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Abstract: Air quality monitoring in cities is significant for both human health and environment.
Here, an innovative miniaturized active air sampler wearable by free-flying birds is presented. The
device integrates a GPS logger and atmospheric calibrated sensors allowing for high spatiotemporal
resolution measurements of carbon dioxide (CO2) concentration, barometric pressure, air temperature,
and relative humidity. A field campaign, carried out from January to June 2021, involved the repeated
release of homing pigeons (Columba livia) from downtown Rome (Italy), to sample the air on their
way back to the loft, located in a rural area out of the city. The measurements suggest the importance
of green urban areas in decreasing CO2 levels. Moreover, a positive relation between CO2 levels,
relative humidity, and air temperature was revealed. In contrast, a negative relation with distance
from the point of release, month, and time of day was found. Flight speed and the altitude of flight
were related to rising CO2 levels. The easy use of such devices paves the way for the application
of miniaturized air samplers to other synanthropic species (i.e., gulls), making birds convenient
biomonitors for the urban environment.

Keywords: urban pollution; air quality; atmospheric monitoring; urban boundary layer; active air
sampler; carbon dioxide concentration; homing pigeons

1. Introduction

During the last decades, large rural regions have been converted into urbanized areas,
with an increase in traffic volume and a deterioration in air quality. An ever-increasing
fraction of the global population resides in cities, and it is estimated that, in 2050, this
percentage will reach the record level of 68.4% [1].

The continuous building expansion leads to an escalation in the energy demand of
cities, which contributed to 80% of the global primary energy demand [2]. Moreover,
among greenhouse gases, carbon dioxide (CO2) is the most worrying, as it represents about
80% of the total emissions [3]. In 2019, atmospheric CO2 levels were higher than at any
time in at least two million years, with an increase of 47% since 1750 [4]. The significant
growth in concentration, along with other greenhouse gases, has increased global average
temperatures in the first two decades of 21st century by 0.99 ± 0.15 ◦C [4], also contributing
to severe climatic events [5,6].

Although CO2 is one of the main gases responsible for climate change, surface/atmosphere
fluxes are generally evaluated only above vegetative canopies (e.g., see the EUROFLUX [7]
and AMERIFLUX [8] projects). CO2 emissions can be indirectly estimated from emissions
inventories, which are rarely validated in the presence of traffic and domestic heating,
while the direct measurements of urban CO2 concentration are still very rare. For example,
Morikawi and Kanda [9] used micrometeorological sensors to assess the diurnal and
seasonal variability of CO2 in a suburban area of Tokyo (Japan). They found a daily
trend closely related to anthropogenic emissions, and peaks associated with morning and
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evening rush hours traffic and population density. Seasonal CO2 fluxes show a minimum in
summer, related to the greater absorption of vegetation, and a maximum during wintertime
because of the increased fossil fuel consumption [9,10]). Although a few other studies have
focused on CO2 levels in cities [11–13], a lack of knowledge regarding the temporal and
spatial variability of CO2 concentration in urban environments remains. In particular, the
campaigns carried out so far have considered in situ measurements at the ground level, not
allowing for the investigation of the Planetary Boundary Layer (PBL), especially in built-up
areas, where local scale topographic and meteorological features (e.g., sea/land breeze,
valleys, plateaus) might produce variable conditions.

In this context, the atmospheric monitoring through small, dedicated air samplers,
wearable by birds freely moving in the urban environment represents an innovative tech-
nique. In fact, the use of birds could be convenient, especially in urban areas, where
numerous limitations must be observed (e.g., flight of drones and release of atmospheric
probes are restricted) and where most of the anthropogenic CO2 sources are located.

The development of miniaturized sensors is pushing the frontiers of animal ecology
through biologging. Biologging refers to the use of devices (biologgers) attached to animals,
that collect data about the wearers’ movement, behaviour, physiology, and/or environ-
ment [14]. The use of wild animals to measure the state of the environment has been a
topic of interest since the first International Biologging Symposium in 2003 [15]. Marine
animals were used as ‘oceanographers’ in areas not easily reachable by standard monitoring
systems. Equipped with wearable global positioning systems (GPS) loggers integrated with
environmental sensors, the animals could measure the chemical and physical parameters
of the water they moved in [16]. For many years, this application has mostly been limited
to marine biology, primarily due to size constraints. Since then, technological improve-
ments have been producing increasingly frequent calls to use terrestrial animals to measure
environmental parameters [17,18].

