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Abstract: Identifying the spatial and temporal heterogeneity of water-related ecosystem services and
the mechanisms influencing them is essential for optimizing ecosystem governance and maintaining
watershed sustainable development. However, the complex and undiscovered interplay between
human activities and natural factors underpins the solutions to the water scarcity and flooding
challenges faced by climate transition zone basins. This study used a multiple spatial-scale analysis
to: (i) quantify the spatial and temporal variations of the water yield ecosystem service (WYs) of
the Wei River Basin (WRB) from 2000 to 2020 using the InVEST model and remote sensing data;
and (ii) look at how human activities, climate, topography, and vegetation affect the WYs at the
climate transition zone sub-catchment scale using the geographical detector model and multi-scale
geographically weighted regression (MGWR). The conclusive research reveals that there would be a
gradual increase in WYs between the years 2000 and 2020, as well as a distinct and very different
spatial aggregation along the climatic divide. The average yearly precipitation was shown to be
particularly linked to the water yield of the WRB. The interplay of human, climatic, plant, and
terrain variables has a substantially higher influence than most single factors on the geographical
differentiation of WYs. Bivariate enhancement and non-linear enhancement are the most common
types of factor interactions. This shows that there are significant interactions between natural
and human variables. Our study shows that precipitation and temperature are the main factors
that cause WYs in the semi-arid zone. In the semi-humid zone, precipitation and vegetation are
the key controlling factors that cause WYs. We provide new perspectives for understanding and
optimizing ecosystem management by comparing the drivers of WYS in sub-basins with different
climatic conditions. Based on the findings, we recommend that particular attention should be paid to
ecosystem restoration practices in watersheds in climatic transition zones.

Keywords: InVEST model; geographical detector; MGWR model; the Wei River basin

1. Introduction

Natural ecosystems provide many of the ecosystem services (ESs) on which people de-
pend [1] and which underpin social and natural sustainability [2–4], including provisioning
services, regulating services, cultural services, and supporting services [5]. Since the An-
thropocene, unprecedented environmental changes including global warming, population
explosion, and rapid urbanization have explicitly or implicitly led to widespread global
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diminishment of ecosystem services [6], which has become one of the most important
global environmental issues and has received widespread attention from policymakers
and researchers [7–9]. At the same time, and to make things even worse, the demand for
clean water has increased eightfold over the past century [10]. Geographical and temporal
mismatches in freshwater availability have made water shortages a pervasive problem
throughout most regions of the globe [11], which puts a lot of pressure on ecosystems to
provide water yield services [12,13]. Given the small amount of evidence we have, we need
to look into the key drivers of change in water yield services as soon as possible. This will
help us reduce water stress, keep regional water security, and maximise ecosystem services.

The Integrated Valuation of Ecosystem Services and Trade-offs (InVEST) model, based
on GIS, is widely used to assess dynamic patterns of water yield services and, because of its
spatially explicit presentation, to assess the impact of environmental change on water yield
ecosystems [14]. Several researchers have discussed WYs in the Wei River Basin (WRB).
Li et al. [15] used the InVEST model to analyze WYs and their spatial and temporal
variability in the WRB. Zhang et al. [16] quantified the WYs of the WRB with the InVEST
model and analysis of the impact of reforestation and eco-logical management on WYs.
These studies provide the basis for effective management by policy makers. Given the
active climate change and human activities in this region, studies to date have lacked
in-depth research on the factors affecting WYs.

In general, previous empirical studies on the analysis of drivers of WYs generally fall
into two broad categories. In the first group are global-scale algorithms, which assume a
stationary (i.e., constant) spatial relationship between WYs and the driving factors. For
example, Sun et al. [17] used correlation analysis to discuss the relationship between natural
geographical elements, socioeconomic factors, and the WY in the Nansi Lake Basin. Using
stepwise regression analysis, Hao et al. [18] determined that precipitation, NDVI, and forest
fragmentation significantly affect WYs in arid and semi-arid grasslands. Dai et al. [19]
explored the drivers of WYs in the Hengduan Mountain region using a geodetector model
and identified climatic factors (including precipitation and evapotranspiration) as key
factors influencing WYs. Meanwhile, scenario simulation is widely used with the impact of
climate and land use change on WYs. Hoyer and Chang [20] tested the InVEST model for
the Tualatin and Yamhill basins of northeastern Oregon under various land-use and climate
change scenarios. The findings reveal that InVEST models are more susceptible to changes
in meteorological factors. However, because WYs and drivers are spatially heterogeneously
distributed, the global algorithm may not be able to capture the relationship in cases where
there is local variation in the relationship between the pair. This spatial relationship is
non-stationary when the relationship between the dependent and explanatory variables
changes with spatial location [21]. At this point, second-class algorithms, such as geograph-
ically weighted regression models (GWR), are suitable for solving spatial non-stationarity
problems and are widely used. For example, Zhang et al. [13] used GWR to identify key
drivers of WYs in the Yangtze River Basin and found that annual average precipitation,
urban land area, and per capita GDP seem to have greater impacts on the WYs in the west
than in the east. Wang et al. analyzed the drivers of WY on the Tibetan Plateau through
a GWR model and found that precipitation positively influenced WYs over 99.8% of the
area, while temperature (71.9%), NPP (87.2%), and lakes (87.7%) played a negative role.
However, the standard GWR theory states each ecological process is obtained from the
same geographical scale, which may be erroneous [22]. Current researchers generally agree
that multiple processes affecting water yield can take place at multiple scales that differ
from each other. Most studies exploring ES and its drivers have focused on specific scales,
such as conventional grids and administrative regions [23]. Most of the time, the links
between ESs and impact factors are examined from a regional and global perspective,
which may overlook micro- and macro-level processes, as well as local and global processes
across different drivers. WYs are likewise complex phenomena influenced by a variety of
physical and socio-economic variables. As a result, in the attribution investigation of WYs,
it is crucial to discriminate between the spatial scales of the different factors.
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In view of this, Fotheringham et al. [21] introduced the concept of multiscale geo-
graphic processes and derived a multiscale geographically weighted regression model
(MGWR) based on the GWR model, a model that captures ecological processes operating
at different scales by determining the optimal width of different factors. Therefore, a multi-
scale analysis using MGWR is necessary to check whether the WYs driven by different
factors is a multi-scale process.

