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Abstract: Most existing tracking methods based on discriminative correlation filters (DCFs) update
the tracker every frame with a fixed learning rate. However, constantly adjusting the tracker can
hardly handle the fickle target appearance in UAV tracking (e.g., undergoing partial occlusion,
illumination variation, or deformation). To mitigate this, we propose a novel auto-learning correlation
filter for UAV tracking, which fully exploits valuable information behind response maps for adaptive
feedback updating. Concretely, we first introduce a principled target state estimation (TSE) criterion
to reveal the confidence level of the tracking results. We suggest an auto-learning strategy with the
TSE metric to update the tracker with adaptive learning rates. Based on the target state estimation,
we further developed an innovative lost-and-found strategy to recognize and handle temporal target
missing. Finally, we incorporated the TSE regularization term into the DCF objective function,
which by alternating optimization iterations can efficiently solve without much computational cost.
Extensive experiments on four widely-used UAV benchmarks have demonstrated the superiority
of the proposed method compared to both DCF and deep-based trackers. Notably, ALCF achieved
state-of-the-art performance on several benchmarks while running over 50 FPS on a single CPU. Code
will be released soon.

Keywords: single object tracking; UAV tracking; correlation filters; target state estimation; auto-learning

1. Introduction

Given a target object specified by a bounding box in the first frame, visual object
tracking aims to determine the target’s exact location sequentially in a video, which serves
as a fundamental task in the computer vision community. Recently, increasing attention
has been paid to unmanned aerial vehicle (UAV) tracking [1-5] due to its promising
development in the field of geomatics [6], agroforestry [7], transportation [8] and mid-air
aircraft tracking [9].

Existing object tracking methods can mainly be divided into two types: discriminative
correlation filter (DCF)-based [10-14] and deep-based [15-18]. Since UAVs only provide
limited power capacity and computational resources, deep-based trackers usually suffer
low inference speeds and high computational overheads. In contrast, DCF-based trackers
achieve an ideal trade-off between accuracy and speed by efficiently computing the Fourier
frequency domain, providing good solutions to real-time UAV tracking.

DCF-based trackers [3,11-13] detect the target by generating a response map and
assigning the peak position as the target position. Then, the model will be updated with a
fixed learning rate after every frame to adapt to the target’s appearance change. However,
due to the common challenges of fast motion and out-of-view in UAV tracking, target
appearance could change drastically, rending the ineffectiveness of a stable update strategy.
An appropriate update strategy is a goal to pursue. Recently, some trackers [2,19-21]
have tried to mine information from response maps, such as fluctuation degree and peak
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height, as updated guidance. Intuitively, the peak height can provide a rough indication
of the similarity between the target and the tracker, and the fluctuation degree indicates
background clutter to some extent. LMCF [19] proposed an criterion called average peak-
to-correlation energy (APCE), beyond which a model update is required. We regard it as a
good measure of the fluctuation degree, but this single criterion seems not robust enough
to cope with the appearance change, as shown in Figure 1. It is not sensitive to slight target
state changes (e.g., in frames 1300, 1400), and there is an unnecessarily sharp drop when
the model state is credible (in frame 1268). In addition, although LMCF stops the model
from updating in some frames, which can prevent model degradation to a certain extent, it
still relies on the pre-set single learning rate to cope with the model updating.

Model constrain
regularization
term

0 : : N~y
1200 1300 1400 1500 1600 1700

Frame
QO Occlusion QO Target partially lost from view

Frame 1268 Frame 1300°

(

Figure 1. Comparison of the proposed TSE with APCE. The green box shows the tracking result.

1.1. Related Works
1.1.1. Discriminative Correlation Filter

Discriminative correlation filter (DCF)-based methods have been widely applied to
visual tracking due to their high computational efficiency. Bolme et al. [22] proposed
a minimum output sum of squared error (MOSSE) filter and were the first to apply a
correlation filter to object tracking. Henriques et al. [23] introduced a circulant matrix
to produce sufficient samples for training and detection while maintaining a fast track-
ing speed. However, the resulting periodic repetitions at boundary positions limit the
discrimination of the tracker. To mitigate this issue, various regularization terms have
been introduced [2,12,24]. Danelljan et al. [12] adopted a spatial regularization term that
penalizes the filter coefficients for background regions to force the tracker to focus more on
the target center. Huang et al. [3] used response maps as regularization terms for model
training and repressed the aberrance of response maps to improve tracking performance.
Chen et al. [4] designed a Gaussian-like response map as expected output to enhance the
representation learning ability of the correlation filter. Xu et al. [25] proposed to gauge the
relevance of multi-channel features for the purpose of channel selection to improve the
performance of DCF in accuracy and provide a parsimonious model from the attribute
perspective. Wang et al. [26] proposed a context and saliency-aware CF to strengthen the
ability to extract targets of interest from complex background. Fu et al. [27] introduced
an object-saliency-aware, dual-regularized correlation filter to suppress the boundary ef-
fect and consequently enhance the performance of the tracker. Li et al. [28] introduced a
temporal regularization term, which uses the model trained in the previous frame as the
reference model to constrain the model training in the current frame, thereby preventing
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model degradation. However, it uses a fixed constant as the regularization coefficient and
adopts the model in the previous frame as the reference model regardless of whether the
target state in the previous frame is credible.

1.1.2. Prior Knowledge to Model Update

Recently, increasing attention has been paid to the model updating. Wang et al. [19]
introduced a criterion called APCE to measure response map quality and guide model
updates. Li et al. [2] used the variations of response maps between consecutive frames
to estimate the credibility of the target state and restricted model update when needed.
Huang et al. [29] updated the Siamese tracker by transferring the previous target knowledge
with attention. Dai et al. [30] used an offline-trained meta-updater to determine whether or
not to update the tracker with two fixed learning rates (0 or 1), which fails to adapt to fickle
target appearances varying at different rates in UAV tracking scenarios. Though adopting
adaptive learning rates, Yang et al. [31] highly relies on LSTM [32], causing a high compu-
tational cost. Chen et al. [33] constructed a Gaussian-like (GL) function label for correlation
filter training and proposed an accurate incremental update to mitigate model degradation
by combining target samples with adaptive aspect ratios. In this paper, we fully exploit
the information of the response map and directly obtain the learning rate from it, which is
computationally efficient and suitable for real-time tracking. To the best of our knowledge,
no previous works have exploited the quality of response maps to evaluate the target state
and adjust the model’s learning rate adaptively.