The main objective of this paper was to introduce and test an innovative miniaturized
set of sensors, integrated with a small GPS data logger for deployment on homing pigeons
(Columba livia) and other birds. So far, the application of GPS loggers on birds has been used
to collect qualitative information on the development of thermals in relation to orography
and winds in soaring vultures [19], on wind intensity and flight direction in seabirds [20],
and for the quantitative study of atmospheric variables [21].

Domestic pigeons, selected for their homing ability, have been used throughout human
history to carry messages [22], medication, and even to smuggle drugs [23]. Famously,
during the 20th century, an aerial photography technique based on pigeons carrying
lightweight miniature cameras was invented by Julius Neubronner [24]. Homing pigeons
have been at the forefront of biologging, with the first GPS tracking studies published in the
early 2000s [25,26] and even neurophysiology studies using EEG-equipped GPS tags [27].

To the best of our knowledge, to this day, two attempts have been made to use homing
pigeons as urban environmental monitors but neither yielded reproducible prototypes or
any scientific output. The first one is “Pigeonblog”, an artistic and political endeavour
by Beatriz da Costa [28]. Da Costa, inspired by Neubronner’s aerial photography and by
the early scientific literature on pigeon tracks, collaborated with engineers and pigeon
fanciers to develop a GPS unit with sensors for monitoring levels of carbon monoxide
and nitrogen oxides. Within the project, three pigeon releases were carried out with
data accessible during the project from a dedicated website. The other project, named
“PigeonAirPatrol” [29], aimed to use feral pigeons to investigate air pollution. The project
made headlines [30] and raised public awareness around the issue of urban air quality
monitoring in London, where the implementation took place.

Here, we present a calibrated atmospheric sensor integrated on a GPS logger wearable
by homing pigeons. The pigeons, repeatedly released in the urban area of Rome (Italy),
recorded atmospheric pressure, air temperature, humidity, and CO2 concentration at high
spatial and temporal resolution. In particular, on their return flight to the home loft, the
birds flew above buildings, large urban parks, and crops, allowing for the measurement
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and the comparison of atmospheric variables within the PBL and in conditions typically
difficult to investigate when employing fixed, ground-based instruments.

2. Materials and Methods
2.1. Development and Design of the Air Sampler

The development of the miniaturized air samplers used in the present study is carried
out in collaboration with a private company specialized in devices for animal tracking
(Technosmart Europe S.r.l., Rome, Italy). The device is based on the integration of a set of
sensors on an existing GPS data logger with a wire antenna powered by a 200 mA LIPO
battery (AxyTrek).

The boards and the battery are arranged in a flat and aerodynamic design (50 mm × 20 mm)
to reduce possible drag to the birds in flight. The weight of the complete system (Figure 1)
is 14.6 g, including the battery, and therefore at the limit of the recommended 3% of the
bird’s body mass, considering that the pigeons weighed around 450 g [31]. In any case, the
units are used for short-term deployments of 1–2 h.
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circuit board with CO2 and atmospheric sensors (b), CO2 sensor (Senseair Sunrise, Senseair AB,
Delsbo, Sweden) with the gas diffusion area represented by the white membrane (c), and AxyTrek
data logger (d).
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The atmospheric sensors (BME280 Environmental sensor, Bosch Sensortec, Reutlin-
gen, Germany) measure temperature (operational range: −40–85 ◦C, absolute accuracy:
±1 ◦C, resolution: 0.01 ◦C), barometric pressure (operational range: 300–1100 hPa; abso-
lute accuracy: ±1 hPa, resolution: 0.18 hPa), and relative humidity (operational range:
0–100%, absolute accuracy: ±3%, resolution: 0.008%). The CO2 sensor (article n. 006-0-0007,
Senseair Sunrise, Senseair AB, Delsbo, Sweden) is based on non-dispersive infrared (NDIR)
technology and could measure CO2 concentrations from 400 to 5000 ppm, with an accuracy
of ±30 ppm + 3% of reading (operating range temperature: 0–50 ◦C, operating range
relative humidity: 0–85%). The CO2 sensor measures the light absorption emitted by a
light-emitting diode (LED) into a dark chamber employing a photodiode (Figure 1). The
number of CO2 particles contained in the airflow is related to the light intensity detected
by the photodiode at a specific wavelength, which for CO2 is 4.26 µm. The CO2 sensor
measures 33.5(L) × 19.7(W) × 11.5(H) mm3 and weighs 5 g.

