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Abstract: Carbon flux is the main basis for judging the carbon source/sink of forest ecosystems.
Bamboo forests have gained much attention because of their high carbon sequestration capacity. In
this study, we used a boreal ecosystem productivity simulator (BEPS) model to simulate the gross
primary productivity (GPP) and net primary productivity (NPP) of bamboo forests in China during
2001–2018, and then explored the spatiotemporal evolution of the carbon fluxes and their response to
climatic factors. The results showed that: (1) The simulated and observed GPP values exhibited a
good correlation with the determination coefficient (R2), root mean square error (RMSE), and absolute
bias (aBIAS) of 0.58, 1.43 g C m−2 day−1, and 1.21 g C m−2 day−1, respectively. (2) During 2001–2018,
GPP and NPP showed fluctuating increasing trends with growth rates of 5.20 g C m−2 yr−1 and
3.88 g C m−2 yr−1, respectively. The spatial distribution characteristics of GPP and NPP were stronger
in the south and east than in the north and west. Additionally, the trend slope results showed that
GPP and NPP mainly increased, and approximately 30% of the area showed a significant increasing
trend. (3) Our study showed that more than half of the area exhibited the fact that the influence of
the average annual precipitation had positive effects on GPP and NPP, while the average annual
minimum and maximum temperatures had negative effects on GPP and NPP. On a monthly scale,
our study also demonstrated that the influence of precipitation on GPP and NPP was higher than
that of the influence of temperature on them.

Keywords: bamboo forest; BEPS model; gross primary productivity; net primary productivity;
spatiotemporal evolution; climate change

1. Introduction

Dynamic change in the carbon cycles of terrestrial ecosystems is a core component
of climate change and regional sustainable development [1]; it plays an important role
in the global carbon balance. Because of the impacts of various environmental and bio-
logical factors (such as climate change, vegetation distribution, and land-use change), the
carbon cycles of terrestrial ecosystems show significant spatial heterogeneity [2]. Forest
ecosystems are an important component of terrestrial ecosystems and play an important
role in improving and maintaining the ecological environment, in addition to regulating
the global carbon balance [3,4]. Therefore, it is essential to quantify carbon fluxes in forest
ecosystems and explore their response to environmental factors in the carbon cycles of
terrestrial ecosystems. Carbon flux [5] is the basis for determining the carbon source/sink
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of an ecosystem and plays an important role in the global carbon cycle and carbon balance.
Ecosystem productivity is an important indicator for quantitatively describing the carbon
sequestration capacity of an ecosystem, which mainly includes gross primary production
(GPP) and net primary production (NPP) [6]. GPP refers to the amount of organic car-
bon fixed by photosynthesis per unit time and unit area of green plants [7,8]. It reflects
the carbon sequestration ability of vegetation, and is the largest carbon flux in terrestrial
ecosystems [9]. NPP is the organic matter or energy remaining for vegetation growth
after deducting the organic matter consumed by vegetation autotrophic respiration (RA)
on the basis of GPP [10]. It can directly reflect the production capacity and ecological
environment quality of surface vegetation in the natural environment, and is an important
indicator for evaluating the carbon sink of ecosystems, in addition to regulating ecological
processes [11,12].

The methods to obtain carbon fluxes of forest ecosystems mainly include sample site
inventory, eddy covariance technology, and model simulation. Sample site inventory can
estimate carbon fluxes more accurately, but the estimation of the carbon fluxes of forest
ecosystems requires long-term field measurements, which consume substantial amounts of
time and labor [13]; therefore, it limits the estimation of carbon fluxes in forest ecosystems.
Eddy covariance technology has the advantages of being a long-term, continuous, and
non-destructive method [14], and has been widely used to estimate the carbon fluxes of
forest ecosystems [15]. However, the number of flux observation sites is limited and the
area of effective observation is very small. There are uncertainties in expanding it from the
site to the regional scale, and it is often hindered by topography and climate conditions;
therefore, eddy covariance technology has limitations in studying carbon fluxes in forest
ecosystems at the regional scale.

Model simulation is an important method of evaluating carbon fluxes in forest ecosys-
tems [16,17]. Remote sensing for earth observation technology has the characteristics of
real-time, dynamic, and large-area synchronous monitoring, in addition to rich informa-
tion [13]. It readily records the dynamic changes in environmental conditions, vegetation
distribution patterns and activities, and land use in the form of electromagnetic information.
This provides the necessary parameters of vegetation (such as NDVI and LAI) and envi-
ronmental variables for the carbon flux model, and becomes a powerful method to study
the distribution, seasonal change, and interannual change in carbon fluxes [18]. Therefore,
the application of remote sensing data in the model estimation helps achieve cross-scale
simulation of the carbon cycle process and reflect the spatial distribution and dynamic
changes in the carbon budget at the regional and global scales. It increases the reliability
and operability of vegetation carbon flux estimation and has become an important re-
search topic [18–22]. Ecological process models simulate the effects of biological vegetation
processes such as canopy photosynthesis, absorption, transpiration, and changes in soil
moisture content on carbon fluxes, and have become an important method for carbon flux
simulation. Common ecological process models include the Biome-BGC model [23], the
BEPS model [24], and the InTEC model [25]. In recent years, scholars have studied the
carbon fluxes of forest ecosystems in different regions using different ecological process
models combined with remote sensing data. For example, Du et al. [26] used an improved
Biome-BGC model with remote sensing data to simulate the above-ground carbon storage
of bamboo forests in Zhejiang Province from 2003 to 2014, and analyzed its spatiotemporal
patterns and influencing factors. Zhang et al. [27] used remote sensing data and the BEPS
model to study the spatiotemporal distribution characteristics of GPP and NPP in terrestrial
ecosystems in East Asia. Zheng et al. [28] used the InTEC model to simulate the NEP of
the forests in Zhejiang Province during 1985–2015, and analyzed the response of climatic
factors such as temperature, precipitation, relative humidity, and radiation.

