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Abstract: With the development of remote sensing technology, the continuing accumulation of
remote sensing data has brought great challenges to the remote sensing field. Although multiple
deep-learning-based classification methods have made great progress in scene classification tasks,
they are still unable to address the problem of model learning continuously. Facing the constantly
updated remote sensing data stream, there is an inevitable problem of forgetting historical information
in the model training, which leads to catastrophic forgetting. Therefore, we propose a continual
contrastive learning method based on knowledge distillation and contrastive learning in this paper,
which is named the Continual Contrastive Learning Network (CCLNet). To overcome the problem
of knowledge forgetting, we first designed a knowledge distillation module based on a spatial
feature which contains sufficient historical knowledge. The spatial and category-level knowledge
distillation enables the model to effectively preserve the already learned knowledge in the current
scene classification model. Then, we introduced contrastive learning by leveraging the comparison
of augmented samples and minimizing the distance in the feature space to further enhance the
extracted feature during the continual learning process. To evaluate the performance of our designed
model on streaming remote sensing scene data, we performed three steps of continuous learning
experiments on three datasets, the AID, RSI, and NWPU datasets, and simulated the streaming
of remote sensing scene data with the aggregate of the three datasets. We also compared other
benchmark continual learning models. The experimental results demonstrate that our method
achieved superior performance in the continuous scene classification task.

Keywords: continual learning; contrastive learning; scene classification; knowledge transfer; remote
sensing images

1. Introduction

Remote sensing scene classification tasks can be considered to assign semantic labels to
high spatial resolution (HSR) image patches. According to the different spatial distributions
and combinations of objects, remote sensing scenes can be divided into semantic categories
which contain specific semantic information, such as airport, forest, resort and tennis court,
etc. The fundamental scene classification task has led to a wide range of applications such
as urban planning [1], environmental monitoring [2], disaster detection [3], and object
recognition [4,5].

Over the past few years, remote sensing scene classification has achieved significant
improvements. Several researchers have developed various well-performed methods
for remote sensing scene classification tasks. Especially, deep-learning-based methods
take full advantage of deep feature extraction and classification to achieve state-of-the-art
performance in scene classification. However, with the development of real-time earth
observation technology in the remote sensing field, extensive new remote sensing imageries
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are continuously acquired from different satellites. It is quite difficult to directly delineate
ever-increasing new images accurately with pre-trained models as the significant variation
(such as spatial resolution, and imaging angles) comes from different sensors. Moreover,
the existing models usually fail to continually update with non-independent identically
distribution (non.i.i.d) streaming data and result in a catastrophic forgetting of the previous
knowledge for remote sensing classification. Thus, it is critical to preserve the knowledge
learned by the old model while extending the new task learning.

Currently, several studies adopt pre-trained models to continually update with the
consecutive tasks for cross-dataset scene classification, for example, Lima et al. [6] used
a model pre-trained on ImageNet and then applied it to the new remote sensing scene
classification task. However, pre-trained model features based on natural images cannot
be directly transferred to remotely sensed images due to the significant differences. To
address the cross-domain problem, several transfer-learning-based methods are employed
to perform scene classification tasks. For example, Li et al. [7] fine-tuned with a few shot
samples and achieved favorable performance on scene classification tasks. Song et al. [8]
adopted domain adaptation to maintain the consistency of source and target domain
features in the subspace and effectively improved the scene classification. Although transfer
learning effectively transfers knowledge from the source domain to the target domain,
forgetting the previous knowledge of earlier tasks is still inevitable for continuous learning
tasks, especially when the models are constantly being updated.

In order to tackle the catastrophic forgetting problem in the streaming scene classifica-
tion tasks, continual learning or life-long learning is introduced which enables the model to
adaptively learn from tasks without a predefined number of samples and categories. The ex-
isting methods are mainly divided into three groups: replay-based methods, regularization-
based methods, and parameter-isolation methods [9]. To consolidate already learned
knowledge, replay-based methods adopt a strategy that saves the original data or a model
that can generate the data to mitigate forgetting. For example, Rebuff et al. [10] developed
a training strategy for continual learning via stored historical samples. Kamra et al. [11]
proposed a generative dual memory network that could be used to generate pseudo-data
for previous information preservation. Similarly, to overcome the model’s forgetting of his-
torical knowledge, Rostami et al. [12] used a generative model to produce pseudo samples
with a few samples from the previous tasks, so that the abstract concepts have effectively
emigrated from the generative model to the current task. Shin et al. [13] proposed the deep
generative replay framework with a “generator” and “solver”, where the “generator” is
applied to generate data from the previous task, and the “solver” is then used to handle
the current task with generated samples. Verma et al. [14] demonstrate the contribution
of their proposed Efficient Feature Transforms in generative models to overcome catas-
trophic forgetting. Although the replay-based methods obtained favorable results, the
additional requirement of storage space and the complexity of training the generative model
mean such methods cannot be applied in resource-limited situations. The regularization-
based method protects previously learned knowledge by constraint parameter updates
which typically add a regularization term to penalize change in critical parameters. Kirk-
patrick et al. [15] firstly proposed Elastic Weight Consolidation (EWC), an approach that
employed a quadratic penalty term to constrain the update of important weights calculated
through the diagonal of the Fisher information matrix. Similarly, Aljundi et al. [16] also
proposed a method to preserve important parameters, which is called Memory Aware
Synapses (MAS). MAS estimates the importance of each parameter based on the sensitivity
of the predicted output function, which effectively prevents valuable parameters from
being covered. However, the memorization mechanisms of regularization-based methods
show poor performance on discriminate inter-tasks categories. However, the additional loss
term that is used to protect consolidated knowledge may lead to a performance trade-off
between old and new tasks [17]. The third parameter isolation approaches allocate fixed
parameters for each task to prevent model forgetting. This method is also subdivided into
dynamic architecture and fixed architecture, depending on whether the model structure
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changes. For instance, Yoon et al. [18] proposed the Dynamically Expandable Network
(DEN), which dynamically expands the capacity of the old model when encountering new
tasks. Rusu et al. [19] avoid modifying corresponding sections of previous tasks while
extending the model for new tasks. Meanwhile, in the fixed architecture solutions, Path-
Net [20] and PackNet [21] employ binary masks to restrain parameters of subsets of the
network for the specific tasks. However, the parameter-isolation methods still suffer from
the problem of parameter independence, which restricts the robustness of complex tasks.

