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Abstract: Conventional practices of bridge visual inspection present several limitations, including a
tedious process of analyzing images manually to identify potential damages. Vision-based techniques,
particularly Deep Convolutional Neural Networks, have been widely investigated to automatically
identify, localize, and quantify defects in bridge images. However, massive datasets with different
annotation levels are required to train these deep models. This paper presents a dataset of more
than 6900 images featuring three common defects of concrete bridges (i.e., cracks, efflorescence, and
spalling). To overcome the challenge of limited training samples, three Transfer Learning approaches
in fine-tuning the state-of-the-art Visual Geometry Group network were studied and compared to
classify the three defects. The best-proposed approach achieved a high testing accuracy (97.13%),
combined with high F1-scores of 97.38%, 95.01%, and 97.35% for cracks, efflorescence, and spalling,
respectively. Furthermore, the effectiveness of interpretable networks was explored in the context
of weakly supervised semantic segmentation using image-level annotations. Two gradient-based
backpropagation interpretation techniques were used to generate pixel-level heatmaps and localize
defects in test images. Qualitative results showcase the potential use of interpretation maps to provide
relevant information on defect localization in a weak supervision framework.

Keywords: concrete bridge; visual inspection; defect; deep convolutional neural network; transfer
learning; interpretation techniques; weakly supervised semantic segmentation

1. Introduction

Bridges are key elements of a road network and play a critical role in the functional
operation of the transportation system. During their service life, they are subjected to
multiple deterioration mechanisms induced by material aging, variable loading, aggressive
environmental actions, and extreme weather conditions. As a result, various types of
damage (e.g., crack and corrosion [1,2]) occur over time and alter the structural behavior of
bridges. Therefore, it is essential to accurately and timely detect and evaluate the damage
to prevent failure and maintain structural safety and serviceability.

Structural Health Monitoring (SHM) has attracted much attention and has been
the subject of several works in recent decades. Numerous techniques based on sensors
(e.g., accelerometers, velocimeters, and displacement sensors) [3], non-destructive test-
ing (e.g., ground-penetrating radar, infrared and ultrasonic techniques) [4], and visual
inspection [5,6] have been deployed to identify, localize, and quantify damage in bridges.
However, visual inspection has been the predominant practice for bridge condition assess-
ment [7–9]. Trained inspectors conduct an in situ examination of bridge elements based on
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established guidelines and evaluate the condition of the entire bridge. However, the con-
ventional framework of this practice is time-consuming, labor-intensive, and error-prone
due to the subjective judgment of inspectors. Moreover, it requires access equipment and
vehicles to reach areas of the bridge with low accessibility, which incurs additional costs to
the monitoring operation [8].

In recent years, technological advances in civil engineering and related disciplines
have promoted the emergence of innovative tools to manage civil infrastructures. Within
this context, bridge owners and managers have shown increasing interest in Unmanned
Aerial Vehicles (UAVs) as an assistive, efficient, and cost-effective means offering great
potential for inspection automation [8,10]. However, one of the major challenges associated
with this inspection scheme lies in deploying an efficient method to process the large
amount of image data collected by the UAVs’ sensors. To this end, several vision-based
techniques have been extensively explored to automate defect detection in different civil
engineering structures. These methods include traditional Image Processing Techniques
(IPTs) [11], Machine Learning algorithms [12], and Deep Convolutional Neural Networks
(DCNNs) [13].

In the particular context of concrete damage detection, cracks are the primary type
of damage investigated by researchers. IPTs are used to extract representative properties
of cracks from input images by applying various filters and morphological operations
(e.g., Edge Detectors [14], Thresholding [15], Percolation [16,17], and Principal Component
Analysis [18]). Then, the extracted features are fed to Machine Learning models, such
as Support Vector Machines [19,20] and Nearest Neighbor Classifiers [20], to perform
the classification task. However, IPTs provide hand-crafted features for training [21] and
present limited learning capabilities that do not represent the complexity of the concrete
texture and the challenging conditions of image acquisition, such as lighting, shading, and
camera movements [21,22].

On the other hand, DCNNs extract features from a set of training images through the
convolution operation and classify them within one learning framework. Owing to their
robust feature extraction and learning capabilities, DCNNs have been widely examined in
concrete damage classification studies.