The BEPS model is an ecological process model based on the FOREST-BGC model [29].
It integrates multi-source data as model inputs and is a good choice for simulating terrestrial
ecosystem productivity with higher accuracy on larger spatial scales. The BEPS model
successfully solved the problem of spatiotemporal scale conversion by using remote sensing
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data. Additionally, it solved the overestimation problem of the FOREST-BGC model by
introducing the clumping index and advanced canopy transmission model [30]. Compared
with other ecological process models, it may have the most potential to adequately address
the spatiotemporal dynamics of carbon fluxes because of its strong theoretical basis and
practical applicability [31]. Previously, it was used to simulate the productivity of the boreal
forest ecosystem in Canada [32]. Presently, the model has been frequently modified and
improved, and has been widely used to simulate the carbon fluxes of different regional
terrestrial ecosystems at various spatiotemporal scales [33–38].

Bamboo belongs to a family of perennial graminaceous plants. There are approxi-
mately 150 genera and 1225 species of bamboo forests in the world, and the total area of
bamboo forests worldwide accounts for more than 30 million ha [39], making it “the second
largest forest in the world”. China is located in the center of bamboo distribution in the
world. It has the richest bamboo resources in the world in terms of the number of species
(more than 500 varieties of 39 species) and area [40]. According to the ninth National
Forest Resources Inventory (2014–2018), China’s bamboo forest area is 6,411,600 ha [41],
accounting for approximately 20% of the world’s bamboo forest area. Compared with the
eighth National Forest Resources Inventory (2009–2013), their area of bamboo forest has
increased by more than 400,000 ha. It is known as the “Bamboo Kingdom” [40,42]. Bamboo
forests have a great carbon sequestration capacity and differ from other forests in mitigat-
ing climate change, and their impact on global climate change has become an important
concern [43,44]. Several scholars have explored carbon cycling in bamboo forests, and have
synthesized information concerning primary production [45,46], carbon stocks [47,48], and
biomass [49,50].

Although relevant studies on bamboo forests’ carbon cycles have been conducted,
the characteristics of bamboo forests’ carbon dynamics and their response to changing
environmental conditions are still poorly understood [47,51,52]. Previous studies mainly
focused on estimating carbon fluxes at the scale of sites, regions, and provinces, while
relatively few studies have done so at the national scale. In addition, some studies lack
simulations of physiological and ecological processes, leading to massive errors in the
estimated results [53]. Therefore, the study of carbon fluxes from bamboo forests in China
is essential for the study of the carbon cycles of forest ecosystems under the global climate
background. The objectives of this study include (1) driving the BEPS model to simulate the
carbon fluxes of bamboo forests in China from 2001 to 2018; (2) exploring the spatiotemporal
evolution of bamboo forests’ carbon fluxes in China and the driving influence of climate
change on carbon fluxes of bamboo forests in China.

2. Materials and Methods
2.1. Study Area

China has a vast territory and diverse climate types (Figure 1). The country has
a north–south temperature gradient and an east–west precipitation gradient driven by
the summer monsoon [54]. Bamboo forests are a unique and important forest type in
subtropical regions of China, and are widely distributed across Zhejiang, Fujian, Jiangxi,
Hunan, Sichuan, Anhui, Hubei, Guangdong, Guangxi, and other provinces.
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Figure 1. Study area and spatial distribution of data: (a) distribution of bamboo forests and me-
teorological stations, (b) leaf area index (LAI), (c) available soil water-holding capacity (AWC),
(d) precipitation (Pre), (e) minimum temperature (Tmin), and (f) maximum temperature (Tmax).

2.2. Flux Measurement Sites

The flux observation sites are located in Zhejiang Province, which are the Anji Moso
bamboo flux measurement site (30.46◦ N, 119.66◦ E) and the Lin’an Lei bamboo flux mea-
surement site (30.30◦ N, 119.58◦ E) (Figure 1a). The height of the observation tower at Anji
was 40 m, and the vegetation type around the flux tower for 1 km × 1 km was dominated
by 1–4-year-old Moso bamboo forests. The height of the observation tower at Lin’an was
20 m, and the vegetation types around the flux tower were mainly 2–3-year-old Lei bamboo
forests. The carbon flux data were continuously measured by an eddy covariance system
of flux measurement sites. The system consists of an open-path infrared CO2/H2O gas
analyzer (Li-7500, LiCor Biosciences Inc., Lincoln, NE, USA) and a three-dimensional sonic
anemometer (CAST3, Campbell Scientific Inc., Logan, UT, USA). According to the principle
of the eddy covariance system, 30-min carbon flux data were calculated online and stored.

2.3. Data Acquisition and Processing

The required BEPS model input data included bamboo forest information in China,
MODIS leaf area index (MODIS LAI) (Table 1), the available soil water-holding capacity
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(AWC), daily meteorological data, and the biological parameters of bamboo forests. All
data were reprojected to the WGS84 coordinate system with a spatial resolution of 1 km.

Table 1. MODIS data and descriptions.

MODIS Abbreviation Time Spatial Resolution Time Resolution To Use

MOD13A2 NDVI 2018 1000 m 16 days Extract the bamboo forest
MOD09A1 REF 2018 500 m 8 days Extract the bamboo forest
MOD15A2 LAI 2001–2018 1000 m 8 days Model input

2.3.1. MODIS Data and Preprocessing

MODIS is a new generation of optical and infrared remote sensing instruments that
“integrate image and spectrum” in the current world. It is widely used in the carbon cycles
of terrestrial ecosystems because of its high time and spectral resolutions. This study uses
MODIS normalized difference vegetation index (MODIS NDVI) (MOD13A2), MODIS land
surface reflectance (MODIS REF) (MOD09A1), and MODIS LAI (MOD15A2) from NASA
(https://ladsweb.modaps.eosdis.nasa.gov, accessed on 13 May 2020) to extract information
on bamboo forests in China and simulate the carbon fluxes of bamboo forests in China. The
MODIS data are shown in Table 1.