The three schemes mentioned heavily focus on the collection of historical experience,
but Lee et al. [22] argued that it still leads to more forgetting due to the restriction of
future events. Therefore, to alleviate catastrophic forgetting, they have learned more
representative features in the first instance. Inspired by this, obtaining meaningful features
within the continual learning process becomes critical to alleviating catastrophic forgetting.
For remote sensing scene images, there is a large quantity of land cover types and ground
objects covered in the same imagery, and the inter-class similarity and intra-class diversity
cause scene classification tasks to be more challenging. In addition, the images acquired
from different satellites have the problems of variation in illumination, backgrounds, scale
and noise, which further increase the discrepancy of scene images across different datasets.
Facing the dramatic variations in images, how to extract discriminative features with
limited annotated samples becomes the primary goal.

In order to capture more representative features for continual scene classification,
self-supervised, especially contrastive learning has demonstrated the strength of obtain-
ing the intrinsic features. Unlike supervised methods that require numerous manually
annotated labels, contrastive learning uses similarity metrics to measure the distance be-
tween positive and negative samples after transformation. It brings similar samples too
close together and separates distinct samples, by learning invariant features. For instance,
Zhao et al. [23] combined scene classification task with contrastive learning, which further
improved feature extraction and the generalization of the model. Tao et al. [24] obtained
high performance model for scene classification tasks under insufficient labeled samples via
introduced contrastive learning and achieved favorable results. Stojnic et al. [25] analyzed
the effect of sample size and domain of scene images for training, and their work demon-
strated that results of pretrained models by contrastive learning outperform others on scene
classification. Therefore, building robust and discriminative feature representations for
describing the scenes is the essential component in the cross-dataset scene classification.
Although it is possible to strengthen the deep feature obtained through contrastive learning,
there is still a restriction in preserving consolidated knowledge over a stream of tasks.

Moreover, due to the similarity of samples among different datasets, it is difficult for
the model to reuse the valuable knowledge learned from previous data. The knowledge
distillation strategy, especially the distillation of feature-level knowledge and semantic
information enables the model to obtain more transferable features effectively. Indeed,
the representative feature extraction for continual learning is intended to improve future
tasks. However, it still lacks a knowledge retention mechanism to preserve the acquired
representative features under streaming tasks. Specifically, the lack of distillation of his-
torical model features, especially for complex remote sensing scene images, results in the
learned spatial knowledge becoming unadaptable for future scene classification tasks. The
deep and abstract spatial features in the previous model no longer facilitate the learned
knowledge retention and eventually leads to forgetting.

Based on the issues mentioned, it is essential to employ contrastive learning to enhance
the robustness of the extracted features with the distillation strategy introduced. On the
one hand, due to the complex spatial configuration and significant distinctions between
different datasets, contrastive learning representations will further enhance the features to
boost future learning. On the other hand, the knowledge distillation can transfer valuable
learned knowledge to new tasks effectively and optimize scene classification. Especially for
the spatial features and class distillation, the catastrophic forgetting could be dramatically
alleviated by mimicking the different level features and the final output of the historical
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model. Hence, we considered applying both contrastive learning and knowledge distil-
lation to guarantee the model acquires robust features while preserving the historically
learned knowledge.

In this case, we propose the continual contrastive learning network (CCLNet) for
continual scene classification, which contains a deep feature extractor, knowledge dis-
tillation mechanism, and contrastive feature enhancement scheme. Firstly, we designed
the contrastive loss module through comparing samples with different augmented views
which are used to enhance the robustness of features for continual scene classification tasks.
Then, we introduced deep spatial feature distillation and class distillation for knowledge
preservation by imitating the different level features and outputs of historical models.
The integration of the contrastive loss module and the knowledge distillation strategy
for continual learning ensures the model captures comparison information under limited
annotated samples across different datasets, while further assuring knowledge retention.

The main contributions of the proposed CCLNet are:

(1) contrastive learning for continual learning enables the model to learn invariant and
robustness features of complex scene images under limited annotated samples.

(2) the designed spatial and class distillation to effectively distill the latent shape and
other knowledge of previous model into the current model thus facilitating contin-
ual learning.

The remaining parts of the paper are organized as follows: Section 2 introduces related
works of this paper. Section 3 describes in detail the proposed method in this paper.
Section 4 presents the experimental data and then details the setup of the experiments.
Section 5 analyzes and discusses the results of the experiments. Finally, Section 6 provides
the conclusion of the paper.

2. Related Work

In this section, we first give an overview of the recent works on scene classification,
especially scene classification based on deep learning and contrastive learning. Then, we
discuss the contribution of knowledge distillation to the retention of critical historical
knowledge for scene classification.

2.1. Deep-Learning-Based Scene Classification

Extracting discriminative features is crucially important for remote sensing scene
classification tasks. According to the feature acquisition method, scene classification
approaches are divided into low-level, mid-level, and high-level. For example, earlier
low-level features such as color histograms, grayscale co-occurrence matrices, and local
binary patterns mostly relied on manual assistance. Then, the mid-level methods, such
as Bag of Visual Words (BoVW), improved description of features and demonstrated its
effectiveness in scene classification. However, encoding the representative high-level
feature is still a challenging task due to the inter-class similarity and intra-class diversity of
different datasets.

To capture higher-level representative features of scene imagery, deep learning demon-
strates a powerful feature extraction capability and has been used intensively in recent
remote sensing scene classification. For example, the majority of the deep-learning-based
methods achieved optimal performance on remote sensing scene classification tasks. At the
beginning, there is a tendency for many researchers to use a convolutional neural network
(CNN) for scene classification. For example, Zou et al. [26] proposed a deep-learning-based
features selection method that extracts discriminative features for scene classification. How-
ever, it is difficult to train a completely new network due to the limitation of computational
resources and the cost of acquiring annotated samples. Therefore, some literature starting
to extract features by using networks pre-trained on other large-scale datasets, e.g., Im-
ageNet. Marmanis et al. [27] extracts deep features and transfers the knowledge from
the previous pre-trained network for scene classification. Hu et al. [28] extract multiscale
features and encode these features into global representative image features for scene clas-
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sification. Similarly, in order to obtain representative features for scene image classification,
Chaib et al. [29] combined features from each layer of the pre-trained model to construct
robust features. Although the methods previously mentioned have been implemented
successfully for scene classification, the problem of feature generalization and stabilization
remains, especially when pre-trained on nature images and when the target tasks are
remote sensing images. To handle this problem, we use contrastive learning to further
enhance the features without sufficient annotated samples.

