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1. Introduction

Remote sensing (RS) is a method for understanding the ground and for facilitat-
ing human–ground communications. New developments in RS have led to HR (high-
resolution) monitoring of the ground on a global scale, giving a huge amount of ground
observation data. Thus, AI-based deep learning approaches and its applied signal process-
ing are required for RS. These approaches can be universal or specific AI tools, including
well-known neural networks, regression methods, decision trees, etc. In this Special Issue,
we aimed to describe recent developments and trends regarding topics such as advanced
AI-based deep learning techniques and RS data processing. Sixteen papers were finally
published in this Special Issue.

2. Overview of Contributions

The contribution by Zoubir et al. [1] yielded a dataset with 6900 images that feature
three common deficiencies of concrete bridges. The deficiencies include cracks, efflo-
rescence, and spalling. To compensate for trials with incomplete training data, transfer
learning techniques were introduced and tested to categorize the three deficiencies. In ad-
dition, two gradient-based backpropagation interpretation methods were adopted to create
a pixel-level heatmap and to localize deficiencies in the test data. Objective and subjective
performances were compared to give reliable information on deficiency localization.

The contribution by Yang et al. [2] introduced the forward-propagation concept and
then added forecast features such as weather, temperature, terrain, and land-cover-type
distributions. Based on this information, the authors could assess the CCIs of over-the-
horizon communications on the intercity connection. According to the paper, based on
1300 sets of created terrains and landforms, two deep learning models were adopted to
predict the PL of over-the-horizon communications among venues in a land-based ducting
environment. The authors used LSTM prediction to verify their PL prediction using
deep learning.

The contribution by Duan et al. [3] presented and certified a novel suggestion with
un-labeled, upsampled, generated data, which could be worthless for unwarranted non-
graph data. The authors proved that the feature circulation can enable deep learning of
imbalanced graphs. In addition, the authors experimentally controlled collaborative data
synthesis via the generation of virtual samples in the central region of a minority. Their data
upsampling framework was assessed by numerous real-world learning network datasets.
According to this paper, their work provided varied and reliable benchmark models with a
big advantage.

In the contribution by Wen et al. [4], the authors creatively presented a spatial en-
durance criterion to choose 1-O features with wealthier local facts for the computation
of 2-O data to guarantee the efficiency of M-O features. To minimize the consequence of
inevitable positive/negative sample inequity in target finding, weight-adaptive factors
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were considered to adapt to the disadvantages of the cross entropy cost. In addition, the
MIoU was built to perform an anchor box regression from numerous viewpoints. In this
work, the authors presented an improved Wallis shadow automatic compensation approach
to pre-process aerial data, presenting a basis for the subsequent data-matching processes.
The authors also provided a consumer-grade unmanned aerial vehicle, obtaining a platform
to collect aerial data for investigational validation. The simulation results suggested that
their framework obtained outstanding results for each numerical and subjective metric.

In the contribution by Nie et al. [5], the authors presented a frequency/spatial inter-
action network (SSIN) for pansharpening. The main difference from conventional work
is that the authors considered the features of pansharpening as being abstract and multi-
spectral and then interrelated them repeatedly to progressively integrate frequency/spatial
information. To improve frequency/spatial information fusion, the authors presented a
frequency/spatial attention module to provide more efficient frequency/spatial informa-
tion transfer on the network. The simulation results were conducted on the QuickBird,
WorldView-4, and WorldView-2 datasets and proved that their approach overcomes con-
ventional methods subjectively and objectively.

In the contribution by Albu et al. [6], the authors presented a CNN for weather
forecasting using radar product prediction. The authors proposed the NeXtNow model,
an improved version of the ResNeXt architecture. The proposed NeXtNow has an en-
coder/decoder convolutional architecture and plots radar results from previous moments
and from the future. The authors authenticated their method utilizing radar data that
were composed from the Romanian NMA and the Norwegian MET. In addition, they
experimentally determined that the presence of numerous past radar results leads to more
precise forecasts in the future. According to their paper, the proposed NeXtNow presented
enhanced results.

In the contribution by Shao et al. [7], the authors proposed a rotated balanced feature-
aligned network (RBFA-Net). In this work, the authors proposed three networks: BAFPN,
AFAN, and RDN. The first network, BAFPN, is an enhanced version of FPN that improves
multi-level features; therefore, it can reduce the adverse influence of feature variances. In
the second network (AFAN), the authors used an arrangement convolution layer to adap-
tively line up the convolution features to rotated anchor boxes to alleviate the misalignment
issue. In the third network (RDN), the authors presented a TDM to regulate the feature
maps to handle any struggles with regression and classification tasks. The simulation
results used eight SOTA rotated detection benchmark networks; among them, the proposed
method presented the best performance in terms of mean average precision metric.

In the contribution by Han et al. [8], the authors presented an approach to categorizing
atmospheric duct (AD) parameters by means of AIS signals in conjunction with AI. The
proposed approach comprises an AD categorizing model. The categorizing model adju-
dicates the type of AD, and the inversion model reverses the AD parameters, giving the
type of AD. Their research results suggest that the accuracy of the AD-categorizing model
based on DNN outperforms others by 97% and that the AD parameter reverse model has
higher inversion precision than that of the conventional approach, therefore showing the
efficiency and precision of this new approach.

