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Abstract: Building information extraction utilizing remote sensing technology has vital applications
in many domains, such as urban planning, cadastral mapping, geographic information censuses, and
land-cover change analysis. In recent years, deep learning algorithms with strong feature construc-
tion ability have been widely used in automatic building extraction. However, most methods using
semantic segmentation networks cannot obtain object-level building information. Some instance seg-
mentation networks rely on predefined detectors and have weak detection ability for buildings with
complex shapes and multiple scales. In addition, the advantages of multi-modal remote sensing data
have not been effectively exploited to improve model performance with limited training samples. To
address the above problems, we proposed a CNN framework with an adaptive center point detector
for the object-level extraction of buildings. The proposed framework combines object detection and
semantic segmentation with multi-modal data, including high-resolution aerial images and LiDAR
data, as inputs. Meanwhile, we developed novel modules to optimize and fuse multi-modal features.
Specifically, the local spatial–spectral perceptron can mutually compensate for semantic information
and spatial features. The cross-level global context module can enhance long-range feature depen-
dence. The adaptive center point detector explicitly models deformable convolution to improve
detection accuracy, especially for buildings with complex shapes. Furthermore, we constructed a
building instance segmentation dataset using multi-modal data for model training and evaluation.
Quantitative analysis and visualized results verified that the proposed network can improve the
accuracy and efficiency of building instance segmentation.

Keywords: building extraction; instance segmentation; multi-modal feature fusion; remote sensing
images; LiDAR; object detection

1. Introduction

Building information has wide applications in many domains, such as urban planning,
cadastral mapping, geographic information censuses, and land-cover change analysis [1–3].
Building feature extraction algorithms have a profound effect on promoting intelligent city
construction [4–6]. With the emergence of advanced sensors and platforms, multi-modal
remote sensing data, such as LiDAR and aerial images, can be obtained. These remote
sensing data provide accurate spatial information and abundant spectral features. For in-
stance, high-spatial-resolution remote sensing images contain a fine-grained, 2D, geometric
structure and texture, while high-precision, 3D spatial information can be acquired via
LiDAR technology. Multi-modal feature fusion is conducive to improving the accuracy and
efficiency of building detection.

Feature construction using remote sensing data is vital for improving method per-
formance. However, building feature extraction is challenging due to many factors, such
as the complexity of scenes, shadow, multiple scales, occlusion, illumination, and diverse
shapes. Some traditional methods apply spectral features and establish the morphological
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index to distinguish buildings from the background [7]. However, these indicators can
significantly change according to season and environment. Additionally, the diversity
of geographical objects brings discriminative difficulties when applying shallow features
due to intra-class spectral variation and inter-class similarity. In addition, some methods
establish geometric structure information, such as corners, height variation, and normal
vectors, to extract buildings using 3D point clouds [8–10]. Recently, multi-modal feature-
fusion-based methods have been developed and effectively improved building extraction
by combining 2D and 3D information [11–13]. Nevertheless, traditional approaches based
on prior knowledge are suitable for specific data and are vulnerable to parameter setting.
Moreover, these methods cannot obtain object-level information, such as position, size, and
count for each building, by semantic segmentation only. Therefore, automatic building
instance segmentation has high algorithm complexity and is still a challenge in remote
sensing data processing.

Deep learning algorithms have shown great potential in target detection, semantic
segmentation, and classification using image data in recent years. Instead of relying on
prior knowledge, deep neural networks can learn multi-level features. In particular, these
methods provide an automatic and robust solution for the automatic extraction of buildings.
Convolutional neural networks (CNNs), the popular neural network frameworks in deep
learning, have been widely used in remote sensing image processing. Compared with
traditional approaches, CNNs can extract hierarchical features from shallow level to deep
level with semantic representation by stacking convolutional blocks. Instead of over-
reliance on manual designs, a deep convolution network can automatically complete
multiple tasks and flexibly construct modules to achieve different requirements.

Some algorithms based on CNNs have achieved excellent building detection and
extraction performance. For instance, Wen et al. [12] constructed a detection framework
for rotated building objects using the improved Mask RNN [13]. Meanwhile, atrous
convolution and inception blocks were introduced into the backbone network to optimize
feature extraction. This network obtained object-level segmentation results from complex
backgrounds. Similarly, Ji et al. redesigned a U-Net structure and created a WHU building
dataset [14] for building extraction and instance change detection using Mask R-CNN.
Moreover, some methods use a one-stage, anchor-free instance segmentation framework
to improve speed and segmentation accuracy. For example, Zhang et al. proposed a
one-stage change detection network combined with a spatial-channel attention mechanism
for newly built buildings [15]. Multi-scale, built-up change regions were effectively detected
in the public LEVIR and AICD datasets. Wu et al. improved the detectors based on
CenterMask [16], obeying a one-stage detection paradigm, and established an attention-
guided mask branch to segment building instances [17]. Experimental results showed that
the method achieved better speed and accuracy than state-of-the-art methods.

Although deep learning methods provide various feature optimization strategies and
can achieve excellent performance in processing remote sensing data, some issues still
should be addressed: (1) Most remote sensing datasets are mainly used for the semantic
segmentation of buildings or natural scenes. An instance segmentation dataset of buildings
needs to be constructed for the training and evaluation of the model. (2) Many methods
apply remote sensing data with a single modality, such as optical remote sensing images.
However, some spectral information is similar to the buildings, especially information
pertaining to roads, cars, and artificial ground. Misclassification often exists in semantic
segmentation networks. (3) The detectors based on the region proposal framework require
a number of predefined anchors and a filtering mechanism, which significantly reduces
the training and inference efficiency of the model. (4) Buildings display significant shape
differences and scale variability. Some anchor-free detectors cannot accurately regress
the location due to fixed grid computation in convolution. The main features of some
buildings with small sizes are omitted after the down-sampling operation. Large-scale
buildings often occupy most of the area in the sample patches, while the global context
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is insufficient due to the limited receptive field [18]. These factors could cause inaccurate
detection and segmentation.

To address the above problems, we designed a new convolutional neural network
(CNN) framework for object-level building extraction. Some novel modules were devel-
oped to integrate multi-modal remote sensing data advantages, including 2D, high-spatial-
resolution images and 3D LiDAR point cloud data. The main contributions of this study
are summarized as follows:

• We constructed an end-to-end instance segmentation CNN, combining anchor-free
detection and semantic segmentation methods. Meanwhile, a local spatial–spectral
perceptron was developed to optimize and fuse multi-modal features. This mod-
ule can interactively compensate for spectral and spatial information in the convo-
lutional operators and effectively recalibrates the semantic features. Furthermore,
a cross-level global feature fusion module was constructed to enhance long-range
context dependence;

• An adaptive center point detector, based on the CenterNet, was proposed for multi-
scale buildings and the complex shapes of buildings, introducing the explicit de-
formable convolution under supervised learning to enhance the size regression ability
and the central point semantic intensity;

• We created a building instance segmentation dataset using high-resolution aerial
imagery and LiDAR data. This dataset provides highly precise instance labels for
model training and evaluation.