To date, many studies based on water-related ecosystem services have been carried out
in different parts of China. Meanwhile, different patterns of spatial and temporal variability
in WYs exist in the Hengduan Mountains [19], Yangtze River Basin [13], Yellow River
Basin [24,25], the Three-River Headwater Region [26], and Loess Plateau [27] of China,
and there are clear regional characteristics in the determinants. The relationship between
environmental factors and WYs varies from region to region and can be either linear or
non-linear, particularly in climatic transition zones. Although some studies of WYs in
climatic transition zones have been conducted recently, it is noteworthy that (1) how to
quantify multi-scale processes between environmental factors and WYs has been neglected,
and (2) for climatic transition zones, we still know very little about how WYs change in
response to environmental changes.

Here we focus on the Wei River basin (WRB), located in central China, as a case
study. The WRB is in the transition zone between the northern and southern topography
of China as well as the arid and humid regions, and is an important area linking north
and south and east and west. The WRB consists of the Jing River, the Beiluo River, and
the Wei River main stream, most of the tributaries of which have an arid climate, while
the Wei River main stream has a humid climate. The WRB is a vulnerable ecosystem due
to its unique geographical location, complicated climatic system, and high susceptibility
to environmental change [28]. The WRB is connected by rivers, which play a significant
role in economic and ecological growth, and water scarcity has been a significant barrier to
the region’s development. There is therefore a need to explore and quantify the influence
and interactions of human activities and environmental variables on WYs in the WRB.
In further detail, our objectives were to: (i) explicitly describe the spatial and temporal
pattern of water yield in the WRB from 2000 to 2020; (ii) measure the main effects and the
interaction between the main factors at the global level; and (iii) quantify the multi-scale
effects of human activities and environmental variables on WYs.

2. Materials and Methods
2.1. Study Area

The Wei River (103.5~110.5◦ E; 33.5~37.5◦ N) is situated in northwestern China, has a
characteristic semi-arid and semi-humid atmosphere, is the greatest tributary of the Yellow
River (Figure 1), and the watershed encompasses roughly 1.35 × 105 km2 [29], including
three major water systems: the Wei River, Jing River and Beiluo River. It is possible
to split the Wei River basin into five sub-basins based on the upper, middle, and lower
sections of the main stream and two tributaries [30]. The WRB receives approximately
572 mm of precipitation per year, with a highly uneven spatial and temporal distribution
of precipitation, 60% of which occurs during the wet season [31], which is among the
primary reasons for the pervasive problem of droughts and floods in the area. At the
same time, the WRB is located in the frontier region of western China, which plays a
key role in the national strategy of western development and will promote a new round
of metropolitan area development during the 14th Five-Year Plan [32]. However, the
area is ecologically fragile and the ecosystem WYs are vulnerable to drought and human
activities. In 2016, ecological conservation and high-quality development of the Yellow
River Basin was formally proposed, offering the possibility of exploring pathways for
ecological conservation and achieving sustainable development in the basin.
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Figure 1. Geographical location of the study area and the sub-basins in the WRB. The whole basin is
divided into five sub-basins: 1. The Beiluo River; 2. The Jing River; 3. The upper reach of the Wei
River basin; 4. The middle reach of the Wei River basin; and 5. The lower reach of the Wei River basin.

2.2. Data Sources

For this study, meteorological observation data was collected from the years 2000 to
2020. This data included monthly average precipitation, annual average temperature, and
potential evapotranspiration (Figure S2). The WRB has an average annual precipitation
of 500 mm and an average annual temperature of 10 ◦C. Annual land use and land cover
(LULC) data was compiled using Landsat-derived data on the GEE platform. Land use
is classified into six categories: cropland, forest, grassland, water, constructed land, and
barren land (Figure S3). The Geospatial Data Cloud provided digital elevation model
(DEM) data with a spatial resolution of 30 m. The soil dataset (v1.1) is based on the Harmo-
nized World Soil Database (HWSD), and it was where the data on the soil’s texture, sand
content, silt content, clay content, organic carbon content, and root depth were obtained
(Figure S4). Fractional vegetation cover (FVC) data was calculated using MODIS satellite
data on the GEE platform. The net primary productivity (NPP) data was obtained from
the MOD17A2H product provided by the NASA Data Center, with a spatial resolution of
500 m. Socioeconomic data included a gridded dataset of China’s GDP and population
density (POP). All data were resampled to a spatial resolution of 3 km after being translated
to a uniform projection coordinate system (Table 1).

Table 1. Details about the important data used in this study.

Data Min Max Unit Type Resolution Source

Precipitation 312.2 1172.6 mm Raster 1 km National Earth System Science Data Center (http://www.geodata.cn/)
(accessed on 16 March 2022)

Temperature −1.7 15.6 ◦C Raster 1 km National Earth System Science Data Center (http://www.geodata.cn/)
(accessed on 16 March 2022)

Land Use and Land
Cover (LULC) data - - - Raster 30 m [33]

DEM 237 3934 m Raster 30 m Geospatial Data Cloud (http://www.gscloud.cn) (accessed on 16
March 2022)

Soil Data - - - Raster 1 km Harmonized World Soil Database (http://westdc.westgis.ac.cn)
(accessed on 16 March 2022)

GDP 2.55 37,028.3 CNY/km2 Raster 1 km Resource and Environment Science Data Center, Chinese Academy of
Sciences (http://www.resdc.cn/) (accessed on 16 March 2022)

Population 0 81,139.9 People/km2 Raster 1 km Resource and Environment Science Data Center, Chinese Academy of
Sciences (http://www.resdc.cn/) (accessed on 16 March 2022)

FVC 0 1 - Raster 250 m MODIS (http://modis.gsfc.nasa.gov/) (accessed on 16 March 2022)
NPP 77.7 1164.1 - Raster 500 m MODIS (http://modis.gsfc.nasa.gov/) (accessed on 16 March 2022)

http://www.geodata.cn/
http://www.geodata.cn/
http://www.gscloud.cn
http://westdc.westgis.ac.cn
http://www.resdc.cn/
http://www.resdc.cn/
http://modis.gsfc.nasa.gov/
http://modis.gsfc.nasa.gov/
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2.3. Methods
2.3.1. The InVEST Water Yield Model

