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Abstract: A hyperspectral image provides fine details about the scene under analysis, due to its
multiple bands. However, the resulting high dimensionality in the feature space may render a
classification task unreliable, mainly due to overfitting and the Hughes phenomenon. In order to
attenuate such problems, one can resort to dimensionality reduction (DR). Thus, this paper proposes a
new DR algorithm, which performs an unsupervised band selection technique following a clustering
approach. More specifically, the data set was split into a predefined number of clusters, after which
the bands were iteratively selected based on the parameters of a separating hyperplane, which
provided the best separation in the feature space, in a one-versus-all scenario. Then, a fine-tuning of
the initially selected bands took place based on the separability of clusters. A comparison with five
other state-of-the-art frameworks shows that the proposed method achieved the best classification
results in 60% of the experiments.

Keywords: band selection; unsupervised; feature engineering

1. Introduction

In pattern recognition problems, the separation among classes in the feature space is
of great importance for the success of the classifier [1]. An appropriate separation may be
achieved by means of effective data representation [2,3]. When it comes to hyperspectral
image (HSI) classification, by selecting the right bands, one can provide a wider class
separation [4], as well as attenuate the negative effects of the Hughes phenomenon [5] and
avoid the overfitting of the classifier [6–8].

In such a scenario, feature extraction (FE), i.e., a combination of the original spectral
bands, is capable of tackling the aforementioned problems, but it is not a recommended
approach for dimensionality reduction of hyperspectral data, because the resulting features
do not carry the physical information any longer [9], impairing, consequently, a proper
understanding of the model [10,11]. Band selection (BS), on the other hand, is as good as FE
in terms of providing class separability; moreover, it keeps the original information about
the spectral bands [9,12]. Since a BS method provides suitable bands for a given task, it
is possible to design tailored sensors to perform that application, consequently avoiding
redundant and irrelevant bands [13].

BS methods can be grouped into one out of three major categories [14]: wrapper
methods, when the selection of bands occurred during the training phase of the classifier; in
this case, the classifier must be trained from scratch every time a band subset is assessed;
embedded methods, when the classifier selects the bands by itself, for example, Lasso [15];
and filter methods, when the band selection process takes place before the classifier training
phase; it has no relation to the classifier to be used [2].

In terms of the available data set to train the algorithm, a band selection framework can
be considered supervised [16–19], semi-supervised [20–23], or unsupervised [24–26]. The
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latter ends up being the most feasible in real applications due to the difficulty in acquiring
labeled samples [27].

It is known that unsupervised state-of-the-art BS frameworks follow either a ranking-
based [28] or a clustering-based approach [29]. Ranking-based methods sort the spectral
bands in relation to a specific criterion. However, they fail in terms of avoiding correlated
bands [30]. Clustering-based BS frameworks, on the other hand, aim to find the most
representative bands of each cluster of the data set, decreasing the correlation amongst
bands [31]. Thus, clustering in the BS literature is normally used to form clusters of
spectral bands. For instance, in [32], the authors propose a BS method that uses dynamic
programming to cluster the spectral bands, which are considered continuous. In [33],
the density peak is used for the clustering of the bands, due to its capability of tackling
non-spherical data. The authors propose the weight between the normalized local density
and cluster distance. In [34], the BS algorithm is performed based on correntropy-based
clustering of the spectral bands. In [29], the authors propose a BS algorithm that initially
clusters the spectral bands based on Euclidean distance. Then one band per cluster is
selected, resulting in a band subset whose bands are ranked in a fine-tuning step. In [35],
the proposed BS uses a self-tuning algorithm to cluster the spectral bands. In [13], a kernel-
based probabilistic clustering of spectral bands is proposed, based on the assumption
that there is a smooth transition between two adjacent clusters. Finally, in [36] the most
representative bands for each pixel are selected by means of an attention mask. Then, an
autoencoder reconstructs the original image using the selected bands. In the end, the final
bands are selected by a clustering method.

As those cited papers performed the clustering operation on the spectral bands, struc-
tural information on the data set was not taken into account. Moreover, since the final
objective of band selection frequently lies in a better classification of the data instances,
an analysis based solely on the best representative bands (without looking at class sepa-
ration on the feature space) ends up being of secondary importance. Furthermore, in an
unsupervised BS framework, normally the filter approach is used. Thus, the band selection
takes place in a preprocessing step, i.e., before the use of the classifier itself [37]. Thus, a
priori one does not know beforehand which classifier will be used. For this reason, this
paper presents a BS framework that seeks to maximize the distance among classes in the
feature space. Therefore, our main purpose is not the representation of the data set by a
few bands [38], but rather the selection of bands that best separate the classes. This class
separability during the selection of bands is the gap we propose to fill in relation to other
approaches. Since this framework is set to work in an unsupervised environment, the
actual classes are represented by clusters.