For example, Dorafshan et al. [23] demonstrated the superiority of the AlexNet net-
work [24] over six standard edge detectors in classifying concrete crack images of the
SDNET dataset [25].

Kim et al. [26] trained and optimized the LeNet-5 network [27] to detect cracks in
concrete surfaces using a dataset of 40,000 images. The proposed model achieved an
accuracy of 99.8% and could be implemented using low-power computational devices.

Yu et al. [28] developed a method based on DCNNs to detect cracks in image patches
of damaged concrete. The authors proposed an architecture consisting of six convolutional
layers, two pooling layers, and three fully connected layers and employed the enhanced
chicken swarm algorithm to optimize the meta-parameters of the DCNN model.

Mundt et al. [29] proposed the CODEBRIM dataset that features five non-exclusive
damage classes in bridges (i.e., crack, spallation, exposed reinforcement bar, efflorescence,
and corrosion). In addition, they investigated reinforcement learning approaches to build a
DCNN model for the multi-target classification task, and their best meta-learned models
yielded a testing accuracy of 72%.

Since training DCNNs requires a significant amount of image data and due to the
limited size of concrete damage datasets, researchers have explored Transfer Learning
techniques to train deep learning networks for concrete damage classification [30–33].
Pretrained DCNNs (e.g., AlexNet [24], VGG [34], ResNet [35], Inception [36]) on large
benchmark datasets (e.g., ImageNet [37], MNIST [27], CIFAR100 [38]) are used to transfer
knowledge from a source domain (e.g., ImageNet dataset) to a target domain (e.g., a small-
scale concrete damage dataset) through different settings and learning approaches [39].

Yang et al. [21] developed a low-cost automated inspection approach based on UAVs
and deep learning. They constructed the CSSC database and used a fine-tuned VGG16
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model to classify cracks and spalling in concrete bridge elements and achieved a mean
accuracy of 93.36% with the CSSC dataset.

Hüthwohl et al. [40] used a pre-trained inception-V3 network to define a hierarchical
multi-classifier for reinforced concrete bridge defects (i.e., cracks, efflorescence, spalling,
exposed reinforcement, and rust staining). Experimental results showed that the multi-
classifier could assign class labels with an average F1-score of 83.5%.

Yang et al. [33] proposed an end-to-end-based Transfer Learning method for crack
detection using three knowledge transfer approaches (i.e., sample, model, and param-
eter transfer knowledge), a fine-tuned VGG16 model, and three crack datasets. Their
experiments showed that by training 13 convolutional and two fully connected layers of
the pre-trained VGG16 model on the three datasets, crack detection was improved and
achieved a testing accuracy of 97.07% on the SDNET dataset.

Bukhsh et al. [31] investigated cross-domain and in-domain Transfer Learning ap-
proaches. They compared the performance of the VGG16, InceptionV3, and the ResNet50
models in different Transfer Learning strategies to detect damages in six binary and multi-
label concrete damage datasets. Their experiments demonstrated that combined represen-
tations of in-domain and cross-domain Transfer provide considerable performance gain,
particularly with tiny datasets.

Zhu et al. [41] built a robust classifier to detect four defects, including cracks, pock-
marks, spalling, and exposed rebar. They used the pre-trained inceptionV3 model to extract
features from input images and a fully connected network to classify defects. The proposed
model was trained on 1180 images with arbitrary sizes and resolutions for 374.1 s and
recorded a testing accuracy of 97.8%.

On the other hand, Gao and Mosalam [32] proposed the concept of structural Im-
ageNet and manually labeled 2000 images for four recognition tasks: component type
identification (binary), spalling condition check (binary), damage level evaluation (three
classes), and damage type determination (four classes). They applied two different strate-
gies of Transfer Learning based on the pre-trained VGG16 model. For the damage type
multi-classification task, a 68.8% accuracy with 23% overfitting was obtained by retraining
the last two convolutional blocks of the network.