2. Related Work
2.1. Instance Segmentation

Based on the different detectors, instance segmentation algorithms can be divided
into two categories: two-stage instance segmentation and one-stage instance segmentation.
The former generates predefined anchors by a region proposal network (RPN) and then
conducts binary classifications within each ROI. Mask R-CNN is a representative two-stage
instance segmentation method based on Faster R-CNN and has achieved state-of-the-art
performance using the ROI Align strategy [13]. Similarly, PANet [19] constructs a bottom-
up feature aggregation path and applies the adaptive pooling strategy to improve the mask
prediction accuracy for Mask R-CNN. However, some drawbacks hinder the application of
these models in practical engineering tasks. Due to the number of predefined anchors, the
inference time is significantly increased. In addition, the segmentation result generates local
masks and presents a rough delineation due to the fixed-scale ROI features and limited
spatial resolution.

On the other hand, like the anchor-free methods being proposed, such as FCOS [20]
and CenterNet [21], single-stage instance segmentation methods outperform two-stage
instance segmentation algorithms in terms of accuracy and efficiency for special tasks.
For instance, the SOLO [22] algorithm contains the concept of “instance categories” by
global mask prediction. This paradigm establishes two-branch networks and transforms
the problem of instance segmentation into classification tasks, including location and scale
prediction. Wang et al. proposed CenterMask [16], complying with the CenterNet frame-
work. This network combines local shape representation and a global saliency map to
segment instance objects, effectively separating overlapping objects and improving mask
prediction accuracy. YOLACT [23] generates a set of prototypes using FCN and predicts
corresponding mask coefficients for each instance. High-resolution masks can be generated
by the linear combination of the prototype with template coefficients. InstanceFCN [24]
uses the FCN to generate multiple instance-sensitive score maps and then applies the
assembly module to output the target. Unlike the above methods, the multi-task network
cascade strategy [25,26] is applied to instance segmentation in which semantic segmenta-
tion and target detection are conducted synchronously. The results confirm that features
can be optimized due to the commonness of multiple subtasks [27,28]. Considering the
advantages of the above methods, in this paper, we combine the task of object detection and
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semantic segmentation to achieve building instance segmentation. We adopt an anchor-free
framework in the detection task and improve the CenterNet detector. Multi-modal features
are effectively fused in the semantic segmentation task to increase prediction accuracy.

2.2. Multi-Modal Feature Fusion

In the natural environment, different sensors can capture various modal data, such
as sound, text, raster data, and vector information. LiDAR and image are two typical
modalities that mutually compensate for 2D and 3D information for semantic segmentation
or object detection in deep learning tasks. On the one hand, some methods manage
to integrate optical image features into 3D representation. For example, Yoo et al. [29]
established auto-calibrated projection and a gated feature fusion network to transform
and fuse features for 3D target detection. Qi et al. [30] obtained 2D semantic segmentation
results using images and projected them to a 3D frustum space combined with PointNet
for localization.

On the other hand, spatial information from LiDAR is converted into digital geo-
graphic models and fused with optical image features. For example, Hosseinpour et al.
developed a two-stream residual network with feature-gated units to extract buildings [31].
Based on nDSM and optical image data, Cao et al. constructed a cross-modal feature cali-
bration module by effectively modeling the attention mechanism to aggregate context [32].
Moreover, LiDAR point cloud data can be transformed into depth images. From this
perspective, depth-aware modules were introduced to feature construction. For instance,
Wang et al. proposed a depth-aware CNN (D-CNN) [33], which explicitly models depth
information and integrates it into convolutional operators. Similarly, Chen et al. proposed
DPANet [34] for salient object detection with depth potential perception and combined
the complementary advantages of RGB-D images. However, the above methods ignore
semantic and spatial correlations when fusing multi-modal features. The gap in different
feature domains brings obstacles to parameter optimization and even introduces noise
information. To solve the above problems, we construct a multi-modal feature fusion
module and introduce a D-CNN structure and involution to enhance the complementarity
of spectral and spatial features.

3. Method
3.1. Building Instance Segmentation Architecture

As illustrated in Figure 1, the network architecture is composed of an encoder-decoder.
LiDAR data and images as multi-modal data are transmitted into encoders to extract fea-
tures, while the decoder predicts the instance mask by semantic segmentation and detection
approaches for each building. Meanwhile, two novel feature optimization modules were
developed to dynamically fuse multi-modal features and enhance local and global contexts.

Concretely, in the encoders, one branch, as the backbone network, adopts the improved
ResNet50 [35] for feature extraction with images as inputs, while another applies ResNet18
for LiDAR data products. In ResNet50, convolutional layers can be divided into different
stages, including stage 1~stage 5, as presented in Figure 1. Two 3 × 3 convolutions replace
a 7 × 7 convolution in stage 1 to reduce parameters. In stage 5, the residual blocks are
modified to enlarge the receptive field with high spatial resolution. Specifically, the dilated
3 × 3 convolution with a dilation ratio of 2 is applied to residual blocks and keeps the same
spatial resolution with the feature maps of stage 4. The drop layer follows the last residual
blocks with a ratio of 50% to prevent overfitting.

For the decoders, the feature from the encoders is transmitted to different subnetworks
to complete semantic segmentation and object detection. The feature pyramid [36] structure
is constructed to recover fine-grained information in the segmentation task. In the object
detection tasks, we developed an adaptive center point detector based on the CenterNet’s
detector [21] to predict the spatial position of each building. Finally, the above outputs are
combined to generate the masks for each building. The whole learning process obeys an
end-to-end paradigm without any post-processing.
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Figure 1. The network architecture for building instance segmentation. 
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Figure 1. The network architecture for building instance segmentation.

3.2. Local Spectral–Spatial Perceptron

To effectively fuse multi-modal features, we established a local spectral–spatial per-
ceptron (LSSP) in the encoders and dynamically integrated the dual-modal information
into the convolutional operation. Figure 2 exhibits the details of the module structures. The
LSSP can be flexibly embedded into residual network blocks with learning parameters.
This module unit consists of two network structures with complementary functions: the
local spatial perceptron and the local spectral perceptron.
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Figure 2. Local spectral–spatial perceptron. This module consists of two units: the local spatial
perceptron and spectral perceptron.
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3.2.1. Local Spatial Perceptron

Considering the image depth and spectral feature correlations in CNN, the depth-
aware CNN (D-CNN) [33] operator explicitly establishes the depth similarity coefficient
for any central point and its neighborhoods. Convolution kernels matching these weights
extract local features, seamlessly incorporating depth information into convolution opera-
tion without increasing additional parameters. Nevertheless, D-CNN cannot adaptively
encode the spatial context in different spectral channels. Probably, irrelevant background
features are enhanced synchronously. To address the above issues, the spatial perceptron
unit extends the D-CNN structure with multiple spatial representations and recalibrates
local optical image features using LiDAR products instead of depth images.