Thus, in the proposed approach, the bands were iteratively selected based on data set
portions, which, in turn, were defined by clustering algorithms. Eleven clustering methods
were evaluated in order to provide the best match between the resulting clustering and
the actual data classes. Thus, the clusters formed may be deemed as representatives of
the actual classes, which enables an analysis based on the separability of the classes in
the feature space; consequently, structural information was taken into account. Once the
clusters were formed, a one-versus-all approach was adopted. In this way, the selected
bands were those that provided the best separability between the cluster and the rest of
the data set. Then, those bands were subjected to a fine-tuning procedure, which consisted
of placing these bands into some clusters in order to select a combination of those that
provided the biggest cluster separability in the feature space. The proposed method bears
the acronym CW due to its cluster-wise approach.

The contributions of this paper are as follows:

• The use of a cluster-wise approach to solving the unsupervised band selection problem;
• Once two clusters were formed, the selection of bands was based on the parameters of

a hyperplane defined by a single-layer neural network;
• Fine-tuning of the selected bands based on cluster separability in the feature space.
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In Section 2, the proposed method is presented. In Section 3, the results of the proposed
method are compared to five competitors by using three classifiers and three hyperspectral
images commonly used in BS literature. Finally, in Section 5, we offer the conclusion of
this work.

2. Method

Every BS algorithm is supposed to select relevant features—refer to [39] for a thorough
definition of feature relevance. In short, a relevant spectral band (i) should provide useful
information [40]; and (ii) should not be redundant [14]. Since the proposed band selection
framework is designed for classification purposes, the bands considered to provide useful
information are those that provide maximum separation between clusters in the feature
space. When it comes to redundancy between spectral bands, in this work, it is measured
by correlation.

Therefore, following this reasoning, the proposed method is composed of three parts:
Data clustering; Selection of bands of interest; and Redundancy reduction.

2.1. Data Clustering

Regarding unsupervised problems—data reconstruction [2] and data structure analysis
(DSA), for instance, are approaches that render feature selection feasible.

Data entry clustering can find natural groupings in data sets, and, for this reason, it is
considered a DSA-based band selection approach, when used for this purpose.

Inspired by [41], the proposed method also performs clustering of the data entries.
However, here, we adopted a partitional clustering instead of a hierarchical one, as illus-
trated in Figure 1a. With partitional clustering, each resulting cluster Ci, i ∈ {1, 2, . . . , k},
could be taken as a representative of the real class if (i) k equals the number of classes
present in the data set, and (ii), the clustering algorithm, is appropriate for the data set at
hand.

One generally wants to classify objects present in a known scene, supposing one
knows beforehand the number k of classes is plausible.

(a) (b)

Figure 1. (a) Illustration of k clusters after the partitional clustering. (b) A representation of one-
versus-all binary classification by means of a line segment f , where v1 and v2 are variables that enable
the 2D representation.

Choice of the Clustering Algorithm

As for the fitness of a clustering algorithm to hyperspectral data, 11 methods were
evaluated. It is worth noting that our focus was not on the best clustering algorithm
available in the literature, but rather just to use some well-established clustering algorithms
to show the efficiency of the proposed method.

The input data are the Salinas hyperspectral image [42], with 224 bands and 16 classes.
So, each clustering algorithm was set to find k = 16 clusters—as we will see later in

this paper, the proposed method sets k equal to the number of classes in the image. It is
important to clarify that, at this point, the focus is on the comparison of clustering methods,
so the data labels will be used.
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The measure of agreement between the two data sets—the clustering result and Salinas
ground truth—was computed by means of the adjusted Rand index (r) [1]. In short, let κ1
and κ2 be two different clustering types of a given data set; where κ1 is the real class of the
Salinas image and κ2 is the result of a clustering algorithm.

Considering all pairs of vectors xj and xl , with j 6= l, let α1 be the number of times that
both vectors belong to the same clusters in the clustering types κ1 and κ2. Moreover, let α2
be the number of times the vectors belong to different clusters in κ1 and different clusters
in κ2.

Finally, the adjusted Rand index between clusters κ1 and κ2 is given by

r = (α1 + α2)/m, (1)

where m is the number of possible vector pairs in the data set.
For each clustering algorithm, r was calculated 10 times. Table 1 shows the mean

values for k-means and k-medoids algorithms with different distance metrics. K-means
using the cosine similarity measure has the best outcome. For the sake of clarity, the bigger
the values of r, the more similar the clustering types of κ1 and κ2.

