19b. 

The multi-task loss function of two baseline detectors is defined as follows: 

 L = 𝜆1

N SnLreg(Bn
pb, Bn

gt)N

n 1

+ 𝜆2

N Lcls(pn
pb, pn

gt)N

n 1

 (31) 

where 𝜆1 and 𝜆2 indicate the loss balance hyper-parameter and are set to 1 by default, 
N denotes the number of anchors in a mini-batch, and Sn is a binary value (Sn = 1 for 
positive anchors and Sn = 0 for negative anchors). The vectors Bn

pb and Bn
gt denote the 

locations of the n-th predicted box and the corresponding ground truth, respectively. The 
values pn

pb and pn
gt indicate the predicted classification score and the true label of the nth 

object, respectively. In our experiments, the regression loss Lreg is set as the smooth L1 
loss, the TDIoU loss, etc. The classification loss Lcls is set as the focal loss [17], as follows:  Lfocal(pt) = −αt(1 − pt)γlog(pt) (32) 

where (1 − pt)γ and αt are two modulation factors that satisfy the following conditions: 

pt = pn
pb,       pn

gt = 1   
1 − pn

pb,   otherwise
 and αt = α,       pn

gt = 1   
1 − α,   otherwise

 (33) 

where α and γ are two hyper-parameters, which are set to 0.25 and 2, respectively, by 
default. 

6.3.2. Effectiveness of the TDIoU Loss 
We evaluate the TDIoU loss with two baseline detectors on three datasets, as shown 

in Tables 4–6. Both detectors adopt ResNet50 and the original FPN. To ensure the objec-
tivity and richness of the ablation study, we implement two approximate IoU losses (IoU-

Figure 19. Architectures of two baselines. As a plug-and-play scheme, TDIoU loss and AW-FPN
can be easily embedded into the above rotation detectors. (a) The regression output of RetinaNet is
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The CS2A-Net is an advanced rotation detector based on the RetinaNet architecture.
Its detection head consists of a feature alignment module (FAM) and an oriented detection
module (ODM), which can be cascaded to improve accuracy. The FAM uses an anchor
refinement network (ARN) to generate refined rotated anchors, and then sends refined
anchors and input features to an alignment convolution layer (ACL) to learn aligned
features. In ODM, the active rotating filter (ARF) learns orientation-sensitive features, and
then a pooling operation extracts the orientation-invariant features for classification and
regression. Our TDIoU loss and AW-FPN can also be integrated into CS2A-Net, as shown
in Figure 19b.

The multi-task loss function of two baseline detectors is defined as follows:

L =
˘1

N
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SnLreg

(
Bpb

n , Bgt
n
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+
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N
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where ˘1 and ˘2 indicate the loss balance hyper-parameter and are set to 1 by default, N
denotes the number of anchors in a mini-batch, and Sn is a binary value (Sn = 1 for positive
anchors and Sn = 0 for negative anchors). The vectors Bpb

n and Bgt
n denote the locations

of the n-th predicted box and the corresponding ground truth, respectively. The values
ppb

n and pgt
n indicate the predicted classification score and the true label of the nth object,

respectively. In our experiments, the regression loss Lreg is set as the smooth L1 loss, the
TDIoU loss, etc. The classification loss Lcls is set as the focal loss [17], as follows:

Lfocal(p t) = −fft(1 − pt)
fllog(p t) (32)

where (1 − pt)
γ and αt are two modulation factors that satisfy the following conditions:

pt =

{
ppb

n , pgt
n = 1

1− ppb
n , otherwise

and αt =

{
α, pgt

n = 1
1− α, otherwise

(33)

where α and γ are two hyper-parameters, which are set to 0.25 and 2, respectively, by default.

6.3.2. Effectiveness of the TDIoU Loss

We evaluate the TDIoU loss with two baseline detectors on three datasets, as shown in
Tables 4–6. Both detectors adopt ResNet50 and the original FPN. To ensure the objectivity
and richness of the ablation study, we implement two approximate IoU losses (IoU-smooth
L1 and GWD loss) and five IoU-based losses (IoU, GIoU, CIoU, EIoU, and CDIoU loss)
to compare the performance of different regression losses. Only the regression loss is
modified, and all other settings remain intact for fair comparisons.

Table 4. Comparison of different regression losses on RSSD. Here, R-50-FPN denotes ResNet50
with FPN, LMI and ABD denote the loss-metric inconsistency and angular boundary discontinuity,
respectively, and X indicates that the method has corresponding issue. Training represents the total
training time (in hours) for 72 epochs with a single GPU and a batch size of 2. Bold items are the best
result of each column.

Detector Regression Loss LMI ABD Inshore AP Offshore AP Test AP Training (h)

RetinaNet-R
(R-50-FPN)

Smooth L1
(baseline) X X 44.30 91.38 72.13 10.2

IoU-smooth L1 [41] X 45.49 (+1.19) 92.37 (+0.99) 73.22 (+1.09) 12.9
GWD [23] X 48.28 (+3.98) 93.36 (+1.98) 74.92 (+2.79) 12.1
IoU [36] 47.37 (+3.07) 93.11 (+1.73) 74.36 (+2.23) 12.6

GIoU [37] 47.43 (+3.13) 93.16 (+1.78) 74.43 (+2.30) 26.2
CIoU [38] 47.76 (+3.46) 93.25 (+1.87) 74.65 (+2.52) 26.8
EIoU [39] 48.01 (+3.71) 93.30 (+1.92) 74.77 (+2.64) 26.6

CDIoU [40] 48.54 (+4.24) 93.46 (+2.08) 75.05 (+2.92) 26.5
AIoU X NAN NAN NAN –

TDIoU 49.68 (+5.38) 94.09 (+2.71) 75.93 (+3.80) 13.0

CS2A-Net
(R-50-FPN)

Smooth L1
(baseline) X X 70.99 96.13 85.95 11.7

TDIoU 75.17 (+4.18) 96.56 (+0.43) 87.65 (+1.70) 14.8

Table 4 shows results on our RSSD. Compared with smooth L1, RetinaNet-R based
on approximate IoU losses improves the AP of inshore scenes, offshore scenes, and the
entire test set by 1.19~3.98%, 0.99~1.98%, and 1.09~2.79%, respectively. Conventional IoU-
based losses improve the AP by 3.07~4.24%, 1.73~2.08%, and 2.23~2.92%, respectively. The
proposed TDIoU loss improves the AP by 5.38%, 2.71%, and 3.80%, respectively. Even with
the advanced CS2A-Net, TDIoU loss still improves the inshore AP, offshore AP, and test AP
by 4.18%, 0.43%, and 1.70%, respectively, indicating that our method dramatically improves
ship detection performance, especially in the complex inshore scenes. Similar experimental
conclusions are also reflected in the other two datasets. Table 5 shows results on the SSDD.
The TDIoU-based RetinaNet-R is improved by 8.50%, 1.01%, and 3.42% on inshore AP,
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offshore AP, and test AP, respectively, compared to the approximate IoU losses (2.24~5.88%,
0.27~0.61%, and 0.90~2.25%) and the traditional IoU-based losses (2.94~6.75%, 0.39~0.67%,
and 1.17~2.61%). When CS2A-Net is used as the base detector, our TDIoU loss further
improves the AP by 3.47%, 0.73%, and 1.51%. Table 6 shows results on the HRSC2016.
The RetinaNet-R achieves the best accuracy by using the TDIoU loss (i.e., improvement by
3.49% and 4.39% in terms of the 2007 and 2012 evaluation metrics, respectively). Similarly,
our TDIoU loss achieves considerable improvement on CS2A-Net, with an increase of 0.32%
and 2.48%, respectively.