Specifically, the input feature cube is defined as X∈RH×W×Cin , where H, W, and
Cin represent the height, width, and channel numbers of the feature maps, respectively.
Conventionally, if there are output feature maps with channels of Cout, the 2D convolution
operation can be represented as follows:

Yi,j,m = (
Cin

∑
n=1

∑
(u,v)∈Θ

Wm,n,u,vX(i + u, j + v, n)) + bi,j,m, (1)

Θ = {(−1, −1), (0, −1), (1, −1) . . . ,(0, 1), (1, 1)}, (2)

where Yi,j,m denotes the convolutional feature on the 2D position of the (i, j) index and the
m-th channel (m∈Cout); and Θ denotes convolution kernel neighborhood with size k × k.
For example, if k is set to 3, Θ can be defined by Equation (2); (u, v) presents the spatial
index position on Θ; X(·) is the input feature from the Θ; and Wm,n,u,v and bi,j,m correspond
to the learning weights and basic parameters, respectively.

As illustrated in Figure 2, XD and XS represent the input feature maps from LiDAR
and the optical image, respectively. The function ϕ(·) maps XD and XS to Yl

D and
Yl

S, respectively, where l is low rank for the channel dimension representing the 3D
spatial feature response in some aspects. This process can be modeled as Equation (3),
and Conv2D1 × 1 is used with the activation function Relu. To fuse spatial features,
we established the local spatial similarity weights using WD and combined the depth-
wise separable convolution (DS-Conv) [37] to extract features using Yl

S, as defined in
Equation (4), where α is a regulatory factor (referring to [37], α is set to 8.3).

Yl
D = ϕ(XD), Yl

S = ϕ(XS), (3)

WD
u,v,m = exp(−α

∣∣∣YD
l (i + u, j + v, m)−YD

l (i, j, m)
∣∣∣), (u, v ∈ Θ), (4)

Equation (4) implies that, if a central point has similar spatial features to its neighbor-
hoods, these points are assigned greater weights. In Equation (5), Fi,j,m enumerates each
separable feature on the (i, j, m) spatial index position (m = 1, 2,···, l), and WS

u,v,m is the
learning weight parameters from DS-Conv. Finally, Conv2D1 × 1 is a residual bottleneck
structure map Fi,j,m of initial Cin dimensions, as presented in Equation (6), where Zi,j,n is
the fused feature on (i, j, n) position, and WS

m,n is the mapping parameter.

Fi,j,m = ∑
(u,v)∈Θ

WD
u,v,mWS

u,v,mYl
S(i + u, j + v, m), (5)

Zi,j,n = XS(i, j, n) +
Cin

∑
n

WS
m,nFi,j,m, (6)

3.2.2. Local Spectral Perceptron

Local spatial perceptron can explicitly fuse 3D spatial features into spectral features
by constructing local spatial similarity. However, some errors can arise from unreliable
3D information if point cloud data exist or noise or buildings present significant elevation



Remote Sens. 2022, 14, 4920 7 of 23

variation, such as non-planar roofs and large-scale buildings with different heights. Addi-
tionally, LiDAR-based products (e.g., DSM) present inherent errors derived from particular
environments when some interpolation-based or triangulation-mesh-generation-based
algorithms are used. If the convolution kernel is directly assigned to unreliable weights,
these errors can cause intra-class inconsistency for the feature extraction.

To address the above problems, we managed to integrate spectral confidence into
LiDAR features and guided convolution to recalibrate kernels for XD. Involution [38] is a
network structure with channel-agnostic and spatial-specific properties, which “squeeze”
local spatial features and learn channel attention in an arbitrary position. Inspired by this
operator, we constructed the local spectral perceptron to obtain a spectral response. Firstly,
as illustrated in Figure 2, average pooling operation avpool(·) is applied to the aggregate, 2D,
spatial context in each channel domain of XS, as defined in Equation (7). Then, calibration
parameters WS

i+u, j+v are learned at a spatial location of (i, j, n), as defined in Equation (8),
where u,v∈Θ (the size of Θ is k2) and σ(·) are the activation functions using Relu; and
wS

i+u,j+v,n denotes weights corresponding to the n-th channel. WS
i+u,j+v represents the

spectral response in channel domains and shares all positions. Finally, convolution kernels
Wm,n,u,v match WS

i+u, j+v to recalibrate XD, as defined in Equation (9), where YD
i,j,m is the

fused feature.
YS

u,v = avpool(XS), (u, v ∈ Θ), (7)

WS
i+u,j+v = σ(

Cin

∑
n=1

wS
i+u,j+v,nYS

u,v(i, j, n)), (8)

YD
i,j,m = (

Cin

∑
n=1

∑
(u,v)∈Θ

WS
i+u,j+vWm,n,u,vXD(i + u, j + v, n)) (9)

3.3. Cross-Level Global Feature Fusion

The LSSP formulates feature fusion fashion based on the local region and shallow
encoders. However, as the depth of the network increases, spatial information significantly
decreases due to the low spatial resolution of the feature maps. Feature interpretability
becomes difficult, while semantic information is enhanced. Hence, the LSSP is not suitable
for high-level feature transformation and fusion. Additionally, local operators based on
convolution cannot obtain long-range interdependence. The semantic gap in different
levels causes difficulties in decoding context features. To address the above problems,
we constructed a cross-level global feature fusion (CLGF) module to decode contextual
information from different level features, as shown in Figure 3.
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Specifically, if features Xi
D and Xi

S are derived from stages i, fused feature maps fi can
be obtained. Concretely, function φi(·) maps Xi

D and Xi
S into embedding space, as defined

in Equation (10), and the channel is reduced by Cin/r, where φi(·) is Conv1 × 1 operator
following activation function Relu, and r is reduction ratio. A non-local [39] operator
is applied to the CLGF module and generates the global context. High-level features
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have abundant semantic information with a large receptive field, which is suitable for
identifying categories, while shallow features have fine-grained features that are conducive
to recovering details of buildings. Hence, unlike conventional, non-local networks, CLGF
constructs cross-level semantic similarity maps from different layers. In the network
structure, as shown in Figure 1, f 5 as a high-level feature in stage 5 and f 3/f 4 (as low-level
and middle-level features from stage 3 and stage 4) are used to achieve a similarity matrix.
In Equation (11), F(fp, fq) presents similarity between f 5 and f 3/f 4, where (u, v, m) and (u′,
v′, m′) denote arbitrary positions on the feature maps. Softmax function is used for the
normalization of similarity maps.