1.1.3. Redetect the Lost Target

Due to the complex situations during tracking, targets may be missed in some frames.
To address this problem, previous works [34-36] often designed an additional detector
to search for the target on the entire screen after target loss. Some trackers [37,38] even
introduce global detection into tracking and locate the target through spatio-temporal
constraints. However, these methods are challenging to run in real-time on GPU, which
limits their applications in UAV tracking. Huang et al. [9] exploited motion features of
a moving target to redetect the target from clutter background after loss, but this rough
approach cannot handle static targets or visible videos. Zhu et al. [21] expanded the search
area to increase the possibility of recapturing the target. Recently, Alan Lukezic et al. [36]
verified the possibility of correlation filters as a detector using multiple correlation filters
updated at different time scales. However, the large number of filters used in [36] slows
the tracking speed, which limits its application in the field of UAV. Therefore, exploring
an efficient re-detection method for UAV tracking is very meaningful. Unlike previous
works, we introduce an iterative search method with only one correlation filter, which
tracks the target and searches for the target after it is lost, achieving tracking performance
improvement at the expense of only a slight decrease in tracking speed.

1.2. Contributions

We present a novel auto-learning correlation filter (short for ALCF) tracking algorithm
for efficient UAV tracking. We first introduce an innovative criterion, target state estimation
(TSE), to comprehensively get aware of the target state. Considering the peak height and
fluctuation degree, both informative features of response maps, simultaneously, the re-
sulting TSE value can represent the uncertainty in the target state of each frame reliably,
thereby having a keener sense of slight target state changes and being more resistant to
noise. As shown in Figure 1, TSE remains steady when the target moves smoothly and
fluctuates significantly when occlusion or target lost occurs (as denoted by the circles). Our
TSE successfully indicates whether the target is currently in the presence of occlusions
(green circle), partially lost (yellow circle), or out-of-view (blue circle). It is noted that the
comparison of APCE and TSE in Figure 1 was performed on the same tracker (ALCF).

Based on the TSE, we propose a novel auto-learning strategy that automatically derives
a rapid and optimal learning rate from TSE adaptively depending on the estimated target
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states. Specifically, when the TSE remains large, indicating a transparent and credible target
state, no update for the tracker is required, since it nicely fits the target. Moreover, when the
TSE decreases slightly, indicating the target undergoes deformation, a significant learning
rate is produced to adapt to rapid appearance changes. Furthermore, when the TSE drops
sharply and the target state is uncertain, the target may suffer severe occlusion or be lost
from view such that a small learning rate is generated to retain prior knowledge of the
target and avoid model degradation. This way, ALCF can adjust its tracker properly under
complex and changeable situations.

Moreover, the target in UAV tracking usually suffers large positional displacement
between successive frames or even temporal disappearance from view, which quickly
results in tracking failures. The challenges lie in recapturing the target when it appears in
subsequent frames, as large positional displacement may exist. Thanks to the TSE criterion,
which would decrease sharply when the target is lost (as exampled by the blue circle in
Figure 1), we present a new lost-and-found strategy that perceives such a TSE decrease and
enlarging search areas centered at the location, where the target last appears immediately.
ALCEF can quickly recapture the lost target with a new alternate search strategy with
negligible extra computational cost.

The proposed TSE can also contribute to model optimization. We introduce a novel
regularization term by using the trusted model trained with previous frames as a reference
model to prevent model degradation. Instead of manually setting the coefficient for the
regularization term, ALCF can automatically adjust the coefficient according to TSE. When
the target state is credible, the coefficients are small to relax the model variation, and vice
versa—the coefficients are significant in constraining the variation of the model in the
current frame. We also incorporate two additional regularization terms to help suppress
the aberration of computed responses for consecutive frames [3] and focus more on the
central portion of targets [12].

We extensively evaluated our ALCF on several commonly used benchmark datasets,
including UAVDT [39], UAV123@10fps [40], DTB70 [41], and VisDrone2018-test-dev [42],
which contain large-scale, challenging aerial video sequences captured by UAVs. We
provide two version trackers of ALCF, one based on a simple scale regression strategy (pro-
posed by DSST [43]), which far exceeds real-time on a single CPU and performs favorably
against other state-of-the-art trackers with hand-drafted features. Another version of ALCF
exploits deep features for scale regression (proposed by Alpha-Refine [44]), which shows
competitive performance against recent deep trackers.

To sum up, this work makes the following contributions:

*  We present a novel TSE metric to the community which allows accurate estimation of
the target state.

*  Weintroduce a new ALCF tracker upon TSE, which consists of a novel auto-learning
strategy, a fast lost-and-found strategy, and an effective regularization term for efficient
and robust UAV tracking.

*  We propose a deep version model which outperforms numerous recently popular
deep framework-based trackers and established the new state-of-the-art on several
UAV datasets.

*  We provide the community with an optimal hand-drafted feature-correlation filter at
over 50 FPS on a single CPU.

2. Method

In this section, we first describe the tracking mechanism of the correlation filter
and the overall framework of the ALCF tracker, followed by a detailed description of the
construction process of target state estimation (TSE), and finally describe the three strategies
based on TSE.
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2.1. Overview

The overall framework of our method is shown in Figure 2. The DCF-based tracker
consists of three stages: the detection stage for target localization, the online model update
stage for learning target appearance information, and the training stage for computing
correlation filters. Based on the TSE value computed from the response map, we propose
a lost-and-found strategy in the detection stage to cope with target loss. Then, an auto-
learning strategy to learn new information from the target sample is presented, which learns
adaptively according to the target state. Finally, a model that constrains regularization is
introduced into model training to obtain a robust correlation filter model for tracking.