Table 5. Comparison of different regression losses on SSDD.

Detector Regression Loss LMI ABD Inshore AP Offshore AP Test AP Training (h)

RetinaNet-R
(R-50-FPN)

Smooth L1
(baseline) X X 59.35 97.10 86.14 1.1

IoU-Smooth L1 [41] X 61.59 (+2.24) 97.37 (+0.27) 87.04 (+0.90) 1.5
GWD [23] X 65.23 (+5.88) 97.71 (+0.61) 88.39 (+2.25) 1.3
IoU [36] 62.29 (+2.94) 97.49 (+0.39) 87.31 (+1.17) 1.4

GIoU [37] 63.36 (+4.01) 97.57 (+0.47) 87.68 (+1.54) 2.9
CIoU [38] 64.13 (+4.78) 97.63 (+0.53) 87.98 (+1.84) 3.1
EIoU [39] 64.24 (+4.89) 97.65 (+0.55) 88.02 (+1.88) 3.0

CDIoU [40] 66.10 (+6.75) 97.77 (+0.67) 88.75 (+2.61) 2.9
TDIoU X 67.85 (+8.50) 98.11 (+1.01) 89.56 (+3.42) 1.6

CS2A-Net
(R-50-FPN)

Smooth L1
(baseline) 75.79 98.79 92.08 1.2

TDIoU X X 79.26 (+3.47) 99.52 (+0.73) 93.59 (+1.51) 1.7

Table 6. Comparison of different regression losses on HRSC2016. Here, AP07 and AP12 indicate the
PASCAL VOC 2007 and 2012 metrics, respectively.

Detector Regression Loss LMI ABD Test AP07 Test AP12 Training (h)

RetinaNet-R
(R-50-FPN)

Smooth L1
(baseline) X X 81.63 84.82 1.1

IoU-Smooth L1 [41] X 82.64 (+1.01) 85.84 (+1.02) 1.4
GWD [23] X 83.94 (+2.31) 87.78 (+2.96) 1.2
IoU [36] 83.07 (+1.44) 86.64 (+1.82) 1.3

GIoU [37] 83.22 (+1.59) 86.83 (+2.01) 2.8
CIoU [38] 83.62 (+1.99) 87.33 (+2.51) 3.1
EIoU [39] 83.78 (+2.15) 87.55 (+2.73) 3.0

CDIoU [40] 84.13 (+2.50) 88.06 (+3.24) 2.9
TDIoU X 85.12 (+3.49) 89.21 (+4.39) 1.5

CS2A-Net
(R-50-FPN)

Smooth L1
(baseline) 89.94 94.91 1.1

TDIoU X X 90.26 (+0.32) 97.39 (+2.48) 1.6

Figure 20 shows P–R curves of RetinaNet-R using different regression losses on three
datasets. The area under the P–R curve of TDIoU loss is always larger than that of the other
losses, indicating that the overall performance of our method is better. The possible causes
are summarized as follows: (1) Compared to the approximate IoU losses, we fundamentally
eliminate the loss-metric inconsistency by introducing the differentiable rotational IoU
algorithm. (2) In contrast to the parameter-based IoU losses, the TDIoU penalty term
effectively reflects the overall difference between OBBs by measuring the distance between
sampling points. In Table 4, to further investigate the effect of the angle parameter, we
directly introduce it into the EIoU penalty term, which is named AIoU loss. However,
AIoU loss is prone to non-convergence in the training phase, which is probably because
the direct introduction of angle parameter will bring back the boundary discontinuity.
On the contrary, the distance-based penalty term can reflect angle differences without
directly employing the angle parameter. (3) Compared to the CDIoU loss, the introduction
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of the centroid distance is able to speed up bounding box alignment. Figure 21 displays
different regression loss curves in the training phase. The TDIoU loss directly minimizes the
distance between corresponding centroids and vertices of two boxes and, thus, converges
much faster than other losses. Moreover, since we use the triangle distance rather than the
diagonal length of the smallest enclosing box to construct the denominator of penalty term,
TDIoU loss reduces the training time by nearly half compared with other IoU-based losses,
indicating that the computing complexity of our method is greatly reduced. All in all, the
proposed TDIoU loss is more applicable to rotated bounding box regression.
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6.3.3. Effectiveness of the AW-FPN

Since the proposed AW-FPN combines both multiple skip-scale connections and the
attention-weighted feature fusion (AWF) strategy, we want to understand their respective
contributions to accuracy improvement. Hence, we implement seven feature fusion net-
works with different connection pathways and fusion methods to verify the effectiveness
of the AW-FPN, as shown in Tables 7–9. Notably, to eliminate the effect of irrelevant factors,
the structure of all feature fusion networks is used only once.

Table 7 shows the results on our RSSD. The comparison between different connec-
tion pathways shows that the traditional FPN is inevitably limited by a single top-down
information flow and achieves the lowest accuracy. The PANet with an extra bottom-up
pathway improves by 0.68%, 0.59%, and 0.63% on inshore AP, offshore AP, and test AP, re-
spectively. The BiFPN with single transverse skip-scale connections and the linear weighted
fusion (LWF) strategy improves the AP by 1.87%, 1.13%, and 1.35%, respectively. For the
AW-FPN with both transverse and longitudinal skip-scale connections, even the simplest
additive fusion method can achieve performance similar to that of BiFPN. When using the
same LWF method as BiFPN, the AW-FPN improves the AP by 2.38%, 1.34%, and 1.58%,
indicating that longitudinal skip-scale connections are also crucial for feature fusion. For
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comparisons between different fusion methods, AW-FPN improves by 2.91%, 1.63%, and
1.97% when using AFF (channel attention only) and by 4.09%, 2.06%, and 2.84% when using
the proposed AWF (both channel and spatial attention), indicating that the attention-based
fusion methods outperform the linear fusion methods and, that to generate non-linear
fusion weights, it is better to use both channel and spatial attention rather than only using
single channel attention. When CS2A-Net is used as the base detector, our ultimate AW-
FPN further improves the AP by 3.96%, 0.38%, and 1.50%. Similar experimental results
are obtained on the other two datasets. From Tables 8 and 9, for the SSDD and HRSC2016,
the proposed AW-FPN achieves the most outstanding performance on RetinaNet-R and a
considerable improvement on the advanced CS2A-Net, which proves the effectiveness of
our approach.