Table 1. Adjusted Rand index (0 ≤ r ≤ 1) (mean values out of 10 runs for Salinas HSI).

Clustering Algorithm r

K-means (Euclidean) 0.6997
K-means (cityblock) 0.7382
K-means (cosine) 0.7941
K-means (correlation) 0.7170
K-medoids (Euclidean) 0.7062
K-medoids (Mahalanobis) 0.7685
K-medoids (cityblock) 0.7402
K-medoids (Minkowski) 0.7396
K-medoids (Chebychev) 0.7269
K-medoids (Spearman) 0.7674
K-medoids (Jaccard) 0.6146

Consequently, all of the clusters throughout this paper were obtained by k-means
using the cosine similarity measure.

It is worth mentioning that an appropriate partitional clustering is able to turn super-
vised band selection algorithms into unsupervised ones, by taking the resulting clusters as
class representatives, and the degree of success depends on r values. This paper follows
that approach, by considering [4] as a reference. Since 0 ≤ r ≤ 1, where 1 means the two
clustering outcomes match identically, r = 0.7941 indicates a good match between the clus-
ters and the real classes of Salinas HSI. At this point, we opted to analyze a hyperspectral
image not used in Section 3 in order to maintain the unsupervised nature of the proposed
approach.

2.2. Selection of Bands of Interest

Once the initial data set is split into k clusters, it is time to present the proposed band
selection algorithm, which has k iterations. At each iteration, two steps take place: (i) the
selection of candidate bands and (ii) fine-tuning.

2.2.1. Selection of Candidate Bands

Let C0 = [b1, b2, . . . , bd] ∈ Rn×d be the initial cluster, i.e., the HSI, where bj is the jth

band vector whose norm l2 is scaled to 1, n is the number of pixels and d is the dimension-
ality of the data set.

Let Ci, ∀i ∈ {1, 2, . . . , k}, be the k clusters after the partitional clustering of C0, where
k is the number of classes in the data set.

The following properties hold for the clusters:
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• Ci 6= ∅, for i ∈ {1, 2, . . . , k};
• ∪k

i=1Ci = C0;
• Ci ∩Cl = ∅, with i 6= l and i, l ∈ {1, 2, . . . , k}.

For each cluster, a one-versus-all binary classification was performed between Ci and
C0 \Ci.

As in [4], we used a single-layer neural network to generate the separating hyperplane
f . As an illustration, both the one-versus-all classification and the hyperplane f are shown
in Figure 1b.

The cross-entropy loss function of the neural network is given by

L f = −
1
η

η

∑
j=1

[yjlog(ŷj) + (1− yj)log(1− ŷj)], (2)

where η is the cardinality of the set containing the data points —since we make |C0 \Ci| ≈ |Ci|
in order to balance the two clusters, η ≤ n—; yj ∈ {0, 1} is the expected output to the input
vector xj ∈ Rd×1, where label 1 corresponds to cluster Ci; and ŷj is the calculated output
given by

ŷj =
1

1 + ezj
, (3)

which is the sigmoid activation function. where e is the Euler’s number, and zj is the
hyperplane equation

zj = x(1)j w(1) + x(2)j w(2) + . . . + x(d)j w(d) + β, (4)

where w ∈ Rd×1 and β ∈ R—both calculated by a single-layer neural network—are the
hyperplane f parameters.

The training phase of the network consists of 2000 training epochs, using the back-
propagation algorithm, with 70% of the data set for training and the remaining 30% for the
test.

After the neural network’s training, a given input vector xj will cause either zj ≥ 0 or
zj < 0. As zj is the argument of a sigmoid function, if

• zj ≥ 0, then ŷj ← round(ŷj) = 1,
• zj < 0, then ŷj ← round(ŷj) = 0,

where round(ŷj ≥ 0.5) = 1, and round(ŷj < 0.5) = 0.
The band selection is based on the magnitude of weight vector components w(l),

l ∈ {1, . . . , d}. Indeed, according to (4), the biggest weights in magnitude, |w(l)|, will
strongly determine the signal of zj. Therefore, the bands x(l)j —related to the biggest |w(l)|—
are the most relevant for the binary one-versus-all classification, and are, consequently,
initially selected.