In the aforementioned works, the performance of the proposed methods has varied
according to the size and complexity of the datasets and the adopted Transfer Learning
approach. Most studies have re-trained more than two or all convolutional layers and
update a high number of the network parameters to achieve a higher detection accuracy.
However, this approach is computationally expensive, requires more training time, and
is also subject to overfitting in the context of heavily parameterized networks and small
datasets.

In a bridge condition assessment framework, defect localization is crucial to evaluate
damage’s impact on the bridge’s structural integrity. For this purpose, deep learning based-
semantic segmentation algorithms have been deployed to provide pixel-level classification
results to improve damage detection accuracy.

Zhang et al. [42] designed a fully convolutional model to detect and group image
pixels for three types of concrete surface defects (i.e., crack, spalling, and exposed rebar).
The authors prepared a dataset with mask labeling of 1443 images to train and test the
model. Their proposed method achieved a semantic segmentation accuracy of 75.5%.

Fu et al. [43] introduced a crack detection method based on an improved DeepLabv3+
semantic segmentation algorithm. They established a concrete bridge crack segmentation
dataset to train and test the proposed model. The experimental results proved the effec-
tiveness of the trained algorithm that reached an average intersection over union ratio of
82.37%.

Wang et al. [44] constructed a crack dataset of 2446 manually labeled images to train
and evaluate the performance of five deep networks for semantic segmentation. The best
model achieved an F1-score of 77.32% and an intersection over union ratio of 62.98%. The
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authors also discussed the influence of dataset choice and image noise on the detection
performance.

Dung and Anh [45] developed a fully convolutional network-based method and
annotated 600 crack-labeled images for semantic segmentation. The proposed model
reached approximately 90% for the average precision score. The authors demonstrated
their method’s effectiveness by accurately identifying and capturing crack path and density
variation in a crack opening video.

The above studies have shown very promising results in detecting damages. However,
the fully supervised semantic segmentation deep networks are complex and are faced with
a common major challenge associated with data scarcity. These models require training
labeled images with pixel-level annotations that are expensive and necessitate the empirical
knowledge of field experts. Furthermore, most publicly available concrete damage datasets
only provide image-level annotations.

To alleviate the heavy workload associated with data annotation in a fully supervised
learning framework, weakly supervised segmentation methods consider different weak
annotations (e.g., image-level and bounding box labels) as the supervision condition [46].
Within the context of damage detection, Dong et al. [47] designed a patch-based weakly
supervised semantic segmentation network to detect cracks in construction materials. In
their proposed method, an input image is cropped, and the resulting patches are annotated
at an image level. Class activation maps of cracks are obtained for each patch. They are
fed to a fully connected conditional random field to generate the corresponding synthetic
labels, which are used to train a segmentation network.

König et al. [48] presented a weakly supervised segmentation approach leveraging
classification labels to detect surface cracks. To obtain pixel-level segmentation pseudo la-
bels, the authors utilized a patch-threshold segmentation combined with coarse localization
maps generated by a Convolutional Neural Network trained on images with classifica-
tion annotations. The generated pseudo labels were used to train a standard semantic
segmentation network to perform crack segmentation.

Zhu and Song [49] developed a weakly supervised network for crack segmentation
in asphalt concrete bridge decks. Based on an autoencoder, the original data generates a
weakly supervised start point for convergence, and image feature extraction and segmenta-
tion are performed under weak supervision.

This paper investigates a weakly supervised framework based on interpretation tech-
niques and leveraging image-level annotations to generate pixel-level maps. The goal is to
provide a coarse localization of three distinct types of damage in concrete bridge images.

The main contributions of this work are the following:

1. A multi-class labeled dataset with more than 6900 images was constructed. The dataset
features three common types of defects in concrete bridges (i.e., cracks, spalling, and
efflorescence) and covers their diverse representation in the real world of bridge
inspection.

2. Three classification schemes using the pretrained Visual Geometry Group (VGG)
network with its 16 learning layers (i.e., VGG16 [34]), Transfer Learning, and the
proposed dataset were compared. The experiments investigated the effect of the
number of layers to be retrained on the model’s performance in terms of classification
measures (i.e., accuracy, precision, recall, and F1 score), computational time, and
generalization ability.