Table 7. Comparison of different feature fusion networks on RSSD. The structure of all feature fusion
networks is used only once in our experiment. Here, ADD represents the direct addition of feature
maps, while LWF indicates the linear weighted fusion method in BiFPN [27].

Detector Fusion Network Fusion Method Fusion Type Inshore AP Offshore AP Test AP

RetinaNet-R
(R-50)

FPN (baseline) ADD Linear 44.30 91.38 72.13
PANet [25] ADD Linear 44.98 (+0.68) 91.97 (+0.59) 72.76 (+0.63)
BiFPN [27] LWF Linear 46.17 (+1.87) 92.51 (+1.13) 73.48 (+1.35)
AW-FPN ADD Linear 45.72 (+1.42) 92.42 (+1.04) 73.31 (+1.18)
AW-FPN LWF Linear 46.68 (+2.38) 92.72 (+1.34) 73.71 (+1.58)
AW-FPN AFF (channel) Soft Selection 47.21 (+2.91) 93.01 (+1.63) 74.10 (+1.97)

AW-FPN AWF (channel +
spatial) Soft Selection 48.39 (+4.09) 93.44 (+2.06) 74.97 (+2.84)

CS2A-Net
(R-50)

FPN (baseline) ADD Linear 70.99 96.13 85.95

AW-FPN AWF (channel +
spatial) Soft Selection 74.95 (+3.96) 96.51 (+0.38) 87.45 (+1.50)

Table 8. Comparison of different feature fusion networks on SSDD.

Detector Fusion Network Fusion Method Fusion Type Inshore AP Offshore AP Test AP

RetinaNet-R
(R-50)

FPN (baseline) ADD Linear 59.35 97.10 86.14
PANet [25] ADD Linear 60.98 (+1.63) 97.30 (+0.20) 86.80 (+0.66)
BiFPN [27] LWF Linear 61.83 (+2.48) 97.42 (+0.32) 87.13 (+0.99)
AW-FPN ADD Linear 61.62 (+2.27) 97.38 (+0.28) 87.05 (+0.91)
AW-FPN LWF Linear 62.02 (+2.67) 97.44 (+0.34) 87.20 (+1.06)
AW-FPN AFF (channel) Soft Selection 63.11 (+3.76) 97.54 (+0.44) 87.58 (+1.44)

AW-FPN AWF (channel +
spatial) Soft Selection 65.71 (+6.36) 97.91 (+0.81) 88.63 (+2.49)

CS2A-Net
(R-50)

FPN (baseline) ADD Linear 75.79 98.79 92.08

AW-FPN AWF (channel +
spatial) Soft Selection 78.83 (+3.04) 99.32 (+0.53) 93.38 (+1.30)

Table 9. Comparison of different feature fusion networks on HRSC2016.

Detector Fusion Network Fusion Method Fusion Type Test AP07 Test AP12

RetinaNet-R
(R-50)

FPN (baseline) ADD Linear 81.63 84.82
PANet [25] ADD Linear 82.44 (+0.81) 85.62 (+0.80)
BiFPN [27] LWF Linear 82.74 (+1.11) 85.92 (+1.10)
AW-FPN ADD Linear 82.50 (+0.87) 85.68 (+0.86)
AW-FPN LWF Linear 82.86 (+1.23) 86.30 (+1.48)
AW-FPN AFF (channel) Soft Selection 83.27 (+1.64) 86.89 (+2.07)

AW-FPN AWF (channel +
spatial) Soft Selection 84.10 (+2.47) 88.02 (+3.20)

CS2A-Net
(R-50)

FPN (baseline) ADD Linear 89.94 94.91

AW-FPN AWF (channel +
spatial) Soft Selection 90.21 (+0.27) 97.22 (+2.31)



Remote Sens. 2022, 14, 4676 29 of 37

Figure 22 shows the P–R curves of RetinaNet-R with different feature fusion networks.
The P–R curve of AW-FPN is always higher than that of other methods. This may be because
multiple skip-scale connections enhance semantic interactions between features of different
resolutions and scales, which contributes to the complement of context information. In
addition, in contrast to other linear fusion methods and the AFF using only channel atten-
tion, the proposed AWF aggregates global and local feature contexts in both the multi-scale
channel attention module (MCAM) and the multi-scale spatial attention module (MSAM)
to generate higher quality fusion weights. Figure 23 shows the feature visualization of
different feature fusion networks. The region of interest (ROI) is highlighted in the feature
heat map. The ROI in the feature maps generated by other methods is usually overlarge
and contains considerable background clutter. In contrast, the contour and location of ships
in the feature map generated by our AW-FPN is more distinct and accurate, which helps
the detectors to focus more on the real ship targets rather than background clutter, and to
learn more useful context information.
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6.4. Comparison with the State-of-the-Art

We embed the proposed AW-FPN into CS2A-Net and train it with our TDIoU loss.
and then compare our approach with the state-of-the-art methods on three datasets.

6.4.1. Results on the RSSD

Table 10 provides a quantitative comparison of different methods on RSSD. As can be
seen, the latest two-stage detection methods, such as CSL, SCRDet++, and ReDet, generally
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achieve outstanding performance. However, they always adopt complex structures in
exchange for improved accuracy at the expense of detection efficiency. Lately, some single-
stage detection methods, such as R3Det, GWD, and CS2A-Net, have been presented, which
show competitive performance and efficiency on RSSD. Our method can further improve
the accuracy of these rotation detectors and has a minimal impact on detection efficiency.
As per Table 10, the proposed approach achieves 75.41%, 96.62%, and 87.87% accuracy in
terms of inshore AP, offshore AP, and test AP on CS2A-Net, respectively, without using
multi-scale training and testing, which is already extremely close to the performance of
the advanced ReDet and GWD. When employing a stronger backbone (i.e., ResNet101)
and multi-scale training and testing, our approach achieves state-of-the-art performance,
with the AP of 77.65%, 97.35%, and 89.18%, respectively, which is 1.98%, 0.65%, and 1.11%
higher than that of the suboptimal method (i.e., GWD). Furthermore, the inference speed
of our method reaches 12.1 fps, which is 11.1 fps and 2.5 fps faster than that of ReDet and
GWD, respectively. Compared to the original CS2A-Net, our approach trades off a speed
loss of only 1.1 fps for significant gains, of 3.48%, 0.87%, and 1.85%, in accuracy.

Table 10. Comparison with state-of-the-art methods on RSSD. Here, MS indicates the multi-scale
training and testing, FPS is obtained by calculating the overall inference time and the number of
images, TDIoU + AW-FPN represents the CS2A-Net detector based on TDIoU loss and AW-FPN,
R-50 refers to ResNet50 (likewise R-101, R-152), and ReR-50 and H-104 denote ReResNet50 [68] and
Hourglass104, respectively [69].