fi = φ(XD
i + XS

i ) = Relu(wi(XD
i + XS

i )), (10)

F( fp, fq) =
exp(SPP( fp(u′, v′, m))⊗ fq(u, v, m))

∑ exp(SPP( fp(u′, v′, m))⊗ fq(u, v, m))
, {p, q ∈ i|i = 3, 4, 5}, (11)

Additionally, since high-level feature maps have lower spatial resolution with a larger
receptive field than shallow layers, pixel-wise interdependence is converted into pixel–
regional correlations. To reduce the computational burden, a spatial pooling pyramid
(SPP) [40] is applied to resample feature maps using average pooling for f 3~f 5 and keeping
the same spatial resolution. In the network, we adopted the average pooling operator
using different pooling rates in SPP to aggregate multi-scale regional features. The above
process can be modeled as Equation (12), where Fq

U is a new feature fusing global and
local contexts.

FU
q = fq(u, v, m) +

Cin/r

∑
m=1

SPP( fp(u, v, m))F( fp, fq), q = 3, 4 (12)

3.4. Adaptive Center Point Detector

CenterNet [21] provides a simple and efficient one-stage network framework based on
an anchor-free strategy. This network represents the object as a point in the bounding box
center by the CNN. Hence, the object center prediction determines the detection accuracy
of the whole network. However, buildings exhibit multi-scale variation with different
shapes and complex geometric structures. Convolution operation obeys the fixed grid
computation structure with a limited receptive field, which causes contextual information
loss for the center position regression. As illustrated in Figure 4, some buildings present
irregular shapes, such as the “T” shape, “E” shape, ring shape, and narrow, long shape,
where the building center does not exist in itself. As a result, the center point detector lacks
corresponding context and semantic features, resulting in deviation of position regression.
Moreover, the same building instance can be predicted with multiple center points due to
its large size or spectral heterogeneity. To deal with this issue, we proposed an adaptive
center point detector (ACPD) based on the CenterNet formulation, as shown in Figure 4.
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The ACPD constructs two branches to extract contextual information: central position
and scale. Deformable convolution [41] adopts an adaptive computation paradigm to
capture features by predicting offset parameters for the convolution kernels and extracting
features instead of fixed geometric structures. In Equation (13), Ys

i,j,m is the corresponding
deformable feature; (∆u, ∆v) denotes the coordinate offset of convolution kernels; Ω is the
range of deformation; and Θ is the kernel neighborhood in conventional convolution with
a size of k × k, which is similar to Equation (1). Nevertheless, deformable convolution im-
plicitly models inference without supervision for offset prediction. An unrelated feature or
other instance information is probably introduced into regression analysis due to uncertain
offset variation. Additionally, weight parameters and complexity significantly increase
since each feature position requires two offsets. Therefore, we redesigned the deformable
range Ω and managed to explicitly enhance contextual representation for the center point
regression under supervised learning.

Ys
i,j,m = (

Cin

∑
n=1

∑
(u, v) ∈ Θ,

(∆u, ∆v) ∈ Ω

Wm,n,u,vX(i + u + ∆u, j + v + ∆v, n)), (13)

Concretely, the ACPD predicts coordinate offsets to limit deformable range using four
groups of offset parameters. In Equation (14), E1~E4 ∈Ω are point coordinates defining
each object range depending on the minimum bounding box size. The abscissa offsets and
ordinate offsets from E1~E4 are limited to a certain extent, which can improve detection
sensitivity at the object boundary. Then, deformable convolution kernels with k = 2 are
assigned to positions E1~E4, in which features can be obtained by bilinear interpolation.

E1 = (u1 + ∆u1, v1 + ∆vmin), E2 = (u2 + ∆u2, v2 + ∆vmax),

E3 = (u3 + ∆umin, v3 + ∆v3), E4 = (u4 + ∆umax, v4 + ∆v4),
(14)

where (∆u1,∆u2)∈Ω∆umin×∆umax and (∆v3,∆v4)∈Ω∆vmin×∆vmax ; u1~u4 and v1~v4 ∈Θ; ∆umin
and ∆umax are the minimum and maximum on the abscissa offset, respectively; and ∆vmin
and ∆vmax are the minimum and maximum on the ordinate offset, respectively.

Considering the scale variation of the objects, another branch of the ACPD captures
holistic instance features. Specifically, predicted instance regions are regularly divided into
rectangular grids based on offset range and aligned with the corresponding feature map.
Each feature in the grid cell is aggregated using the average pooling operator. Equation (15)
defines the grid cell size as hr × wr. Rectangular grid size can be defined by Equation (16),
where Hr and Wr are the height and width, respectively. In the network, we sequentially
assigned convolution kernels with k = 3 to match these grids and extract features, as defined
in Equation (17), where (∆u, ∆v) ∈ ΩHr×Wr . Finally, fused feature maps YH

i,j,m from the
dual branches of the ACPD can be obtained, as defined in Equation (18). The ACPD is
embedded in the residual block and generates the heatmap with 3 × 3 convolution.

hr = dHr/ke, wr = dWr/ke, (15)

Hr = max(k, v2 − v1 + ∆vmax − ∆vmin), Wr = max(k, u4 − u3 + ∆umax − ∆umin), (16)

YP
i,j,m

=
Cin

∑
n=1

∑
(u, v) ∈ Θ,

(∆u, ∆v) ∈ Ω

Wm,n,u,vavepool(X(i + u + ∆u, j + v + ∆v, n)), (17)

YH
i,j,m

= Ys
i,j,m

+ Yp
i,j,m

, (18)
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4. Model Loss Function

The multi-task learning model adopts different losses, including semantic segmenta-
tion loss and object regression loss, to optimize network training. Softmax function is used
to normalize predicted results in the segmentation task. We used the binary cross-entropy
loss Lseg for pixel-wise segmentation. Following the CenterNet loss function [21], Lk and
Loff denote focal loss and offset loss for the center point regression, respectively.

To predict deformable offset under supervised learning, we established self-supervision
and strong-supervision loss functions for the scale and position regression. In self-supervision,
E1~E4 are the extreme points located on the boundary of the bounding box. Hence, these
coordinates are satisfied with geometric relationships. As presented in Figure 4, predicted
central coordinates denote the midpoints for E1~E4 in abscissa and ordinate. The net-
work applies the smooth L1 function to constrain the above relationship, as defined in
Equation (19). Similarly, in strong supervision, the ACPD applies offset to regress the scale
of the bounding box for each object, as defined in Equation (20), where Su and Sv denote the
width and height of the bounding box in ground truth, respectively. Finally, the total loss
can be expressed by Equation (21), where constant coefficient λ is used to adjust the loss
proportion in the multiple-task training (referring to CenterNet [21] λseg = 2, λk = λo f f = 1,
λps = 0.1 in the experiments).