3. Based on the best classification scheme, the effectiveness of interpretable neural
networks was explored in the context of weakly supervised semantic segmentation
(i.e., image-level supervision). Two gradient-based backpropagation interpretation
techniques (i.e., Gradient-weighted Class Activation Mapping (Grad-CAM) [50] and
Grad-CAM++ [51]) were used to generate pixel-level heatmaps and localize defects.
Qualitative results of test images showcase the potential of interpretation heatmaps to
provide localization information in a weak supervision framework.
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The rest of the paper is organized as follows: Section 2 presents an overview of the
methodology followed in this paper, the proposed dataset, the VGG16 model, and the
interpretation techniques studied in this work. Section 3 details the experimental setup,
and the experimental results are presented and discussed in Section 4. Conclusions are
provided in the final section of the paper.

2. Methodology and Materials

An overview of the adopted methodology in this work is shown in the flowchart in
Figure 1. The first module corresponds to dataset construction’s image acquisition and
preparation process. The second module represents the implementation of the pre-trained
VGG16 network using Transfer Learning to classify three types of defects in concrete
bridges. Finally, interpretation techniques were deployed in the third module to generate
pixel-level heatmaps to localize concrete damage.

Figure 1. Overview of the proposed method.

2.1. Dataset

The dataset constructed in this paper consisted of 6952 RGB images with a 200 × 200 px
resolution of concrete cracks (1304), concrete spalling (1100), concrete efflorescence (1029),
and non-defective background (3519). Cracks and background images were extracted from
the dataset established by the authors of [52].

More than 1200 images of Moroccan bridges representing decks and piers with concrete
spalling and efflorescence were collected and processed according to the same experimental
setup and procedure in [52]. The images were captured using two 20-MP consumer digital
cameras with 5 mm of focal length, a sensitivity of 100 ISO, and a maximum resolution of
5152 × 3864. They were gathered at varying distances from bridges and a maximum 8×
optical zoom was applied. Moreover, the images were taken under different weather and
lighting conditions, and a flash was used to illuminate the dark bridge areas containing
defects. It is noteworthy that the original images have not undergone any processing
operations other than the manual cropping using the inbac tool [53].

The dataset in [52] was expanded with the concrete spalling and efflorescence classes,
and the resulting dataset is publicly available at [54] for academic purposes.

Various colors, textures, surface conditions of concrete and defect representations were
included in the constructed dataset to cover the variation of defect appearance, extent, and
severity level in the real world of bridge inspection. Figure 2 presents sample images of the
proposed dataset.
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Figure 2. Sample images of the constructed dataset (row 1: concrete cracks, row 2: concrete spalling
with exposed reinforcement, row 3: concrete efflorescence, row 4: different representations of the
non-defective background class).

2.2. VGG16 and Transfer Learning

The Visual Geometry Group introduced VGG16 in 2014 [34]. The algorithm is very
efficient and won first place in object localization and second place in image classification
in the ImageNet Large Scale Visual Recognition Challenge. This model trained on the
ImageNet dataset achieved a top-1 accuracy of 71.5% and a top-5 accuracy of 90.1% in
image classification.

The network contains 13 convolutional layers with 3 × 3 filters (i.e., convolution
kernels) to extract features. In addition, the network contains five max-pooling layers
to reduce the number of learnable parameters (i.e., weights and biases) and three fully
connected layers to map the flattened features to the Softmax layer where target class
probabilities are calculated. In addition, the Rectified Linear Unit (ReLU) activation function
is used to increase the non-linearity of the model. The network takes 224 × 224 RGB images
as inputs and has more than 138 million learning parameters. Figure 3 presents the
architecture of the VGG16 model.

Figure 3. Architecture of the VGG16 model.
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The learning layout of the VGG16 network, and DCNNs in general, is based on
optimizing a loss function (e.g., Binary and Multi-Class Cross-Entropy loss) that measures
the discrepancy between the predicted outputs and ground truth through back-propagation.

The optimization scheme generally uses gradient descent optimizers (e.g., Stochastic
Gradient Descent and adaptive optimizers) to update the learning parameters of the
network.

For image classification, VGG16 and other state-of-the-art DCNNs are usually trained
on the ImageNet dataset that contains millions of images belonging to thousands of classes.
However, since the size of domain-specific datasets (e.g., concrete defects datasets in the
case of this study) is limited, Transfer Learning techniques are applied to overcome the
scarcity of labeled data.