Method Backbone Stage MS Inshore AP Offshore AP Test AP FPS

SCRDet [41] R-101 Two X 65.47 95.53 83.65 5.0
RSDet [70] R-152 Two 68.48 95.88 84.85 –

Gliding Vertex [71] R-101 Two 70.83 96.11 85.80 –
CSL [44] R-152 Two X 71.45 96.18 86.15 4.0

SCRDet++ [72] R-101 Two X 71.66 96.21 86.24 5.0
ReDet [68] ReR-50 Two X 75.57 96.65 88.03 <1.0

RetinaNet-R [17] R-50 Single 44.30 91.38 72.13 17.5
DRN [73] H-104 Single X 67.95 95.68 84.40 –
R3Det [74] R-152 Single X 71.47 96.25 86.21 9.6
DCL [45] R-101 Single X 71.92 96.23 86.36 12.0
GWD [23] R-152 Single X 75.67 96.70 88.07 9.6

CS2A-Net [67] R-50 Single 70.99 96.13 85.95 16.5
CS2A-Net [67] R-101 Single X 74.17 96.48 87.33 13.2

TDIoU+AW-FPN (ours) R-50 Single 75.41 96.62 87.87 15.1
TDIoU + AW-FPN (ours) R-101 Single X 77.65 97.35 89.18 12.1

Figure 24 shows qualitative results of different methods on RSSD. As per the results of
the offshore scene containing multiple ships (the first row), the other four methods detect
islands and reefs incorrectly as ships, while our method is more robust in distinguishing
small ships from background components. For the complex inshore scenes (the second row
to the fourth row), the results of other methods include false alarms and leave some vessels
undetected. In contrast, our method succeeds in detecting all ships and locating them more
precisely, especially for densely arranged ships close to man-made facilities.

6.4.2. Results on the SSDD

Table 11 shows experimental results of different methods on the SSDD. Since SSDD
contains few SAR images and the scenes are relatively simple, the ship detection accuracy
is generally high. As shown in Table 11, based on CS2A-Net (R-50), our approach achieves
80.75%, 99.64%, and 94.05% of inshore AP, offshore AP, and test AP, respectively. When
using ResNet101 as the backbone network, the AP of our approach reaches 84.34%, 99.71%,
and 95.16%, compared to the state-of-the-art detectors ReDet (82.80%, 99.18%, and 94.27%)
and GWD (81.99%, 99.66%, and 94.35%). Moreover, our approach improves the overall
accuracy by 1.26% and 0.44% compared to BiFA-YOLO and R2FA-Det, respectively, and
the inference speed by 5.5 fps compared to the suboptimal R2FA-Det, indicating that the
proposed method achieves the best performance and satisfies high detection efficiency.
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Table 11. Comparison with state-of-the-art methods on SSDD. Here, V-16 and C-53 denote VGG16
[75] and CSPDarknet53 [76]. The method with * indicates that its results are from the corresponding
paper. Here, (<800) indicates that the long side of images is less than 800 pixels.

Method Backbone Stage Image Size Inshore AP Offshore AP Test AP FPS

Cascade RCNN * [19] R-50 Multiple 300 × 300 – – 88.45 2.8
MSR2N * [16] R-50 Two (<800) × 350 – – 90.11 9.7

Gliding Vertex [71] R-101 Two 512 × 512 75.23 98.35 91.88 –
CSL [44] R-152 Two 512 × 512 76.15 98.87 92.16 7.0

SCRDet + + [72] R-101 Two 512 × 512 77.17 99.16 92.56 8.8
ReDet [68] ReR-50 Two 512 × 512 82.80 99.18 94.27 <1.0

RetinaNet-R [17] R-50 Single 512 × 512 59.35 97.10 86.14 30.6
R3Det [74] R-152 Single 512 × 512 76.92 99.09 92.29 16.9

DRBox-v2 * [77] V-16 Single 300 × 300 – – 92.81 18.1
BiFA-YOLO * [22] C-53 Single 512 × 512 – – 93.90 –

GWD [23] R-152 Single 512 × 512 81.99 99.66 94.35 16.9
R2FA-Det * [19] R-101 Single 300 × 300 – – 94.72 15.8
CS2A-Net [67] R-50 Single 512 × 512 75.79 98.79 92.08 29.0
CS2A-Net [67] R-101 Single 512 × 512 79.01 99.41 93.47 23.2

TDIoU + AW-FPN (ours) R-50 Single 512 × 512 80.75 99.64 94.05 26.6
TDIoU + AW-FPN (ours) R-101 Single 512 × 512 84.34 99.71 95.16 21.3

Figure 25 visualizes some detection results of different methods on the SSSD. In the
complex inshore scenes, the other three methods suffer from missed and false detection
under background clutter interference. In contrast, our approach is highly robust and
displays superiority in detecting densely distributed small ships.
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Figure 25. Detection results of different methods on SSDD. (a) GT; (b) CS2A-Net; (c) GWD; (d) TDIoU
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6.4.3. Results on the HRSC2016

To verify the effectiveness and robustness of our approach in optical remote sensing
scenarios, we conduct experiments with state-of-the-art methods on the HRSC2016, which
contains a great number of ships with large aspect ratios and arbitrary orientations. As
shown in Table 12, our approach achieves 90.71% and 98.65% accuracy on the metrics AP07
and AP12, respectively, outperforming other comparison methods. Compared with the
suboptimal approach (i.e., ReDet), the proposed method improves the accuracy by 0.25%
and 1.02%. In addition, the inference speed of our method is 16.9 fps, which is much faster
than that of the two-stage method ReDet (<1.0 fps). As per the above results, our method
shows excellent generalization ability in other rotation detection scenarios.

Table 12. Comparison with state-of-the-art methods on HRSC2016. The method with * indicates that
its results are from the corresponding paper.

Method Backbone Stage Image Size Test AP07 Test AP12 FPS

RoI-Transformer * [78] R-101 Two 800 × 512 86.20 – 6.0
RSDet * [70] R-50 Two 800 × 800 86.50 – –

Gliding Vertex * [71] R-101 Two – 88.20 – –
CenterMap-Net * [79] R-50 Two – – 92.80 –

CSL [44] R-101 Two 800 × 800 89.62 96.10 5.0
ReDet [68] ReR-50 Two 800 × 512 90.46 97.63 <1.0

RetinaNet-R [17] R-50 Single 800 × 512 81.63 84.82 24.4
DRN * [73] H-104 Single – – 92.70 –
R3Det [74] R-101 Single 800 × 800 89.26 96.01 12.0
DCL [45] R-101 Single 800 × 800 89.46 96.41 12.0
GWD [23] R-101 Single 800 × 800 89.85 97.37 12.0

CS2A-Net [67] R-50 Single 800 × 512 89.94 94.91 23.0
CS2A-Net [67] R-101 Single 800 × 512 90.17 95.01 18.4

TDIoU + AW-FPN (ours) R-50 Single 800 × 512 90.35 97.54 21.1
TDIoU + AW-FPN (ours) R-101 Single 800 × 512 90.71 98.65 16.9

To evaluate the capability of our method to detect ships with extreme aspect ratios,
we choose three images containing ships with large aspect ratios. As shown in Figure 26,
our approach has fewer false alarms than any other methods. In addition, the position and



Remote Sens. 2022, 14, 4676 33 of 37

orientation of the predicted box generated by our method are much closer to those of the
ground truth.
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Figure 26. Detection results of different methods on HRSC2016. (a) GT; (b) CS2A-Net; (c) GWD;
(d) TDIoU + AW-FPN (ours).