In the detection stage, the correlation filter f;_; from the previous frame is used to
search for the target in the current frame. The correlation response map is used to locate
the target position, and the peak position is considered the target position of the current
frame. Besides the peak position of the response map, we also exploit other information
(i.e., peak value, fluctuation degree) to calculate TSE to evaluate the target state. When
there is a sudden drop in the TSE value, we judge that the target has been lost and start
using the lost-and-found strategy to re-detect the target, skipping the online update stage
and the training stage if the target is lost.

For the online update stage, we propose an auto-learning strategy to learn new infor-
mation from the current image. Unlike traditional DCF-based trackers that use a pre-set
constant as the learning rate, ALCF uses TSE to compute an adaptively changing learning
rate 77, which allows the appearance model to learn more from the current image when
the target state is credible and less when the target state is in doubt, thus maintaining

robust tracking.
Search Image Feature Map Response Map
Frame t ') %
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Figure 2. The overall framework of ALCF comprises three stages, i.e., detection, online updating,
and training.

For the training phase, we present the model constrain regularization strategy to train
the model. Specifically, we use the reference model f, preserved from historical frames to
prevent model degradation and use TSE to guide the update of the reference model and its
weight coefficient y during model training. When the target state is credible, we reduce
the weight coefficient of the reference model and relax the restriction on model learning
from the current frame, in the meanwhile updating the reference model to use the newly



Remote Sens. 2022, 14, 5299

6 of 22

computed correlation filter f; as the reference model for model training in subsequent
frames. Conversely, we increase the weight coefficient of the reference model and restrict
the model changes to prevent model degradation. Then, the model can be solved efficiently
via the alternating direction method of multipliers (ADMM) algorithm.

2.2. Target State Estimation (TSE)

We developed TSE by comprehensively evaluating the peak value Fy; and fluctuation
degree (short for FD) of response maps, which can indicate the uncertainty in the target
state and thus reflect the target state.

Denote F as the response map of dimensions W x H (width xheight in pixels). We
first compute mean-square error (MSE) to measure the difference between F and the ideal
Gaussian response:

MSE = ﬁ ZZ F@i,j) —y(i, )2 1)

i=1j=1

where F(i, ) represents the response value on pixel (i,j), y is the ideal response map
(Gaussian distribution), and F is expected to be similar to y when the target state is credible,
leading to a low MSE value.

Given MSE, the TSE is computed as:

TSE = [1+¢ (T-#]71, )

T = a1 Fpax + a2FD, ®3)
qux

FD = S7e, 4)

where F 4 is the peak value of F, which measures the similarity score for the tracker and
the target; FD reflects the fluctuation degree of F and the degree of background disturbance.
When there are no distractors (i.e., frames 7, 21, and 307 in Figure 3), the value of FD is
about 20 times that of Fy,;,. Thus, we use two constant coefficients, #; and &5, to ensure
Fax and FD are of the same magnitude. yu is an offset constant. When the target state
is credible, Fy,qy is large while MSE is small, resulting in a considerable TSE value (close
to 1). In contrast, TSE would drop to 0 when the target is lost. When the target suffers
deformation (in frame 21, the target suffers out-of-plane rotation), the peak value drops
slightly. When there exist distractors (in frame 228), sub-peaks lead to a significant drop to
FD, but Fy,y is still high, keeping the TSE value enormous. Thus, with the combined effect
of peak and fluctuation degree, our TSE is more robust and better guides the target state
changes. More details about the construction of TSE can be found in Section 3.3.5.

0o I Frame7 Frame21 ‘Frame228 Frame307
075 I Image
| Screenshot|
050 H
|
025 |

» I

0.00 |

0 50 100 150 200 250 300 I Response
005 . Map 0 9‘
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001 I l l | Frnax/FD 0.0103/0.2106 0.0074/0.1306 0.0042/0.0354 0.0083/0.1359 0.0107/0.2266
0.00 | Target State Perfect Out-of-plane rotation Outof view ~ Distractor & Out-of-plane Perfect

0 50 100 150 200 250 300 | L . ' ! rotation

| Learning T+ 0 A _ ., .~ v
— TSE —— Learningrate | rate 0 > 00449 > 0 ---memee- > 00268 > 0

Figure 3. Illustration of the auto-learning strategy. The green box shows the tracking result.

2.3. Auto-Learning Correlation Filter

Based on TSE, we developed a new ALCF tracker comprised of an auto-learning
strategy, a lost-and-found strategy, and an effective regularization term.
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2.3.1. Auto-Learning Strategy

Existing methods update the tracking model with a single learning rate as follows:

~model

900 = (1 — ) + g, ©)

Yk
where"denotes the discrete fourier transform (DFT) of a signal, £ is the vectorized image
of frame k, and J?,’(”fﬁld is the tracking model learned from frame k — 1. 7 is a fixed learning
rate that is hard to set manually for UAV tracking, as constant and uncertain appearance
changes exist. For example, when the correlation filter model can describe the target well,
the model does not need to learn new information from the target sample image. When the
target suffers severe occlusion or is lost from the screen, the model should stop updating
to prevent contamination by untrustworthy samples. On the other hand, when there
exists a difference between the model and the current target appearance, the model should
accelerate learning new information from the target appearance. When there exists a huge
difference between the target appearance and the model, we argue that maybe the target is
lost, and the learning rate should reduce to keep the prior knowledge of the target.