The MODIS Reprojection Tool (MRT) was used to preprocess MODIS data, such as
mosaicking, format conversion, reprojection, and resampling. MOD09A1 was reprojected to
the WGS84 coordinate system, and the spatial resolution was resampled to 1 km using the
nearest neighborhood method. After resampling, these data were clipped to the boundaries
of China.

2.3.2. Bamboo Forest Distribution Data of China

The distribution information of Chinese bamboo forests in 2003, 2008, 2014, and 2018
was extracted. The information on Chinese bamboo forests from 2003, 2008, and 2014
has been extracted in our previous study [42]. On this basis, we extracted information
on Chinese bamboo forests from 2018. The flow chart of bamboo extraction is shown in
Figure 2.

The main process is as follows: First, a total of 23 multi-temporal MODIS NDVI
images are available. In order to further improve the MODIS NDVI data quality, these
23 images were composited into 12 multi-temporal images by selecting a maximum of two
corresponding pixels of two neighboring MODIS NDVI images as the value of a new pixel
(NDVImax12) [55]. Then, a minimum noise fraction (MNF) transform [56] was employed to
convert the NDVImax12 data to obtain the principal component variables of NDVI max12 data
(NDVI max12 MNF), and the first six bands with a cumulative contribution rate greater than
90% (NDVImax12 MNF1-6) were retained for classification. Second, according to the image
texture and spectral information features, the five types of samples (forest, farmland, water,
bare land, and residential land) were selected by visual interpretation [57], and then the
study area was classified by the maximum likelihood classification (MLC). On this basis, the
forest information in China was extracted by masking. Third, using the forest information
in China to extract the normalized difference vegetation of forests (NDVIforest_12) and the
land surface reflectance of forests (REFforest_7), MNF was then performed on them to obtain
the principal component variables of NDVIforest_12 data (NDVIforest_12 MNF) and REFforest_7
data (REFforest_7 MNF). We retained the bands with a cumulative contribution rate greater
than 85%, that is, the first nine bands of NDVIforest_12 MNF data (NDVIforest_12 MNF1-9) and
the first five bands of REFforest_7 MNF data (REFforest_7 MNF1-5). On this basis, according
to the training samples of bamboo forests, broad-leaved forests, and coniferous forests, the
corresponding attribute values were extracted as the characteristic variables to construct
a decision tree model, and the information on Chinese bamboo forests was extracted by
using the constructed decision tree model (Figure 3). In this study, 85 bamboo forest survey
samples from Zhejiang Province in 2019 and 440 bamboo forest samples from China selected

https://ladsweb.modaps.eosdis.nasa.gov
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from Landsat 8 images in 2018 were used as bamboo forest verification samples for point-
by-point verification. Finally, the least-squares mixed-pixel decomposition method [58]
was used to obtain the abundance information of bamboo forests in China. The results
were presented in Figure 1a.

Figure 2. Flow chart of bamboo extraction.
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Figure 3. The optimal decision tree.

It was verified that the accuracy of bamboo forest extraction was 76.54–81.56%, and
that the extracted area was close to the inventory area of forest resources (Table 2), which
laid the foundation for the simulation of GPP and NPP for bamboo forests in China. Only
the information of bamboo forests in 2003, 2008, 2014, and 2018 was extracted; therefore,
the bamboo forest information of the unclassified year was replaced by a similar year from
which the bamboo forest information was extracted.

Table 2. Extraction accuracy evaluation and the comparison of estimated and inventory bamboo
forest area of China.

Year
Classification Accuracy Evaluation Bamboo Forest Area (104 ha)

Bamboo Forest Samples Correctly Incorrectly User’s Accuracy (%) Estimate Inventory

2003 387 [42] 309 78 79.84 486.56 495.32 [42]
2008 414 [42] 328 86 79.23 545.14 548.73 [42]
2014 536 [42] 435 101 81.16 639.22 610.65 [42]
2018 525 402 123 76.54 669.83 656.08 [41,42]

Note: the results of the ninth National Forest Resources Survey do not have data from Taiwan, so the bamboo
forest area of Taiwan is based on the results of the eighth National Forest Resources Survey.

2.3.3. MODIS LAI Data

Leaf area index (LAI) is an important input parameter for simulating the carbon
cycles of forest ecosystems, and is closely related to the photosynthesis, steaming, water
utilization, and productivity formation of vegetation [59]. Remote sensing technology
is an important method for obtaining a large-scale LAI. However, MODIS LAI data are
susceptible to the influences of factors such as the atmosphere, which leads to an irregular
reduction in data. To reduce data noise and improve data quality, the locally adjusted
cubic-spline capping (LACC) [60] algorithm was used to smooth the clipped MODIS LAI
data. Then, the smoothed MODIS LAI data were assimilated by the particle filter (PF)
algorithm [61]. The assimilated MODIS LAI data were shown in Figure 1b.

2.3.4. Soil Data

The soil texture data map was provided by the Chinese Academy of Sciences (http:
//www.soil.csdb.cn, accessed on 11 December 2020). AWC is an important factor in terms
of plant growth, affecting stomatal conductance and photosynthesis [62]. In this study,
based on the empirical relationship, an AWC map with a 1 km resolution was obtained
from a soil data thematic map. The spatial distribution of AWC was shown in Figure 1c.