2.2. CO2 Calibration and Configuration of Environmental Sensors

A variety of calibration options are made available for the CO2 sensors by the producer,
such as the Automatic Baseline Correction (ABC) algorithm [32] and manual calibration.
The former works in the background over 180 h cycles, provided the sensor is exposed
to “fresh air” (a customizable baseline concentration value, 400 ppm by default) at least
once during the cycle. For each cycle, the sensor stores the lowest value recorded, which is
assumed as the “fresh air” reference to calculate a correction factor for the data, ensuring
data is reliable in the long run. The latter requires the use of a reference gas mixture and
does not correct drift in long-term acquisitions.

For this study, being the data collected only for short periods during homing flights,
we ensured different tags have similar sensitivity. Therefore, CO2 sensors were placed
indoors for a week-long test, close to an open window, in a room occasionally occupied,
increasing CO2 levels significantly. As shown in Figure 2, the two sensors tested show
very similar sensitivity, with comparable responses to variations in CO2 concentration in
the test room. Granger tests were performed over all the combinations of sensors, testing
whether one-time series predicted the other and vice versa. All tests were highly significant
(p < 0.001), meaning that every timeseries is predictable by the other.
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CO2 concentrations were acquired with a sampling frequency of 0.42 Hz. This is the
default value for the Senseair Sunrise, which collects eight samples per measurement. A
sample takes less than 300 ms, producing a period of 2.4 s for each complete measurement.
The response time is reported to be less than 30 s. This is the time needed for the sensor to
read 90% (namely, T90%) of the true gas concentration, in an enclosure that changes from
8500 ppm to 400 ppm and the opposite with a gas flow rate of 1 L/min. Details about the
ABC algorithm, pressure dependence, and measurement period can be found in the sensor
user manual [33].

Atmospheric pressure has been found to produce a 1.6% change in CO2 readings
for each 10 hPa deviation from a mean sea-level pressure (MSLP) of 1013.25 hPa. During
the field campaign, the atmospheric pressure varied between 986.0 hPa and 1021.0 hPa,
producing a maximum deviation of 26.9 hPa from the MSLP. This corresponds to a maxi-
mum error of 4.3% in the CO2 readings. Only 2.3% of data used in the present study have
pressure with a deviation >10 hPa from the MSLP and CO2 values exceeding 625 ppm,
being therefore concerned by an error greater than 10 ppm.

Temperature, air pressure, and relative humidity were collected at 1 Hz. The response
time for the humidity sensor is 1 s, calculated as the time needed for the sensor to reach 63%
of the final value (namely, T63%) when going from 90% to 0% or vice versa [34]. During
the field campaign, the maximum daily variation in relative humidity was 49%.

2.3. Study Area and Sample Collection

The experimental campaign, carried out from January to June 2021, involved the
repeated release of homing pigeons equipped with the air sampler data logger near the
campus of the University of Rome “La Sapienza” (41.90◦N, 12.51◦E) in downtown Rome
(Italy), i.e., in a highly urbanized and moderately polluted area. The loft (41.58◦N, 12.37◦E)
was located about 13 km northeast of the release site, about 3 km out of the “Grande
Raccordo Anulare”, the highly trafficked ring road that encircles Rome.

During their flight back to the loft, homing pigeons passed through areas with different
degrees of urbanization, land use, and pollution levels, i.e., they were expected to fly across
a gradient of decreasing CO2 concentration to reach their loft in the countryside. Moreover,
sampling was expected to take place in the range of altitudes between 0 and 150 m above
ground level (m a.g.l.), the typical flight range of pigeons. All the releases were carried out
on working days and most of the releases took place early in the morning (at about 07:00
UTC) to capture the increase in CO2 concentration associated with morning traffic rush
hours. A few pigeons were released at later hours (from 09:00 UTC up to 13:00 UTC). A
list of the release trials, together with details about distance flown, duration of flights, and
statistics on measured CO2 is shown in Table A1.