Figure 27 displays P–R curves of different methods on RSSD, SSDD, and HRSC2016.
It can be found that the P–R curve of our method is almost always higher than those of
the other methods. Through all the above experiments and discussions, we can draw the
conclusion that the proposed TDIoU loss and AW-FPN can improve the detection accuracy of
arbitrary-oriented ships in both SAR scenes and optical remote sensing scenes, especially in
the case of extreme scale and aspect ratio variations. This may be attributed to the fact that
TDIoU loss fundamentally eliminates the loss-metric inconsistency and angular boundary
discontinuity, so as to guide the rotation detector to achieve more accurate boundary box
regression. Furthermore, the proposed AW-FPN is improved in terms of both the connection
pathway and the fusion method, enabling high-quality semantic interactions and soft feature
selections between features of inconsistent resolutions and scales.
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7. Conclusions

In this paper, a unified framework combining TDIoU loss, AW-FPN, and RSSD is pro-
posed to improve the capability of rotation detectors in recognizing and locating ships in SAR
images. (1) The rotational IoU algorithm based on the Shoelace formula opens up the possibil-
ity of using IoU-based loss for rotated bounding box regression. On this basis, an effective
TDIoU penalty term is designed to overcome the defects of existing IoU-based losses and
solve the problems caused by angle regression. (2) Here, AW-FPN improves previous methods
from connection pathways and fusion methods. Skip-scale connections enhance semantic
interactions between multi-scale features. The AWF generates attention fusion weights via
MCAM and MSAM to encode emphasized and suppressed positions in feature maps, making
detectors focus more on real ship targets. (3) We construct a challenging benchmark, namely
RSSD, for arbitrary-oriented SAR ship detection. Ships in RSSD not only differ significantly in
orientations but also features multi-scale characteristics. In addition, 15 baseline results are
provided for research. (4) Extensive experiments are conducted on three datasets. When using
TDIoU loss and AW-FPN, even the advanced CS2A-Net is able to improve upon the AP by
1.85%, 1.69%, and 0.54% on RSSD, SSDD, and HRSC2016, respectively, fully demonstrating
the effectiveness and robustness of our approach.

Our future work is summarized as follows:

1. Though numerous innovative methods have emerged in SAR ship detection, due
to the limitation of datasets, most of them are still based on HBBs. Therefore, we
will further improve our TDIoU loss and AW-FPN, and try to combine them with
more advanced rotation detection methods to improve the detection accuracy of
arbitrary-oriented ships, especially in complex inshore scenes;

2. We will keep maintaining and updating RSSD to v2.0 or higher. Specifically, this
will involve increasing the number of ship slices, incorporating more diverse SAR
scenarios, building more standardized baselines, providing more accurate polygon
annotations, etc. In the near future, it will be publicly available to facilitate further
research in this field.

3. We will explore the possibility of multi-classification of ship targets in SAR images, which
is an emerging research topic. With the development of high-resolution SAR image
generation technology, the category information will be integrated into ship detection,
which is beneficial for the progress of SAR intelligent interpretation technology.

Author Contributions: Conceptualization, R.G.; methodology, R.G.; software, R.G.; validation, R.G.;
formal analysis, R.G.; investigation, R.G. and Z.X.; resources, R.G. and Z.X.; data curation, R.G., Z.X.
and Q.X.; writing—original draft preparation, R.G.; writing—review and editing, R.G., Z.X., K.H. and
Q.X.; visualization, R.G.; supervision, Z.X. and K.H.; project administration, R.G.; funding acquisition,
Z.X. and K.H. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by National Key Research and Development Program, grant
number 2019YFB1600605; The Youth Fund from National Natural Science Foundation of China, grant
number 62101316; Shanghai Sailing Program, grant number 20YF1416700.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Moreira, A.; Prats-Iraola, P.; Younis, M.; Krieger, G.; Hajnsek, I.; Papathanassiou, K.P. A tutorial on synthetic aperture radar. IEEE

Geosci. Remote Sens. Mag. 2013, 1, 6–43. [CrossRef]
2. Zhang, T.; Zhang, X. HTC+ for SAR Ship Instance Segmentation. Remote Sens. 2022, 14, 2395. [CrossRef]
3. Wang, X.; Chen, C.; Pan, Z.; Pan, Z. Fast and Automatic Ship Detection for SAR Imagery Based on Multiscale Contrast Measure.

IEEE Geosci. Remote Sens. Lett. 2019, 16, 1834–1838. [CrossRef]
4. Zhang, T.; Zhang, X. A polarization fusion network with geometric feature embedding for SAR ship classification. Pattern

Recognition. 2022, 123, 108365. [CrossRef]
5. Ao, W.; Xu, F.; Li, Y.; Wang, H. Detection and Discrimination of Ship Targets in Complex Background from Spaceborne ALOS-2

SAR Images. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2018, 11, 536–550. [CrossRef]

http://doi.org/10.1109/MGRS.2013.2248301
http://doi.org/10.3390/rs14102395
http://doi.org/10.1109/LGRS.2019.2913873
http://doi.org/10.1016/j.patcog.2021.108365
http://doi.org/10.1109/JSTARS.2017.2787573


Remote Sens. 2022, 14, 4676 35 of 37

6. Zhang, T.; Zhang, X. A mask attention interaction and scale enhancement network for SAR ship instance segmentation. IEEE
Geosci. Remote Sens. Lett. 2022, 19, 1–5. [CrossRef]

7. He, C.; Tu, M.; Liu, X.; Xiong, D.; Liao, M. Mixture Statistical Distribution Based Multiple Component Model for Target Detection
in High Resolution SAR Imagery. ISPRS Int. J. Geo-Inf. 2017, 6, 336. [CrossRef]

8. Zhang, T.; Zhang, X.; Shi, J.; Wei, S. Depthwise Separable Convolution Neural Network for High-Speed SAR Ship Detection.
Remote Sens. 2019, 11, 2483. [CrossRef]

9. Krizhevsky, A.; Sutskever, I.; Hinton, G.E. Imagenet classification with deep convolutional neural networks. In Proceedings of the
Advances in Neural Information Processing Systems, Lake Tahoe, NV, USA, 3–8 December 2012; pp. 1097–1105.

10. Li, J.; Qu, C.; Shao, J. Ship detection in SAR images based on an improved faster R-CNN. In Proceedings of the 2017 SAR in Big
Data Era: Models, Methods and Applications (BIGSARDATA), Beijing, China, 13–14 November 2017; pp. 1–6.