2.3.5. Meteorological Data

Meteorological data from 2001 to 2018 were obtained from the National Meteorologi-
cal Information Center of the China Meteorological Administration (http://data.cma.cn,

http://www.soil.csdb.cn
http://www.soil.csdb.cn
http://data.cma.cn
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accessed on 7 August 2020), and mainly included minimum temperature (Tmin), maximum
temperature (Tmax), precipitation (Pre) solar radiation, and relative humidity. These meteo-
rological factors are the main environmental factors in the carbon–water cycles [63]. The
inverse distance weighting method was used to interpolate the data of 824 meteorological
sites observed in the study area (Figure 1a) into spatial data with a 1 km resolution to obtain
the grid cells of daily scale meteorological data of the study area. They are shown in Fig-
ure 1d–f. Among them, the temperature was corrected by the digital elevation method, and
it was assumed that the temperature decreased by 6.5 ◦C for each per-kilometer increase in
altitude. Solar radiation was simulated based on the measurements of sunshine duration at
each site, following the methods of Ju et al. [64]. Monthly and annual meteorological data
based on interpolated daily scale meteorological data were obtained.

2.3.6. Biological Parameters

The major biological parameters of bamboo forests used in the BEPS model are shown
in Table 3. The clumping index (Ω) and specific leaf area (Sarea) came from the measured
data of the flux observation station. The maximum carboxylation rate at 25 ◦C (Vm) and the
Q10 for leaves, stems, and roots were calculated based on an iteration method. The initial
value of the four parameters was established according to Chen et al. [65], and the iteration
range for each parameter was set as ± 100%. The iteration step was defined as 1 for Vm and
0.1 for the other three parameters. The average carbon storage of leaves, stems, and roots
was calculated using the methods of Zhou and Jiang [66]. Bamboo forests are a special
type of forest. The photosynthesis capacity of bamboo forests is similar to C3 trees [67].
Therefore, for constant parameter values, we referred to Feng et al. [62] to simulate the
carbon cycle of bamboo forests.

Table 3. Major biological parameters used as inputs into the BEPS model for simulating the CO2

fluxes of bamboo forests.

Symbol Unit Description Value Reference

Ω - Clumping index 0.5 Measurement
Sarea Specific leaf area 27 Measurement
Vm,25 umol m−2s−1 Maximum carboxylation rate at 25 ◦C 50 Iteration

Q10,leaf - Q10 for leaf 1.4 Iteration
Q10,stem - Q10 for stem 1.3 Iteration
Q10,root - Q10 for root 1.2 Iteration
Mleaf kg C m−2 Average carbon storage of leaf 0.15 [66]
Mstem kg C m−2 Average carbon storage of stem 1.76 [66]
Mroot kg C m−2 Average carbon storage of root 1.15 [66]

2.4. BEPS Model Simulation and Evaluation
2.4.1. BEPS Model Description

The BEPS model is mainly composed of four parts: energy transmission, carbon cycle,
water cycle, and physiological regulation sub-models [68]. It combines ecology, plant
physiology, meteorology, and other disciplines to simulate the relationship between the
photosynthesis, respiration, carbon distribution, water balance, and energy balance of
vegetation [63], which demonstrates the combination of remote sensing data and ecolog-
ical process models. The main feature of this model is that the instantaneous Farquhar
photosynthetic model at the leaf scale is converted into the daily total photosynthetic
model through the integration of stomatal conductance to realize the time scale expansion.
Then, according to the principle of light transmission in the canopy, the vegetation canopy
leaves were divided into shaded and sunlit leaves to simulate the radiation budget of the
corresponding leaves. This helps achieve the expansion from the leaf scale to the canopy
space scale. Detailed descriptions of the BEPS model can be found in Liu et al. [69] and
Chen et al. [65]. The main simulation process of the model is as follows:

(1) The LAIsunlit and LAIshade are calculated as follows:
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where LAIcanopy is the total LAI of the canopy; LAIsunlit and LAIshade are the canopy
LAIs of sunlit and shaded leaves, respectively; θ is the daily mean solar zenith angle; and
Ω is the clumping index:

LAIsunlit = 2 cos θ[1− exp(−0.5ΩLAI/ cosθ)] (1)

LAIshade= LAIcanopy−LAIsunlit (2)

(2) The photosynthesis rate is calculated as follows:

A = min
(
Wc, Wj

)
− Rd (3)

Wc = Vm
Ci − Γ

Ci + Kc(1 + O2/Ko)
(4)

Wj = J
Ci − Γ

4(Ci + 2Γ)
(5)

Rd = 0.015Vm (6)

where A is the net photosynthesis rate; Wc and Wj are the Rubisco-limited and RuBP-
limited gross photosynthesis rates, respectively; Rd is the daytime leaf dark respiration;
Vm is the maximum carboxylation rate at 25 ◦C; Ci and O2 are the intercellular CO2 and
oxygen concentrations in the atmosphere, respectively; Γ is the CO2 compensation point,
without dark respiration; Kc and Ko are the Michaelis–Menten constants for CO2 and O2,
respectively; and J is the electron transmission rate.

(3) The total canopy photosynthesis rate is evaluated as follows:

Acanopy = AsunlitLAIsunlit + AshadeLAIshade (7)

where Acanopy is the total photosynthesis rate of the canopy; Asunlit and Ashade are the
photosynthesis rates of sunlit and shaded leaves, respectively; and LAIsunlit and LAIshade
are the LAIs of sunlit and shaded leaves, respectively.

(4) The GPP and NPP values are determined as follows:

GPP = Acanopy × Lday × FGPP (8)

NPP = GPP− Ra (9)

Ra = Rm + Rg = Rm,i + Rg,i (10)

where GPP is gross primary productivity; NPP is net primary productivity; Ra is the
autotrophic respiration of the vegetation; Lday is the length of the day; FGPP is a scale factor
for converting photosynthesis into GPP; Rm and Rg are the maintenance breathing rate and
growth respiration rates, respectively; i is the different parts of vegetation (i = 1, 2, and 3 for
leaves, stems, and roots, respectively); and Rm,i and Rg,i are the maintenance and growth
respiration rates of different parts, respectively.