For the trials, twelve adult homing pigeons were equipped with the devices following
the procedure described for GPS loggers by [35]. Briefly, the birds were habituated to carry
the load using a plastic dummy (of the same weight and size as the logger) attached with
a Velcro strip on their back, on a dorsal area between the wings. The hard side of the
Velcro strip (30.0 × 20.0 mm) was attached using a neoprenic glue on an area of half-cut
feathers—therefore without causing pain and discomfort to the birds—whereas the soft side
of Velcro was attached at the base of both the dummy and the device. Pigeons carried the
dummy for two weeks before the experimental release. In general, they already resumed
their normal behaviour (feeding, daily flight, reproductive activities) on the day after the
attachment of the dummy. On the day of the release, birds were taken from the loft and
gently placed in a wooden box for transportation to the city centre by car (about a 30 min
trip). Ten minutes before the release, the dummies were replaced with the air samplers,
and then, pigeons were released in flocks of 3–4 birds with 1–2 birds equipped with the
air sampler and the remaining wearing the dummies. Releases were carried out only with
good meteorological conditions, avoiding rainy and windy days. On their arrival at the
loft, birds were handled to recover the loggers and reposition the dummy. The data were
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downloaded using dedicated software to obtain a CSV file containing timeseries of GPS
position, temperature, air pressure, humidity, and CO2 concentration.

2.4. Data Processing

Firstly, data collected by the various sensors were visually inspected to ascertain
whether the tracks were complete. The GPS locations were plotted on the city map using
QGIS software (version 3.10), official project of the Open Source Geospatial Foundation
(OSGeo, Beaverton, OR, USA), and the symbols corresponding to the GPS positions were
colour-coded along a gradient according to the CO2 level for each of the sensors used
allowing for a first data inspection.

GPS data were pre-processed following the procedure proposed by [36]. In particular,
GPS values related to velocities greater than 90 km/h and negative altitudes were discarded.
Moreover, only active flight points (flight speed as measured by GPS ≥ 0.1 m/s) were
considered for the analysis and pigeon tracks were cut on their arrival by excluding points
in a circular area of 500 m centred on the loft. Pigeon tracks were merged with level 3
Corine Land Cover (CLC) data [37] and classified as “urban fabric” (CLC classes from 1.1.1
to 1.3.3), “green urban areas” (CLC classes 1.4.1 and 1.4.2), and “agricultural areas” (CLC
classes from 2.1.1 to 2.4.4). Points along the Tiber River (CLC class 5.1.1) were assimilated
into green urban areas. No other land cover classes were crossed during the flights. It is
worth noticing that CLC classification probably does not offer the optimal resolution for
land cover features. Nonetheless, to the best of our knowledge, this is the most recent and
accurate dataset available for the area under investigation. To improve the representation
of the examined area, a shapefile of roads [38] was used to classify points lying within 50 m
of streets, considering both motorways and small urban roads.

Then, CO2 values were regressed against land cover, intersection with streets, and
time of release (i.e., the hour of day and month of the year). Whether to include in the
analysis temperature, humidity, barometric pressure, flight speed, flight altitude, distance
from the release point, and interaction between the latter two variables was decided via
Akaike Information Criterion (AIC) [39] using stepwise elimination (function “buildmer”
from package “buildmer” [40]). Multicollinearity was checked by calculating the variance
inflation factor (VIF, function “vif” from package “car” [41]). Distance from the release
point was included due to an increasing presence of agricultural areas moving out of the
city centre towards the loft. From preliminary inspection (see colours in Figure 3), the
distance from the release point seemed to be related to CO2 values and, therefore, it was
considered as a continuous variable, providing information on land cover. A linear mixed
effect model (function “lme” from package “nlme” [42]) with pigeon ID as a random effect
was run, testing the random effects by comparing the model to a generalized least squares
regression only containing the fixed predictors.

Data were highly autocorrelated, and while this did not affect regression coefficient
estimates, it might have produced biased standard errors, making the coefficient signifi-
cance unreliable [43]. To account for this, data were first subsampled with 15 s temporal
resolution (corresponding to approximately 200 m spatial resolution if birds were flying
with an average velocity of about 13 m/s resulting from our GPS data). Then, the model
was fitted with a continuous autoregressive structure of the first order (function “corCAR1”
from package “nlme” [42]). All analyses were performed using R Statistical Software
(version 4.0.3, [44]), developed by the R Foundation for Statistical Computing (Vienna,
Austria).