Given this, we developed an auto-learning strategy that updates the tracking model
with varying learning rates depending on the target state indicated by TSE, as shown in
Figure 3. We automatically adjust the learning rate depending on different target states
revealed by TSE computed from the distribution of response maps. When the target moves
smoothly (frame 12), TSE is close to one, and the learning rate drops to zero, since updating
the tracker is not necessary. However, when the target suffers occlusion or deformation
(frames 32, 48, and 156), TSE decreases while the learning rate increases to adapt to rapid
changes in target appearance. Moreover, when the target is lost from view (frame 20), TSE
drops sharply, and the learning rate becomes zero to stop the model updating and retain
the prior knowledge of the target. Concretely, we use TSE to compute the learning rate of
frame k from a Gaussian distribution:

1 _ (TSE-p)?
e = V2o

e ¥ - (®)
where f is set as 0.5, since TSE is bounded between 0 and 1, the standard deviations ¢ is set
as 1, and ¢ is a constant to make 74 fall in a reasonable value range. When the value of TSE
is close to 1, the target state is trusted, and the learning rate is low; and as the value of TSE
drops, the learning rate takes the lead and then decreases. When TSE decreases to 0, we
think the target may have been lost and stopped updating.

2.3.2. Lost-and-Found Strategy

We designed a novel lost-and-found strategy based on TSE. When the target is lost
from view, TSE will drop suddenly. For example, it decreases by over seventy percent
within ten frames, as illustrated in Figure 4. ALCF keeps a close eye on the trend of TSE
and initiates the search for the lost target around the location where it last appeared (green
rectangle) upon a sharp drop in the TSE. TSE drops rapidly when the target suffers complete
occlusion, as shown by the TSE curve. ALCF initiates four additional search windows
(yellow dashed box) and iterates their space intervals over three increased distances frame
by frame to enlarge search areas. Until any one of the search windows regains a large TSE
(more extensive than the sum value of the rest windows, as shown in frame 49), the tracker
successfully recaptures the lost target and terminates the re-found process.

Since large positional displacement may exist when the lost target reappears in subse-
quent frames, previous works have introduced additional detectors to search for the target
in the entire frame, leading to heavy memory and computation cost. Instead, we increase
the number of search windows to cover a large search area and thus avoid using a detector.
However, simply increasing search windows, though increasing the chances of recapturing
the target, would hurt tracking speed at the same time. Instead of augmenting massive
search windows in every single frame, we explored an efficient alternating search scheme
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that gradually enlarges the distance of four additional search windows in consecutive
frames to cover large search areas sequentially, as shown by the yellow dashed rectangle in
Figure 4. We set three distance intervals based on the width w and height & of the target
and iterate over them every three consecutive frames until the target is re-found.

Alternate search method

TSE
increase
again

- ———

TSE

Frame

Figure 4. Diagram of lost-and-found strategy.

Our lost-and-found strategy exploits the correlation filter as the detector, which has
two advantages: (i) The re-detection process is efficiently computed in the Fourier domain.
The alternate search mechanism does not introduce a significant additional computational
burden, which is friendly to the limited computational resources of UAVs. (ii) The correla-
tion filter can be used not only as a tracking model but also as a detector when the target is
lost, which brings no additional memory pressure and has low memory requirements for
the UAVs.

2.3.3. Model Constrain Regularization

We further introduced a new regularization term by employing the prior knowledge
learned from previous frames to constrain the filter learning of the current frame:

R = Ellfi— £l )

where f; € RT denotes the filter of frame k, and fr € RT represents the reference filter
learned from previous frames, which encodes informative prior knowledge about the
target. Instead of updating f, after each frame [28], we only use the filter learned from the
frame with favorable target states (e.g., no severe occlusion and deformation) as a reliable
reference filter. To this end, we use TSE to estimate the target state of every frame and only
use the filter from the frame whose computed TSE is larger than a pre-set threshold 7 to
refresh f;.



Remote Sens. 2022, 14, 5299

9 of 22

In addition, we use an adaptive coefficient -y to adjust the weight of the regularization
term depending on the current target state:

7= 51~ TSE?), ®

when the current target state is trustworthy, i.e., TSE is large, ¢ is small such that f; learns
less from f, to adapt to the latest appearance change of the target. Otherwise, fx borrows
more knowledge from f; to prevent model degradation.

2.4. Model Optimization

The objective function can be formulated as:

2

+ Z Ri/ (9)

2 i=[1,23]

E(fi) = 5|| X (e = f) —

—_
_2u
NNl

where xZ € RT denotes the d-th channel of the vectorized image of frame k, and D is the
total channel number. y € R is the expected response (Gaussian distribution). * indicates
the convolution operator. R;cq23) are three additional regularization terms to improve
the discrimination of the model, which are detailed below.

R is the regularization term defined in Equation (7). We further employ the spatial
regularization term [12] to eliminate boundary effects caused by circulant shifted samples:

(10)

12 12
RZZEZHw@fk 7
i=1 2

where w is a negative Gaussian-shaped spatial weight vector to make the tracking model
emphasize more on the target center. ©® indicates the Hadamard product operation.

In addition, a regularization term for response maps [3] is also used to exploit infor-
mative features of response distribution:

2
, (11)
2

D

D
Z X * fk Z(xZ—l * fl?—l)[lyp,q]

d=1 d=1

where 6 is a regularization coefficient; x;_1, fx_1 € RT denote the vectorized image and the
filter of frame k — 1, respectively; Y5, (xii1 * fl?q) is the computed response map. p and
g denote the location differences of two peaks in both response maps in two-dimensional
space, and [¥ 4] is used to align the peak position of two consecutive response maps.