This study used the hydrological module provided by the Integrated Valuation of
Ecosystem Services and Trade-offs model (InVEST) to figure WYs. The quantity of water
that humans are able to obtain from an environment is referred to as the water yield (WY).
The water yield module is an annual water yield figured depending on an approximate
function of the Budyko curve and average precipitation [34]. To describe spatial variability
at the pixel level, the InVEST model takes into consideration the spatial heterogeneity of
precipitation, evaporation, soil depth, and land-use. The model uses raster data as an
output and adopts grids of the terrain to represent it. For each landscape cell, the WY can
be calculated using the average annual precipitation minus the actual evapotranspiration,
calculated as follows:

Y(x) =
(

1− AET(x)
P(x)

)
× P(x) (1)

In this Equation, Y(x) represents the WY for pixel x, AET(x) represents the actual
annual evapotranspiration for pixel x, and P(x) represents the annual precipitation for
pixel x. The AET is primarily governed by climatic conditions (such as precipitation,
temperature, and so on), and it is mediated by the features of the catchment (vegetation
cover, soil characteristics, topography, etc.). Potential evapotranspiration (PET) shows
the evaporating potential of the climatic system at a particular place and time of year
without taking into consideration the features of the catchment as well as the qualities of
the soil. Following Fu [35] and Zhang et al. [36], the ratio of mean annual AET to annual
precipitation, known as index of dryness, is calculated as:

AET(x)
P(x)

= 1 +
PET(x)

P(x)
−
(

1 +
(

PET(x)
P(x)

)ω) 1
ω

(2)

where PET(x) is the annual potential evapotranspiration per pixel x (mm) and w(x) is a
nonphysical quantity that impacts the natural soil qualities. The expression that follows
may be used to determine both the PET(x) and the w(x) values:

w(x) = z× AWC(x)
P(x)

+ 1.25 (3)

PET(x) = Kc(x)× ET0(x) (4)

where z is a hydrogeological parameter that ranges in value from 1 to 30 and is used
to characterize the rainfall patterns variation in the basin; AWC(x) is the plant-available
water content that can be stored and released inside the soil to be used by plants, which is
computed using Equation (6); the plant evapotranspiration coefficient, denoted by Kc(x), is
a variable that is affected, on a pixel-by-pixel basis, by the shift in the features of land use
and land cover (Supplementary Table S1); ET0(x) is the annual reference evapotranspiration
per pixel x, which can be estimated using the Hargreaves Equation [37].

ET0 = 0.0023× Ra×
[

Tmax + Tmin
2

+ 17.8
]
× ( Tmax− Tmin )0.5 (5)

where Ra is the extraterrestrial radiation (mm/day); Tmax and Tmin are the daily maximum
and minimum temperatures.

AWC = min
(
max layer−depth, Root−depth

)
· PAWC (6)
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where layer_depth is root burial depth (mm) from HWSD; Root_depth is plant root depth
(mm), which was assigned by different land-use types (Supplementary Table S1); PAWC is
plant available water content, [0, 1] and can be calculated as:

PAWC =

[
54.509− 0.132× Ssan − 0.003× (Ssan)

2 − 0.055× Ssil − 0.006×
(Ssil)

2 − 0.738× Scla + 0.007× (Scla)
2 − 2.688× Sorg + 0.501×

(
Sorg

)2

]
/100

(7)

Ssan, Ssil, Scla and Sorg are soil sand content (%), silt content (%), clay content (%), and
organic carbon content (%), respectively;

The calibration and validation of the InVEST model are referred in the
supplementary materials.

2.3.2. Select Potential Drivers

We narrowed down the causes of the shift in WYs to these four categories: human,
climatic, geomorphological, and vegetational variables. Using SPSS 20, all variables were
assessed for multicollinearity. To reduce the effect of potential multicollinearity between
variables, we eliminated driving factors with VIF larger than 10. According to early data
analysis results, the human activities considered for this study comprise two factors: GDP
and population density (POP). Meteorological parameters comprise two factors: annual
average temperature (TEM) and annual average precipitation (PRE). Geomorphological
variables include slope and aspect. Vegetation variables include two factors: FVC and NPP.

2.3.3. Spatial Correlation Test

In order to investigate the spatial dependency of the ecosystem service function, both
global and local Moran’s I (LISA) were utilized [38]. They are able to determine if there
is aggregation in space (which is shown by a positive spatial correlation) or dispersion in
space (which is shown by a negative spatial correlation) [39]. Global Moran’s I quantify
the spatial correlations of WYs over the whole basin. Local Moran’s I differentiate spatial
correlations at various local grid cells [40]. You may learn more about Moran’s I theory
and the computation method in earlier research [41,42]. Based on queen contiguity weight,
the first order of neighbors was employed to build a 3 × 3 matrix for assessing spatial
correlations between units in this study. The Moran’s I value ranges from −1 to 1. To
put it another way, a positive result implies a positive spatial correlation of water yield
(WYs), which means that the WYs value is surrounded by WYs values of equal or greater
importance in the surrounding area. On the other hand, a negative Moran’s I shows a
negative spatial correlation, indicating that low WY values surround high WYs grids.
The better the spatial correlation of WYs, the bigger the absolute value of Moran’s I. The
statistical significance of the local Moran’s I is evaluated using 999 permutations of the
permutation test. p values below 0.01 indicate that the results are statistically significant.

Using cluster maps and significance maps, the LISA technique for univariate Moran’s
I depicts correlations between the WYs value at a particular place and the average WYs
value at nearby locations at various significance levels [41,42]. The four quadrants show
four different types of connections: quadrant I (high-high type, HH) shows high WYs
values surrounded by high WYs values; quadrant II (high-low type, HL) shows high WYs
values surrounded by low WYs values; quadrant III (low-high type, LH) shows low WYs
with high WYs in the neighborhood; and quadrant IV (low-low type, LL) shows low WYs
with low WYs.