In order to provide an illustrative view on this matter, Figure 2 depicts a 2D situation
in which a linear classifier, represented by a line segment, separates two different clusters,
in red and blue colors, composed of synthetic data of variables v1 and v2. In Figure 2a, the
clusters are linearly separable, and it is easy to perceive that this separation is provided by
variable v2, whereas variable v1 bears similar values for both clusters. It is worth noting
that the green line’s parameters w(1) and w(2), calculated by a single-layer neural network
(β is omitted), indicate the relative importance of variables in this binary classification. That
is, |w(2)| = 4.8126 > |w(1)| = 0.5782 indicates a higher relevance of variable v2 in relation
to v1. A similar situation occurs in Figure 2b, but this time |w(1)| > |w(2)|, indicating that
variable v1 provides better separability between the clusters. Figure 2c,d shows that the
same analysis is valid even when the clusters overlap.
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(a) (b)

(c) (d)

Figure 2. A 2D binary classification illustration using synthetic data, in variables v1 and v2. The
hyperplane parameters w(1), w(2), and β (the latter not shown here) are calculated by a single-
layer neural network, whose result is depicted by a green line segment. The magnitude of the
neural networks (or the hyperplane parameters) indicate the relevance of its correspondent feature.
(a) Two linearly separable classes. Clearly, attribute v2 provides good separation between the clusters,
which is corroborated by w(2) > w(1). (b) A similar situation as in (a) occurs here, but this time v1

provides the separation between the clusters, and w(1) > w(2). In (c,d) it is possible to draw the same
conclusion, even when the clusters overlap.

According to the proposed method, the number s of selected bands is defined by
the user.

Since the method has k iterations, the selection of (s/k) ∈ N bands per iteration would
be sufficient. However, at each iteration, the method selects 4(s/k) bands, from which
only s/k are kept after the fine-tuning step. It is worth noting that, except for 4(s/k), other
numbers have not been tested.

2.2.2. Fine-Tuning

At each iteration i ∈ {1, 2, . . . , k}, 4(s/k) bands are selected based on the biggest
weights |w(l)|, according to (4).

Those bands are then placed in s/k clusters—by means of k-means (Euclidean)—ql ,
l ∈ {1, 2, . . . , (s/k)}, and from each cluster 1 band b will be initially selected.

By picking 1 band from each cluster q, several tuples t are formed. An example of it
is shown in Figure 3. The exact number of tuples is |q1| × |q2| × . . .× |qs/k|. Formally, at
iteration i the set containing all tuples is given by

Q = {(b(1)
i , . . . , b(s/k)

j ), b(l)
j ∈ ql , l ∈ {1, . . . , (s/k)}}. (5)

Note that this approach for refining the band selection is based on [43]; however, here
we adopted a different criterion to assess the importance of each tuple of bands.

For each tuple t ∈ Q, its bands were evaluated according to the class separability they
provided between Ci and C0 \ Ci. At this point, the data sets of both clusters contain only
the bands in t.
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Figure 3. Each cluster provides one band for the composition of tuple t. In this example, the band
bi ∈ q1, the band bj ∈ q2, and the band bl ∈ qs/k, among others connected by the dashed line, form
the tuple t. Each possible combination of bands in different clusters gives rise to all t ∈ Q.

The class separability is measured by the ρ ∈ R index,

ρ =
trace(Sw + Sb)

trace(Sw)
, (6)

where
Sw = pCi ΣCi + p(C0\Ci)

Σ(C0\Ci)
,

and
Sb = pCi (µCi − µ0)(µ(C0\Ci)

− µ0)p(C0\Ci)
,

where µCi is the mean of cluster Ci, µ0 is the global mean, Σ is the covariance matrix, and p
is the a priori probability. Since the clusters Ci and C0 \Ci are balanced, i.e., |Ci| = |C0 \Ci|,
then pCi = p(C0\Ci)

= 0.5.
According to (6), the bigger the ρ, the more compact the clusters are, and the more

distant they are from each other.
Finally, for each tuple t ∈ Q there is a corresponding ρ value, and only the bands in

tmax, whose ρ is the biggest, are selected at iteration i.

2.3. Redundancy Reduction

Let Ψ ∈ Rd×d be the correlation matrix of the data set C0, calculated according to
Pearson’s correlation coefficient.

Let ψ be a set composed of the bands the most correlated to the band represented by ψ
indices. Set ψ is calculated before the iterations start, according to Algorithm 1. For the sake
of clarity, ψj = bl , for instance, means that bl is the band the most correlated to band bj.