Throughout the whole campaign, the atmospheric sensors collected about 1.9 × 104

data points of active flight outside the 500 m loft buffer during 25 flights. Further subsam-
pling to one fix per 15 s resulted in about 3.3 × 103 points with CO2 measurements, which
constitute the filtered dataset used for the following analysis.
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3. Results

Figure 3 shows the paths followed by the homing pigeons during the measurement
campaign and the normalized CO2 concentrations. In accordance with the details in
Table A1, CO2 levels range between 410 ppm and 993 ppm. The variation in concentrations
between different flights are mainly due to different land use and flight time. In fact, the
CO2 peaks correspond to the measurements carried out close to major roads and during
rush hour traffic. Clearly, during each flight, each pigeon can choose a different path to
follow based on its experience and environmental conditions.

In Figure 4, an example of the CO2 concentration time series collected during a pigeon
flight expressed as a function of the distance from the release point and of the height is
given. The concentration decreases with increasing flight altitude, as expected, moving
away from surface emissions, but it is strongly influenced by land use, e.g., the decrease
observable at about 10 km from the release point between 80 and 100 m.a.g.l. is due to
the overflight of the agricultural landscape after the “Grande Raccordo Anulare” road,
characterized by few roads and buildings.

The stepwise regression reveals the full model, i.e., the one comprising all terms (see
Table 1), to have the lowest AIC score. VIF is below 2.7 for all the predictors, meaning only
a low correlation is found among them. Including random effects, the regression lowered
the model’s AIC by 116 points (Anova test, p < 0.001), and the corCAR1 error structure
lowered it by 3914 points (Anova test, p < 0.001). The full model’s conditional coefficient
of determination (hereinafter, R2) was 0.69, while the marginal R2 is 0.39 [45]. Our data
shows that CO2 concentrations are positively related to relative humidity (estimated: 40.71,
standard error: 4.07, p < 0.001) and air temperature (estimated: 12.30, standard error: 5.61,
p = 0.03) and negatively related to barometric pressure (estimates: −8.98, standard error:
5.61, p = 0.001). Regarding the temporal trend, a negative relation with both months of the
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year (estimated: −14.34, standard error: 4.24, p < 0.001) and time of the day (estimated:
−4.32, standard error: 1.27, p < 0.001) emerged. No evidence that the sections of flight over
streets measured higher CO2 levels than average was found. In some of the tracks, the
overflight of the “Grande Raccordo Anulare” road determined the sudden and significant
increase in the concentration of CO2 but, in general, the dense urban road infrastructure
did not reveal fine-scale differences within the urban environment itself (see Figure 3).
However, lower CO2 concentrations over urban green areas compared to pure urban fabric
(estimated: −6.76, standard error: 3.55, p = 0.057) were found. The interaction term between
distance and height showed a positive relation with CO2 (estimated: 4.70, standard error:
1.18, p < 0.001), unveiling a complex three-dimensional spatial pattern of diffusion. In fact,
while for low heights lower CO2 values moving outside of the city were observed, the
relationship reversed for greater heights. It is worth noting the small but positive effect of
flight speed on CO2 (estimated: 1.87, standard error: 0.82, p = 0.02), which would need to
be explained in a larger atmospheric dynamics context. A graphical summary of the model
estimates is presented in Figure 5, while the full summary is given in Table 1.
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Figure 4. Example of height profile of pigeon track (flight n. 16 in Table A1) with respect to distance
from the release point. Colours refer to the CO2 concentrations measured, which are higher (redder
colours) close to the release point in the city centre, and lower (bluer colours) furthest from it.

Table 1. Summary of best linear mixed effects model. For each predictor, the coefficient estimate,
standard error, and p-value are reported. p-values below 0.05 are reported in bold.