2.3.4. Geodetector Model

A geodetector model can identify the spatial stratified heterogeneity of the geographi-
cal strata and reveal potential influencing factors [43]. Our study is primarily concerned
with the interaction and factor detector in the geodetector model. Factor detectors and
interaction detectors are employed in this work to investigate two issues: which drivers
have a substantial influence on WYs and how these factors interact with one another. The
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basic assumption of the method is that if the driving factor has a strong explanatory power
for the dependent variable, then the spatial distribution of the two is essentially the same.

The q statistic is used by the factor detector to ascertain the degree to which explanatory
variables may explain the dependent variable [44]. The following formula is used to
compute q values:

q = 1− ∑L
h=1 Nhσ2

h
Nσ2 (8)

where q denotes the driver factor’s (human, meteorological, geomorphological, and vegeta-
tion variables) explanatory ability on the dependent variable (WYs) (between 0 and 1); h is
the variable categorization or stratification; Nh and σ2

h is the number of sample and the
variance of layer h, respectively; whereas N and σ2 represent the overall sample size and
the variance, respectively.

The purpose of the interaction detector is to determine if the combined action of the
two will lead to a rise, a drop, or no change at all in the influence degree of the driving
factors [45]. The unique comparison and the accompanying interaction linkages are shown
in Table 2.

Table 2. Interaction types of two driving factors.

Judgments Based Type of Interaction

q (X1 ∩ X2) < min(q(X1), q(X2)) Non-linear reduction
min(q(X1), q(X2)) < q (X1 ∩ X2) < max(q(X1), q(X2)) Single-factor non-linear reduction

q (X1 ∩ X2) > max(q(X1), q(X2)) Two-factor enhancement
q (X1 ∩ X2) = q(X1) + q(X2) Independent
q (X1 ∩ X2) > q(X1) + q(X2) Non-linear enhancement

2.3.5. Multiscale Geographically Weighted Regression Model

Geographically weighted regression (GWR) builds the regression association between
driving factors and dependent variables on a region scale [46], successfully reducing
mistakes caused by variable spatial disparities. It is expressed as follows:

yi = β0(ui, vi) +
p

∑
j=1

β j(ui, vi)xij + εi (9)

where yi is the WYs; (ui, vi) is the spatial location of the i-th sample; β0(ui, vi) is the intercept;
where yi is the WYs; (ui, vi) is the spatial location of the i-th sample; β0(ui, vi) is the intercept;
p is the number of driving factors; xij is the independent variables (including anthropogenic,
climatic, geomorphological, and vegetation factors); β j(ui, vi) represents the regression
coefficient of the i-th sample for the j-th driving factors; and εi is the error term.

Multi-scale geographically weighted regression (MGWR) is a relatively new improve-
ment to the traditional GWR model [21]. Compared to the traditional GWR, MGWR
allows the factors and dependent variables to operate at different spatial scales, and the
relationships between the factors and dependent variables are also scale-dependent. By
employing various bandwidths for each covariate, MGWR captures multi-scale dynamics
more accurately than the classic GWR model. The MGWR model expression is as:

yi = β0(ui, vi) +
p

∑
j=1

βbwj(ui, vi)xij + εi (10)

where bwj in βbwj indicates the bandwidth used for calibration of the j-th conditional relationship.
In this article, both MGWR and GWR models employ Gaussian kernel function and

were calibrated using a golden section search bandwidth selection routine. All model
calibrations were undertaken by MGWR 2.2 software. Oshan et al. [47], and Li and Fother-
ingham [48] provide more detailed information about the MGWR modeling process.
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3. Results
3.1. Simulated Spatiotemporal Patterns of Water Yield in WRB

The interannual changes in precipitation, actual evapotranspiration, and water yield
are shown in Figure 2. From 2000 to 2020, the maximum and minimum values of precipita-
tion were 455.75 mm in 2020 and 562.21 mm in 2020, respectively, with a mean value of
500.75 mm. According to the linear regression trend test, precipitation has increased by
1.7 mm per year at the 90% confidence level (p = 0.088) over the past 20 years. This suggests
that there may be signs of a trend towards wetting throughout the basin. Moreover, the
actual evapotranspiration rose on a global scale at a rate of 4.36 mm year−1 (p = 0.085), with
values ranging from 418.87 mm to 479.83 mm and a mean of 445.46 mm. The analysis that
was described earlier shows that the AET accounts for 88% of the rainfall in the WRB, and
the increasing rate in AET is more than quadruple that of the precipitation. There are con-
siderable spatial and temporal variations in water yield services in Figure 2. The average
depth of WY for the whole basin is a minimum of 36.89 mm in 2000, peaking at 82.39 mm
in 2020, and the overall WY varied from 73 × 108 m3 to 137 × 108 m3, demonstrating a
growth from 2000 to 2020 (Figure S2).
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Figure 2. Annual precipitation, actual evapotranspiration and water yield service in the Wei River
basin from 2000–2020.

From 2000 to 2020, the spatial pattern of WYs shows significant north-south differ-
ences (Figure 3), with low values distributed in the semi-arid Loess Plateau region in the
north (<50 m3 /hm2), and high values in the northern foothills of the Qinling Mountains
(>300 m3 /hm2). At the sub-catchment level, the high-value areas are mainly located in
the main channel of the Wei River, while the low-value areas are mainly located in the Jing
and Beiluo Rivers. The “stepped” distribution features were quite apparent in the steady
decline in the spatial distribution of WYs that occurred as one moved from the south to
the north. Over time, the low-value area in the north tends to increase slowly, while the
Qinling Mountains in the south tends to decrease slowly. The high-value areas gradually
converge towards the Xi’an urban agglomeration, the Baoji Gorge, and the south-western
part of the basin.
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3.2. Identifying the Spatial Dependence of WYs in WRBs

Based on the annual water yield on the grid units from 2000 to 2020, the global spatial
autocorrelation results (Moran’s I index) are calculated (Table 3). All of the global Moran’s
I values are greater than 0.65, and the p-value is 0.00, which means that the 1% significance
level test is successful (Z = 2.58).

Table 3. Spatial pattern of WYs in the Wei River basin from 2000 to 2020.