Lpos =
1
N ∑

i

∣∣∣∣u3 + ∆umin + u4 + ∆umax

2
− xc

∣∣∣∣+ ∣∣∣∣v1 + ∆vmin + v2 + ∆vmax

2
− yc

∣∣∣∣, (19)

Lscale =
1
N ∑

i
|u4 + ∆umax − u3 − ∆umin − Su|+ |v2 + ∆vmax − v1 − ∆vmin − Sv|, (20)

Ltotal = λsegLseg + λkLk + λo f f Lo f f + λps(Lpos + Lscale), (21)

5. Experiments
5.1. Datasets Description

Many public, open building extraction datasets have been created to train advanced
deep neural network models and verify their performance or accuracy [14]. However, these
building datasets mainly serve the semantic segmentation of buildings with a single data
source. Therefore, to train the proposed model and verify its effectiveness, we created
an open building instance segmentation dataset using multi-modal remote sensing data
(BISM), including high-spatial-resolution multispectral images and LiDAR data. Table 1
displays the metadata information for the BISM dataset.

Table 1. Metadata information in the BISM dataset.

Dataset
Name

Data Resource Sensor
Platform

GCD
(m)

Sample
Numbers

Area
(km2)

Data Size
(pixel) Ground Truth

2D 3D

BISM
(ours)

image/R-
G-B-NIR

point cloud
data (.las) aerial/LiDAR 0.3 2496 60 512 × 512 Polygon

vectors/raster

Generally, the BISM dataset covers 60 km2 in Boston, Massachusetts, the United States,
and comprises approximately 39,527 building objects, accounting for 23.39% of the total
experimental area. The experimental area consists of various features, as shown in Figure 5.
Some details are shown in the yellow rectangle for close-up inspection. Category imbalance
brings challenges to the reasonable design of the model structure. Additionally, these
buildings exhibit diverse textures and colors with complex geometric shapes. The above
factors can enhance the potential of different models for building automatic interpreta-
tion and evaluating their generalization ability. Multispectral aerial orthoimages were
obtained in 2013 from the United States Geological Survey (USGS) [42] with 0.3 m spatial
resolution and red–green–blue–near-infrared (RGB-NIR) channels. Thirty orthoimages
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with a size of 5000 × 5000 pixels were integrated and cropped into a mosaic image of
26,624 × 24,576 pixels. LiDAR point data (.las format) were derived from the National
Oceanic and Atmospheric Administration (NOAA) [43] in 2013 with an estimated point
spacing of 0.35 m, vertical accuracy of 5.2 cm, and horizontal accuracy of 36 cm.
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5.2. Data Preprocessing

In the BISM datasets, noise points and outliers were removed for the 3D LiDAR point
cloud data using the open-source software Cloud Compare [44]. LiDAR products were
generated for different input strategies, such as normalized difference vegetation index
(NDVI), digital elevation model (DEM), digital surface model (DSM), and normalized
digital surface model (nDSM), as shown in Figure 5. The cloth simulation filter (CSF) [45]
algorithm was used to generate nDSM and DEM. Finally, the products derived from the
LiDAR point cloud data were rasterized and resampled to a spatial resolution of 0.3 m.

LIDAR point cloud data and images were geographically registered in the same projec-
tion coordinate system to reduce spatial shift. Due to the oblique errors of photogrammetry,
we used DEM derived from LiDAR to complete the orthorectification for images. However,
the edges of some buildings are not accurate in DSM due to the sparsity of point cloud data
and the inherent errors of some interpolation algorithms. Some buildings still have oblique
facades and shadows. Therefore, in the ground truth, we comprehensively considered the
spatial relationship between the image and DSM to draw the correct vector boundary for
the buildings. Concretely, we manually edited polygon vectors (.shp format) using ArcGIS
software by visual interpretation. The results referenced the open street map (OSM).

For model training, the entire dataset was cropped into 2496 tiles with a size of
512 × 512 pixels. These tiles were divided into several subsets, including the training subset
(1747 tiles), validation subset (500 tiles), and test subset (248 tiles). The data augmentation
strategy was applied to the model training to increase the number of samples and enhance
the model generalization ability. These sample patches were processed by fundamental
image transformation, such as rotation 180◦ counterclockwise, adding random noise, and
mirror transformation along the vertical or horizontal directions. As a result, the training
data subset was increased to 5241 tiles. We used the minimum bounding box to mark the
location and range of each building object. In addition, a subset (3000 tiles) was created in
distinct areas from the WHU dataset [14] for the subsequent experimental comparison. The
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WHU subset was augmented and divided into the training subset (4200 tiles), validation
subset (600 tiles), and test subset (300 tiles).

5.3. Experimental Configuration and Metrics

In the model training phase, all experiments were completed on the Keras/Tensorflow
platform using the configuration of 3 × 32 GB RAM, NVIDIA Tesla V100 GPU. Each
network model was trained with 400 epochs with an initial learning rate of 0.001 and a
batch size of 16. The Adam algorithm was applied to optimize training parameters with
a momentum rate of 0.9. The learning rate decreased if the validation accuracy did not
improve every five iterations. The weight parameters in ResNet50 were initialized by the
pre-trained model in the public dataset ImageNet. Other network layers were initialized by
the Xavier [45] method. Several experiments were completed to verify the performance of
the proposed method.

The proposed network model uses a multi-task learning paradigm to obtain the results
of instance segmentation. The accuracy of the results is affected by segmentation and
detection. As a result, we evaluated its performance in an ablation experiment. Intersection
over union (IOU), F1-score, and average accuracy (AP) are widely used in the evaluation
of semantic segmentation and object detection. These metrics can be calculated by other
evaluation parameters, including TP, FP, FN, precision, and recall. In the regression de-
tection task, an object is marked as a positive sample (TP) when the IOU (between the
predicted bounding box and its ground truth) is greater than the threshold; otherwise, it
is a false positive (FP). If the object is not identified, it is marked as a false negative (FN).
In the experiment, the threshold of IOU was set to 0.5. Precision and recall were defined
by Equations (22) and (23). Therefore, AP was calculated by Equation (24). Similarly, we
only counted the number of pixels for each object within the bounding box to achieve the
metrics in the semantic segmentation task. The predicted probability of each pixel was
obtained by the Softmax function. The F1-score was applied to the segmentation task, as
defined by Equation (25).