Predictor Estimate Standard Error p-Value

Intercept 645.37 26.25 <0.001
Temperature 12.30 5.61 0.029

Pressure −8.98 2.81 0.002
Relative humidity 40.71 4.07 <0.001

Flight speed 1.88 0.82 0.021
Height −0.32 1.43 0.822

Distance from release point −17.33 3.09 <0.001
Hour of day −4.33 1.27 <0.001

Month of year −14.34 4.24 <0.001
Over streets = true −0.86 0.89 0.337

Land use = agricultural 0.07 1.49 0.961
Land use = green urban −6.76 3.55 0.057

Height × distance 4.70 1.18 <0.001
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4. Discussion

The atmospheric CO2 concentrations measured along the return journey of the pigeons
released in the centre of Rome (see for example Figure 4) showed an evident negative
gradient with increasing distance from the release point, as supported by the linear mixed
effects regression model. The highest concentrations were recorded in downtown Rome,
i.e., close to the release point, with a gradual decrease moving towards suburban and rural
areas. This is consistent with the findings of other studies that have shown the presence of
an “urban CO2 dome” [46] and a close relationship between CO2 levels and population
density, in turn associated with the high traffic volume of urban centers [47]. The average
concentration obtained considering only the samples measured over the “urban fabric”
land cover class was 563 ppm, with average levels decreasing over “agricultural areas”
(546 ppm) and even more so over “green urban areas” (538 ppm), highlighting the positive
effect of urban greening on air quality [48]. All the average concentrations are well above
the mean global atmospheric CO2 concentration provided by [49] and referred to 2020,
i.e., 412.5 ppm. In the urban environment, the concentration is comparable with results
from [11], who carried out measurements in a highly urbanized and moderately polluted
area in Rome, close to that investigated in this work, during the traffic rush hours. As
expected, the values measured here for the “urban fabric” were slightly lower than the
findings by [11], who carried out measurements along the road at the pedestrian level.
A similar trend was also identified by [50], who examined the spatial variability of the
near-surface CO2 concentration in Shanghai (China). In the same time interval (from 9:00
to 11:00 AM) and the same season (spring), Liu et al. [50] identified a clear concentration
decrease moving from the transportation area to crops, with a positive correlation with the
percentage of impervious surface cover and a negative correlation with the percentage of
vegetation cover. The positive relation between CO2 level, air temperature, and relative
humidity agrees with [11], who measured the highest CO2 values with high temperatures
and low wind speeds, and with [51], who identified a slight influence of temperature and
relative humidity on the CO2 concentration. Furthermore, the positive relation between
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CO2 levels and near-surface air temperatures was also highlighted by [51] at the remote sites
of Mauna Loa (USA) and Point Barrow (USA). The slightly negative relationship between
CO2 and time of day, considering that most releases were carried out before 09:30 UTC,
suggests that the convective mixing generated by the presence of solar radiation and the
photosynthetic absorption of CO2 by vegetation have a significant effect on the space-time
redistribution of CO2, which, therefore, accumulates more in the layers of the atmosphere
closest to the ground during the night and the early morning hours [46]. Moreover, this
negative relation is presumably traceable also to factors we were unable to include in our
model, such as the traffic rate, which is lower later in the morning after rush hours and
shows a shift forward going towards the summer months. Of course, later morning hours
are also associated with warmer air temperatures, therefore missing explanatory variables
would confound the relationship between CO2 and temperature, which we would expect
to be significantly positive. To be able to verify this relation, it would be necessary to design
measurement campaigns with continuous releases during the same day, allowing for the
in-depth investigation of the PBL development and the photosynthetic absorption.

The negative relation with the month of the year is likely due to the CO2 seasonal
fluxes between the atmosphere and the land biosphere, which overlap with fossil fuel
emissions, giving rise to large carbon dioxide seasonal variations [52].

Finally, the model shows a poor relation between CO2 atmospheric concentration,
flight speed, and altitude. This could be justifiable considering that the flight altitudes were
mostly below 150 m a.g.l., i.e., widely within the PBL, where the presence of turbulent
fluxes determines a high degree of pollutants mixing and a high space-time homogeneity.

The meteorological and air quality measurements, acquired with high spatial-temporal
resolution in the vertical profiles of urban and non-urban environments can be integrated
and compared with the data measured at the ground level, allowing for the detailed
characterization of atmospheric parameters within the PBL. This involves hypotheses and
assumptions that are not always truthful: during the flight, sensors are in continuous
movement, while ground-based measurements are typically carried out by fixed stations,
located in strategic points of the city. In the case of the homing pigeons used in our study
it follows that, even if a release takes place near a ground station, the comparison could
only be carried out for a few seconds after the release, i.e., when the bird is still close to the
station itself. In addition, birds decide themselves both the route and the altitude during
the entire journey, resulting in a non-predictable trajectory of their flight at a fine scale.
Furthermore, if, as in the present study, homing pigeons are used, they require in-group
releases and have to familiarize themselves with specific locations of release, so that they
can learn the route back to their loft. In fact, if the same pigeon is released several times
at the same point, it will tend to memorize the shortest, straightest path to the loft and
will tend to follow it on each subsequent flight [53]. This means that the paths will tend to
become similar with time, with the advantage of making the measurements gathered in
different releases more comparable.