2.5. Optimization Solutions

For the ease of optimization, we introduce an auxiliary variable §; = v/ NF f;, where F
is the orthonormal N x N matrix of complex basis vectors for mapping any N dimensional
vectorized signal to Fourier frequency domain. Thus, we transformed the objective function
into the frequency domain:

E(fkr

D
Z gl -9

2 D
1 4112
+3 Llwe ],
2 d=1 (12)
0

T3

D
Z(fz*gff) *Rpre +
d=1 2

where Ry represents the discrete Fourier transformation of the previous frame’s response
map, which is a constant for the current frame. We used the alternating direction method
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of multipliers (ADMM) algorithm to minimize Equation (12) to achieve a locally optimal
solution. The augmented Lagrangian form of the equation can be formulated as:

Le(fo 8l &") = E(fkrﬁzf)JrfT(ﬁk—\/Nka)

13
\Fka (13)

where éT = [gl , é‘z Jees gg] is the 1 x DN Lagrangian vector in the Fourier domain, p is
the penalty factor, and superscript T indicates the conjugate transpose operation. Then,
ADMM is applied by alternately solving the following two sub-problems:

2.5.1. The Solution to Sub-Problem § 1
The sub-problem g1 can be formulated as:

2
D
81 = argmin§ Y (o) -1
d=1 2
v > gL ’ (14)
k ~ A N N
+ 2k & +5 Gl ogh — Ry
240 2 2|4
= = 2

& (8 — VNFf) + pHgk \Fka

which is too complex to solve directly. Given the fact that x; is sparse-banded, and thus each ele-
ment of §(#(t),t = 1,2,...,N) is dependent only on each x(t) = [x{(t), x3(t),..., xP(#)]T
and g (t) = [conj($i(t)), conj(§2(t)), ..., conj(¢P)(t)]T [45], conj(.) denotes the complex
conjugate operation. Thus, we divided the vectorized image x; into N elements and solved
the problem by N smaller and independent problems, over t = [1,2,..., N

Geer(0) = argmin [ (1) ge(t) — (1)
(15)

)©8(0) ~ Ry

&(0) ~ VNER]

+ 2 1gelt) — &l + 51 (% (¢
+ & (@u(t) - VNFfi(t) + 5

where fi (t) = [fL(t), f2(t),... fP(t)], 2] (t) is the discrete Fourier transformation of x[ (t).
Each smaller problem can be calculated efficiently to achieve the solution of Equation (15):

Srp1(t) = (1 4+ NO)R ()2 (t) + (0 + 1)N) ' H, (16)
H = # ()§(t) + NORpre#f (t) + Ngr — N&' + Ny (17)

We use Sherman-Morrison formula [46] to accelerate the inverse operation:
MA+uoD) t=M"T1 - M luo M1+ o"M ). (18)

Hence, Equation (16) can be reformulated as:

1 EAGEAG)

(P+ 1IN 1IN g (12T (1)

)H. (19)

S (t) =
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2.5.2. The Solution to Sub-Problem fj

The subproblem f; can be written as:

1L 2
fovr = argmind, - [wo ]
d=1

(20)
+8" (g — VNFfi) + gHﬁk — VNEf; i
which can be easily solved as follows:
fer1 = m. 21)
2.5.3. Update of Lagrangian Parameter
We update Lagrangian multipliers as:
E =g+ p(gily - ), (22)

where i denotes the iteration number. g;;r_ll and fiﬂ indicate the solution of subproblem

Sk+1 and fi, 1, respectively. The coefficient p (initially equals 1) is computed as:

PiH = min(Omax, ,sz‘)’ (23)

where  and p;qx are set as 10 and 10,000, respectively.

3. Results and Discussion

In this section, we first compare our ALCF with state-of-the-art trackers with four
challenging UAV datasets, then provide experimental analysis to validate our design
choices. Finally, a deep version of ALCF is proposed to compare with recent deep trackers
to validate the superior performance of ALCE.

3.1. Implementation Details

All experiments were performed using MATLAB R2019a on a computer with Intel
i7-9700 CPU@3.0 GHz, 16 GB RAM, and NVIDIA GTX 1080. We set § = 22,7 = 0.9,
¢ =0.35, y = 6. Considering the numerical magnitude difference between F;, and
FD, we set ap = 20 X o7 = 500. The iteration number of ADMM was 2. We extracted
histogram of oriented gradients (HOG) [47] and color name (CN) [48] features for input
images. A separate filter in [43] was used in our ALCF for scale estimation, and the scale
refine module proposed in [44] was used in DeepALCEF for scale estimation. Note that the
parameters of ALCF remained fixed on all image sequences on all benchmarks. ALCF and
DeepALCF had the same parameters except for the size estimation method.

Two widely-used metrics, the precision plot and success plot, describe the performance
of all trackers through one-pass evaluation (OPE). Concretely, a precision plot computed
the percentages of frames in which the estimated target location is within a given distance
threshold from the ground truth. We used the score at the threshold of 20 pixels for ranking
the trackers. The success plot measures the fractions of successful frames in which the
intersection over union (IoU) between the predicted bounding box and the ground truth is
more significant than a certain threshold varied from 0 to 1. We use the area under curve
(AUC) of the success plots to rank all trackers.

3.2. Comparison with Hand-Crafted Trackers

We compared our ALCF with thirteen state-of-the-art hand-crafted trackers, including
AutoTrack [2], STRCF [28], ECO [49], CSR-DCF [10], MCCT-H [50], ARCF [3], BACF [13],
DSST [43], fDSST [11], SRDCEF [12], Staple [51], SAMEF [52], and KCF [53]. The detailed
comparisons on different benchmarks are listed below. Note that the publicly available
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codes and default parameters offered by the authors were utilized for impartial comparison.
In Figures 5-8, the numbers in the legend indicate the average precision scores for the
precision plot and average AUC scores for the success plot.

Success plots on UAV123@ 10fps

Precision plots on UAV123@10fps
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Figure 5. Overall performance of ALCF and other state-of-the-art trackers on UAV123@10fps.
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Figure 6. Overall performance of ALCF and other state-of-the-art trackers on VisDrone2018-test-dev.
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Figure 7. Overall performance of ALCF and other state-of-the-art trackers on DTB70.
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Figure 8. Overall performance of ALCF and other state-of-the-art trackers on UAVDT.