Precision =
TP

TP + FN
, (22)

Recall =
TP

TP + FP
, (23)

AP =
∫ 1

0
P(R)d(R) (24)

F1−score = 2 · Precision · recall
Precision + recall

(25)

5.4. Ablation Study on Multi-Modal Data

To verify the influence of multi-modal data on the model prediction, we arranged
seven groups using different input strategies in the BISM dataset, as shown in Figure 6.
When RGB-NIR-NDVI was input, we only retained the backbone network, and oth-
ers were removed. If the input contained LiDAR products, backbone and branch net-
works were reserved. Multispectral images were fed into the backbone network, while
DEM/DSM/nDSM was fed into the branch network.

We first completed the comparative analysis in the experiment with RGB, RGB–NDVI,
and RGB–NIR. Compared with inputs only using RGB, it can be observed in Figure 6 that
the accuracy was improved by 0.3% AP and 1.6% F1-score when using RGB-NIR. Similarly,
RGB-NDVI as input achieved a slight increase compared to RGB-NIR. However, when
DEM was introduced into the model, the prediction accuracy decreased by 2% AP and
1.5% F1-score. Probably, the DEM could not represent the height variation of the buildings,
and noise was introduced into model training. In contrast, when RGB-NDVI-DSM was fed
into the network, the prediction accuracy was significantly increased by 1.5% AP and 6.7%
F1-score compared to RGB, which indicates that LiDAR features can increase the accuracy of
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segmentation. The accuracy did not obviously change using RGB-NDVI-nDSM. However,
the last group with DEM and nDSM achieved better results than the other groups, with
89.8% AP and 86.3% F1-score. Therefore, we used RGB-NDVI-nDSM-DEM as multi-modal
data in subsequent experiments.
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5.5. Contributions of Modules in LSSP and CLGF

Based on the above analysis, the LSSP fuses local features from different modal in-
formation, while CLGF integrates global context. Hence, we compared and analyzed
the complementary ability of these two modules using the BISM dataset. Firstly, in the
experiments with the LSSP, we verified the model performance using the spatial perceptron
(SPA) and the spectral perceptron (SPE) in the LSSP, respectively. Meanwhile, some hyper-
parameters were determined by quantitative analysis and comparison. Each sub-module
was applied to the model separately, and others were removed. Input data included multi-
spectral images and LiDAR products. The feature maps from the four stages were fused
through FPN. The fused feature maps with a size of 128 × 128 were used for regression
and upsampled to 512 × 512 for the segmentation. ResNet50 and the CenterNet detectors
were combined as the backbone model (BM) for the comparative analysis.

The SPA module is subject to two parameters, l and k. l determines some influence on
optical features when the LiDAR feature is decomposed into multiple spatial representa-
tions. For testing module sensitivity, l is set to 2/3, 1/4, 1/8, or 1/16 of the input channel
numbers, and k is set to 3, 5, or 7. Table 2 presents the accuracy of the results using different
modules. It can be observed that the AP and F1-score improved when l was increased from
1/16 to 1/4, but the performance remained stable and even decreased when l was set at 2/3.
Probably, more parameters were introduced to the network structure, which increased the
difficulty of training optimization. Similarly, as the k increased, AP did not show regular
changes, but the F1-score increased with a large k. Hence, based on the best computation
efficiency and performance, l = 1/4 and k = 5 were set in the experiments.

Table 2. Comparison with different hyperparameters in SPA.

Metric AP F1-Score

l 1/16 1/8 1/4 2/3 1/16 1/8 1/4 2/3

k
3 0.873 0.884 0.901 0.900 0.834 0.876 0.873 0.872
5 0.875 0.871 0.914 0.911 0.867 0.865 0.910 0.870
7 0.872 0.883 0.917 0.896 0.866 0.867 0.879 0.874

Figure 7 shows the impact of the ablation studies on different modules with the
accuracy of the results. Although AP presented a slight increase of 1.3%~1.6% when using
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BM + SPA or BM + SPE compared to BM, segmentation results significantly increased with
an F1-score about 5% higher than BM. In general, the LSSP module improved prediction
accuracy from 89.8% AP to 91.6% AP and 86.3% F1-score to 90.3% F1-score. Compared
with BM, detection accuracy using CLGF slightly increased by 0.4% AP, but segmentation
accuracy improved by 3.8% F1-score. In addition, detection and segmentation tasks had
a large accuracy deviation between AP and F1-score when using BM or BM + SPE, while
other combinations had relatively small variations. This indicates that the SPA made more
contributions to the segmentation task than the SPE. In general, the detection accuracy was
higher than the segmentation accuracy since the ROI region had an impact and limitation
on the segmentation results. As a result, the above analysis demonstrates that the proposed
modules can improve the prediction accuracy, and their combination gains more.
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Figure 8 displays the results of feature variation and instance segmentation. Test
image A and test image B contain buildings with different scales and very similar textures
to roads. To analyze the influence of the LSSP on the shallow encoders, we used feature
maps via stage 2 to generate a heatmap by calculating the mean value along the channel
dimension. Visually, it can be observed in the heatmap that the LSSP enhanced the boundary
information and regional feature. Although the prediction range of some buildings is
inaccurate, multi-scale buildings are correctly segmented. In contrast, there exist some
false negatives using BM in image A. Additionally, as shown in image B, BM has a weak
detection ability for large buildings. The prediction results were easily subject to the
road feature, as shown in the details, which implies that the LSSP can effectively fuse
spatial–spectral features to distinguish heterogeneous features.

For the CLGF, Figure 9 displays the heatmap overlapped on the raw images, revealing
some variation. The background features exhibited a weak response after using CLGF, espe-
cially for roads and ground. Large-scale building areas have inconsistent feature responses
in local regions, as shown in the heatmaps marked by black ellipses. In contrast, CLGF
alleviated this heterogeneity and recalibrated feature distribution. The result indicates that
this module can assist the network in filtering out redundant information and enhancing
semantic correlations.
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predicted location. The circular points represent the predicted center points. The details in the red
rectangular are from close-up inspection.
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5.6. Center Point Detector Accuracy Analysis

In this experiment, the multispectral and DSM images were fed into the model, and
other modules were removed. In the experiment, we set a threshold of 0.5 for the final
center points. As shown in Table 3, compared with BM, AP increased by about 2.2% in the
BISM dataset for BM + AP, which implies that the ACPD can improve the detector accuracy.
Meanwhile, segmentation accuracy improved by 1.9% F1-score.

Table 3. Influence of ACPD on prediction accuracy using the BISM dataset.