In a Transfer Learning approach, pre-trained models on large datasets (e.g., ImageNet)
are fine-tuned and partially retrained on the small target dataset. In this learning framework,
the weights of the lower-level layers are generally maintained since they represent generic
features. In contrast, the high-level layers are more sensitive to the target dataset and
must be retrained to update their learning parameters [23]. The Transfer Learning settings
examined in this paper are detailed in the experimental setup section.

2.3. Interpretation Techniques

In the context of image classification, interpretation techniques are intended to explain
the predictions of trained models by visualizing the regions of the inputs that contributed
to the final classification result. Thus, they can provide a coarse localization of target objects
using image-level annotations.

Hereafter, a simplified explanation of the intuition behind the two gradient-based
back-propagation techniques used in this paper (i.e., Grad-CAM and Grad-CAM++) is
presented.

2.3.1. Gradient-Weighted Class Activation Mapping (Grad-CAM)

The Grad-CAM approach is based on the gradient information for the last convolu-
tional layer of a trained network [50].

The gradients of the score for class c (yc) with respect to the feature maps Ak of the
convolutional layer are computed via back-propagation and then global-average pooled to
obtain the weights wk

c [50]:

wk
c =

1
Z ∑

i
∑

j

∂yc

∂Ak
ij

(1)

where, Z is the number of pixels in the activation map.
The weight wk

c expresses the importance of feature map k for the class c. The class
discriminative localization map Grad-CAM Lc

Grad-CAM is obtained by computing a weighted
sum of the forward feature maps Ak of the last convolutional layer [50]:

Lc
Grad-CAM = ReLU

(
∑
k

wc
k Ak

)
(2)

where ReLU is the Rectified Linear Unit activation function. It is used to focus only on the
features that have a positive influence on the target class [50].

2.3.2. Grad-CAM++

Grad-CAM++ is a generalization to Grad-CAM and provides better visualizations of
the network decisions [48]. In Grad-CAM++, the weights wk

c are computed as follows [51]:

wk
c = ∑

i
∑

j
αkc

ij .ReLU

(
∂yc

∂Ak
ij

)
(3)
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where αkc
ij are weighting coefficients for the pixel-wise gradients for class c and feature

map Ak and are defined as follows:

αkc
ij =

∂2yc(
∂Ak

ij

)2

2 ∂2yc(
∂Ak

ij

)2 + ∑a ∑b Ak
ab

{
∂3yc(
∂Ak

ij

)3

} (4)

3. Experimental Setup

This work aims to define an efficient and automatable method to identify and localize
damage in concrete bridge images using DCNNs and Transfer Learning. This section
presents the Transfer Learning schemes followed to train the pre-trained VGG16 model
on the proposed dataset. In addition, the weakly supervised semantic segmentation
framework based on the above-explained interpretation techniques is also discussed.

3.1. VGG16 Fine-Tuning and Training

The VGG16 model can capture high-level features [21] and has the ability to generalize
to other datasets [32]. Moreover, it has shown an excellent performance in many studies on
damage classification in concrete surfaces [31–33]. Therefore, it was chosen as a base model
for the learning approach proposed in this paper.

Training this deep network from scratch requires enormous computational resources,
significantly labeled data, and excessive training time. Thus, three Transfer Learning
settings were explored in this work and compared based on standard classification metrics,
training time, and generalization ability.

First, the pre-trained VGG16 with the ImageNet weights was uploaded, and the last
fully connected layers of the model were adjusted to the number of classes (i.e., four classes).
Then, based on the assumption that the high-level layers of DCNNs are more sensitive to
the target dataset, the last layers of the pre-trained model were retrained on the constructed
dataset to update their learning parameters.

Gradient descent and back-propagation were used following three different approaches
in this work:

• Retraining the classification layers (a)
• Retraining the classification layers and the last convolutional layer (b)
• Retraining the classification layers and the last two convolutional layers (c)

Figure 4 presents the three Transfer Learning-based training settings investigated in
this paper.