Another fundamental aspect of these measurements is the temporal constraint. De-
pending on the distance between the release point and the loft and on the individual’s
experience, the pigeon can take a shorter/longer time to go back home, i.e., it will acquire a
shorter/longer dataset. On one hand, this ensures that during the flight, the environmental
conditions can be assumed as constant (in terms of temperature, humidity, concentrations
of pollutants, etc.), but, on the other hand, short flights do not allow the study of the
daily PBL evolution. However, this apparent limitation can be overcome by carrying out
subsequent releases at different moments of the day. Another non-negligible constraint is
linked to the fact that pigeons—similar to many diurnal birds—do not fly at night and in
the case of bad weather conditions.

Moreover, the sensor design might influence the relationship between CO2 and other
measured atmospheric variables. In our case, the absence of a casing and the direct exposure
of the atmospheric sensors to solar radiation might produce higher temperatures than the
actual environmental values. This could be an issue, especially if the pigeon stays still



Remote Sens. 2022, 14, 4876 11 of 15

under the sun for long periods. This does not concern the data presented in this study since
our model only includes flying periods. Given the optical nature of the CO2 sensor, we
believe direct exposure to solar radiation does not affect gas readings. Indeed, there is no
mention of exposure in the sensor documentation [33]. Nonetheless, further development
of the tag will include a casing, which is essential for longer deployments. This will warrant
an analysis of design-dependence on all sensor readings.

In conclusion, we demonstrated the feasibility of using birds as biomonitoring tools
to sample the air quality in an urban environment. Previously, this had been attempted
only in two short-lived projects that, without wishing to minimise their social impact, did
not yield reproducible scientific outputs. The integrated approach used in this study has
a limited disturbance to the birds. It also has a limited environmental impact, because
does not require the release of probes, and the energy consumption is only related to
recharging the sensors’ batteries and for data storage. This study was based on the use
of data loggers, which must be recovered to download the data. With homing pigeons,
this was easily done but can be difficult with wild birds. Moreover, this technological
limit is being overcome, thanks to already available transmitters that can be integrated
with the devices and are capable of sending real-time measurements through the fourth
generation (4G) technologies. In this manner, it will be possible to monitor cities and other
environments through wild species with a high temporal resolution, reducing costs and
bureaucratic limitations and, thus, allowing for intervening even in emergency phases.
Technological improvements and sensor miniaturization are increasing the scope of animal
ecology, making animal tracking a useful way to gather high-resolution data about the
environment in which they live [54]. This kind of development in the science of biologging
has already been applied to the marine environment, but studies in terrestrial or aerial
habitats are scant [17]. Birds are a valuable animal group in biomonitoring studies [55].
In particular, species able to perform controlled flights, such as homing pigeons, have
been often used for studies on air pollution. Such studies have been mostly carried out in
an ecotoxicological framework, usually requiring animal sacrifice and collecting data for
limited periods [56–59]. To the best of our belief, this is the first study on environmental
pollution with virtually no impact on birds.

5. Conclusions and Future Perspectives

This study reported the development of a miniaturized air sampler, integrating a
GPS logger and atmospheric calibrated sensors. The device allowed for the acquisition of
measurements of physical and chemical parameters, such as CO2 concentration, barometric
pressure, air temperature, and relative humidity with high spatial/temporal resolution
ensured by the GPS. The air samplers were applied to homing pigeons and the results
demonstrated the potential of atmospheric and air quality monitoring using birds. The air
sampler developed in this study represents a low-cost, environmentally friendly, easy-to-
use tool for environmental monitoring, providing enhanced observation and interpretation
opportunities, with minimal effects on the well-being of the birds.

The release of homing pigeons in the urban centre of Rome (Italy) and their flight to
the loft highlighted the reduction of the CO2 concentration in the layers of the atmosphere
close to the ground, passing from anthropized to rural and agricultural areas.