3.2.1. Results on UAV123@10fps

UAV123@10fps [40] consists of 123 challenging sequences with 12 different attributes.
All sequences were temporally down-sampled to 10 FPS to simulate challenging large
target displacements between consecutive frames. Figure 5 provides comparisons with
other preeminent trackers. ALCF achieved the best performance in both precision and
success. Notably, ALCF outperformed the previous state-of-the-art tracker, AutoTrack, by a
large margin, i.e., 1.8% and 1.5%, in precision and success, respectively. This evidences that
ALCEF can cope well with sudden changes in target appearance and large position shifts
between adjacent frames, which commonly appear in UAV tracking.
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3.2.2. Results on VisDrone2018-Test-Dev

VisDrone2018-test-dev [42] contains 35 sequences captured by various UAV platforms
in over 14 different cites in China, featuring diverse real-world scenarios. Figure 6 shows
that our ALCF obtained the best success score of 0.585 and a competitive precision score
of 0.798, which is on par with the best-performing tracker ECO, mainly due to the auto-
learning and the lost-and-found strategy in ALCF. The auto-learning strategy can adjust
the learning rate according to the target state to prevent model degradation. The lost-and-
found strategy can help the tracker recapture target after the target is lost, enhancing the
performance in coping with long-term tracking (the average length of VisDrone2018-test-
dev is around 940 frames; the most extended sequence can reach a length of 2569 frames).

3.2.3. Results on DTB70

DTB70 [41] comprises 70 sequences covering different types of UAV movements,
including rapid translation and rotation. Targets include humans, animals, and rigid
objects. In Figure 7, the numbers in the legend indicate the average precision scores for the
precision plot and average AUC scores for the success plot. Figure 7 depicts that our ALCF
performed the best in terms of success rate and second-best in precision. We attribute this
to the auto-learning update strategy in ALCE, since there are many viewpoint changes in
DTB70, where auto-learning plays an important role.

3.2.4. Results on UAVDT

UAVDT [39] was selected from over 10 h of videos taken by a UAVs at different
locations in urban areas. The targets are mainly vehicles with additional attributions,
i.e., weather conditions, flying altitude, and camera view. As we can see in Figure 8, our
tracker is the best in terms of success. It outperformed the previous best tracker, ECO [49],
and second-best tracker, AutoTrack [2], by 0.5% and 0.6%, respectively.

3.2.5. Average Performance Results

Figure 9 reports the average precision and success rate of the 13 trackers and ALCF
on the four benchmarks. ALCF yielded the best average success rate score and precision
score. It is noted that ALCF was the only tracker with a success rate score (0.503) above 0.5,
surpassing the second-best tracker AutoTracker (0.494) by 0.9%. As far as we know, ALCF
is the best tracker with hand-drafted features on the four benchmarks.
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0.673 0673
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KCF DSST SAMF  fDSST  Staple ~ SRDCF  MCCT-H  BACF  CSR-DCF  ARCF STRCF ECO  AutoTrack ALCF(Ours)

B Average Success M Average Precision

Figure 9. Overall evaluation of ALCF and other trackers regarding average precision and success rate.

3.2.6. Per-Attribute Evaluation

Figure 10 provides the precision comparison of twelve attributes defined on UAV123@
10fps. The number in parentheses is the precision of ALCFE. Detailed definitions of these
attributions can be found on UAV123@10fps. Our method performed the best against state-
of-the-art trackers (i.e., AutoTrack [2], ARCF [3], BACF [13], ECO [49], and STRCF [28]) in
most attributes. It is worth noting that our ALCF performed extremely well not only in
coping with rapid changes (e.g., viewpoint or illumination variation, and camera motion),
but also in preventing model degradation (e.g., out-of-view, partial and full occlusion).
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These challenges abound in real-world UAV object tracking, which is ample evidence that
our strategies are quite effective for UAV tracking.

3.2.7. Visualization

Figure 11 illustrates some qualitative comparisons of ALCF with other top-performing
trackers on some challenging sequences (from top down they are ChasingDrones (DTB70),
StreetBasketball3 (DTB70), bike2 (UAV123@10fps), person10 (UAV123@10fps), and S0602
(UAVDT)). Our ALCF showed superiority over other trackers in handling challenging
scenarios, including fast motion (the first sequence), heavy occlusion (the second sequence),
low resolution (the third sequence), loss from view (the fourth sequence), and viewpoint
change (the last sequence). Of course, our algorithm still has limitations. In the case of
long-term occlusion and superimposition of target deformation, tracking loss will occur.

Similar Object(0.716)
09

Overall(0.689) Camera Motion(0.677)

Scale Variation(0.649) Viewpoint Change(0.622)

Illumination
Variation(0.566)

Aspect Ratio
Change(0.623)

Low Resolution(0.555) Background Clutter(0.531)

Fast Motion(0.536) Out-of-View(0.594)
Full Occlusion(0.509) Partial Occlusion(0.634)
—0o—ECO —o— AutoTrack ARCF
—o— BACF —o—STRCF —o—ALCF

Figure 10. Attribute-based evaluation of ALCF and some other trackers in precision.

3.2.8. Speed

Table 1 compares the tracking speeds of ALCF and other DCF-based trackers (top-5
trackers with hand-drafted features in terms of success over four benchmarks). All the
trackers can run on a single CPU. ALCF reached a real-time speed of 51.3 FPS, comparable
to that of ECO and AutoTrack, with better predictive performance.

Table 1. Average speed (FPS) of top five trackers on [39-42], ranked by average success (top 3 in bold).

ALCF AutoTrack ECO-HC STRCF-HC ARCF
FPS 51.3 58.3 69.4 23.2 23.3
Success 0.503 0.494 0.487 0.469 0.469

Precision 0.724 0.723 0.696 0.672 0.697
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Figure 11. Qualitative comparison of ALCF with other top-performing trackers on some challeng-
ing sequences.