2.2. Contrastive Learning for Scene Classification

Contrastive learning methods learn robust representations from unlabeled samples
by creating positive and negative samples, and thus transfer the learned knowledge to
further improve downstream works. For these state-of-the-art contrastive learning models,
MoCo [30] and SimCLR [31] currently obtain discriminative features by measuring the
similarity between positive and negative samples. Moreover, MoCo-v2 adds a nonlinear
layer to enhance features inspired by SimCLR. For SimCLR-v2 [32], a deeper projection
head is introduced and better enables feature extraction. Moreover, SwAV [33], BYOL [34],
and SimSiam [35] are proposed for a new contrastive learning scheme that does not require
negative samples and prevents collapse caused by applying only positive samples. These
methods prove that the contrastive learning framework can still obtain robust features
without negative sample pairs. Recently, many contrastive-learning-based methods are
employed in remote sensing scene classification tasks. Firstly, Tao et al. [24] pre-train a
high-performance feature extract model from large unlabeled images and demonstrate that
contrastive learning outperforms pre-training on the ImageNet dataset. Gómez et al. [36]
present MSMatch, which is combined with self-supervised contrastive learning, where the
learned knowledge can even be effectively transferred to scene classification tasks. Hence,
contrastive learning is proven to obtain more transferable features and overcome the
problem of knowledge migration through pretraining on remote sensing scene datasets. In
addition, Li et al. [37] proposed SCL-MLNet, which employs contrastive learning to enhance
feature extraction ability for few-shot remote sensing scene classification. Huang et al. [38]
introduce the STICL approach, which transfers invariant spatial-temporal features to
another dataset via a contrastive learning mechanism. The above studies demonstrate that
contrastive learning effectively improves scene classification performance; this study will
therefore leverage contrastive learning to further enhance the model feature extraction.

2.3. Knowledge Distillation for Continual Contrastive Learning

Many studies have explored knowledge distillation to prevent model forgetting. Hin-
ton et al. [39] firstly promote the performance of knowledge distillation strategies on image
classification, which use the softened output of the previous teacher model to transfer
knowledge to the student model. Similarly, Müller et al. [40] introduce label smoothing
while using the logits output of the teacher model to transfer knowledge. Moreover, not
only the information in the final output layer of the teacher network is used, but the hidden
knowledge in the middle layers is also exploited. For instance, Romero et al. [41] addition-
ally employ intermediate layers of the teacher model as hints for knowledge distillation.
Zagoruyko et al. [42] enable the student model to mimic the attention maps of the teacher
model. Ji et al. [43] leverage an attention-based network that obtained multiple levels of
features to learn feature similarities for knowledge transfer.

As the knowledge distillation strategy can effectively transfer the learned knowledge
from the previous model to the current model, this has been widely adopted in continual
learning. For example, Li et al. [44] preserve already learned knowledge through their
proposed LwF method, in which knowledge distillation is used. In LwF, the model trained
on the previous task will be used as a teacher network to further train for the current task.
Castro et al. [45] use cross-entropy loss to learn a new task and use a distillation loss to
retain knowledge learned from historical data. In [46], a bias correction for the last classifier
layer is used to avoid the overwriting of old knowledge by new knowledge. Hence, we
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introduced knowledge distillation to mitigate forgetting and integrated it with continual
contrastive learning.

3. Methods

To allow the current classification model to be used across different remote sensing
scene datasets, we propose a continual contrastive learning approach to distillate the spatial
and class knowledge and avoid forgetting. We use a deep-learning-based feature extractor
to acquire deep feature representation of the scene images and obtain outputs of the last
classifier layer. After that, intermediate features and logits output matching between the
new and old model as the distillation strategy to migrate the previously learned knowledge
to the current model. In addition, contrastive learning is introduced to further enhance the
robustness of extracted features during learning from streaming scene datasets. The overall
architecture of our model shown in Figure 1.
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3.1. Spatial Feature and Class Matching Distillation for Knowledge Preservation

Consider that there are T-step continual scene classification tasks, which mainly
contain the first initial task and the current T-step task. Generally, most scene images
contain both annotated and unannotated data. We presume that the continual scene
classification task is built on a streaming dataset D =

{
Dt

L, Dt
u
∣∣t ∈ (1, . . . T)

}
, where t is

the t-step task, Dl and Du represent the labeled scene data set and unlabeled data set,
respectively. For the t step scene images dataset DL = { (xi, yi)|i ∈ (1, . . . , N)}, which
contains N samples, xi and yi denote the scene image and the corresponding ground-truth
label of this sample, respectively. The dataset Du =

{
xj
∣∣j ∈ (1, . . . , M)

}
, which denotes

scene images without any label, usually satisfies N � M. Except for the first dataset,
which is used to train the base model, the following data will be used for the continual
scene classification task. At the t-th learning step, while the model learns new knowledge
from the current scene data set with C categories. The previous knowledge of K categories
learned in the t-1 step will be migrated to the current model by knowledge distillation.
Specifically, samples are selected from the historical data set for the current model training,
so the current t-th training data can be represented as Dt−th = {(xi, yi)}K+C

0 . Hence, we
designed a CNN-based model to extract deep features used for knowledge transfer. The
scene images can be used as input to the model to extract deep spatial features of scene
imagery and obtain the output of the final classifier layer. In addition, contrastive learning
is used to further enhance the robustness of acquired scene features with the available
unlabeled data. In this case, the performance of scene classification models for complex
remote sensing scene images will be further improved.