2.4.2. Evaluation of Simulation Results

In this study, the results of the BEPS model simulation were evaluated with precision
using the determination coefficient (R2), root mean square error (RMSE), and absolute bias
(aBIAS). The formulas for the calculation are as follows [13]:

R2 = 1− ∑n
i=1(mi − oi)

2

∑n
i=1(oi − oi)

2 (11)

RMSE =

√
1
n

n

∑
i=1

(mi − oi)
2 (12)
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aBIAS =
1
n

n

∑
i=1
|mi − oi| (13)

where mi is the simulated value; oi is the observed value; and oi is the average value of the
observed value. Generally, the larger the R2 value, the smaller the RMSE and aBIAS values,
the higher the accuracy, and vice versa.

2.5. Spatiotemporal Evolution Analysis of Carbon Fluxes
2.5.1. Variation Coefficient of Carbon Fluxes

The variation coefficient (CV) is the ratio of the standard deviation to the average,
which reflects the stability of a set of data. The higher the value of the CV, the more
unstable the data, that is, the greater the fluctuation, and vice versa. To analyze the spatial
fluctuations in carbon fluxes of bamboo forests during 2001–2018, the CVs of the GPP and
NPP of each pixel were calculated as follows [70]:

CV =

√
1

n−1 ∑n
i=1
(
Pi − P

)2

P
(14)

In Equation (14), CV is the variation coefficient; n = 18, and is the number of monitoring
years; Pi is the value of each pixel of the GPP or NPP image in the i-th year (where i = 1, 2,
. . . , n); and P is the average value of each pixel of GPP or NPP. According to the calculation
results, by performing the Jenks natural breaks classifications in ArcGIS software [71] the
results of the CV were divided into five levels: low fluctuation (CV <= 0.1246), lower
fluctuation (0.1246 < CV ≤ 0.2342), medium fluctuation (0.2342 < CV ≤ 0.4132), higher
fluctuation (0.4132 < CV ≤ 0.7364), and high fluctuation (CV > 0.7364).

2.5.2. Trend Slope of Carbon Fluxes

To quantitatively study the trends of carbon fluxes of bamboo forests in China from
2001 to 2018 a linear regression analysis was used to calculate the trends of GPP and NPP
of each pixel, as follows [72,73]:

slope =
n × ∑n

i=1(i× Pi) − ∑n
i=1 i × ∑n

i=1 Pi

n × ∑n
i=1 i2 − (∑n

i=1 i)2 (15)

In Equation (15), slope is the trend slope; n = 18, and is the number of monitoring
years; and Pi is the GPP or NPP of bamboo forests in the i-th year, (i = 1, 2, . . . , n). The
value of the trend slope indicates the rate of increase or decrease. When slope > 0, the GPP
and NPP increase, and when slope < 0, the GPP and NPP decrease.

To analyze whether the variation trend of the GPP and NPP was significant, the F-test
was used to test the significance of the variation trend of GPP and NPP. The variation
trend was divided into five levels: significantly reduced (slope < 0, p < 0.01), reduced
(slope < 0, 0.01 < p < 0.05), basically stable (p > 0.05), increased (slope > 0, 0.01 < p < 0.05),
and significantly increased (slope > 0, p < 0.01).

2.6. Analysis of Spatiotemporal Responses of Carbon Fluxes to Climate Change
2.6.1. Partial Correlation Analysis of Carbon Fluxes to Climate Change

A correlation analysis reveals the closeness of the relationship between the study
variables. Partial correlation analysis refers to the calculation of the correlation between
two variables without considering the influence of other variables [74]. Partial correlation
analysis can better reflect the impact of a single climate factor on carbon fluxes. Therefore,
this study uses a pixel-based partial correlation analysis to calculate the partial correlation
coefficients (PPCs) of GPP and NPP with climatic factors, and analyze the response between
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carbon fluxes and climatic factors. To determine the PCCs, we first calculated the correlation
coefficient using the following formula [75]:

Rxy =
∑n

i=1[(xi − x)(yi − y)]√
∑n

i=1(xi − x)2 ∑n
i=1(yi − y)2

(16)

In Equation (16), Rxy is the correlation coefficient between variables x and y; n is the
number of study years; xi and yi represent the values of variables x and y in the i-th year,
respectively, (i = 1, 2, . . . , n); and x and y represent the mean value of variables x and
y, respectively. The range of Rxy is [–1,1]; when Rxy > 0 the two variables are positively
correlated, and when Rxy < 0 the two variables are negatively correlated. The larger the
absolute value of Rxy the higher the correlation, and vice versa. Generally, 0.3 and 0.6
are the distinction points of the absolute value of the correlation coefficient, as the weak
correlation (0 < |Rxy|≤ 0.3), low correlation (0.3 < |Rxy|≤ 0.6), and significant correlation
(0.6 < |Rxy| ≤ 1).

Based on the evaluated correlation coefficient, the PPC was calculated as follows [72]:

Rab,cd =
Rab,d − Rac,d × Rbc,d√
(1− R2

ac,d) × (1− R2
bc,d)

(17)

In Equation (17), Rab,cd represents the PCC between variables a and b when variables
c and d are fixed; Rab,d, Rac,d, and Rbc,d represent the PCC between variables a and b,
variables a and c, and variables b and c, respectively, when the variable d is fixed. The
higher the PCC, the greater the influence of the variable on GPP and NPP. A t-test was used
to test the significance of the PPC.

2.6.2. Path Analysis of Climate Change to Carbon Fluxes

In order to analyze the direct and indirect effects of climate factors (temperature and
precipitation) on carbon fluxes of bamboo forests, path analysis [76] was used to calculate
the direct and indirect path coefficients of temperature and precipitation on the carbon
fluxes. The formulas for the calculation are as follows:

Pi→y =
biSi

Sy
(18)

Pj→i→y = rijPi→y (19)

where Pi→y is the direct path coefficient, bi is the regression coefficient, Si is the standard
deviation of variable i, Sy is the standard deviation of variable y, Pj→i→y is the indirect path
coefficient of variable j acting on variable y through variable i, and rij is the correlation
coefficient between variable i and variable j.