Year Moran’s I Z-Score p-Value

2000 0.782 134.882 0.00
2005 0.810 142.332 0.00
2010 0.769 140.161 0.00
2015 0.689 133.644 0.00
2020 0.686 149.465 0.00

This suggests that the spatial distribution of water yield has a positive spatial correlation
in the research region, and the geographic clustering phenomena are evident, which meets the
prerequisites for the application of the MGWR and GWR models [49]. It can be demonstrated
that water yield in the research region is impacted by both environmental and anthropogenic
variables. From 2000 to 2005, the difference in Moran’s I has a shifting pattern, ranging from
0.782 to 0.810, before decreasing to 0.686 in 2020. These findings demonstrate that the spatial
dependence of water yield in the Wei River basin remains stable.

Analysis of global spatial autocorrelation may only represent the properties of the distri-
bution as a whole, but cannot compute or evaluate the local differences of WYs [4]. Conse-
quently, it is necessary to study the geographical clustering and scatter between the grid units
and their surroundings. Four unique forms of local spatial correlations on WYs are depicted
on the LISA maps (Figure 4). LL is the main agglomeration type, accounting for more than
20% of the basin and mainly occurring in the semi-arid areas of the Jing and Beiluo river
basins. Compared to 2000, the proportion of HH clusters decreased by 5.26% in 2020 and is
focused on the southwestern part of the basin and around the Xi’an urban agglomeration. By
2020, the HH/LL clustering of WYs in the study area became more spread out and tended to
move toward the line between semi-arid and semi-humid. There is a clear upward trend in
the proportion of LH/HL agglomerations, from 0.47% and 0.02% in 2000 to 1.11% and 0.58%
in 2020, respectively, mainly around the HH/LL agglomerations.
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3.3. Analysis of Geodetector Results
3.3.1. Factor Detector Analysis

The explanatory power of different drivers on the spatial differentiation of WYs
can be obtained from the factor detector, in the following order of importance: climate
factors > vegetative factors > human activities > topographic factors (Table 4), and all the
influencing variables passed the significance test (p < 0.01). PRE has the largest degree
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of effect among the eight examined variables, with q values of 0.703, 0.495, 0.615, 0.56,
and 0.371, respectively. The degree of spatial differentiation in the interpretation of WYs
by precipitation decreases with time, indicating that the mechanisms that influence the
geographical distribution of WYs are getting even more complicated. It is significant to
mention that the degree of GDP on WYs is larger than that of POP, in the same trend as the
correlation coefficients; the gradual increase in the value of human activity q indicates that
the impact of human activity and urbanization on WYs is becoming more pronounced. The
onset of the “Anthropocene” signifies that the influence of human activities on the natural
environment has significantly surpassed that of natural repair [50]. This is mainly because
the increase in POP and GDP is usually indicative of hyperactive anthropogenic activities
during city expansion, leading to a significant rise in built-up land and impervious area,
which decreases evapotranspiration and precipitation infiltration, hence boosting water
supply. There is also a greater difference between the q values of the various influencing
variables than there is between the correlation coefficients (Figure S5), indicating that the
linear effect dominates the influence on WYs of each factor, and that the non-linear effect of
environment variables outweighs the impact of human activities [51].

Table 4. The q value of each driving factors derived from the factor detector.

Factors 2000 2005 2010 2015 2020

Human
activities

POP 0.05 ** 0.063 ** 0.061 ** 0.065 ** 0.05 **
GDP 0.039 ** 0.142 ** 0.184 ** 0.148 ** 0.093 **

Climatic
factors

PRE 0.703 ** 0.495 ** 0.615 ** 0.56 ** 0.371 **
TEM 0.283 ** 0.302 ** 0.267 ** 0.31 ** 0.244 **

Topography
factors

ASPECT 0.0014 ** 0.0027 ** 0.0027 ** 0.0027 ** 0.058 **
SLOPE 0.0355 ** 0.057 ** 0.054 ** 0.057 ** 0.038 **

Vegetative
factors

FVC 0.173 ** 0.079 ** 0.087 ** 0.079 ** 0.0456 **
NPP 0.246 ** 0.169 ** 0.188 ** 0.176 ** 0.18 **

** Represents p < 0.01.

3.3.2. Interaction Detector Analysis

Among the eight selected possible factors, interaction detectors were used to deter-
mine the interactive effects between different variables on the spatial differentiation of
WYs (Figure 5). During the period 2000–2020, the analysis showed that there are two
different categories of interactions among both pairs of influential variables: two-factors
enhancements and non-linear enhancement. As illustrated in Figure 5, the interactions
between the factors are dominated by two-factors enhancements. Over time, the number of
non-linearly enhanced factor pairs gradually increased from 10 pairs in 2000 to 15 pairs in
2020, with the increase being mainly in FVC and NPP. The relationship between FVC and
other factors was limited, while each factor’s influence increased.

The interplay of human, climatic, plant, and terrain variables has a substantially
higher influence than most single factors on the geographical differentiation of WYs. Most
of the explanatory power of climate factors (including temperature and precipitation)
superimposed on other factors is above 0.4. Of these, strong interactions (p > 0.5) of
precipitation with other factors occur most frequently. Human activity (both POP and GDP)
interacts most strongly with precipitation (shown in the black box in Figure 5), probably
because population and GDP are always concentrated in urban areas, reducing the amount
of precipitation infiltration. Among all the factors, meteorological variables continue to
be the most influential in the variation of WYs. The interplay of meteorological elements
(PRE and TEM) controlled the spatial differentiation of the WYs, while POP and GDP
derived from anthropogenic activities, combined with meteorological conditions, further
affected WYs. However, the number of strong interactions (p > 0.5) between the different
factors decreases sharply over time, and the q-values of the different factors gradually
approach each other. The interplay between environmental factors is waning, while the
interaction between anthropogenic activities and meteorological factors is reinforcing. With
environmental change, this means that the synergistic effect of environmental factors and
human activities becomes the main cause of the spatial divergence that dominates WYs.
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The interaction effect between climatic factors and other factors is not as apparent as
human activities. This situation is primarily caused by the fact that the elements relating
to topography and vegetation are both more complicated and diversified. Additionally,
there are additional factors that may cause the degree of spatial stratified heterogeneity to
be cancelled out during their interaction with the climatic conditions [50]. The interaction
of vegetation factors (including FVC and NPP) with other factors also has an effect (p > 0.2)
on the spatial differentiation of WYs, probably because the drivers also have an effect on
the spatial distribution of vegetation.
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3.4. Multiscale Geographically Weighted Regression Model Analysis

Bandwidth can be seen as the most appropriate sample size for local regression calculations,
so the bandwidth in the MGWR model can be thought of as the spatial scale at which the
different processes operate. On the one hand, the bandwidth size determines the specific
spatial scale (local or global scale) at which the different factors occur; on the other hand, it also
determines the potential spatial heterogeneity or spatial stationarity of the relationship between
the drivers and WYs. Spatial scales were obtained using the entire number of samples divided
by the bandwidth and then rounded up. In order to classify the operational scales of the drivers,
the spatial scales are compared with the administrative units at all levels of the Wei River basin
and classified as basin scale > sub-basin scale > municipal scale > county scale > local scale.