Acquiring representative features of scene images through deep neural networks is
critical to outperforming traditional methods. To obtain latent spatial information from a
large number of complicated images, a deep CNN module is introduced. The regular CNN
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architecture consists of a series of convolutional layers, pooling layers and nonlinear layers.
For feature extraction, the convolutional layer is the most important. The first convolutional
layer obtains relatively low-level representations of the scene images, and higher-level
features will then be extracted by the deepening of the layers as they become deeper.
The nonlinear layers are connected after the convolutional layers to provide nonlinear
signatures for the deep model. After that, the pooling layer, which usually uses maximum
pooling, is used to reduce the dimension of the representation. Specifically, given an input
scene image xi, the process of extracting spatial context information can be expressed as

fl = σ

(
k

∑
i=1

W l
i ∗ fl−1(xi) + W l

b

)
(1)

where ∗ represents convolution operation, fl denotes the current l-th feature map, fl−1
is the feature map of previous l − 1-th layer. To simplify the expression of the model
parameters, we set W l

i as the weight matrix of the l-th layer and W l
b as the corresponding

biases. σ(·) denotes the non-linear activate functions after the convolution operation which
is rectified to a linear unit (ReLU).

In the scene classification CNN, the pooling operation is adopted to minimize the
unnecessary information for deep spatial features and further decrease the number of
parameters to be trained. We compute the pooled feature will be

fl = maxPool

(
σ

(
k

∑
i=1

W l
i ∗ fl−1(xi) + W l

b

))
(2)

where maxPool(·) represents the max pooling operation for current l-th layer, which filters
out the useless information and allows the obtained spatial features to be more robust.

With the above process, the spatial features of scene images from different levels are
acquired. In continuous learning, the consistency of deep features between the old and
new models means that the model can be considered to retain the knowledge effectively.
To prevent catastrophic forgetting, feature-based distillation is applied to transfer historical
knowledge to the current model. Specifically, the distance between the extracted features of
the old and new models is measured to enable the performance of the current model to fit
the historical model. Usually, the cosine similarity is acquired by calculating the cosine of
the angle between two features in a feature space. Hence, for different hierarchical features
of scene images extracted by the old and new models, the cosine-similarities of vector
representation of single scene image x can be calculated as

cos_sim( fold, fnew) =
Σn

i=1Fold(x)× Fnew(x)√
Σn

i=1

(
Fold(x)

)2 ×
√

Σn
i=1(Fnew(x))2

(3)

where Fold(x) and Fnew(x) represent the features acquired by the old and new models from
the same image. Therefore, the spatial feature distillation for the scene samples from the
same batch is expressed as

Spatial_distill =
1

NL

N

∑
n=1

L

∑
L=1

cos_sim
(

Fl
old(xn), Fl

new(xn)
)

(4)

where N is the number of training scene images involved in the same batch, and L indicates
the number of layers for acquiring features in the model. Thus, in order to protect more
knowledge learned from the previous model, the spatial feature distillation loss can be
designed to maximize the similarity of features between the old and new models. For easier
loss calculation, the final feature distillation loss function is formulated as

Lspa_distill = minimize(1− Spatial_distill) (5)
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Normally, the value of similarity between features is in the range from 0 to 1. The
higher the similarity among the feature vectors, the closer the value of cosine similarity is
to 1. Therefore, the current model retains previous scene information well as the value of
the loss function close to 0.

In addition, not only is the knowledge saved by mimicking the feature map of the
historical model, but also the higher-level information can be preserved when the prediction
for same scene image of the current model is similar to the previous model. Consequently,
to avoid the prediction categories of the recent model for the scene images to be biased
towards the new categories, the class loss is designed as

Lclass =
1
N

N

∑
n=1

(Fnew(xi)− Fold(xi))
2 (6)

where N represents the training scene images in a batch, and Fnew and Fold are prediction
results of the new and old models for the same scene images, respectively. Compared with
feature distillation, it is more efficient to use the output of the last fully connected layer of
the model for knowledge transfer.

3.2. Supervise and Contrastive Learning for Knowledge Learning

In continual remote sensing scene classification tasks, besides preserving knowledge of
historical data by using knowledge distillation, it is also necessary to learn new knowledge
from the new data. The cross-entropy loss function is usually used as a measurement of the
probability distribution difference between the model prediction and the ground-true label.
Given an input scene image xi with a corresponding label yi, feed the extracted features to
the softmax layer for obtaining the predicted class probability, the process can be described
as follows

p(ŷ = c| f (xi)) =
exp
(

W ′ · f (xi) + W
′
b

)
∑C

c=1 exp
(
W ′ · f (xi) + W ′

b
) (7)

where ŷ represents the prediction of input scene image xi, and C is the total classes for cur-
rent step classification task. The W ′ and W

′
b are the trainable weights and biases for softmax

layer. Consequently, the cross-entropy loss for new data learning could be calculated as

Ltask = −
1
N

N

∑
i=1

C

∑
c=1

yc log(p(ŷ = c| f (xi))) (8)

where N represents the quantity of training scene images in a batch, and C indicates the
total categories of images contained in the current task.

In order to further enhance the feature extraction, self-supervised contrastive learning
is adopted. Given a remote sensing scene image x, this can be converted into two images xa

and xb by two randomly augmented actions such as rotation, crop and brightness adjust-
ment, etc. A batch of unlabeled scene images {xi}N

i=1 will be transformed to
{

xa
i , xb

i
}N

i=1.
The features obtained from these images will then be mapped to the d-dimension features
through a projection layer. This can be described as

zi = g(F(xi)) (9)

where g(·) represents the feature projection function, and F(·) indicates that the image is
encoded as a deep feature representation. Eventually, the encoded features obtained from
the two pairs of transformed images are used to calculate the cosine similarity. The self-
supervised contrastive training process by using unlabeled images is illustrated as follows

Li,j = −log
exp
(
sim
(
zi, zj

)
/τ
)

Σ2N
k=11[k 6=i] exp(sim(zi, zk)/τ)

(10)



Remote Sens. 2022, 14, 5105 9 of 23

where N is the number of training samples for a batch, 2N denotes the number of augmented
samples from the same batch, and sim(·) indicates the calculation of cosine similarity
between feature vectors. zi and zj denote the features from the same image and can be
considered to be a positive pair, while zk represents features extracted from other images
among the same batch. τ represents temperature parameter. Consequently, the total
contrastive loss of the batch can be represented as

Lcon =
1

2N

N

∑
i=1

(L2i−1,2i, L2i,2i−1) (11)

To sum up, the final continual learning for remote sensing scene classification can be
expressed as follows

L = Ltask + Lcon + Lspa_distill + Lclass (12)

The detailed training process of the proposed CCLNet for continual scene classification
can be seen in Algorithm 1.