The dataset presented in Section 2 was randomly split into three subsets: 70% of the
images were used in the training set, 10% in the validation set, and 20% in the testing set.
The number of images per subset and per class is shown in Table 1.

Table 1. Number of images per subset per class.

Background Cracks Efflorescence Spalling

Training set 2463 912 720 770
Validation set 351 130 102 110

Testing set 705 262 207 220

In addition, data augmentation techniques (i.e., random horizontal and vertical flips
and random rotations) were applied to the training set to avoid overfitting.
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Figure 4. Transfer Learning configurations: (a) retraining only the classification layers, (b) retraining
the classification layers and the last convolutional layers, (c) retraining the classification layers and
the last two convolutional layers.

The optimization method recommended in [32] based on Stochastic Gradient Descent
(SGD) with momentum and a small learning rate was used in this work’s experiments.
The SGD with momentum optimizer reduces the computational load and accelerates the
training convergence. The training was conducted for 25 epochs as the results converged.
In addition, low training and validation errors were achieved while mitigating overfitting.
The cross-entropy loss function was optimized using the SGD with a learning rate of 0.001,
a momentum of 0.9, and a mini-batch size of 32. All the experiments were carried out using
Pytorch in Google Colaboratory (Colab) with the 12GB NVIDIA Tesla K80 GPU provided
by the platform.

3.2. Evaluation Metrics

In each learning configuration, the performance of the model was evaluated using the
following metrics:

Accuracy =
TP + TN

TP + TN + FP + FN
(5)

Precision =
TP

TP + FP
(6)

Recall =
TP

TP + FN
(7)
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F1Score = 2
(

1
Recall

+
1

Precision

)−1
(8)

TP (True Positives) refer to the number of correctly classified images as defects.
TN (True Negatives) refer to the number of background images that are correctly

classified as background.
FP (False Positives) refer to the number of background images that are incorrectly

identified with defects.
FN (False Negatives) refer to the number of images incorrectly identified as back-

ground images.
The Root Mean Squared Error (RMSE) was also used to assess the model’s performance

in the three different training schemes. It is defined by Equation (9):

RMSE =
√

∑
i
(1 − yi)

2/n (9)

where yi is the calculated probability of the image i (from the testing subset) belonging to
the ground truth class.

3.3. Weakly Supervised Semantic Segmentation

Based on the best learning scheme, feature maps of the last convolutional layer of
the trained model were used to provide visual explanations of classification results using
Grad-CAM and Grad-CAM++. The implementation of these interpretation techniques was
based on the publicly available repository in [55]. Pixel-level heatmaps were generated for
test images, and a threshold of 0.5 was applied to each image to localize the regions with a
target class probability above 50%.

4. Results and Discussions

This section presents and discusses the results obtained after training and testing
the model following the three Transfer Learning schemes on the constructed dataset. In
addition, some representative localization maps of cracks, spalling, and efflorescence
generated by the two interpretation techniques are also presented.

4.1. Training and Testing Results

Figure 5 plots the model’s learning and loss curves following the three Transfer
Learning settings. It can be seen that in all three training approaches, the model converged
quickly from the early epochs; this is mainly attributed to the reduced number of layers to
retrain and the fixed parameters of the non-trainable layers.

The training and validation accuracies in the three learning settings generally increase
over time, reaching a plateau around the last three epochs. The loss curves in (b) and (c)
show a slight tendency to over-fitting due to the increasing number of parameters to update
in their corresponding learning schemes. Therefore, it is believed that training more than
two convolutional layers will lead to a higher possibility of overfitting and, consequently,
will decrease the model’s generalization ability.

Table 2 lists the three learning schemes’ best training, validation, testing accuracies,
and RMSE. The results show that the model in scheme (c) presents a better performance in
training compared to settings (a) and (b). The achieved training accuracy was 98.34% in
(c) over 94.62% and 91.10% in (b) and (a), respectively. The model in setting (c) also yielded
a higher testing accuracy of 97.13% over 94.61% and 91.10% in (b) and (a), respectively.
Furthermore, the results were obtained with only 1.21% overfitting (calculated as the
difference between training and testing accuracies). These exciting results show that
approach (c) enables the model to have better generalizability to extend the learning from
the training subset to unseen test data. These results also demonstrate that more important
features representing the target dataset were learned in the last two convolutional layers of
the pre-trained model.
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Figure 5. Learning and loss curves: (a) retraining only the classification layers, (b) retraining the
classification layers and the last convolutional layers, (c) retraining the classification layers and the
last two convolutional layers.