3. Results
3.1. BEPS Model Validation

In this study, the observed carbon flux data from the Anji site and the Lin’an site during
2011–2014 were used to validate the BEPS model. The daily scale carbon flux data were
obtained by accumulating the observed 30-min carbon flux data. The evaluation results
are shown in Figure 4, where the R2, RMSE, and aBIAS were 0.58, 1.43 g C m−2 day−1, and
1.21 g C m−2 day−1, respectively. There was a good correlation between the simulated and
observed values of GPP. Therefore, the BEPS model could be considered to be suitable to
simulate the productivity of bamboo forests in China.
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Figure 4. Comparison of the simulated and observed values of GPP.

3.2. Spatiotemporal Evolution of Carbon Fluxes from Bamboo Forests in China
3.2.1. Temporal Evolution Trend

The variation trends of the monthly and annual average GPP and NPP during
2001–2018 are shown in Figure 5. The GPP and NPP exhibited similar temporal varia-
tion characteristics. At the monthly scale, the average values of the GPP and NPP of
bamboo forests showed unimodal changes. At the annual scale, the average values of GPP
and NPP were 904.02 g C m−2 yr−1 and 716.88 g C m−2 yr−1, respectively, and the ranges
in variation were 764.42–994.61 g C m−2 yr−1 and 600.03–788.25 g C m−2 yr−1, respectively.
The annual average values of GPP and NPP were the lowest in 2003 and the highest in 2007.
During the statistical period, the overall variation trends of GPP and NPP were similar,
showing an increasing trend, and the increasing trend was not significant (p > 0.05); the
growth rates were 5.20 g C m−2 yr−1 and 3.88 g C m−2 yr−1, respectively.

Figure 5. Monthly and annual variation trends of bamboo forests’ (a) GPP and (b) NPP in China
from 2001 to 2018.

3.2.2. Spatial Distribution Characteristics

The spatial distribution of the mean GPP and NPP values of bamboo forests in China is
shown in Figure 6. From Figure 6 we can see that the mean GPP and NPP values had strong
spatial heterogeneity. On the whole, the GPP and NPP present a distribution characteristic
of being more in the south and east, and less in the north and west. In addition, the spatial
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distributions of GPP and NPP were compared and it was found that the high GPP and NPP
values of bamboo forests were mainly concentrated in northwestern Zhejiang, central Fujian,
western Jiangxi, and so on, and the proportion of high-value distribution was gradually
increasing. The low GPP and NPP values were mainly distributed in Guizhou, Shanxi,
Yunnan, and other regions where the distribution of bamboo forests is relatively scattered.

Figure 6. Spatial distribution of (a–d) GPP and (e–h) NPP of bamboo forests in China during
different periods.
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3.2.3. Analysis of the Fluctuation in Carbon Fluxes

To analyze the fluctuations in carbon fluxes from bamboo forests in China from 2001 to
2018, we calculated the CVs of GPP and NPP and prepared a spatial distribution diagram
of the fluctuations based on the CV classification results, as shown in Figure 7. The zones
with low fluctuations in GPP and NPP accounted for the largest proportion, at 43.71% and
42.37%, respectively. These were followed by zones with lower fluctuation, at 36.37% and
37.77%, respectively. The areas of higher fluctuation and high fluctuation were considerably
small and scattered, among which the areas of higher fluctuation accounted for 3.78% and
3.81%, respectively, and those of high fluctuation accounted for 1.36% for both. In addition, by
comparing Figure 7a,b, it was found that the spatial fluctuations in GPP and NPP exhibited
evident consistency, where GPP and NPP had low fluctuations, and vice versa.

Figure 7. Spatial distribution of the variation coefficients (CVs) of the (a) GPP and (b) NPP of bamboo
forests in China from 2001 to 2018.

3.2.4. Analysis of the Trend Slope of Carbon Fluxes

The spatial distribution of the trend slope and the significance of GPP and NPP from
2001 to 2018 are shown in Figure 8.

Figure 8a,c show the spatial distribution of the trend slope and the significance of
GPP, respectively. From Figure 8a,c, it can be seen that GPP exhibits an increasing trend
(slopegpp > 0) at 57.58% and a significant increasing trend (slopegpp > 0, p < 0.01) at 30.32%,
mainly distributed in northwestern Zhejiang, western Jiangxi, central Fujian, southwest
Anhui, and central Sichuan. GPP exhibits a decreasing trend (slopegpp < 0) at 42.42% and
a significant decreasing trend (slopegpp < 0, p < 0.01) at 20.53%, mainly distributed in
southwestern Zhejiang, eastern Jiangxi, eastern Anhui, and western Guangdong.

Figure 8b,d show the spatial distribution of the trend slope and the significance of
NPP, respectively. As shown in Figure 8b,d, NPP shows an increasing trend (slopenpp > 0)
at 57.56% and a significant increasing trend (slopenpp > 0, p < 0.01) at 30.32%. NPP
shows a decreasing trend (slopenpp < 0) at 42.44% and a significant decreasing trend
(slopenpp < 0, p < 0.01) at 20.54%. By comparing Figure 8c,d, it can be seen that the regions
with significantly increased and decreased NPP are consistent with the regions that had
significantly increased and decreased GPP.
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Figure 8. Spatial distribution of trend changes in (a) GPP and (b) NPP, significant changes in the
(c) GPP and (d) NPP of bamboo forests in China from 2001 to 2018.

In summary, the spatial distribution of the trend slope of GPP and NPP was similar,
the spatial distribution range of the increasing trend was larger than the spatial distribution
range of the decreasing trend, and the areas of approximately 30% showed a significant
increasing trend, indicating that the carbon fluxes of bamboo forests in China had been
gradually increasing over the past 20 years.