Algorithm 1 The proposed continual contrastive learning for scene classification

1. Require:
2. Streaming datasets Dt DL

t and unannotated dataset Du
t for task T, t ∈ 0, 1, 2, . . . , T, D0

represents initial ImageNet dataset

3. the network F
(

xi; W∗t ; Wb
t

)
, t = 1, 2, . . . , T

4. random initialized parameters W∗ and Wb

5. sim(·) are cosine similarity of new and old model features
6. for t = 1, 2, . . . , T do
7. Dt ← Dt−1
8. for s = 0, 1, . . . , S do
9. for m = 1, 2, . . . , M do
10. sample a mini-batch B from Dt
11. for all xi ∈ B do
12. feature distillation loss Lspa_dist

13. class loss Lclass
14. cross-entropy loss Ltask
15. contrastive loss Lcon
16. end for
17. update previous task parameters W∗t−1 and Wb

t−1 and minimize loss function
Equation (12)

18. end for
19. end for
20. W∗t ←W∗t−1
21. Wb

t ←Wb
t−1

22. end for

23. Return model F
(

xi; W∗t ; Wb
t

)
for current task T

4. Datasets Description and Experiments Set up

In this section, we detail the dataset used for continual scene classification and experi-
mental setup. We then introduce the method for the evaluation of the effectiveness of the
methods in this paper and other benchmark methods.

4.1. Datasets Description

• AID data set: the AID dataset collected from google earth was proposed by Xia et al. [47]
in 2016 for aerial scene classification. The large-scale dataset contains 10,000 images
in 30 categories. The number of images in each category is 220~420 with size of



Remote Sens. 2022, 14, 5105 10 of 23

600 × 600 pixels. The acquired image is in RGB color space with a spatial resolution
of 8~0.5 m. The sample images of AID dataset are shown in Figure 2.
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Figure 2. Several scene image samples in AID dataset.

• NWPU-45 dataset: the NWPU-45 dataset was proposed by Cheng et al. [48] in 2017
for remote sensing scene classification. This large-scale dataset contains 31,500 images
and covers 45 scene categories, with 700 images in each category. The images in this
dataset showed significant differences in spatial resolution, viewpoint, background,
and occlusion, etc. The within-class diversity and between-class similarity problem
means the classification task on this dataset becomes more challenging. The sample
images of NWPU dataset are shown in Figure 3.
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• RSI-CB256 dataset: the dataset was proposed as a scene classification benchmark by
Li et al. in 2017. It contains six main categories with 35 subclasses among 24,000 im-
ages. The spatial resolution reaches 3~0.3 m with image pixel size 256 × 256. The
six main categories in this dataset are agricultural land, construction land and facili-
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ties, woodland, water and water conservancy facilities, transportation and facilities,
construction land and facilities, etc. Several samples are shown in Figure 4.
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4.2. Experiments Setup

For continual learning across different datasets, we set the AID dataset as the first step
of the scene classification task; the RSI-CB256 and NWPU-45 datasets were subsequently
added in the second and third steps of the task, respectively. As can be seen in Figure 5, it is
a challenging task to perform continual learning across different domain datasets. We split
the labeled samples of three datasets into the labeled supervised training set, unlabeled
contrastive learning, and testing set. In order to simulate the data accumulation, we kept
all the data used in the previous step for the next step. Specifically, we randomly selected
5% labeled and 5% unlabeled samples from the AID dataset for the first step of model
training, and 5% samples for testing. In the second step, we used all samples from the AID
dataset in the previous step and supplemented the RSI dataset with 5% labeled samples and
unlabeled samples for training, and 5% samples for testing. Similarly, the NWPU45 dataset
was supplemented in the third step with 5% labeled samples and 5% unlabeled samples
for training, and 5% samples for testing. We normalized the image size of each dataset
to 256 × 256 and performed random image augmentation. The random augmentations
strategy adopts resize, random crop, rotation and color jitter, etc.

In our experiments, pre-trained wideresent-50 [49] on ImageNet was used as the
backbone to extract multilayer features for knowledge distillation. The MLP with three
hidden layers is employed to project the features to the space where contrastive loss is
computed. In the continual learning task across datasets, we used only annotated samples
at the first step, and the size of the mini-batch was set to 24. And in the following two
tasks, we set the mini-batch size to 16 for both the annotated and unannotated samples.
The number of training epochs was set to 50 for each step task. To maintain the knowledge
of the historical model, the learning rate was set to 6 × 10-5. The Adam optimizer was
applied with weight decay 1e-5. The temperature was set to 0.1 in the contrastive loss.

All experiments in this article were executed with Python 3.7, and Pytorch 1.6. The op-
eration system is centos7.6, two NVIDIA Tesla 100 with 16 G memory for GPU acceleration,
and other equipment includes Intel (R) Xeon (R) Gold 5118 CPU and 256 G RAM.
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4.3. Evaluation Metrics

In order to test the accuracy performance of the proposed model and other continual
learning methods, we introduced OA (overall accuracy), Kappa coefficient, and the confu-
sion matrix to measure the scene prediction accuracy. We therefore displayed the mean and
standard deviation of the OA for all results after five experiments.

In addition, to further illustrate the knowledge forgetting and knowledge transferring
during continual learning in the model [50], we introduced average task accuracy (AT)
and average task forgetting accuracy (ATF). We define ai,j as the overall accuracy of the
model on task j after the model is trained on i-th task. Therefore, for the T-step continual
learning task, the AT of the current step i can be expressed as the average overall accuracy
of the j-th task from task 1 to task i. The higher average task accuracy shows that the model
achieved better performance over a series of continual learning tasks. The formula can be
expressed as

AT =
1
i

i

∑
j=1

ai,j (13)

The average task forgetting accuracy represents the forgetting level of the model on
task j after training on task i. Typically, the model has a higher knowledge forgetting of the
previous tasks during continual learning, when the ATF is higher. The ATF for current task
i can be calculated as follows

ATF =
1

i− 1

i−1

∑
j=1

fi,j (14)

where fk,j = max
l∈{1,...,k−1}

(
al,j

)
− ak,j, ∀j < K

where max
l∈{1,...,k−1}

(
al,j

)
represents the best overall accuracy achieved by the model for task

j after training on the i-th task. fi,j is calculated to show how much knowledge has been
forgotten about task j since the model trained on task i.