In addition, the Root Mean Squared Error decreased with more retrained layers (0.15
in (c) over 0.20 and 0.27 in (b) and (a), respectively), denoting that the predictive capacity
of the model improves with updating more learning parameters.

It is also essential to mention that the training time corresponding to the three classifi-
cation methods is reasonable. Moreover, the difference between the three approaches in
terms of training time is significantly low (e.g., 8 s between (b) and (c)). At the same time,
a considerable gain in performance was observed (e.g., a 1.61% gain in training accuracy
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between (b) and (c)). Therefore, fine-tuning the classification layers and the last two convo-
lution layers of the pre-trained VGG16 is efficient as it balances prediction performance,
training time, and overfitting.

Table 2. Best training, validation, and testing accuracies and training times of the three training
settings.

Transfer Learning Scheme Best Training
Accuracy

Best Validation
Accuracy Testing Accuracy RMSE Training Time

Retraining only the
classification layers (a) 91.61% 90.62% 91.10% 0.27 6 min 35 s

Retraining the classification
layers and the last

convolutional layers (b)
96.73% 94.80% 94.62% 0.20 6 min 47 s

Retraining the classification
layers and the last two
convolutional layers (c)

98.34% 96.68% 97.13% 0.15 6 min 55 s

To further visualize the performance of the trained DCNN on the test subset, normal-
ized confusion matrices for the three learning schemes are presented in Figure 6.

The results reflect confusion between background and efflorescence images and back-
ground and crack pictures. This confusion was particularly observed in schemes (a) and (b).
For example, 7% and 6% of background images were classified as cracks or efflorescence
in methods (a) and (b), respectively. However, this confusion was notably reduced in the
scheme (c) as less than 3% of background images were predicted as cracks or efflorescence.

The observed confusion is mainly related to the complexity of the concrete surface in
terms of colors and textures. In addition, some surface alterations in the training dataset
(e.g., stains, markings, minor defects such as scaling and segregation) represent noisy defect-
like features in concrete images and, as a result, make feature learning more challenging.
For example, some background images contain concrete joints representing straight lines
in the concrete surface and hence are likely to be misclassified as cracks. Generally, this
confusion between classes can be further handled by adding more labeled samples to the
training dataset and integrating an additional denoising process into image data.

Figure 7 illustrates some misclassification examples corresponding to the learning
setting used in (c).

The precision, recall, and F1-scores of each defect class were computed using the
confusion matrices. The results are summarized in Table 3.

The model achieved higher precision, recall, and F1-score results in learning scheme
(c) compared to the other learning settings. For example, 86.64%, 94.03%, and 97.38% are
the cracks F1-scores achieved in the learning settings (a), (b), and (c), respectively.

By comparing the F1-scores of the three classes in the learning scheme (c), the efflo-
rescence class yielded a lower score than the other defects, which showed nearly similar
performance (95.01% for efflorescence over 97.38% and 97.35% for cracks and spalling,
respectively). This can be attributed to the wide representations of the efflorescence in
concrete and the complexity of features required to describe this defect class. This issue can
be solved by adding more training data that extensively covers the diverse representations
of this type of damage.
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Figure 6. Confusion matrices of the three learning settings: (a) retraining only the classification layers,
(b) retraining the classification layers and the last convolutional layers, (c) retraining the classification
layers and the last two convolutional layers.

Figure 7. Misclassification examples (row 1: background images containing concrete joints misclas-
sified as cracks, row 2: background images with surface alteration and different concrete colors
misclassified as efflorescence).
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Table 3. Precision, recall, and F1-scores of the three models.