3.3. Analysis of Climate Drivers of Carbon Fluxes of Spatiotemporal Evolution
3.3.1. Partial Correlation between Carbon Fluxes and Climate Factors

Climatic factors are important environmental factors that affect the growth of bamboo
forests. To quantitatively analyze the influence of climatic factors on carbon fluxes of
bamboo forests, the PPC of GPP and NPP with the Pre, Tmin, and Tmax of bamboo forests
in China from 2001 to 2018 were calculated. The results are presented in Figure 9.
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Figure 9. Spatial distribution of partial correlation coefficient (PPC) values of GPP with (a) precip-
itation (Pre), (b) minimum temperature (Tmin), and (c) maximum temperature (Tmax); NPP with
(d) precipitation (Pre), (e) minimum temperature (Tmin), and (f) maximum temperature (Tmax) of
bamboo forests in China from 2001 to 2018.

Figure 9a,d show the spatial distribution of the PCC of GPP and NPP with Pre,
respectively. The proportions of the study area with positive correlations of GPP and NPP
with Pre were 52.32% and 54.76%, respectively, mainly distributed in central Zhejiang,
northwestern Jiangxi, Chongqing, and Sichuan. The proportions with negative correlations
were 47.68% and 45.24%, respectively, mainly distributed in southeast Anhui, northwestern
Zhejiang, and eastern Guangxi. Overall, Pre was mainly positively correlated with GPP
and NPP, that is, the amount of precipitation considerably promoted the growth of bamboo
forests. The proportions with significant (p < 0.05) correlations of the PCC of GPP and NPP
with Pre were only 5.74% and 5.67%, respectively.

Figure 9b,e show the spatial distribution of the PPC of GPP and NPP with Tmin, re-
spectively. The areas where the GPP and NPP were positively correlated with Tmin were
44.15% and 43.68%, respectively, and were mainly distributed in northwestern Zhejiang,
central Hunan, and Hubei. Meanwhile, in 55.85% and 56.32% of the areas the GPP and
NPP, respectively, showed a negative correlation with Tmin, and were mainly distributed
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in central Zhejiang, Guangdong, and Guangxi. By comparing Figure 9a,d, in addition to
Figure 9b,e, it was observed that the PPC of GPP and NPP with Pre and Tmin had opposite
spatial distribution patterns. Where GPP and NPP were positively correlated with Pre the
correlation was negative with Tmin, and vice versa. The proportions with significant (p < 0.05)
correlations of the PCC of GPP and NPP with Tmin were only 6.13% and 6.10%, respectively.

Figure 9c,f show the spatial distribution of the PCC of GPP and NPP, respectively,
with Tmax. GPP and NPP were positively correlated with Tmax, accounting for 49.18% and
48.72%, respectively, mainly distributed in Guangdong, Guizhou, and western Jiangxi,
and they negatively correlated with Tmax, accounting for 50.82% and 51.28%, respectively,
mainly distributed in Guangxi, Anhui, Yunnan, and western Hunan. Overall, there was
a nonsignificant negative correlation of GPP and NPP with Tmax, which indicated that
high temperature somewhat affected the growth of bamboo forests. The proportions with
significant (p < 0.05) correlations of the PCC of GPP and NPP with Tmax were only 5.13%
and 5.20%, respectively.

In summary, a certain correlation existed for the GPP and NPP of bamboo forests in
China with precipitation and temperature, and, overall, they were positively correlated with
Pre, negatively correlated with Tmin, and had an insignificant negative correlation with Tmax.
In addition, there were evident spatial differences in the correlation of GPP and NPP with
climatic factors, and the PPC with Pre and Tmin exhibited complementary characteristics.

3.3.2. The Impact of Climate Factors on Carbon Fluxes on a Monthly Scale

The variations in GPP and NPP with temperature and precipitation on a monthly scale
are shown in Figure 10. The values of GPP and NPP exhibited different characteristics
owing to the influence of hydrothermal conditions. From February to July, with the
temperature and precipitation gradually increasing, bamboo forests entered the growing
season; therefore, the values of GPP and NPP showed a rapid increase trend. After August,
the decrease in GPP and NPP was caused by the gradual decrease in temperature and
precipitation, in addition to the fall of bamboo leaves. In December, January, and February
the temperature and precipitation are lower, and the values of GPP and NPP were also
decreased to the smallest values of the year. In summary, the values of GPP and NPP are
closely related to temperature and precipitation, and good hydrothermal conditions are
conducive to the growth of bamboo forests.

Figure 10. Variation trends of bamboo forests’ (a) GPP and (b) NPP with temperature and precipita-
tion on a monthly scale.

To further analyze the impact of temperature and precipitation on carbon fluxes of
bamboo forests, we conducted a path analysis of the impact of temperature and precip-
itation on GPP and NPP on a monthly scale. The results are shown in Table 4. It can be
seen that temperature and precipitation have a significant correlation with GPP and NPP.
According to the correlation coefficient and partial correlation coefficient, the influence of
precipitation on GPP and NPP is higher than that of the influence of temperature on them.
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In addition, according to the direct path coefficient and indirect path coefficient, the direct
influence of precipitation on GPP and NPP is higher than that of the direct influence of
temperature on GPP and NPP.

Table 4. Path analysis of temperature and precipitation to GPP and NPP.

Climate
Factors

Correlation
Coefficient

Direct Path
Coefficient

Indirect Path Coefficient Partial Correlation
Coefficient→ Temperature → Precipitation

GPP
Temperature 0.649 ** 0.387 ** - 0.26 0.399

Precipitation 0.659 ** 0.415 ** 0.24 - 0.423

NPP
Temperature 0.562 ** 0.301 ** - 0.15 0.293

Precipitation 0.602 ** 0.412 ** 0.11 - 0.386

Note: **, p < 0.01.