5. Results of Experiments
5.1. Ablation Study
5.1.1. Effect of Different Loss

To assess the contribution of different loss functions of our proposed method on forget-
ting prevention across three different datasets, we compared three different loss functions
and performed several ablation experiments in this section. In the AID, RSI, and NWPU
datasets, we randomly selected 5%, 5%, and 5% of the labeled samples for training, respec-
tively. In addition, 5% of the samples without labels were trained with contrastive loss, and
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5% of the samples were selected for testing. These ablation studies include (1) CE—the basic
loss function for model training; (2) CE + Spatial loss—this combination is used to preserve
the learned spatial knowledge of the historical model; (3) CE + Class loss—this combination
is used to distill the high-level knowledge to the current model; (4) CE + Contra—this com-
bination is used to obtain discriminative features; (5) CE + Spa + Class—this combination
is used to distill the hidden and high-level knowledge to the current model; (6) CE + Spatial
loss + Class loss + Contra loss—this combination adds contrastive learning to the previous
loss function to enhance model feature representation further. The results of the ablation
studies are demonstrated as follows.

As shown in Table 1, satisfied accuracy was obtained for the method which used
spatial loss, class loss and contrast loss simultaneously. It was found that using only cross-
entropy causes the historical knowledge to be covered by the newly learned knowledge of
the model. For this reason, the spatial loss and category loss introduced help the model
preserve the knowledge learned from the historical datasets in the third step and alleviate
the forgetting of knowledge effectively. In addition, combining the spatial and class losses
produced better results in terms of knowledge retention in the latter two steps. This ensures
that knowledge is transferred from the historical model to the new step model training.
Eventually, contrastive loss is introduced to enhance the representativeness of the acquired
features in the continual learning process, which leads to better performance in enabling
the model to retain historical knowledge. The above experimental results indicate that our
proposed method could lead to a favorable performance on continual scene classification
tasks across different datasets.

Table 1. Ablation study results for our continual learning method CCLnet on three-step tasks.

CE Spa Class Contra
Step1 Step2 Step3

AID AID RSI AID RSI NWPU

1
√

83.37 67.74 90.00 61.46 82.21 72.57
2

√ √
83.37 70.79 89.01 66.53 83.78 70.22

3
√ √

83.37 70.38 87.70 66.12 86.07 71.75
4

√ √
83.37 70.99 89.18 60.44 86.31 74.60

5
√ √ √

83.37 71.81 87.30 67.34 85.90 73.65
6

√ √ √ √
83.37 72.41 90.49 67.74 87.79 74.65

5.1.2. Weights Effect

To further evaluate the effect of different loss functions, we divided the total loss
function into two fractions, a knowledge learning module (KL) combined by CE + Contra,
and a knowledge retaining (KR) module that combined by Spa + Class. We changed the
weights of these two modules in the total loss function four times. The results are shown in
Table 2. In the table, we can see that the model retains historical knowledge effectively as
the weight of the KR module increases, whereas it fails to learn new knowledge efficiently.
In contrast, the model demonstrates a stronger tendency to learn new knowledge with
increasing weight of the KL module. However, the average accuracy of the model over
a series of tasks does not increase consistently with the weight of the KL or KR module.
Therefore, to balance knowledge learning and retention, we set the ratio of the two modules
to 0.5:0.5.

5.1.3. Average Accuracy and Average Forgetting

As shown in Figure 6, to assess the potential contribution of the different loss functions
of the model on the new knowledge learning and the historical knowledge preserving
during continual learning, we plot the average task accuracy curve and the average task
forgetting curve for the different modules in the three step tasks. The red line indicates
the accuracy curve applying CE loss, Spatial loss and Class loss and the Contrastive
loss together. As can be seen from the figures, our approach enables new knowledge
learning from the novel data while maintaining the historical knowledge. This means that
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the higher the average task accuracy curve in the left figure, the lower the average task
forgetting accuracy curve in the right figure. Comparing with the combined spatial and
class loss, incorporating contrastive loss further enhances the robustness of the features
during continuous learning, leading to a better performance in alleviating catastrophic
forgetting. Thus, our proposed loss modules are found to be effective for continual learning
across datasets.

Table 2. The influence of different module weights on model accuracy.

Ratio (KL:KR)
Step1 Step2 Step3

AID AID RSI Average AID RSI NWPU Average

0.1:0.9 81.14 69.57 86.72 78.15 66.28 85.08 65.26 71.21
0.3:0.7 81.14 70.58 88.20 79.39 68.35 84.59 66.29 73.08
0.5:0.5 81.14 70.18 90.16 80.17 67.74 84.90 71.62 74.75
0.6:0.4 81.14 68.15 89.59 78.87 61.05 84.42 73.20 72.89
0.9:0.1 81.14 67.74 91.63 79.69 61.05 84.34 71.55 72.21
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5.2. Comparison with Other Methods

In this section, we evaluate the performance of our proposed model and other repre-
sentative continual learning methods across three different large-scale scene datasets. For
example, Learning without Forgetting (LwF) [44], Synaptic Intelligence (SI) [51], Context-
dependent-Gating (XdG) [52], EWC [15] and Online EWC [53] were used as comparison
methods for comparison tests. For fair comparison, the same training and validation sam-
ples were selected for all methods for each experiment. For these methods, the detailed
hyperparameters are set as follows: the λ parameter in LWF and EWC are set to 1 and 50, re-
spectively, and the λ parameter and gamma in Online EWC are set to 50 and 1, respectively.
The percentage of hidden units to gate in XDG is set to 0.8. The regularization strength c in
SI is set to 0.1. The principles of these methods are explained as follows.