The MGWR bandwidth for 2000–2020 indicates that each affecting element functions
at a different geographical scale (Table 5). It appears that only the county scale and the
smaller local scale fluctuated in spatial scale range between 2000 and 2015, suggesting that
spatial non-stationarity is unstable and that the county level serves as the primary optimal
range for TEM, FVC, and NPP factor. From 2000 to 2020, all factors varied on the same
geographical scale and were relatively stable in terms of spatial non-stationarity. Of these,
the spatial scale of GDP varied the least, indicating the most stable spatial heterogeneity,
probably because the range of variation in GDP has been concentrated in the built-up
area. The spatial scale of PRE and slope is the watershed scale, but the fluctuation of slope
is more intense and close to the urban scale. Among human activities, the geographical
impact range of GDP is the basin scale, which is a global variable. The effect variety of
POP is bigger than the effect of population movement, indicating that POP has a significant
impact on cross-regional urbanization and water yield services. It is noteworthy that the
spatial scale changes of FVC and NPP are opposite, which may be due to the unreasonable
structure of the vegetation in the process of returning the land to forest and grass. In
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general, at smaller local scales, the influence range of natural factors tends to be closer to
the size of the country and fluctuates, but the influence range linked with human activities
is dominated by large scales and stable.

Table 5. The bandwidth of all factors obtained from the MGWR model.

Variables
2000 2005 2010 2015 2020

BW 1 NLU 2 BW NLU BW NLU BW NLU BW NLU

POP 341 44 343 44 277 54 277 54 280 54
GDP 15,015 1 15,015 1 15,015 1 15,015 1 5430 3
PRE 3597 4 3281 5 4018 4 4606 3 1937 8
TEM 70 215 222 68 146 103 264 57 336 45

ASPECT 1704 9 2629 6 3819 4 15,012 1 3599 4
SLOPE 2220 7 1317 11 1739 8 2030 7 1037 14

FVC 379 40 67 224 89 169 89 169 100 150
NPP 102 147 426 35 824 18 777 19 577 26

1 Bandwidth spatially for every factor; 2 Spatial scale of occurrence of different factors.

The regression coefficients from MGWR show how much the drivers affect WYs in
different places, and Figure 6 shows the regression coefficients for 2020. Of the regression
coefficients for all the factors, only PRE has a single positive effect on WYs, with the other
variables often acting in opposite ways across locations. This suggests that the spatial
non-stationarity of the distribution of WYs is influenced by different factors at each location.
The relatively low regression coefficients for GDP, ASPECT, and SLOPE indicate that they
have a limited effect on the spatial heterogeneity of WYs, which is consistent with the
previous spatial scale results [51]. The mean values of the regression coefficients for several
indicators show that TEM, FVC, and NPP have a relatively strong inhibitory effect on water
quantity, while PRE has the largest positive effect on WYs. Given the regression coefficients
for human activities, the effect of POP at the county scale is much stronger than for GDP.
The range of regression coefficients shows that the order of the main factors influencing the
water yield services of WRB is PRE > POP.
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Figure 6. A combined plot of regression coefficients of drivers derived from the MGWR model
in 2020. The Centre line is the median; box limits indicate upper and lower quartiles; and the
outline displays the distribution of the data. Variables include (a) population density (POP),
(b) gross domestic product (GDP), (c) precipitation (PRE), (d) temperature (TEM), (e) aspect (ASPECT),
(f) slope (SLOPE), (g) fractional vegetation cover (FVC), (h) net primary productivity (NPP).
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4. Discussion
4.1. The MGWR Model Can Precisely Depict the Links among the Drivers Factors and WYs in WRB

Referring to previous studies [39,49], the coefficient of determination (R2), adjusted
R2, Akaike information criterion (AIC), and corrected Akaike information criterion (AICc),
were chosen in order to evaluate the degree to which the GWR, OLS, and MGWR models
matched the data. A greater value of adjusted R2 indicates suggests a perfect match; a lower
value of adjusted R2 suggests a worse match. Another measure of model goodness-of-fit
is the AICc, which is founded on the principle of entropy; a lower AICc value implies
superior predictive accuracy [52,53]. The smaller value of AICc, the more precise the model
and the more trustworthy the regression estimation [21]. Comparative analysis reveals that
the R2 and adjusted R2 of the MGWR model are significantly higher than those of the OLS
and GWR models, while the AICc is significantly lower, indicating that the MGWR model
is an effective remedy for the issue of spatial heterogeneity (Table 6). This was previously
demonstrated by Hu et al. when they analyzed the model fit effectiveness of OLS, GWR
and MGWR in their assessment of ecosystem service drivers [54].

Table 6. Comparative analysis of the MGWR and OLS/GWR models.