Metric AP F1-Score

Modules BM BM + ACPD BM BM + ACPD
Accuracy 0.898 0.920 0.863 0.882

The prediction results from three images were visualized, as displayed in Figure 10, to
visualize the result performance. Dense and small-scale buildings exist in test image A with
shadows and cement surfaces. BM + ACPD achieved better building segmentation results.
However, some buildings were not detected using BM, as shown by the green ellipse.
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Figure 10. Three experimental results are presented. The second column is the central point prediction
map overlapped on the raw image, where the red area brightness denotes the center semantic intensity.
The first and third columns are the raw data and corresponding labels. The fourth and fifth columns
show instance segmentation results using different methods.
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Test image B has large-size and tall buildings with vegetation distribution. These
buildings exhibit various shapes where some central positions do not exist in themselves.
As shown in the green ellipse of Figure 10, the CenterNet detector presented multiple
centers that deteriorated the position precision. In contrast, the ACPD exhibited better
performance in large-size buildings. The problem of multiple centers was alleviated, and
semantic information was enhanced.

Test image C contains narrow, long buildings. Compared with CenterNet detections,
the ACPD identified these central positions with less deviation. Background features using
BM were misclassified where central points had a weak response, as shown in the red
ellipse. As a result, the ACPD can improve center regression ability, especially for buildings
with complex shapes.

Furthermore, we selected other typical samples in the test data and conducted com-
parative experiments with the ACPD and CenterNet to verify the detection ability of the
proposed module for complex-shaped buildings. Figure 11 shows examples of buildings
with various irregular boundaries. Although the predicted center of some buildings had
a slight deviation, such as in the first and last rows, and presented FN for some small
buildings, the ACPD could better correct the central positions for large-scale buildings
than the CenterNet detector. In addition, it can be observed that the same building in the
sixth column presented multiple prediction centers via CenterNet, which deteriorated the
semantic segmentation results, as shown in the third column. The buildings in the second
and last rows were not wholly detected since many FT samples, such as some roads, were
misclassified. In contrast, the ACPD optimized the center point feature and reduced the
interference of background information. The proposed method can significantly suppress
FT samples and improve the semantic segmentation performance compared to the results
of the third and fourth columns.
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5.7. Comparisons with State-of-the-Art Methods

This section compares the proposed model with other, state-of-the-art instance segmen-
tation methods. BISM and WHU datasets [14] were used to verify the generality of different
methods. Since the WHU dataset only contains RGB images, we used the ACPD and CLFG
modules with a backbone network. For comparison and analysis, the framework of all
methods adopted ResNet50 as the primary network structure, combining different types of
detectors. As mentioned, we selected advanced algorithms, including Mask RCNN [13],
PANet [19], SOLOv2 [22], and CenterMask [16], to verify the advantages of the proposed
network. All experimental configurations were kept the same.
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Tables 4 and 5 show the accuracy in two datasets using different methods. The test
datasets were classified into three scales by AP and F1-score, small (s), middle (m), and
large (l), to evaluate multi-scale performance. These methods generally achieved better
results in the BISM dataset than in the WHU dataset, indicating that multi-modal data
contribute to building detection and segmentation performance.

Table 4. Accuracy comparison using test images on the BISM dataset. The bold format represents the
best result, while the underlined values represent the second.

Type Methods AP APs APm APl F1-Score F1-Scores F1-Scorem F1-Scorel Inference
Time (ms)

Two-stage Mask RCNN [13] 0.897 0.894 0.898 0.886 0.864 0.853 0.874 0.872 78.35
PANet [19] 0.901 0.867 0.925 0.876 0.885 0.892 0.893 0.879 79.94

One-stage CenterMask [16] 0.887 0.873 0.894 0.889 0.878 0.861 0.895 0.883 44.16
SOLOv2 [22] 0.874 0.896 0.901 0.883 0.870 0.856 0.877 0.881 48.47

Multi-task Ours 0.929 0.928 0.923 0.930 0.918 0.896 0.921 0.934 46.29

Table 5. Accuracy comparison using test images on the WHU dataset. The bold format represents
the best result, while the underlined values represent the second.

Type Methods AP APs APm APl F1-Score F1-Scores F1-Scorem F1-Scorel Inference
Time (ms)

Two-stage Mask RCNN [13] 0.778 0.672 0.815 0.843 0.757 0.658 0.773 0.839 67.38
PANet [19] 0.792 0.775 0.838 0.786 0.771 0.740 0.823 0.757 71.24

One-stage CenterMask [22] 0.821 0.819 0.812 0.831 0.773 0.764 0.777 0.763 44.07
SOLOv2 [23] 0.775 0.773 0.827 0.784 0.782 0.754 0.821 0.775 43.28

Multi-task Ours 0.824 0.828 0.784 0.863 0.795 0.783 0.798 0.894 45.21

In the BISM dataset, the proposed model performed better in multi-scale AP and
F1-score than the others, especially for large-scale buildings. Although the inference time
was not the best, the speed was higher than in the two-stage detection methods. PANet was
superior to other methods but had low APl with a long inference time and a low F1-score
for large-scale buildings. The CenterNet detection framework enabled CenterMask to
achieve the best inference time and high-precision APl. However, this network had poor
performance for small-scale buildings. SOLOv2 had the lowest detection accuracy with an
APl of 88.3% but outperformed other methods in small-size buildings. A large number of
buildings introduces more parameters and increases the difficulty of the model training. In
addition, the prediction of global masks, depending on the manual setting, is not suitable
for a number of dense buildings. Mask RCNN had the lowest segmentation accuracy with
an F1-score of 86.4% due to poor performance on small-scale buildings, which indicates that
low spatial resolution is not conducive to high-precision segmentation for small buildings.

In the WHU dataset, although our method did not achieve the best results in APm and
F1-scorem, the total accuracy outperformed other methods. CenterMask obtained better
detection results with 82.1% AP, while SOLOv2 had a higher F1-score of 78.2% compared to
others. Although PANet achieved the best performance in medium-size buildings with an
APl of 83.8% and 82.3% F1-scorem, it presented weak prediction ability in small-scale and
large-scale buildings. Regarding detection efficiency and accuracy, the one-stage method
had advantages over the two-stage methods for building instance segmentation.