The results show that the CO2 concentration varies considerably according to the level
of urbanization, underlining the positive impact of green urban areas on air quality. Fur-
thermore, the application of a stepwise regression reveals a positive relationship between
CO2 levels, relative humidity, and air temperature. Conversely, a negative relation between
CO2 concentration and distance from the point of release, month, and hour of the day has
been found.

This research can be considered as a starting point for further studies, aimed at devel-
oping miniaturized sensors for the study of other atmospheric gases, wearable by other
bird species (i.e., gulls) with very limited impact on their well-being, capable of flying
at higher altitudes and over greater distances than pigeons. Furthermore, as mentioned,
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sensor technology is constantly improving, both on the side of the electronics’ performance
and on the possibility of transmitting data through 4G technology. This latter development,
together with the progress of sensor miniaturization, which increases the possible applica-
tion on wearable devices, could provide the potential for the integration of data gathered
by real-time air samplers with those from other devices as part of the Internet Of Things
(e.g., [60]).
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Appendix A

Table A1. List of pigeon releases, including departure and loft arrival times, flight duration, and
track length, with a summary of CO2 values measured.

Time (UTC) Flight CO2 Concentration (ppm)

Flight
Number

Pigeon
ID

Sample
Points Release Arrival Duration

(min)
Distance

(km) Mean Min Median Max

1 p701 512 21 January
2021 08:22

21 January
2021 08:39 17.0 16.7 614 533 610 812

2 p788 882 26 January
2021 08:29

26 January
2021 09:07 37.7 27.1 568 498 557 725

3 p788 480 28 January
2021 07:55

28 January
2021 08:44 49.1 14.7 670 544 661 978

4 p710 1686 29 January
2021 08:15

29 January
2021 11:37 202.2 47.9 564 457 565 938

5 p788 756 29 January
2021 08:15

29 January
2021 08:40 25.2 24.0 666 578 652 993

6 p701 604 5 February
2021 09:05

5 February
2021 09:39 34.0 17.6 639 572 635 985

7 p788 669 5 February
2021 09:01

5 February
2021 10:24 83.1 19.9 587 489 571 923

8 p788 436 8 February
2021 08:37

8 February
2021 10:37 120.4 14.3 571 452 547 903
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Table A1. Cont.

Time (UTC) Flight CO2 Concentration (ppm)

Flight
Number

Pigeon
ID

Sample
Points Release Arrival Duration

(min)
Distance

(km) Mean Min Median Max

9 p561 693 19 March
2021 09:02

19 March
2021 09:25 23.1 18.7 497 476 489 576

10 p778 1007 1 April 2021
07:04

1 April 2021
12:13 309.2 25.1 562 504 555 913

11 p47 968 7 April 2021
07:06

7 April 2021
12:53 347.6 26.1 466 410 465 558

12 p778 1249 7 April 2021
07:01

7 April 2021
09:37 156.0 38.3 531 481 527 696

13 p47 256 9 April 2021
08:57

9 April 2021
09:06 8.5 9.4 455 436 453 481

14 p561 428 9 April 2021
08:52

9 April 2021
09:06 14.2 15.2 577 550 577 963

15 p47 463 21 April
2021 07:19

21 April
2021 07:34 15.4 14.7 606 514 564 963

16 p47 391 23 April
2021 08:15

23 April
2021 08:28 13.0 12.8 614 566 617 702

17 pG 373 4 May 2021
07:26

4 May 2021
08:09 42.7 11.1 516 472 516 618

18 pG 379 6 May 2021
07:18

6 May 2021
07:30 12.6 13.8 566 516 558 688

19 p787 351 7 May 2021
07:16

7 May 2021
07:38 22.1 13.5 567 436 560 703

20 pG 360 7 May 2021
07:26

7 May 2021
07:38 12.0 13.7 507 493 502 547

21 p34 561 11 May 2021
07:18

11 May 2021
08:40 81.9 15.1 586 492 587 730

22 pG 410 11 May 2021
07:18

11 May 2021
07:35 17.0 12.8 572 478 567 699

23 p684 3486 15 June 2021
11:19

16 June 2021
16:20 1740.3 82.6 586 528 582 869

24 p701 1287 15 June 2021
06:18

15 June 2021
14:49 510.2 35.8 565 439 569 793

25 p701 592 18 June 2021
06:35

18 June 2021
07:55 80.5 16.7 634 538 633 969
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