11. Zhang, T.; Zhang, X.; Liu, C. Balance learning for ship detection from synthetic aperture radar remote sensing imagery. ISPRS J.
Photogramm. Remote Sens. 2021, 182, 190–207. [CrossRef]

12. Zhang, T.; Zhang, X. High-Speed Ship Detection in SAR Images Based on a Grid Convolutional Neural Network. Remote Sens.
2019, 11, 1206. [CrossRef]

13. Liang, Y.; Sun, K.; Zeng, Y.; Li, G.; Xing, M. An Adaptive Hierarchical Detection Method for Ship Targets in High-Resolution SAR
Images. Remote Sens. 2020, 12, 303. [CrossRef]

14. Gao, F.; He, Y.; Wang, J.; Hussain, A.; Zhou, H. Anchor-free Convolutional Network with Dense Attention Feature Aggregation
for Ship Detection in SAR Images. Remote Sens. 2020, 12, 2619. [CrossRef]

15. Zhang, T.; Zhang, X.; Ke, X. Quad-FPN: A Novel Quad Feature Pyramid Network for SAR Ship Detection. Remote Sens. 2021, 13,
2771. [CrossRef]

16. Pan, Z.; Yang, R.; Zhang, Z. MSR2N: Multi-Stage Rotational Region Based Network for Arbitrary-Oriented Ship Detection in SAR
Images. Sensors 2020, 20, 2340. [CrossRef] [PubMed]

17. Lin, T.-Y.; Goyal, P.; Girshick, R.; He, K.; Dollar, P. Focal loss for dense object detection. In Proceedings of the IEEE International
Conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 2999–3007.

18. Wang, J.; Lu, C.; Jiang, W. Simultaneous Ship Detection and Orientation Estimation in SAR Images Based on Attention Module
and Angle Regression. Sensors 2018, 18, 2851. [CrossRef]

19. Chen, S.; Zhang, J.; Zhan, R. R2FA-Det: Delving into High-Quality Rotatable Boxes for Ship Detection in SAR Images. Remote
Sens. 2020, 12, 2031. [CrossRef]

20. Yang, R.; Wang, G.; Pan, Z.; Lu, H.; Zhang, H.; Jia, X. A Novel False Alarm Suppression Method for CNN-Based SAR Ship
Detector. IEEE Geosci. Remote Sens. Lett. 2020, 18, 1401–1405. [CrossRef]

21. An, Q.; Pan, Z.; You, H.; Hu, Y. Transitive Transfer Learning-Based Anchor Free Rotatable Detector for SAR Target Detection with
Few Samples. IEEE Access 2021, 9, 24011–24025. [CrossRef]

22. Sun, Z.; Leng, X.; Lei, Y.; Xiong, B.; Ji, K.; Kuang, G. BiFA-YOLO: A Novel YOLO-Based Method for Arbitrary-Oriented Ship
Detection in High-Resolution SAR Images. Remote Sens. 2021, 13, 4209. [CrossRef]

23. Yang, X.; Yan, J.; Ming, Q.; Wang, W.; Zhang, X.; Tian, Q. Rethinking Rotated Object Detection with Gaussian Wasserstein Distance
Loss. arXiv 2021, arXiv:2101.11952. [CrossRef]

24. Lin, T.Y.; Dollár, P.; Girshick, R.; He, K.; Hariharan, B.; Belongie, S. Feature pyramid networks for object detection. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 2117–2125.

25. Liu, S.; Qi, L.; Qin, H.; Shi, J.; Jia, J. Path aggregation network for instance segmentation. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 8759–8768.

26. Ghiasi, G.; Lin, T.-Y.; Le, Q.V. NAS-FPN: Learning Scalable Feature Pyramid Architecture for Object Detection. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June 2019; pp. 7029–7038.
[CrossRef]

27. Tan, M.; Pang, R.; Le, Q.V. EfficientDet: Scalable and efficient object detection. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, Seattle, WA, USA, 13–19 June 2020; pp. 10778–10787. [CrossRef]

28. Zhang, T.; Zhang, X.; Li, J.; Xu, X.; Wang, B.; Zhan, X.; Xu, Y.; Ke, X.; Zeng, T.; Su, H.; et al. SAR Ship Detection Dataset (SSDD):
Official Release and Comprehensive Data Analysis. Remote Sens. 2021, 13, 3690. [CrossRef]

29. Wang, Y.; Wang, C.; Zhang, H.; Dong, Y.; Wei, S. A SAR Dataset of Ship Detection for Deep Learning under Complex Backgrounds.
Remote Sens. 2019, 11, 765. [CrossRef]

30. Chang, Y.-L.; Anagaw, A.; Chang, L.; Wang, Y.C.; Hsiao, C.-Y.; Lee, W.-H. Ship Detection Based on YOLOv2 for SAR Imagery.
Remote Sens. 2019, 11, 786. [CrossRef]

31. Sun, X.; Wang, Z.; Sun, Y.; Diao, W.; Zhang, Y.; Kun, F. AIR-SARShip-1.0: High-resolution SAR Ship Detection Dataset. J. Radars
2019, 8, 852.

32. Wei, S.; Zeng, X.; Qu, Q.; Wang, M.; Su, H.; Shi, J. HRSID: A High-Resolution SAR Images Dataset for Ship Detection and Instance
Segmentation. IEEE Access 2020, 8, 120234–120254. [CrossRef]

33. Zhang, T.; Zhang, X.; Ke, X.; Zhan, X.; Shi, J.; Wei, S.; Pan, D.; Li, J.; Su, H.; Zhou, Y.; et al. LS-SSDD-v1.0: A Deep Learning Dataset
Dedicated to Small Ship Detection from Large-Scale Sentinel-1 SAR Images. Remote Sens. 2020, 12, 2997. [CrossRef]

http://doi.org/10.1109/LGRS.2022.3189961
http://doi.org/10.3390/ijgi6110336
http://doi.org/10.3390/rs11212483
http://doi.org/10.1016/j.isprsjprs.2021.10.010
http://doi.org/10.3390/rs11101206
http://doi.org/10.3390/rs12020303
http://doi.org/10.3390/rs12162619
http://doi.org/10.3390/rs13142771
http://doi.org/10.3390/s20082340
http://www.ncbi.nlm.nih.gov/pubmed/32325991
http://doi.org/10.3390/s18092851
http://doi.org/10.3390/rs12122031
http://doi.org/10.1109/LGRS.2020.2999506
http://doi.org/10.1109/ACCESS.2021.3056663
http://doi.org/10.3390/rs13214209
http://doi.org/10.48550/arXiv.2101.11952
http://doi.org/10.1109/cvpr.2019.00720
http://doi.org/10.1109/CVPR42600.2020.01079
http://doi.org/10.3390/rs13183690
http://doi.org/10.3390/rs11070765
http://doi.org/10.3390/rs11070786
http://doi.org/10.1109/ACCESS.2020.3005861
http://doi.org/10.3390/rs12182997


Remote Sens. 2022, 14, 4676 36 of 37

34. Ren, S.; He, K.; Girshick, R.; Sun, J. Faster r-cnn: Towards real-time object detection with region proposal networks. In Proceedings
of the 28th International Conference on Neural Information Processing Systems, Montreal, QC, Canada, 8–13 December 2015; pp.
91–99.