Damage Type Learning
Scheme (a)

Learning
Scheme (b)

Learning
Scheme (c)

Precision
Cracks 83.04% 89.66% 94.89%

Efflorescence 89.62% 89.29% 95.69%
Spalling 96.92% 95.89% 96.92%

Recall
Cracks 90.57% 98.86% 100%

Efflorescence 90.91% 95.24% 94.34%
Spalling 88.89% 93.75% 97.78%

F1-Score
Cracks 86.64% 94.03% 97.38%

Efflorescence 90.26% 92.17% 95.01%
Spalling 92.59% 94.81% 97.35%

4.2. Defect Localization Results

The trained model using learning scheme (c) was employed to implement the inter-
pretation techniques presented in Section 2.

Images of the testing subset were used to visualize the implementation results. Figure 8
shows sample examples of the obtained results.

As intended, the resulting heatmaps highlight the discriminative image regions that
contributed to image classification. These heatmaps show the probability of the target
class at each pixel. By analyzing the qualitative results in Figure 8, the active regions are
primarily consistent with the defect area. Grad-CAM++ provided better visualization
results for cracks and efflorescence examples compared to Grad-CAM.

The pixel-level maps generated after applying a threshold of 0.5 provide a coarse
localization of the concrete defects and offer semantically meaningful discrimination at
the pixel level between defects and background. Therefore, it is believed that in the
context of weakly supervised semantic segmentation, interpretation methods can provide
relevant pixel-level maps using only image annotations as the supervision condition. The
proposed method has reasonably captured a coarse localization of defects while avoiding
the annotation workload of the fully supervised semantic segmentation-based frameworks.

However, since the visualization results using these interpretation techniques depend
on the feature space learned by the classifier, some highlighted areas do not represent the
target classes in the test images, and other regions representing damage were not captured.

As a result, it would be challenging to localize and quantify the damage precisely
(e.g., crack path and density). This can be attributed to the underlying complexity of the
training dataset, its limited size, and the limited learning capabilities of the pre-trained
network due to the difference between the source domain (ImageNet dataset) and the target
domain (the proposed concrete damage dataset). Thus, to further examine the potential of
interpretation techniques in weakly supervised semantic segmentation, more customized
networks tailored to the damage classification task and trained on more comprehensive
datasets should be explored.
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Figure 8. Sample results of the interpretation techniques implementation (rows 1–2: cracks, rows 3–4:
concrete spalling, rows 5–6: efflorescence).

5. Conclusions and Perspectives

Structural Health Monitoring (SHM) is gaining increasing importance in assessing
bridge conditions as it allows for identifying, localizing, and evaluating damage severity.
Therefore, SHM is part of an economic strategy since it intervenes in the definition of
maintenance actions and participates in the optimization of its allocated resources.

This paper presented a benchmark image dataset featuring three common defects
(i.e., cracks, efflorescence, and spalling) of concrete bridges. The dataset covers different
appearances of the three defects and the concrete surface in the real world of bridge
inspection. A VGG16 network was trained on the proposed dataset following three Transfer
Learning schemes with varying layers. In each learning configuration, the performance
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of the model was evaluated based on classification metrics, computational time, and
generalization ability. Experiments showed a significant gain in classification measures
when retraining the classification layers and the last two convolutional layers of the VGG16
network. The trained model yielded a high testing accuracy of 97.13%, combined with high
F1-scores of 97.38%, 95.01%, and 97.35% for cracks, efflorescence, and spalling, respectively.
In addition, a slight tendency to overfitting was observed in the corresponding learning
scheme, which means that increasing the number of layers to be retrained will lead to the
degradation of the model’s generalization performance. These experimental results show
the robustness of the proposed learning setting as it ensures a balance between classification
metrics, computational time, and generalization ability.

This work also explored the potential of interpretation techniques to localize the three
defects in the context of weakly supervised semantic segmentation. To this end, two
gradient-based back-propagation methods were used to generate pixel-level heatmaps of
test images leveraging the above-discussed learning setting. The resulting maps highlight
the regions contributing to the classification result and then provide relevant pixel-level
maps to localize defects using a model trained on image-level annotations. However, since
these techniques rely on the feature space learned by the model, their results are limited by
the representativity of target classes in the training dataset, the challenging complexity of
the concrete surface texture and condition in bridge inspection images, and the learning
capability of the model.

Therefore, in another attempt to solve the damage localization task, more advanced
object detection models and datasets with different annotation levels will be investigated
in future works.
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