Algorithm 1 starts by creating a correlation matrix Ψ, according to Pearson’s corre-
lation. After the initialization of matrix I and vector ψ, we sort all the columns of Ψ in a
descend fashion, and store the indices idx, which corresponds to the band indices. To the
first position of ψ is assigned the band bI(1,1). Then the remaining positions of ψ receive
the bands the most correlated to the band corresponding to that position in a way no same
band is assigned to more than one position. The output is the vector ψ.

Given tmax and ψ, the subset δtmax of the bands the most correlated to those in tmax is
given by Algorithm 2.

In Algorithm 2 we have tmax and ψ as input. Given the bands in tmax, the algorithm
finds the most correlated bands to those in tmax and insert them in subset δtmax , which is the
output of the algorithm.



Remote Sens. 2022, 14, 5374 8 of 19

Algorithm 1 Most correlated bands

1: Ψ = corr(C0) . Pearson’s correlation
2: Initialize matrix I
3: ψ = ∅
4: for all the columns c ∈ Ψ do
5: [values, idx] = sort(c, “descend′′) . idx ∈ N1×d

6: I = [I; idx]
7: ψ1 ← bI(1,1)
8: for i = 2 : d do
9: for j = 1 : d do

10: if bI(i,j) /∈ ψ then
11: ψ← ψ ∪ bI(i,j)
12: Break
13: Return: ψ

Algorithm 2 The most correlated bands to a given subset

1: Input: tmax, ψ
2: δtmax = ∅
3: for j = 1 : |tmax| do . Vector cardinality
4: for l = 1 : |ψ| do
5: if ψl = tmax

j then
6: δtmax ← δtmax ∪ bl

7: Return: δtmax

Finally, at each iteration i, the bands in tmax are selected and inserted in S, which is the
final subset of selected bands. So,

S← S∪ tmax. (7)

Once we have tmax, its most correlated bands δtmax are inserted in subset D, which are
the bands to be discarded. That is,

D← D∪ δtmax . (8)

Then, for the next iteration i + 1 the data set is updated according to

C0 ← C0 \ (S∪D). (9)

The method iterates until i = k. Then, the final output is the subset S of selected bands.

2.4. Proposed Method’s Overview

Algorithm 3 presents the overview of the proposed method.
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Algorithm 3 Proposed band selection algorithm

1: Input: Data set C0, number k of classes
2: S = ∅ . Subset of selected bands
3: D = ∅ . Subset of bands to be discarded
4: Proceed to k-means clustering (cosine distance) of C0 into k clusters Ci
5: for i = 1 : k do
6: Proceed to a binary classification between clusters Ci and C0 \ Ci (one-versus-all)

using a single-layer neural net
7: Select the 4(s/k) ∈ N bands related to the biggest separating hyperplane parameters
|w|, according to (4)

8: Proceed to the band selection fine-tuning, according to Section 2.2.2
9: Update subset of selected bands S according to (7)

10: Update subset D according to (8)
11: Update data set according to (9)
12: Return: S

3. Results

Normally the quality of the subset of selected bands is assessed by the performance
of the classifiers. So, this approach is adopted here, with support vector machine (SVM),
K-nearest neighbor (KNN), and classification and regression tree (CART) classifiers [1], via
three hyperspectral data sets used in several BS papers: Botswana, Indian Pines, and Pavia
University. All of them can be downloaded at [42].

3.1. Competitors

The proposed method is compared to five state-of-the-art BS methods: ASPS, MPWR,
ONR, UBS, and VGBS.

3.1.1. ASPS

ASPS [44] is the acronym for hyperspectral band selection via adaptive subspace
partition strategy. Its framework begins with a two-step partition of the data cube, starting
with the coarse partition of the image cube into a predetermined number of parts, and
then there is a fine subspace partition, from which bands with low noise levels are finally
selected.

3.1.2. MPWR

In [45], the authors proposed a manifold-preserving and weakly redundant (MPWR)
unsupervised band selection method. A manifold-preserving band-importance metric
was used to measure the band-wise essentiality. Concerning the redundancy caused
by the correlated bands, this paper establishes a constrained band-weight optimization
model. Thus, both band-wise manifold-preserving capability and intraband correlation are
integrated into the BS method.

3.1.3. ONR

The approach called ’hyperspectral band selection via optimal neighborhood recon-
struction’ is based on optimal neighborhood reconstruction (ONR) [46]. It proceeds to
different band combinations in order to reconstruct the original data set, and also applies a
noise reducer to minimize the influence of noisy bands.