R2 Adjusted R2 AIC AICc

2000
OLS 0.715 0.714 23,803.256 23,805.271

GWR 0.828 0.817 18,168.077 18,005.001
MGWR 0.838 0.821 18,471.733 18,127.638

2005
OLS 0.730 0.730 22,978.377 22,980.392

GWR 0.847 0.837 16,320.636 16,341.024
MGWR 0.854 0.840 16,220.721 16,341.024

2010
OLS 0.716 0.715 23,755.317 23,757.332

GWR 0.808 0.797 19,522.113 19,720.232
MGWR 0.816 0.801 19,462.883 19,554.417

2015
OLS 0.591 0.591 29,204.394 29,206.409

GWR 0.723 0.709 24,772.698 24,947.926
MGWR 0.737 0.716 24,782.240 24,857.002

2020
OLS 0.541 0.541 30,941.700 30,943.714

GWR 0.691 0.677 26,302.039 26,363.564
MGWR 0.705 0.685 26,209.412 26,343.399

Furthermore, applying Tu’s work [55], we examine whether the MGWR, GWR, and
OLS models can account for the spatial autocorrelation of factors by measuring the global
Moran’s I of the residuals (Table S3). In this study, there is a strong geographic aggregation
phenomenon in the OLS model’s Moran’s I, which varied from 0.2 to 0.3. In contrast, the
Moran’s I for the GWR varied from 0.008 to −0.023, effectively eliminating the effect of
spatial autocorrelation from the findings. The values of Moran’s I for the MGWR model
ranged from−0.003 to−0.023, with values in the MGWR model being significantly less than
those in the OLS model and somewhat smaller than those in the GWR model, exhibiting
the randomness of the residuals in space. The Moran’s I values for the GWR model varied
from slightly larger than −0.023 to a slightly smaller than −0.023. Thus, the MGWR model
effectively eliminates the effect of spatial autocorrelation of factors when analyzing the
spatial non-stationarity of WYs in the WRB in relation to nature-society, suggesting that the
MGWR model is the most dependable of the three.

Wang et al. [56] found that when comparing the performance of the GWR model with
the OLS model in terms of describing the linkages between water yield services and natural
factors in the Qinling Mountains, the GWR model performed noticeably better than the
OLS model. In addition, Liu et al. [52] discovered that the MGWR model was more accurate
than the OLS and GWR models when examining the effect of the urban landscape on the
land surface temperature in Wuhan. Furthermore, Li et al. [57] launched an investigation
into the geographical variability of ecosystem services and discovered that the GWR model
can be effective in dealing with the heterogeneity of spatial variables.
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4.2. Differences in Local R2 between Basins

There were significant spatial and temporal disparities in the relationship between
WYs and impact factors at the catchment scale. The local R2 suggests that MGWR’s
predictive power varies geographically [40]. At the basin-wide scale, the proportion of
WYs and impact factors significantly correlated (local R2 > 0.2), first increased and then
decreased, with a maximum value of 84.2% in 2015 (Figure 7a), which is consistent with the
trend of adjusted R2 (Table 4). Of these, those with a strong relationship between WYs and
drivers (local R2 between 0.2 and 0.5) ranged from 46% to 54%. In contrast, less than 30%
of those had a strong relationship (local R2 > 0.5). At the sub-basin level, the influence of
drivers on WYs is mainly concentrated in the upper reaches, where local R2 > 0.5 accounts
for more than 50% (Figure 7b). In comparison, the influence of the Beiluo River and Jing
River basins in the Loess Plateau region and the downstream where human activities are
closely linked is relatively small, with local R2 > 0.5 accounting for less than 10% in the
Beiluo River and downstream areas.
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(b) The differences in the Local R2 in the sub-basin.

The reasons for the differences are probably mainly due to climatic, human activity,
and vegetation factors. For the upper reaches, which are in the climatic divide, precipitation
is regarded to be one of key elements impacting water yield. The high precipitation and low
temperatures in the upper Wei River region may result in lower actual evapotranspiration
compared to the Beiluo and Jing River basins. Meanwhile, midstream and downstream
climatic conditions are generally consistent, with local R2 showing high explanatory power
in the less anthropogenic midstream region (local R2 > 0.5~20%) and low explanatory
power in the more anthropogenic downstream region (local R2 > 0.5~6%). This relationship
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is more complex in catchments in different climatic zones, for example the selected drivers
differ significantly in the Beiluo (local R2 < 0.2 at ~50%) and downstream (local R2 < 0.2 at
~20%), so additional factors may be required to accurately explain the regional variability
of water supply in different climatic zones. Local R2 mapping is beneficial since this
information may be utilized to determine whether regions require additional explanatory
factors to better comprehend the underlying mechanisms affecting WYs [58].

4.3. Drivers of WYs in WRB

The spatial heterogeneity of the association between drivers and WYs is addressed by
obtaining regression coefficients for individual factors in different geographical spaces through
MGWR. In this section, the output coefficients of the MGWR model in 2020 are used as an
example to explore the spatial effects of each driver of WYs in the Wei River basin.

Based on the driving variables’ regression coefficients’ results, we discovered that
there were significant differences between natural factors and human activities on WYs
in different regions (i.e., spatially non-stationary), and these variables exhibit geographic
instability and spatial aggregation (Figure 8). In terms of the range of influence, the range
of GDP, PRE, and ASPECT are significantly greater than the other factors. In terms of the
direction of influence, there is only a unidirectional effect of precipitation, and the other
factors have positive and negative spatial non-smoothness on WYs across the basin. The
degree of influence at the basin-wide scale is determined by the mean of the absolute
values of the factors’ coefficients, and the sequence of strength of each variable on WYs is
PRE > POP > FVC > TME > NPP > SLOPE > ASPECT > GDP.
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primary productivity (NPP).

The two factors with the highest absolute coefficient values at each site were deemed
to be the most influential at that location [51]. Figure 9 depicts the spatial non-stationarity
of the determinants in WRB, with different colors representing different variables. In terms
of space governed by dominating elements, meteorology, population (POP), vegetation
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cover (FVC), and NPP are the factors of particular concern for the WRB. In addition, meteo-
rological factors were observed to be the main factors dominating the rivers in the semi-arid
region (such as the Jing and Beiluo rivers and the upper reaches of the Wei River) and
vegetation factors were the main factors dominating the Guanzhong Basin (the middle and
lower reaches of the Wei River) (Figure 9b). The geographical distribution of the primary
controlling variables only distinguishes the intensity of spatial relationships between vari-
ous natural and socio-economic factors and identifies the key factors influencing WYs from
the perspective of spatial non-stationarity, without the ability to investigate the interplay
between several variables.
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The distribution patterns of WY show a trend of a stepwise increase from north to
south (Figure 3). Our results suggest that WYs in the WRB are strongly influenced by both
environmental variables and anthropogenic activities. This is similar to earlier research
showing the crucial influence of meteorological factors, human activities, vegetation factors,
and topographic features in influencing WYs [13,54,59]. Precipitation is the major factor
influencing water yield in the WRB, with coefficient values increasing sequentially from
northeast to southwest (Figure 8c). Previous studies [20,60,61] have shown that increasing
precipitation is the most significant factor as it significantly impacts water magnitude and
terrestrial hydrological processes. Thus, much of the basin-wide water yield is attributable
to the influence of changing climate on regional precipitation [62] (Figure 9a). In addition,
rising temperatures alter the basin energy balance, affecting precipitation and evapotran-
spiration patterns [63], which leads to changes in runoff, peak flows, and recharge [59]. The
dominant factor in WYs in the upper and Jing River basins is attributed to temperature
(Figure 8d), which may be due to low vegetation cover and high evaporation from bare
ground in the upper and Jing River basins [64]. Climate change can impact the distribution
of WYs by affecting hydrological processes and energy balance [65]. Climate change can
therefore affect water yield by altering precipitation and temperature in river basins.