3.3. Ablation Studies

We investigated the effectiveness of different components of ALCF on UAV123@10fps.
As presented in Table 2, we used the model variant, which employs the same objective
function and fixes the learning rate of 0.025 as in SRDCF [12] as a baseline. For a fair
comparison, the baseline model adopted the same features extraction and scale estimation
scheme as ALCF (original SRDCF utilizes only HOG features, so the performance in
Figure 5 is not as good as that in Table 2). AL, MC, and LF denote the auto-learning strategy,
model constraint regularization term, and lost-and-found strategy, respectively. Different
components are incrementally added to the baseline model individually or in combination
to verify their effectiveness.

Table 2. Ablation analysis. R represents the response map regularization term. AUC represents the
success rate (top 1in bold.)

AL MC LF R Precision AUC FPS

0.600 0.432 36.94

v 0.637 0.460 45.64

v 0.649 0.463 34.03

v 0.648 0.465 32.38

v v 0.654 0.468 32.36

Baseline v v v 0.667 0.473 47.89
v v 0.654 0.469 42.44

v v 0.650 0.464 33.70

v v 0.652 0.474 36.52

v v v 0.662 0.475 29.91

v v v v 0.689 0.492 41.31

Baseline+STRCF 0.638 0.457 31.87

Baseline+MC+Fix 0.639 0.459 33.40
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3.3.1. Effect of Auto-Learning Strategy

As shown in Table 2, Baseline+AL outperformed the baseline in both precision and
success rate by 3.7% and 2.8%, respectively. In addition, incorporating an auto-learning
strategy improves tracking speed by 23.6%, as it helps reduce meaningless or detrimental
training of individual samples. The tracking speed in Table 2 is lower than the average
speed in Table 1 because the targets in UAV123@10fps vary drastically between consecutive
frames compared to those in the other three datasets, resulting in the frequent model
updating in most frames. Nevertheless, our auto-learning strategy still improved the
tracking speed significantly.

3.3.2. Effect of Regularization Term

Baseline+MC denotes the model variant that incorporated the proposed regularization
term into the baseline model, Baseline+MC+Fix replaced the adaptive regularization coeffi-
cient y calculated from Equation (8) with a fixed constant, and Baseline+STRCF updated
the reference model in Equation (7) after each frame without considering target states [28].
As is shown in Table 2, using a credible model as a reference and an adaptive regularization
coefficient contributes more to the performance boost.

3.3.3. Effect of the Lost-and-Found Strategy

We present a model variant (Baseline+LF) with a lost-and-found strategy added to the
baseline model. Notably, employing the lost-and-found strategy boosted the performance
significantly by 4.8% and 3.3% in precision and success rate, respectively, along with a
negligible increase in tracking speed.

3.3.4. Effect of the Objective Function

We also found that all three components can be further improved to different degrees
with the help of the additional response map regularization term used in [3], mainly
attributed to its aberration suppression of the response maps between two adjacent frames,
which helps the response maps to be more stable. The TSE proved to be more accurate
(the performance of Baseline+AL+MC+LF+R (precision: 0.689, AUC: 0.492, FPS: 41.31) is
higher than that of Baseline+ AL+MC+LF (precision: 0.667, AUC: 0.473, FPS: 47.89) with a
slight sacrifice in speed). We also verified the generality of our three innovations, which
can improve the tracking performance for trackers with different objective functions.

3.3.5. Construction of Target State Estimation

In our experiment, we found that T (calculated from Equation (3)) has an extensive
variation range, which exceeded 10 when the target state was trustworthy and dropped
below 2 when the target was lost. We should focus on the variation when T falls between 2
to 10 to perceive the transition of target states. Hence, we introduce the sigmoid activation
function (with u as 6) upon T to magnify its variation in the interval [2,10] while suppress-
ing noisy fluctuations when the target state is entirely credible (T > 10) or completely
untrustworthy (T < 2).

We also experimented on UAV123@10fps to validate our parameter settings. Figure 12
shows the performance peaks at y = 6. When u becomes small, the value of TSE becomes
large (close to 1), which leads to a gradual reduction of the learning rate to 0. When
u = 0, it is equivalent to not updating the model, so the model’s performance was the
worst. Moreover, when y becomes large, the value of TSE will become smaller, which
caused the model to use a large learning rate to update when it did not need to be updated
and zero when it needed to be updated. However, the performance was slightly better
compared to the case of not updating the model (¢ = 0), which verified the importance of
the model update.
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Figure 12. Effect of y on the performance of ALCE.

3.3.6. Sensitivity Analysis of Model Constraint Regularization Term

Based on STRCF [28], we further designed an adaptive model constraint regularization
term for UAV tracking, which can update the reference model adaptively and adjust the
effect of the reference model on the correlation filter learning. Moreover, we validated our
parameter settings on UAV123@10fps. We set a threshold 7 to refresh f,. When the value
of TSE is larger than 7, the reference model f, will be updated. To find the optimal value
of T, we refined the search within the range of values of 7, taking values at 0.1 intervals.
The result is shown in Figure 13. We can see that when 7 = 0, the reference filter f, is
updated every frame with an adaptive parameter . When 7 = 1, the reference filter f, is
never updated during tracking. By comprehensively considering the precision and success
rate, we set T = 0.9.
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Figure 13. Effect of T on the performance of ALCF. (a) shows the precision while (b) shows the
success rate.

3.4. Extension to Deep Trackers

We further evaluated the tracking performance of ALCF in comparison with other
state-of-the-art deep-based trackers on the four benchmarks. Inspired by [44], we proposed
a deep version of ALCF called DeepALCF, which exploits Alpha-Refine as our scale
estimation. Note that Deep ALCEF still exploits HOG and CN as feature presentations for
object location, but it exploits ResNet-34 to extract deep features for scale estimation, which
is more accurate. More detail about the scale estimation can be found in Alpha-Refine [44].