3.1.4. UBS

UBS is used as the acronym for the approach presented in [47]. This method is based on
the spectral decomposition of a matrix, then the loading-factors matrix can be constructed
for band prioritization, according to the corresponding eigenvalues and eigenvectors.
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3.1.5. VGBS

This paper states that there is a relation between the volume of a sub-simplex and the
volume gradient of a simplex. Based on this, they proposed a BS method called VGBS [48].
It is unsupervised and seeks to remove the most redundant band based only on the gradient
of volume instead of calculating the volumes of all sub-simplexes.

3.2. Experimental Results

In order to compare the outcome of the proposed method, five different bands were
selected from scratch: 10, 20, 30, 40, and 50. A set with 50 bands does not necessarily
contain the 10-band set, for example, due to the nature of the neural networks.

We compare the results to other BS methods for each hyperspectral image separately.
All of the classifier accuracies exhibited here are the mean values of ten runs.

Our approach is dubbed CW—the unsupervised cluster-wise method.

3.2.1. (Case 1) Botswana HSI

The Botswana image is composed of 242 spectral bands and has 14 classes. See further
details about this image at [42].

Table 2 shows the results of the BS methods using Botswana HSI. Bold values represent
the highest scores attained. Figure 4 presents the same results in an illustrative way. In the
figure, different marks are used in order to identify the competitors. The line connecting
the marks does not mean interpolation, but rather helps the reader.

Table 2. Botswana image results (overall accuracy and standard deviation in %).

Method 10 Bands 20 Bands 30 Bands 40 Bands 50 Bands

KNN classifier

CW 90.86 ± 0.69 88.81 ± 0.27 90.86 ± 0.91 91.48 ± 0.97 93.22 ± 0.69
ASPS 85.63 ± 0.75 89.73 ± 0.94 91.07 ± 0.76 89.01 ± 0.63 91.58 ± 0.72

MPWR 81.52 ± 0.99 86.45 ± 1.43 90.76 ± 0.56 90.35 ± 1.05 90.25 ± 0.89
ONR 90.66 ± 0.91 92.61 ± 0.53 89.94 ± 0.64 91.38 ± 0.89 91.99 ± 0.86
UBS 88.50 ± 1.07 89.53 ± 1.05 87.99 ± 0.86 89.94 ± 0.66 90.04 ± 0.96

VGBS 88.09 ± 0.79 90.55 ± 1.00 88.50 ± 1.30 87.17 ± 1.29 88.09 ± 1.10

CART classifier

CW 84.80 ± 1.23 86.55 ± 1.27 84.91 ± 1.49 85.93 ± 1.03 86.04 ± 1.13
ASPS 81.72 ± 1.04 85.32 ± 1.27 83.78 ± 1.15 83.98 ± 1.38 84.50 ± 0.96

MPWR 72.59 ± 1.27 81.31 ± 1.13 84.29 ± 1.02 85.52 ± 1.13 85.01 ± 1.47
ONR 83.37 ± 0.74 84.80 ± 1.35 84.91 ± 1.06 84.60 ± 1.01 84.70 ± 1.46
UBS 80.39 ± 1.14 83.26 ± 1.07 83.68 ± 1.36 85.32 ± 0.84 85.01 ± 0.98

VGBS 83.98 ± 0.81 85.22 ± 0.95 82.24 ± 1.35 83.47 ± 0.65 86.24 ± 1.44

SVM classifier

CW 89.73 ± 0.72 94.76 ± 0.91 94.97 ± 0.69 93.94 ± 0.61 94.15 ± 0.56
ASPS 87.78 ± 0.67 91.27 ± 0.67 93.84 ± 0.66 92.09 ± 0.69 94.05 ± 0.55

MPWR 87.06 ± 1.06 90.86 ± 0.97 93.73 ± 0.67 94.76 ± 0.75 94.15 ± 0.61
ONR 92.91 ± 0.36 94.25 ± 0.48 93.83 ± 0.62 94.76 ± 0.46 94.14 ± 0.77
UBS 89.42 ± 0.82 92.50 ± 0.98 92.71 ± 0.67 93.42 ± 0.86 92.91 ± 0.89

VGBS 90.04 ± 0.97 92.81 ± 0.58 93.63 ± 1.06 93.01 ± 0.68 93.53 ± 0.65
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Figure 4. Overall Accuracies for Botswana Image according to KNN, CART, and SVM classifiers.

Since the Botswana image has 14 classes, the proposed method has the same number
of iterations—see Algorithm 3. For each one-versus-all case, a single-layer neural net is
run, and the error (of the test set) versus the epoch curves are shown in Figure 5. Clearly,
there is convergence in all cases, meaning that it is possible to find a hyperplane to separate
the clusters Ci and C0 \ Ci. The different curve shapes indicate how fast the algorithm
converged. For instance, in Figure 5, Cluster 1 versus All converged faster than Cluster 6
versus All.