Since 2000, the Wei River basin, especially the Guanzhong basin, has experienced
unprecedented land-use change [66]. The expanding of cities is considered to be a crucial
element in increasing water yield, while areas with high urbanization show a significant
concentration of high WYs (Figure 3). Urban areas may influence water yield in the
following ways: (i) heat island effects due to urbanization may alter precipitation and
evapotranspiration patterns [67] and (ii) increased impervious surfaces may reduce infil-
tration of surface runoff [68] and urban evapotranspiration [69]. The population factor
(POP) has a positive effect in the North Luo River basin (Figure 8a), at the upstream-lower
junction, and a negative effect in the other basins, agreeing with Qi et al. [59]. This may
be due to the initial stage of urbanization, which significantly increases water quantity by
changing the permeability of the surface. As the level of urbanization increases, human



Remote Sens. 2022, 14, 5078 17 of 21

activity negatively affects water yield through increased water use. In addition, the average
coefficient of GDP in the WRB is consistently the weakest of all drivers (Figure 8b). The
potential reason for this may be that GDP is always focused in the built-up areas and,
because of its increase, does not directly affect the water quantity [70].

Within the study area, the influence of geomorphic factors on water yield had an effect
over a relatively wide range and to a lesser extent (Figure 8e, f), similar to the previous
studies of Hu et al. [18]. In contrast to Hu et al.’s findings, WYs and vegetation factors were
significantly negatively correlated in this study, while the extent and impact of FVC and
NPP were significantly different. The positive correlation between FVC in the northern part
of the semi-arid watershed may be because an appropriate increase in mixed forests and
shrublands is effective in reducing evapotranspiration in the semi-arid zone. At the same
time, in arid and semi-arid areas, high levels of forest aggregation reduce water quantity
by accelerating water depletion and increasing precipitation retention by the tree canopy,
which explains the apparent negative correlation in the south-western part of the upper
reaches, at the junction of the upper and middle reaches, and in the southern part of the
Beiluo River [71].

4.4. Limitations and Future Work Directions

There are certain to be some shortcomings in this study. Uncertainties in the InVEST
model predictions are due to a range of simplified presumptions about intricate socio-
ecological processes (based on the Budyko hydrological framework) and the climate input
errors (especially annual precipitation) [72]. The climate data utilized in this investigation
were obtained by interpolating actual observations, and although data quality controls
were performed in the data processing, the spatial heterogeneity of meteorological variables
prevented the interpolated data from presenting local microclimates [73]. In addition, our
study visualizes differences in the relationship between different sub-basins and WYs, with
the selected drivers varying dramatically in explanatory power across sub-basins (Figure 7),
for example, not explaining well the drivers of WYs in the Beiluo Basin. Although this
study used the geographical detector to analyze the interactions between factors, future
consideration should be given to how multivariate interactions affect water yield [64].

In future studies, we can use additional hydrological models, including the Lumped
Zhang model [36] and the soil and water assessment tool (SWAT) model [74] for compar-
ative studies. Meanwhile, we will use meteorological data with finer spatial resolution
and greater accuracy to model water yield [75–78] and more detailed socio-economic data
and landscape characteristics to gain a much broad knowledge of the drivers of WYs in
different climatic zones. In addition, multiple validation of linear and non-linear relation-
ships of WYs influences (such as considering both geographic probes and automatic linear
modelling (ALM) [13]) to explore synergistic and trade-off effects of natural-social factors
would be an important research direction.

5. Conclusions

Understanding the causes of WYs and their relationships in a geospatial context is
fundamental, and a prerequisite for ecosystem governance and watershed sustainability.
In this study, we assessed the spatial distribution and trends of WYs in the WRB from
2000 to 2020 and quantified the impact of environmental factors on WYs. The results show
that from 2000 to 2020, there were clear spatial and temporal differences in water yield,
with a slow upward trend and distinct and different spatial aggregation along the climatic
divide, with the majority of the growth in water quantity occurring in the metropolitan
agglomerations of the WRB. Generally, natural factors have a stronger influence on WYs
than anthropogenic activities, and dominate the spatial pattern of WYs. The interactions
between driving factors have a significantly larger influence on the spatial variability of
WYs than most single factors, and bivariate enhancement and non-linear enhancement
predominate among the forms of interaction between components, which demonstrates
that there are significant interactions between environmental factors and human activities.
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Meanwhile, the substantial effect of natural elements is decreasing over time, while the
influence of anthropogenic activities is increasing, and the contribution of human activities
to WYs must be considered. The results of the spatial regression model show that MGWR
provides an excellent model performance in terms of handling with geographical non-
stationarity and spatial autocorrelation compared to other regional or global regression
models. Specifically, the drivers are strongly correlated with WYs and there is a discernible
split in how correlation and strength vary across different geographic locations. Climatic
factors (including precipitation and temperature) were the main drivers of WYs in the
semi-arid zone, while precipitation and vegetation factors were the main drivers of WYs in
the semi-humid zone. In addition, studies have confirmed that appropriate increases in
suitable native vegetation in semi-arid zones can effectively increase water supply in semi-
arid zones. Policy makers can develop local water management measures for ecosystem
services that are tailored to specific local circumstances based on the global and local spatial
non-stationarity of WYs’ response to natural society.
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