With growing access to data, advances in examinations carried out in the initial step
of the asset procedure are imaginable. Building extraction from raster information is a
significant step, particularly for urban planning and ecological research. The key issue with
the semantic segmentation tool is the partial accessibility of masks. Therefore, labelling
data are not perfect for the training step. To alleviate this issue, the contribution by Glinka
et al. [9] proposes a solution to the automation of data classification from cadastral data
from an exposed spatial dataset utilizing CNN and classifies and obtains buildings from
HR from these data. The simulation results prove that the semantic ML segmentation on
this spatial dataset presents satisfactory quality regarding the results.

In general, most of the current deep learning-based approaches are merely data-driven
and neglect the filtering approach; therefore, they normally require adopting big data to gen-
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erate training/validation/test datasets. However, a challenge is enhancing the correctness
and conducting speed. To alleviate this issue, the contribution by Wang et al. [10] pre-
sented an SMD-Net for effective and high-precision InSAR filtering by opening the sparse
regularization approach to handling the filtering model with a network. Different from
conventional DL-based filtering approaches, the SMD-Net generates a physical filtering
process in the network and covers less parameters and layers. It is thus expected to ensure
accuracy of the filtering without sacrificing speed. The simulation results proved that
the presented approach enhanced numerous conventional filtering methods subjectively
and objectively.

The contribution by Das et al. [11] examined the built-up expansion procedure and
its probability in an area of India by utilizing multi-temporal Landsat satellite data and a
combination of the ML approach and a fuzzy method. To generate the built-up expansion
probability model, several indices were used, such as dominance, diversity, and connectivity
for every year. This information was gathered and then combined with the fuzzy method.
The simulations were conducted using data from 2001 to 2021; the built-up areas were
enlarged by 21.67%, while water and vegetation bodies were reduced by 4.63% and 9.28%.
This study can serve as a guide to decision-makers presenting management plans for
systematic urban growth without harming the environment.

SAR is a cutting-edge microwave sensor that has been broadly adopted in remote
sensing surveillance, and its process is not affected by weather or light conditions. Ship
instance segmentation using SAR is able to yield not only the box-level ship location but
also the pixel-level ship contour. This approach plays an significant role in remote sensing
surveillance in the ocean. However, most conventional approaches have limited box-
positioning abilities, therefore deterring precision enhancement in instance segmentation.
To alleviate this issue, the contribution by Ke et al. [12] presented a GCBANet for enhanced
SAR ship instance segmentation. This approach has two novel blocks to guarantee excellent
performance: GCIM-Block and BABP-Block. The authors conducted extensive simulations
to prove each block’s efficiency.

Remote sensing data of the Earth are influenced by numerous factors. Based on
common/known hypotheses and a generation adversarial network, the contribution by
Wang et al. [13] presented the SDTGAN approach to connect spectral data and to directly
create target spectral remote sensing data. Additionally, more feature map information is
presented to compensate for the lack of information in the spectral data and to enhance the
geographic precision. By considering features such as supervised training with a balanced
dataset, cycle consistency cost, and perceptual cost, the distinctiveness of the result is
ensured. The simulation results prove that the presented SDTGAN approach outperforms
conventional approaches.

SAR can generate microwave remote sensing data without weather restraints. Deep
learning-based SAR ship detection approaches are hard to achieve on satellite data because
deep learning typically has complex models and huge computations. To alleviate this issue,
the contribution by Xu et al. [14] used the YOLOv5 method and presented a lightweight
on-board SAR ship detector. In this work, the authors researched three topics: how to
minimize the volume of the model, how to decrease the number of floating point operations,
and how to understand on-board ship detection without losing precision. To test the
proposed method, an evaluation was tested on an embedded platform NVIDIA Jetson
TX2. The simulation results proved that the proposed methods outperformed conventional
approaches subjectively and objectively.

Current conventional SAR moving target shadow detectors have low precision due
to their incomplete feature-extraction capacities between complex scenes. To alleviate this
issue, the contribution by Bao et al. [15] presented a new DLN called ShadowDeNet. This
network was invented for better shadow detection of moving ground targets on signal
SAR data. The authors proposed five approaches to ensure its performance: (1) HESE
for better shadow saliency, (2) TSAM for focusing on ROI, (3) SDAL for deep learning on
a moving target, (4) SGAAL for creating adjusted anchors, and (5) OHEM for choosing
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distinctive hard negative data. The authors tested the simulation on public SNL signal SAR
data. The simulation results were tested with the SOTA benchmarks, and the proposed
ShadowDeNet outperformed conventional approaches subjectively and objectively.

Pine wilt is an overwhelming disease that kills a vast number of affected pine trees
within a short time. In the contribution by You et al. [16], the authors challenged this issue
by detecting pine wilt disease. The main issue in detecting this disease is that data with
low resolutions are used; therefore, there is high vagueness due to poor image resolution.
In this work, the authors proposed two steps: (1) gathering the disease and hard negative
data utilizing a CNN and (2) adopting an object-detection method to localize the disease.
The authors adopted numerous image augmentation approaches to boost performance and
to avoid overfitting. The simulation results were tested with the SOTA benchmarks, and
the proposed method outperformed conventional approaches subjectively and objectively.

3. Conclusions

This Special Issue collected papers that emphasis new Artificial Intelligence-Based
Learning Approaches for Remote Sensing. Furthermore, this Special Issue expects to
encourage more research in the field of AI-based approaches for RS.
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