Concerning the results, there were five different sets of selected bands, and each set
was subjected to three classifiers. Thus, in total, we had 15 different experiments, from
which the proposed CW framework surpassed its competitors in 9 out of 15 cases.
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Figure 5. Error versus epoch curve of each one-versus-all case for the Botswana image.

3.2.2. (Case 2) Indian Pines HSI

This image has 224 bands and 16 classes. Further details about this image can be found
at [42].

Table 3 shows the accuracies and standard deviations of the results.
Out of 15 experiments, the proposed CW method achieved the best results 10 times.

In Figure 6, it is possible to have a visual idea of the performance of all BS methods.
According to Figure 7, for all iterations, the single-layer neural network converged.

This convergence is seen by the fact that the error was lower as the number of epochs in-
creased.

Table 3. Indian Pines image results (overall accuracy and standard deviation in %).

Method 10 Bands 20 Bands 30 Bands 40 Bands 50 Bands

KNN classifier

CW 76.81 ± 1.13 80.00 ± 0.54 78.14 ± 0.31 81.13 ± 0.59 79.45 ± 0.70
ASPS 68.61 ± 0.68 66.50 ± 0.93 66.41 ± 0.90 63.19 ± 0.33 63.32 ± 0.27

MPWR 69.66 ± 0.89 70.63 ± 0.59 72.52 ± 0.43 73.59 ± 0.49 70.63 ± 1.12
ONR 71.35 ± 0.35 70.99 ± 0.61 67.41 ± 1.62 71.45 ± 0.57 72.03 ± 0.96
UBS 64.62 ± 0.52 63.15 ± 0.69 64.78 ± 1.09 64.98 ± 0.82 63.22 ± 0.72

VGBS 69.14 ± 0.80 70.21 ± 0.90 67.94 ± 0.74 70.41 ± 0.55 69.98 ± 0.61

CART classifier

CW 70.82 ± 0.78 74.21 ± 0.67 72.55 ± 0.86 73.50 ± 0.70 72.75 ± 0.81
ASPS 69.49 ± 0.41 69.20 ± 0.33 71.94 ± 0.46 73.20 ± 0.77 73.20 ± 0.58

MPWR 63.45 ± 0.66 67.32 ± 0.73 70.73 ± 0.70 71.58 ± 0.65 71.28 ± 0.88
ONR 71.28 ± 0.99 75.41 ± 0.76 73.30 ± 1.40 74.57 ± 1.22 73.33 ± 0.82
UBS 71.71 ± 0.96 73.66 ± 0.78 74.67 ± 0.83 74.24 ± 1.12 73.69 ± 0.86

VGBS 70.44 ± 0.30 70.60 ± 0.57 71.22 ± 1.28 70.83 ± 0.75 71.32 ± 0.78

SVM classifier

CW 84.58 ± 0.80 86.70 ± 0.16 84.29 ± 5.14 87.97 ± 4.48 87.61 ± 0.78
ASPS 81.39 ± 0.58 80.36 ± 0.65 82.60 ± 0.58 80.72 ± 0.52 83.68 ± 0.20

MPWR 72.88 ± 0.95 78.82 ± 0.64 81.07 ± 0.82 84.39 ± 0.50 83.77 ± 0.50
ONR 82.70 ± 0.31 84.75 ± 0.70 84.10 ± 0.60 86.93 ± 0.82 84.88 ± 4.00
UBS 79.61 ± 0.51 82.86 ± 0.23 76.91 ± 0.61 82.08 ± 0.37 79.94 ± 3.60

VGBS 76.59 ± 0.70 79.97 ± 0.79 79.06 ± 0.52 80.68 ± 0.75 80.07 ± 1.04
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Figure 6. Overall accuracies for Indian pines image according to KNN, CART, and SVM classifiers.

Figure 7. Error versus epoch curve of each one-versus-all case for the Indian pines image. Only the
first 200 training epochs are shown here.

3.2.3. (Case 3) Pavia University HSI

This image has 102 spectral bands and 9 classes. See more information about this
image at [42].

In Table 4, we see the results, in terms of overall accuracy and standard deviation, of
all methods. The proposed CW algorithm has the best accuracies in 8 out of 15 experiments.
It is also shown in Figure 8.
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Table 4. Pavia University image results (overall accuracy and standard deviation in %).