35. Zhou, X.; Wang, D.; Krähenbühl, P. Objects as points. arXiv 2019, arXiv:1904.07850. [CrossRef]
36. Yu, J.; Jiang, Y.; Wang, Z.; Cao, Z.; Huang, T. UnitBox: An Advanced Object Detection Network. In Proceedings of the 24th ACM

International Conference on Multimedia, New York, NY, USA, 15–19 October 2016; pp. 516–520.
37. Rezatofighi, H.; Tsoi, N.; Gwak, J.; Sadeghian, A.; Reid, I.; Savarese, S. Generalized Intersection Over union: A metric and a Loss

for Bounding Box Regression. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition 2019, Long
Beach, CA, USA, 16–20 June 2019; pp. 658–666. [CrossRef]

38. Zheng, Z.; Wang, P.; Liu, W.; Li, J.; Ye, R.; Ren, D. Distance-IoU Loss: Faster and Better Learning for Bounding Box Regression. In
Proceedings of the Proceedings of the AAAI Conference on Artificial Intelligence, New York, NY, USA, 7 February 2020; Volume
34, pp. 12993–13000.

39. Zhang, Y.-F.; Ren, W.; Zhang, Z.; Jia, Z.; Wang, L.; Tan, T. Focal and efficient IOU loss for accurate bounding box regression.
Neurocomputing 2022, 506, 146–157. [CrossRef]

40. Chen, D.; Miao, D. Control Distance IoU and Control Distance IoU Loss Function for Better Bounding Box Regression. arXiv 2021,
arXiv:2103.11696. [CrossRef]

41. Yang, X.; Yang, J.; Yan, J.; Zhang, Y.; Zhang, T.; Guo, Z.; Sun, X.; Fu, K. SCRDet: Towards More Robust Detection for Small,
Cluttered and Rotated Objects. In Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision (ICCV),
Seoul, South Korea, 27 October–2 November 2019; pp. 8231–8240. [CrossRef]

42. Chen, Z.; Chen, K.; Lin, W.; See, J.; Yu, H.; Ke, Y.; Yang, C. Piou loss: Towards accurate oriented object detection in complex
environments. In Proceedings of the European Conference on Computer Vision (ECCV), Glasgow, UK, 23–28 August 2020.

43. Zheng, Y.; Zhang, D.; Xie, S.; Lu, J.; Zhou, J. Rotation-robust intersection over union for 3D object detection. In Proceedings of the
European Conference on Computer Vision, Glasgow, UK, 23–28 August 2020; pp. 464–480.

44. Yang, X.; Yan, J. Arbitrary-Oriented Object Detection with Circular Smooth Label. In Proceedings of the European Conference on
Computer Vision, Glasgow, UK, 23–28 August 2020; pp. 677–694.

45. Yang, X.; Hou, L.; Zhou, Y.; Wang, W.; Yan, J. Dense Label Encoding for Boundary Discontinuity Free Rotation Detection. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Nashville, TN, USA, 20–25 June
2021; pp. 15814–15824. [CrossRef]

46. Li, X.; Wang, W.; Hu, X.; Yang, J. Selective Kernel Networks. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, Long Beach, CA, USA, 16–20 June 2019; pp. 510–519.

47. Zhang, H.; Wu, C.; Zhang, Z.; Zhu, Y.; Lin, H.; Zhang, Z.; Sun, Y.; He, T.; Mueller, J.; Manmatha, R.; et al. ResNeSt: Split-Attention
Networks. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, LA, USA,
19–20 June 2022. [CrossRef]

48. Hu, J.; Shen, L.; Sun, G. Squeeze-and-Excitation Networks. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 7132–7141.

49. Dai, Y.; Gieseke, F.; Oehmcke, S.; Wu, Y.; Barnard, K. Attentional Feature Fusion. In Proceedings of the IEEE/CVF Winter
Conference on Applications of Computer Vision, Virtual, 5–9 January 2021; pp. 3560–3569.

50. Minimum Bounding Box Algorithms. Available online: https://en.wikipedia.org/wiki/Minimum_bounding_box_algorithms
(accessed on 29 June 2022).

51. Zhou, D.; Fang, J.; Song, X.; Guan, C.; Yin, J.; Dai, Y.; Yang, R. IoU Loss for 2D/3D Object Detection. In Proceedings of the 2019
International Conference on 3D Vision (3DV), Quebec City, QC, Canada, 16–19 September 2019; pp. 85–94. [CrossRef]

52. Ma, J.; Shao, W.; Ye, H.; Wang, L.; Wang, H.; Zheng, Y.; Xue, X. Arbitrary-Oriented Scene Text Detection via Rotation Proposals.
IEEE Trans. Multimedia 2018, 20, 3111–3122. [CrossRef]

53. Rotated IoU. Available online: https://github.com/lilanxiao/Rotated_IoU (accessed on 29 June 2022).
54. Line–Line Intersection. Available online: https://en.wikipedia.org/wiki/Line-line_intersection (accessed on 29 June 2022).
55. Bézier Curve. Available online: https://en.wikipedia.org/wiki/Bézier_curve#Linear_curves (accessed on 29 June 2022).
56. Shoelace Formula. Available online: https://en.wikipedia.org/wiki/Shoelace_formula (accessed on 29 June 2022).
57. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778.
58. Xie, S.; Girshick, R.; Dollar, P.; Tu, Z.; He, K. Aggregated residual transformations for deep neural networks. In Proceedings of the

IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 1492–1500.
59. Zagoruyko, S.; Komodakis, N. Wide residual networks. In Proceedings of the BMVC, York, UK, 19–22 September 2016; pp. 1–12.

[CrossRef]
60. Ioffe, S.; Szegedy, C. Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. In

Proceedings of the 32nd International Conference on Machine Learning, Lille, France; 2015; Volume 37, pp. 448–456.
61. Copernicus Open Access Hub Home Page. Available online: https://scihub.copernicus.eu/ (accessed on 14 December 2021).
62. Sentinel-1 Toolbox. Available online: https://sentinels.copernicus.eu/web/ (accessed on 29 June 2022).

http://doi.org/10.48550/arXiv.1904.07850
http://doi.org/10.1109/CVPR.2019.00075
http://doi.org/10.1016/j.neucom.2022.07.042
http://doi.org/10.48550/arXiv.2103.11696
http://doi.org/10.1109/iccv.2019.00832
http://doi.org/10.1109/cvpr46437.2021.01556
http://doi.org/10.1109/cvprw56347.2022.00309
https://en.wikipedia.org/wiki/Minimum_bounding_box_algorithms
http://doi.org/10.1109/3dv.2019.00019
http://doi.org/10.1109/TMM.2018.2818020
https://github.com/lilanxiao/Rotated_IoU
https://en.wikipedia.org/wiki/Line-line_intersection
https://en.wikipedia.org/wiki/B�zier_curve#Linear_curves
https://en.wikipedia.org/wiki/Shoelace_formula
http://doi.org/10.5244/C.30.87
https://scihub.copernicus.eu/
https://sentinels.copernicus.eu/web/


Remote Sens. 2022, 14, 4676 37 of 37

63. Xia, G.S.; Bai, X.; Ding, J.; Zhu, Z.; Belongie, S.; Luo, J.; Datcu, M.; Pelillo, M.; Zhang, L. DOTA: A Large-Scale Dataset for Object
Detection in Aerial Images. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City,
UT, USA, 18–23 June 2018; pp. 3974–3983.