The EWC method employs sequential Bayesian estimation and proves second deriva-
tives of parameters to measure the importance of these parameters for continual learning.
For this reason, the EWC sets the parameter penalty terms for each step of the tasks in
the continual learning process. However, maintaining multiple parameter penalty terms
causes a huge computational overhead as the model is continually updated. Therefore,
EWC-online keeps only the penalty for the most recent task parameters and then further
alleviates the computational resource consumption. Similar to EWC, SI punishes the update
of importance weights by measuring synaptic importance, and the synapses are built to
accumulate information about sequential learning tasks, which allows new knowledge
to be learnt quickly and avoids forgetting historical knowledge. The LWF method firstly
uses knowledge distillation strategy to retain knowledge of historical tasks to continual
learning tasks. It uses the output of the old model to instruct the parameters of the new
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task model to be updated. Therefore, it performs well on both old and novel tasks and
alleviates catastrophic forgetting of the model effectively. Finally, XdG employs a random
assignment strategy for each task to decide which units of the model will be used for every
task. Hence, it is suitable for incremental learning.

Compared with these methods mentioned above, our proposed method achieves
optimal performance among a series of scene dataset classification tasks. As shown in
Table 3, the overall accuracy of our method fine-tuning, and other classic continual learning
methods are displayed. For the three continually updated scene datasets, the above
baseline continual learning approaches perform the three step continual learning tasks
well; in particular, the LWF and XDG avoided catastrophic forgetting effectively. However,
these methods are insufficient for acquiring new knowledge quickly through exploiting
new datasets. For example, the LWF method obtained 68.93% accuracy on the new RCS
dataset in the second step task, whereas only 31.56% overall accuracy was obtained when
the new NWPU dataset was added in the third step task. Our model produced the top
accuracy in the three-step continual learning process for each remote scene dataset. In the
first step task of the AID dataset classification, the overall accuracy of our model improved
at least 53.15% compared with other classical methods. For the second step classification
task on the AID and RSC datasets, our method improved by at least 44.22% and 12.13%,
respectively. For the three datasets in the third step, our method still shows at least 35.2%,
26.15%, and 28.18% improvement, respectively. Therefore, our proposed model performs
better in learning new knowledge.

Table 3. Overall accuracy of comparison methods on three-step continual scene classification tasks.

Method
Step1 Step2 Step3

AID AID RSC-256 AID RSC-256 NWPU-45

EWC 37.12 22.11 65.66 24.75 32.46 29.40
Online-ewc 32.25 11.56 64.02 8.32 30.82 27.75

LWF 30.22 26.77 68.93 30.02 61.64 31.56
XDG 39.35 28.19 78.36 32.45 43.44 34.86

SI 31.85 11.16 65.57 11.16 21.15 30.35
Fine-tuning 80.43 67.51 83.64 62.55 81.26 70.24

Ours 83.37 72.41 90.49 67.74 87.79 74.65

In addition, to provide a detailed description of the classification accuracy changes
for each category during the continual learning process, as shown in Table 4, we present
the classification overall accuracy and Kappa coefficient of the individual categories for
the three datasets. We only present the first 15 categories for each dataset, due to the space
limitation. In the aided dataset, classes 2, 3, 10 and 11, whose classification accuracy was
100% in the first step, suffered different levels of forgetting to the later steps. Especially for
the class 2, class 3 and class 10, there is a significant forgetting during the three steps tasks.
With the addition of following datasets, the model better obtained representative knowledge
from the novel data sets. It is important for the model to recognize new categories precisely.
For example, five categories of the RSI dataset with over 90% classification accuracy existed
in the third stage, and two categories in the NWPU dataset.

5.3. Class Incremental Learning

In this section, we performed several comparison experiments on cross-domain
datasets. To evaluate the incremental learning ability of our model within the same dataset,
we split each dataset into 10 sections to simulate continual learning in longer data stream.
For example, we provided 6, 6 and 5 new scenes for each of the first three steps of the
NWPU dataset, and then supplemented each step with 4 new scene categories. We kept
the same experimental settings as the cross-domain continuous learning task, including
sample size and hyperparameter settings.
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Table 4. Classification accuracy of partially scenes during three-step continual learning tasks.

Step1 Step2 Step3

Category AID AID RSC-256 AID RSC-256 NWPU-45

0 77.78 100.0 77.78 83.33 64.71 80.0
1 73.33 100.0 66.67 53.33 100.0 88.57
2 100.0 78.57 90.91 63.64 57.14 91.43
3 100.0 74.07 50.0 50.0 77.78 80.0
4 94.44 81.4 88.89 61.11 83.72 57.14
5 69.23 69.57 69.23 53.85 86.96 71.43
6 75.0 90.0 41.67 75.0 88.0 82.86
7 94.12 68.18 76.47 100.0 63.64 48.57
8 85.0 100.0 70.0 75.0 100.0 91.43
9 60.0 100.0 73.33 33.33 92.59 88.57

10 100.0 43.75 61.11 66.67 43.75 51.43
11 100.0 88.89 91.67 91.67 68.52 74.29
12 73.68 95.38 73.68 63.16 98.46 68.57
13 78.57 98.15 85.71 50.0 98.15 77.14
14 92.86 90.62 71.43 85.71 62.5 57.14

OA 84.78 76.47 91.80 70.38 86.72 71.93

K 0.84 0.76 0.92 0.70 0.86 0.71

Table 5 presents the accuracy evaluation of class incremental learning on different
datasets. We can see that the early steps of the model obtained a high accuracy. However,
with the supplementation of new scene categories, the overall accuracy of the model
decreases gradually for all learned scene categories. Compared with the AID dataset and
RSI dataset, the NWPU dataset has a 15.62% reduction in accuracy from the first to the last
step. Due to the large intra-class diversity and inter-class similarity, the complex NWPU
scene dataset causes the model to be more likely to be confused during continuous learning.

Table 5. Overall accuracy of class incremental learning on each of the three datasets.