In addition, we removed the LSSP and LiDAR products with the encoder branch to
verify the model’s generalization ability, using only RGB images as input in the BISM
dataset. In Table A1 of Appendix A, it can be seen that PANet had a F1-score 1.2% higher
than ours in the segmentation task. On different scales, it was observed that the proposed
model had poor performance in small-scale buildings, with an F1-scores of 79.8%. Never-
theless, our method achieved the best performance in the detection task compared with
other methods with 88.5% AP. In addition, comparing the accuracy shown in Table 4, AP
decreased by 4.4%, and the F1-score decreased by about 10%, which indicates that the LSSP
fusing multi-modal features can improve the segmentation accuracy significantly.
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Four typical areas were visualized in the test dataset to analyze the performance of the
results using different methods. As shown in the first column of Figure 12a, Figure 12a,b
belong to the BISM dataset, while test images C and D come from the WHU dataset.
Test image A contains some buildings with complex shapes. The proposed methods
achieved better performance than other models in complex-shape buildings, as illustrated
in Figure 12b. Obviously, other networks had a weak ability to regress position for narrow,
long buildings. In addition, Mask RCNN and PANet were sensitive to shadow changes
misclassified as small holes in the roofs. Although there were accurate results for some
buildings with a relatively regular shape using SOLOv2, it had poor performance in “T”-
shape buildings.
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Figure 12. (a) presents the building instance segmentation results using different methods. The
details in the yellow rectangules are enlarged and closely inspected in (b), where the segmentation
results are marked with red for comparison, and the detection result is marked with a random color.
The dotted rectangle denotes the predicted bounding box, and the dot denotes the geometric center
of the bounding box.
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Test image B covers relatively small-scale buildings with an amount of vegetation, as
shown in the second row of Figure 12a. These methods obtained better segmentation results
than test image A, but there were more false negatives for the CenterMask in the detection
task. In contrast, test image C contains large-scale industrial plants that cover over 50% of
the area in one patch. Moreover, some buildings were closely arranged, as displayed in the
third row of Figure 12b. Our method and Mask RCNN outperformed the others, especially
for large-size buildings. PANet misdetected many buildings and could not regress size
accurately for the large building regions. Although SOLOv2 and CenterMask identified
most buildings, the segmentation results were incomplete for some large-scale buildings.
In test image D, there are sparsely distributed small buildings surrounded by cement
ground and vegetation in the suburbs. Our method exhibited better results than others for
small-size buildings. Mask RCNN and SOLOv2 were sensitive to the road feature.

6. Discussion

To further verify the performance of the proposed method, we completed a compara-
tive experiment with traditional methods using the commercial software ENVI 5.3. In the
object-based segmentation process of ENVI, we used the method based on edge detection
to create objects and the support vector machine (SVM) algorithm to classify them. The
results of semantic segmentation are presented in Figure A1 of Appendix A. The proposed
method requires building large-scale training sample datasets. In contrast, the object-based
method can segment the building area simply and efficiently. However, the segmentation
accuracy and performance are inferior to the proposed method. In addition, object-based
segmentation methods cannot obtain end-to-end object-level extraction results and require
post-processing such as clustering or vectorization. Hence, we used pixel-wise overall
accuracy (OA) and F1-score as evaluation indicators.

As shown in Table A2 of Appendix A, the proposed method had more than 9% OA
and 13% F1-score compared to ENVI. Figure A1 of Appendix A shows that the object-
based method had good segmentation ability in small-scale buildings with regular texture.
However, many misclassifications existed for roofs and roads with complex textures or
similar colors. Therefore, it is difficult to distinguish buildings and other objects with
similar spectral and spatial information using only shallow semantic features.

The above experiments confirmed that the proposed method can improve the perfor-
mance of building instance segmentation with high efficiency. However, some issues can
still be potentially explored and optimized. Some buildings cannot be distinguished in
overlapping regions of the bounding boxes, which interferes with the automatic detection
of building information. It is necessary to develop rotated-object detection and obtain the
correct orientation for the buildings. LiDAR products are rasterized into 2D images contain-
ing only elevation variation and 2D spatial information. Hence, the effective combination
of 3D spatial and spectral information can be explored. Furthermore, instead of 2D instance
detection, 3D object-level building detection is a further research direction. In addition,
creating large-scale training datasets takes time and costs money. In further research work,
knowledge distillation or transfer learning combined with a semi-supervised training mode
is worth exploring to reduce the dependence on supervised samples.

The proposed method cannot identify multi-story heights on the same building roof.
LiDAR data can provide different elevation information. Thus, in further research work,
we will continue to improve the detectors to enhance the sensitivity of CNN to 3D position
information. Furthermore, the proposed module consumes a lot of computational memory
due to the high-dimensional feature matrix operations. It is necessary to optimize the
module structure further and reduce memory consumption. In addition, simultaneous
acquisition of LiDAR and image data is not easy, with high operating costs, and the
proposed method contains many parameters to train, which increases the algorithm’s
complexity and brings difficulties to practical application. Further research will improve
the encoders to provide users with flexible input modes using a lightweight network
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structure. Meanwhile, we will improve datasets and provide abundant building labels
(including spatial blocks in multiple heights and different functional zones).

7. Conclusions

Automatic building instance segmentation helps with vital decisions and provides
comprehensive analysis for intelligent city construction. This study combined the advan-
tages of multi-modal remote sensing data with multi-task deep learning to interpret objects.
A building instance segmentation dataset was created, including high-resolution, multispec-
tral images and LiDAR data. Meanwhile, new modules were developed to optimize and
dynamically fuse multi-modal features. The LSSP module constructs spatial and spectral
perceptrons for local feature optimization to mutually compensate for semantic features
and spatial information. In addition, we established the CLGF module to enhance the
global context in the encoders. In the decoders, the ACPD module constructs explicitly de-
formable convolution under supervised learning, which improves the regression ability for
complex shapes and multi-scale buildings. The quantitative analysis and visual results from
multiple experiments and datasets demonstrated that the proposed network framework
can improve prediction accuracy with high efficiency for building instance segmentation.
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Appendix A

Table A1. Accuracy comparison using test images on the BISM dataset only using RGB images. The
bold format represents the best result, while the underlined values represent the second.

Type Methods AP APs APm APl F1-Score F1-Scores F1-Scorem F1-Scorel Inference
Time (ms)

Two-stage Mask-RCNN [13] 0.845 0.821 0.834 0.858 0.839 0.773 0.761 0.805 67.25
PANet [19] 0.833 0.825 0.814 0.867 0.865 0.804 0.856 0.819 72.37

One-stage CenterMask [22] 0.821 0.813 0.835 0.812 0.774 0.803 0.779 0.758 44.16
SOLOv2 [23] 0.773 0.634 0.789 0.864 0.801 0.771 0.811 0.793 46.38

Multi-task Ours 0.885 0.896 0.864 0.872 0.853 0.798 0.824 0.834 44.57

Table A2. Accuracy comparison with ENVI using test images on the BISM and WHU dataset.

Methods
BISM WHU

OA F1-Score OA F1-Score

ENVI 0.872 0.747 0.784 0.695
Ours 0.956 0.918 0.872 0.795

https://github.com/yuanqinglie/Building-instance-segmentation-combining-anchor-free-detectors-and-multi-modal-feature-fusion.git
https://github.com/yuanqinglie/Building-instance-segmentation-combining-anchor-free-detectors-and-multi-modal-feature-fusion.git
https://github.com/yuanqinglie/Building-instance-segmentation-combining-anchor-free-detectors-and-multi-modal-feature-fusion.git
http://bismdataset.mikecrm.com/Yc5qJZD
http://bismdataset.mikecrm.com/Yc5qJZD
http://study.rsgis.whu.edu.cn/pages/download/building_dataset.html
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