64. RoLabelImg. Available online: https://github.com/cgvict/roLabelImg (accessed on 29 June 2022).
65. Lin, T.-Y.; Maire, M.; Belongie, S.; Hays, J.; Perona, P.; Ramanan, D.; Doll’ar, P.; Zitnick, C. Microsoft COCO: Common objects in

context. arXiv 2014, arXiv:1405.0312.
66. Cheng, G.; Han, J.; Zhou, P.; Guo, L. Multi-class geospatial object detection and geographic image classification based on collection

of part detectors. ISPRS J. Photogramm. Remote Sens. 2014, 98, 119–132. [CrossRef]
67. Han, J.; Ding, J.; Li, J.; Xia, G.-S. Align Deep Features for Oriented Object Detection. IEEE Trans. Geosci. Remote Sens. 2021, 60,

5602511. [CrossRef]
68. Han, J.; Ding, J.; Xue, N.; Xia, G.-S. ReDet: A Rotation-equivariant Detector for Aerial Object Detection. In Proceedings of the

IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, TN, USA, 20–25 June 2021; pp. 2785–2794.
[CrossRef]

69. Law, H.; Deng, J. CornerNet: Detecting Objects as Paired Keypoints. Int. J. Comput. Vis. 2018, 128, 642–656. [CrossRef]
70. Qian, W.; Yang, X.; Peng, S.; Yan, J.; Zhang, X. RSDet++: Point-based Modulated Loss for More Accurate Rotated Object De-tection.

Proc. IEEE Trans. Circuits Syste. Video Technol. 2022, 14. [CrossRef]
71. Xu, Y.; Fu, M.; Wang, Q.; Wang, Y.; Chen, K.; Xia, G.-S.; Bai, X. Gliding Vertex on the Horizontal Bounding Box for Multi-Oriented

Object Detection. IEEE Trans. Pattern Anal. Mach. Intell. 2020, 43, 1452–1459. [CrossRef] [PubMed]
72. Yang, X.; Yan, J.; Liao, W.; Yang, X.; Tang, J.; He, T. SCRDet++: Detecting Small, Cluttered and Rotated Objects via Instance-Level

Feature Denoising and Rotation Loss Smoothing. IEEE Trans. Pattern Anal. Mach. Intell. 2022, 1. [CrossRef]
73. Pan, X.; Ren, Y.; Sheng, K.; Dong, W.; Yuan, H.; Guo, X.; Ma, C.; Xu, C. Dynamic Refinement Network for Oriented and Densely

Packed Object Detection. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Virtual,
14–19 June 2020; pp. 11207–11216.

74. Yang, X.; Liu, Q.; Yan, J.; Li, A.; Zhang, Z.; Yu, G. R3det: Refined single-stage detector with feature refinement for rotating object.
In Proceedings of the AAAI Conference on Artificial Intelligence, Virtual, 2–9 February 2021; pp. 3163–3171. [CrossRef]

75. Simonyan, K.; Zisserman, A. Very Deep Convolutional Networks for Large-Scale Image Recognition. arXiv 2014, arXiv:1409.1556.
76. Bochkovskiy, A.; Wang, C.; Liao, H.M. YOLOv4: Optimal Speed and Accuracy of Object Detection. arXiv 2020, arXiv:2004.10934.
77. An, Q.; Pan, Z.; Liu, L.; You, H. DRBox-v2: An Improved Detector with Rotatable Boxes for Target Detection in SAR Images. IEEE

Trans. Geosci. Remote Sens. 2019, 57, 8333–8349. [CrossRef]
78. Ding, J.; Xue, N.; Long, Y.; Xia, G.; Lu, Q. Learning RoI Transformer for Oriented Object Detection in Aerial Images. In Proceedings

of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 16–20 June 2019; pp. 2849–2858.
79. Wang, J.; Yang, W.; Li, H.-C.; Zhang, H.; Xia, G.-S. Learning Center Probability Map for Detecting Objects in Aerial Images. IEEE

Trans. Geosci. Remote Sens. 2020, 59, 4307–4323. [CrossRef]

https://github.com/cgvict/roLabelImg
http://doi.org/10.1016/j.isprsjprs.2014.10.002
http://doi.org/10.1109/TGRS.2021.3062048
http://doi.org/10.1109/cvpr46437.2021.00281
http://doi.org/10.1007/s11263-019-01204-1
http://doi.org/10.1109/TCSVT.2022.3186070
http://doi.org/10.1109/TPAMI.2020.2974745
http://www.ncbi.nlm.nih.gov/pubmed/32086194
http://doi.org/10.1109/TPAMI.2022.3166956
http://doi.org/10.48550/arXiv.1908.05612
http://doi.org/10.1109/TGRS.2019.2920534
http://doi.org/10.1109/TGRS.2020.3010051

	Introduction 
	Related Work 
	SAR Ship Detection Methods Based on Convolutional Neural Networks 
	Loss-Metric Inconsistency and Angular Boundary Discontinuity 
	Multi-Scale Feature Fusion 
	SAR Image Datasets for Ship Detection 

	Analysis of Angle Regression Problems and Conventional IoU-Based Losses 
	Problems of Rotation Detectors Based on Angle Regression 
	Loss-Metric Inconsistency 
	Angular Boundary Discontinuity 

	Limitations of Conventional IoU-Based Losses 

	The Proposed Method 
	Differentiable Rotational IoU Algorithm Based on the Shoelace Formula 
	Forward Process 
	Backward Process 

	Triangle Distance IoU Loss 
	Attention-Weighted Feature Pyramid Network 
	Skip-Scale Connections 
	Attention-Weighted Feature Fusion (AWF) 
	The Forward Process of the AW-FPN 


	Rotated-SARShip Dataset 
	Original SAR Image Acquisition 
	SAR Image Pre-Processing and Splitting 
	Dataset Annotation 
	Statistical Analysis on the RSSD 

	Experiments and Discussion 
	Benchmark Datasets and Implementation Details 
	Evaluation Metrics 
	Ablation Study 
	Baseline Rotation Detectors 
	Effectiveness of the TDIoU Loss 
	Effectiveness of the AW-FPN 

	Comparison with the State-of-the-Art 
	Results on the RSSD 
	Results on the SSDD 
	Results on the HRSC2016 


	Conclusions 
	References