Dataset Step1 Step2 Step3 Step4 Step5 Step6 Step7 Step8 Step9 Step10

AID 100 99.43 95.13 92.59 87.71 87.20 89.04 89.34 86.13 86.21
RSI 99.47 97.23 96.08 93.97 93.27 87.06 87.14 87.65 86.65 89.63

NWPU 94.28 93.81 92.26 88.57 86.97 82.17 80.08 81.31 80.62 78.66

5.4. Confusion Matrix

We demonstrate the confusion matrix of classification results for each method on
different steps of the scene classification task in detail. Through the confusion matrix,
the category accuracy and misclassification can be seen clearly. The i-th row and j-th
column represent the classification accuracy of the i-th class of scenes predicted as the
j-th class. Since the model suffers from classification confusion across datasets during
continual learning, we introduced additional categories on the second and third step tasks
to represent the results of classifying the current dataset into the images of other datasets.

In Figures 7–9, we display the confusion matrices for the three-step classification results
of our proposed method. Our method accurately recognized most of the scene images.
From these figures, we can see that there are fewer misclassified scenes in the AID dataset
for the first step. With the added RSI and NWPU datasets, the number of misclassifications
in the AID dataset gradually increased. Specifically, all categories obtained comparable
accuracy at the first step. The bare land (class 1), beach (class 3), desert (class 9), meadow
(class 13), etc. can easily be categorized into another dataset. This is because these similar
scenes are shared across these different scene datasets. Similarly, for the RSI dataset, several
scenes could still be misclassified into other datasets easily, especially the scene imagery
of dam (class 9) and parking lot (class 21). As for the large-scale NWPU dataset, due
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to the significant inter-class similarity and intra-class variation, the misclassification not
only occurred within the dataset, but also across different domain datasets. Nevertheless,
comparing the confusion matrix of model classification results at different stages, our
method provides favorable results in the continual learning process across different datasets.
This demonstrates that our method obtains valuable information quickly from new datasets
without compromising the performance of the model on historical data.
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5.5. Visualization Results

The critical importance for the scene classification task is that the model focuses ac-
curately on the important regions of the scene. Therefore, we used a Score-cam attention
heatmap to evaluate whether the model focuses on the representative area of the image
when making decisions. The wideresnet50 was employed as the backbone of our model to
extract features. Hence, the attention heatmap can be used to discriminate the representa-
tiveness of the features at different levels of the backbone network. The visualizations of
these features are used to further interpret the model on scene classification tasks. In the
heatmap, the darker color indicates the area which receives more attention from the model.

In Figure 10, the visualization results of the model based on the three datasets AID, RSI
and NWPU45 are illustrated. The heatmap of low-level features shows that the model pays
more attention to the edges of objects in the scene images. The model prefers to understand
complex scene images from the obtained abstract high-level information as the number
of model layers becomes deeper. As shown in Figure 10a, the visually interpretable maps
of airport and viaduct on the AID dataset prove that the attention of the shallow model
is mostly positioned on the local area of the scene image, such as a separate airplane in
the airport and an individual storage tank, and focuses on characteristics of edges and
corners. As for complicated scenes such as parks, the model focuses on more local details
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of the whole image due to the complexity of the internal object types. The saliency areas of
the high-level feature heat map show that the model is more concerned with global and
abstract information. Therefore, the representative features can be used to discriminate
complex scene images.
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Figure 10. Heat map visualization results of the model on different datasets in the third step. (a–c) rep-
resent the results on the AID, RSI, and NWPU datasets, respectively. The first row of each subplot
represents the original image, the second row represents the fourth layer attention map of the backbone
network, and the third row represents the fully connected layer attention map of the model.
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From Figures 11 and 12, we can see that several misclassified scene images and
corresponding misclassified images on AID, RSI and NWPU datasets, respectively. Similar
to previous confusion matrixes, seen in the result shown in Figure 12, the misclassified
scene images in the AID and RSI datasets are mostly occurring in the common class. Instead,
as a large-scale dataset, the misclassification in the NWPU dataset often occurs inside the
dataset. This is because more intense inter-class similarity problems are encountered across
different datasets during continual learning, for example, the beach, the bare land between
the AID dataset and RSI dataset, and the airplane, meadow and residential between NWPU
and RSI dataset.
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For the scenes belonging to the same class contained in all three datasets, especially
for the common desert, mountain and other categories, misclassification occurs during the
continual learning process, which results from color and texture similarity. Furthermore,
to evaluate the feature representation of our proposed method in the continual learning,
we applied the t-SNE algorithm [54] for visualizing obtained high dimensional features to
low dimensional space, which mapped the probability distribution of high dimensional
features and low dimensional features. We obtained the features of the same category of
scene images on three datasets. The t-SNE is applied to reducing the high dimensional
features to a 2-D space. As can be seen from Figure 13, the fourth layer features of the desert
and mountain scenes are so close in the feature space that the model cannot recognize
them accurately, while the deeper features of the images increase further in the feature
space with continuous learning, and the model can better discriminate such similar scene
images. As a result, our model can effectively alleviate the within-class diversity and
inter-class similarity problems across different datasets and perform better in continual
scene classification tasks.
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Figure 13. 2-D scatter plots for desert and mountain scenes feature which generated with t-SNE
algorithm among the three datasets. (a1,a2) indicates the visualization result of desert features
(b1,b2) represents the visualization result of mountain features. The first column represents the
visualization results of 131,072-dimensional features acquired in the fourth layer of backbone, the
second column indicates the visualization results of 128-dimensional features acquired at fourth layer
and fully connected layer.

6. Conclusions

In recent years, many scene classification methods have been developed to address
the problem of scene classification in the remote sensing field. Faced with continually
updated remote sensing data, the model usually tends to perform better on new data rather
than on historical data, i.e., there is a catastrophic forgetting problem. In this paper, we
propose a continual contrastive learning network (CCLNet) for scene classification with an
updating dataset. Our proposed model uses wideresnet50 as the backbone network and
designs spatial loss, category loss and contrast loss for model training. At first, we used
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cross-entropy for the initial model training. Then, we retained the knowledge learned in
the previous step task into the current model through spatial and class loss. Finally, we
further enhanced the extracted features to improve the classification performance of the
model during the continual learning of the model by using contrastive loss. Compared
with other continual learning models, extensive experiments prove that our proposed
model outperforms on different datasets. In future, we will explore remote sensing scene
classification tasks under more challenging conditions, such as combining few-shot learning
to overcome unknown sample prediction problems for open-set identification.
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