3.4.1. Results on VisDrone2018-Test-Dev

We selected 10 new state-of-the-art deep trackers for comparison. The results are
shown in Table 3. DeepALCEF yielded the best precision score (0.816), surpassing the
second-best tracker KYS [54] and third-best tracker DiMP [55] by 0.6% and 1%. DeepALCF
also obtained the best success score (0.619), outperforming the second-best tracker, Su-
per_DiMP [56] (0.610), and the third-best tracker, DiMP [55] (0.605) by 0.9% and 1.4%. This
proves that the auto-learning strategy can cope well with object tracking in natural scenes.
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Table 3. Performance comparison of ALCF with other ten state-of-the-art deep trackers (top 3 in bold).

MDNet UDT+ PrDiMP ATOM DiMP SiamRPN CFNet Super DiMP KYS HiFT ALCF DeepALCF

[16] [15] [571 [20] [55] [17] [58] [56] [54] [59] Ours Ours
Precision  0.790 0.800 0.797 0.751 0.806 0.781 0.778 0.800 0.810 0.721 0.798 0.816
Success 0.579 0.584 0.600 0.563 0.605 0.573 0.568 0.610 0.600 0.527 0.585 0.619

3.4.2. Results on UAVDT

Table 4 shows the precision and success scores of ALCF and other 12 deep trackers on
UAVDT. ALCF was very competitive in comparison with PrDiMP [57] in both precision
and success and outperformed third-best tracker MDNet [16] by 2.3% and 7% in terms of
precision and success, respectively.

3.4.3. Results on DTB70

We compared DeepALCF with 13 popular deep trackers. Table 5 shows the comparison
results. Deep ALCF outperformed the third-best tracker DaSiamRPN [21] (0.512) by 1.8%
in terms of success, and DeepALCF (0.727) is very close to DaSiamRPN (0.735) in terms
of precision. Compared with ARTracker [33], ALCF reached a real-time speed of 51.3 FPS,
which is far more than ARTracker (FPS: 13.28).

3.4.4. Results on UAV123@10fps

We conducted a comprehensive experiment in Table 6, which compares DeepALCF
and ALCF with numerous recent deep trackers. Deep ALCF achieved the best precision
(0.712) and success rate (0.516) scores. It can be found that ALCF with hand-drafted features
obtained a third-best precision score, which outperformed a lot of deep trackers while
running at over 50 FPS on a single CPU.

Table 4. Overall evaluation of ALCF, DeepALCE, and some other state-of-the-art trackers on
UAVDT [39] (top 3 in bold).

Trackers Venue Precision Success
MDNet [16] CVPR2016 0.725 0.464
MCCT [50] CVPR2018 0.691 0.448
ASRCEF [24] CVPR2019 0.720 0.449
TADT [60] CVPR2019 0.700 0.441
UDT [15] CVPR2019 0.674 0.442
UDT+ [15] CVPR2020 0.696 0.415
PrDiMP [57] CVPR2020 0.757 0.559
fECO [61] TIP2020 0.699 0.415
fDSTRCEF [61] TIP2020 0.677 0.454
HiFT [59] ICCV2021 0.652 0.474
LUDT [62] IJCv2021 0.631 0.418
LUDT+ [62] JCv2021 0.701 0.406
ALCF Ours 0.725 0.456

DeepALCF Ours 0.748 0.534
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Table 5. Overall evaluation of ALCF and some other state-of-the-art trackers on DTB70 [41] (top 3
in bold).

Trackers Venue Precision Success
HCEF [63] ICCV2015 0.616 0.415
MDNet [16] CVPR2016 0.703 0.466
CFNet [58] CVPR2017 0.587 0.398
IBCCEF [64] ICCVW2017 0.669 0.460
CREST [65] ICCV2017 0.650 0.452
ADNet [66] CVPR2017 0.637 0.422
DaSiamRPN [21] ECCV2018 0.735 0.512
UDT+ [15] CVPR2019 0.650 0.457
MCCT [50] CVPR2019 0.725 0.484
TADT [60] CVPR2019 0.690 0.460
ASRCEF [24] CVPR2019 0.696 0.468
KAOT [67] TMM2020 0.692 0.469
ARTracker [33] GRSL2022 0.752 0.588
ALCF Ours 0.694 0.480
DeepALCF Ours 0.727 0.530

Table 6. Overall evaluation of ALCF and some other state-of-the-art trackers on UAV123@10fps [40]
(top 3 in bold).

Trackers Precision Success Trackers Precision Success
HCF 0.601 0.426 MDNet 0.664 0.477
CFNet 0.568 0.422 IBCCF 0.651 0.481
SiamFC [68] 0.678 0.472 CREST 0.600 0.445
C-COT [69] 0.704 0.502 DeepSTRCF 0.680 0.499
DaSiamRPN 0.689 0.481 UDT+ 0.674 0.470
MCCT 0.689 0.496 ADNet 0.647 0.422
TADT 0.685 0.507 ASRCF 0.685 0477
ALCF 0.689 0.492 DeepALCF 0.712 0.516

4. Conclusions

In this work, we proposed a novel tracking method called ALCF to deal with challeng-
ing situations (occlusion, deformation, etc.) in UAV tracking. Specifically, we introduced a
novel criterion named target state estimation (TSE) to identify exact target states and adjust
the learning rate for model update adaptively. In addition, a new model constraining regu-
larization terms and an efficient lost-and-found strategy were further developed to enhance
the robustness of the tracker to target variation and loss. Comprehensive experiments
on four widely-used UAV datasets demonstrated that ALCF performs better than most
state-of-the-art trackers in both precision and success scores while running over 50 FPS on
a single CPU. We also provided a deep version tracker called DeepALCF, which is competi-
tive against recently popularized deep trackers. We believe our work would contribute to
the field of UAV tracking. We will focus on improving the real-time performance of the
model in edge computing and running our algorithm on a hardware system on a UAV to
evaluate its performance.
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