4. Discussion

The simulated value of the carbon fluxes of bamboo forests had a good correlation
with the observed value of the flux observation station (Figure 4), and the R2 was 0.58.
Other than that, in order to further prove the reliability of this study we compared the
simulated NPP with a related study (see Table 5). It can be seen from Table 5 that our
simulated mean value of NPP was slightly lower than that of related studies. Due to the
fact that structures, mechanisms, and input parameters varied for different models, there
are variances in the simulation results of different models. Additionally, there may be
differences due to different study areas and periods. Of course, this study also has some
shortcomings, the following aspects of which can be analyzed. Firstly, the simulated results
of the BEPS model largely depend on the quality of the input data; deficiencies in the input
data will affect the accuracy of the simulation results. The resolution of the data in this
study is low, so there may be limitations in simulating the carbon flux of bamboo forests
in China. Secondly, in this study, the bamboo forest abundance data were used to drive
the BEPS model, which solved the influence of mixed pixels on the carbon flux simulation
to some extent. However, the phenomenon of “different objects with same spectrums” in
remote sensing images will affect the result of bamboo forest extraction. Thirdly, we only
used the observed data of two carbon flux observation stations to verify the simulated
results of bamboo forest carbon fluxes in China. Therefore, there are limitations on the
spatial scale. Finally, the carbon fluxes of bamboo forests were not only affected by climate
factors but also by human activities and geographic factors (such as slope, aspect, and
elevation). This study only considered the impact of climate factors, so there may still be a
certain gap between the simulated results and the real situation.

Table 5. Comparison of the simulated NPP results in this study with the simulated results of other studies.

Site Model Mean NPP (g C m−2 y−1) Reference

China BEPS 716.88 This study
Tianmu Mountain, Zhejiang CASA 740 [77]

Anji, Zhejiang Triplex-Flux 835.58 [45]
Fujian BEPS 788.6 [78]

Due to the rapid growth of bamboo forests and their high ecological, economic, and
social value, some areas promoted the reclamation of wasteland and the plantation of
bamboo forests [79], which increased the total area of bamboo forests in China. Therefore,
the GPP and NPP of bamboo forests also increased. As shown in Figure 5, certain fluc-
tuations occurred in the annual average GPP and NPP values of bamboo forests, which
might be related to climate change. For example, in 2003 there was less precipitation and
large-scale drought occurred in the summer (Figure 10), which was not conducive to the
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growth of bamboo forests, leading to low GPP and NPP values in that year. In 2009 and
2010 the values of GPP and NPP were low, which may be related to the natural large-scale
low-temperature, snow, and ice disaster in South China in 2008 [80].

This study found that the spatial distribution range of carbon fluxes of bamboo forests
was increasing larger than that which was decreasing. The areas with increases were mainly
distributed in northwestern Zhejiang, western Jiangxi, central Fujian, and other regions.
The reason for the increase in carbon fluxes may be that under the combined influence of
favorable factors (such as a warm climate, abundant precipitation, and sufficient radiation)
the growth ability of bamboo forests is relatively strong. In addition, these regions have
significantly developed bamboo industries and advanced bamboo forest management
techniques; therefore, bamboo forests in these regions have increased rapidly with higher
productivity. The areas with decreased GPP and NPP were mainly distributed in southwest
and central Zhejiang, eastern Jiangxi, northeastern Fujian, and eastern Guangdong. On
the one hand, bamboo forests might be reduced due to urban expansion in some areas.
On the other hand, because bamboo forests mostly have a scattered distribution, when
they are distributed across a small area the difficulty of bamboo forest extraction would be
increased, affecting the simulation results of carbon fluxes from bamboo forests.

Climate change has an important impact on vegetation growth. An evident coupling
relationship was observed between vegetation and climatic factors [81]. At present, many
scholars have analyzed the effects of climatic factors on the carbon fluxes of different
vegetation from different spatiotemporal scales, and have found that there is a correlation
between carbon fluxes and climatic factors [82,83]. Bamboo forests have a warm and
humid climate and are very sensitive to hydrothermal changes. Related scholars have
conducted studies on the impact of climatic factors on the carbon fluxes of bamboo forests.
For example, Li et al. [4] analyzed the relationship between the carbon fluxes and climatic
factors (temperature and precipitation) of bamboo forests in Zhejiang Province from 2011
to 2015, and found that lower precipitation and higher temperatures may have a negative
impact on the carbon fluxes from bamboo forests. Chen et al. [84] used eddy correlation
technology to continuously observe the carbon fluxes of bamboo forests in Anji, and found
that high temperature and drought caused a significant decrease in the carbon fluxes of
bamboo forests. These results are consistent with the results of this study on the driving
influence of climatic factors and the carbon fluxes of bamboo forests.

5. Conclusions

This study utilized remote sensing data to drive the BEPS model to simulate the carbon
fluxes from bamboo forests in China during 2001–2018, and analyzed the spatiotemporal
evolution pattern of carbon fluxes and the response of climatic factors to these changes. Our
study showed that the simulated values had a good correlation with the observed values,
and the R2, RMSE, and aBIAS were 0.58, 1.43 g C m−2 day−1, and 1.21 g C m−2 day−1,
respectively. It provided a feasible way for the study of bamboo forest carbon cycles on a
large spatial scale. In addition, our study also suggested that climate change was a driver
that affected the spatiotemporal dynamic evolution of carbon fluxes in bamboo forests, and
its driving effect exhibited evident spatial variations. This provided a theoretical basis of
bamboo forests to cope with climate change.

However, this study still has some limitations. For example, (1) the low resolution
of the data limited the simulation of bamboo forest carbon flux; (2) fewer flux observa-
tion sites may lead to certain deficiencies in verifying the model simulation results; and
(3) we only considered the impact of climatic factors (temperature and precipitation) on
the carbon fluxes of bamboo forests. In the future, these limits can be further improved to
better simulate the carbon fluxes of bamboo forests in China.
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