Method 10 Bands 20 Bands 30 Bands 40 Bands 50 Bands

KNN classifier

CW 92.19 ± 0.26 92.12 ± 0.48 91.73 ± 0.15 90.37 ± 0.24 90.99 ± 0.15
ASPS 87.67 ± 0.11 90.24 ± 0.39 89.90 ± 0.39 89.33 ± 0.29 90.54 ± 0.40

MPWR 91.80 ± 0.39 90.99 ± 0.14 92.37 ± 0.93 90.45 ± 0.41 91.19 ± 1.19
ONR 88.89 ± 0.19 92.30 ± 0.15 91.82 ± 0.29 91.02 ± 0.16 91.60 ± 0.11
UBS 86.00 ± 0.42 88.15 ± 0.44 87.84 ± 0.22 88.10 ± 0.22 88.17 ± 0.10

VGBS 84.26 ± 0.39 87.77 ± 0.34 86.42 ± 0.28 87.24 ± 0.39 88.30 ± 0.60

CART classifier

CW 89.54 ± 0.12 89.18 ± 0.35 89.31 ± 0.29 89.04 ± 0.39 89.04 ± 0.37
ASPS 83.23 ± 0.35 86.69 ± 0.26 86.74 ± 0.48 87.06 ± 0.37 86.47 ± 0.10

MPWR 89.29 ± 0.67 88.82 ± 0.83 89.67 ± 0.71 89.03 ± 0.95 88.81 ± 0.81
ONR 85.37 ± 0.13 89.63 ± 0.23 89.03 ± 0.26 88.69 ± 0.16 89.00 ± 0.25
UBS 85.02 ± 0.49 87.27 ± 0.43 86.26 ± 0.31 86.50 ± 0.23 87.42 ± 0.36

VGBS 85.79 ± 0.23 88.26 ± 0.31 88.12 ± 0.32 88.49 ± 0.20 88.04 ± 0.31

SVM classifier

CW 94.97 ± 2.38 90.77 ± 12.59 75.56 ± 16.17 68.26 ± 16.51 67.01 ± 15.36
ASPS 89.58 ± 9.48 88.67 ± 9.41 40.19 ± 12.39 48.71 ± 15.96 40.56 ± 10.81

MPWR 94.93 ± 3.95 91.85 ± 8.64 70.66 ± 13.81 39.13 ± 17.51 54.86 ± 15.50
ONR 91.31 ± 12.39 52.29 ± 24.56 46.62 ± 10.86 43.36 ± 21.41 43.48 ± 12.96
UBS 89.32 ± 2.49 54.75 ± 18.87 53.18 ± 13.99 38.06 ± 16.05 45.21 ± 13.29

VGBS 91.29 ± 13.59 89.74 ± 14.54 74.77 ± 17.88 50.58 ± 8.86 51.20 ± 12.23

Figure 8. Overall accuracies for the Pavia University image according to KNN, CART, and SVM
classifiers.

Figure 9 indicates that all the one-versus-all separating hyperplanes solutions converged.
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Figure 9. Error versus epoch curve of each one-versus-all case for the Pavia University image. Only
the first 50 training epochs are shown here.

3.3. Remark

Finally, since this is a paper about band selection, Table 5 presents all of the bands
selected by the proposed method CW.

Table 5. All the bands selected by the proposed CW method.

Number of Bands Selected Bands

Botswana image

10 4 11 17 21 24 41 69 101 105 120
20 7 10 12 28 32 33 37 39 40 49 55 58 59 65 67 73 75 76 113 124
30 2 4 5 7 21 27 29 30 32 33 34 35 37 43 44 47 54 56 57 58 61 62 71 74 78 80 82 118 120 124
40 2 3 4 5 6 8 13 14 16 27 28 31 32 33 34 35 36 39 41 42 52 54 58 60 63 65 69 70 72 74 78 88 89 92 97 100 101 105 135 142
50 1 2 4 5 6 8 10 16 19 21 22 23 24 25 26 27 30 31 32 33 34 36 41 42 47 57 58 59 66 67 69 72 74 75 77 78 87 89 94 96 98 100 101 102 104 109 110 113 130 144

Indian Pines image

10 16 20 21 33 34 39 92 97 119 128
20 8 10 15 16 17 19 26 27 30 33 36 43 46 47 64 78 97 98 117 133
30 5 6 7 8 9 15 27 30 35 37 39 40 46 56 57 62 63 64 71 73 74 75 76 78 82 92 98 168 173 174
40 4 6 7 9 10 16 17 19 27 30 32 33 34 35 36 40 46 50 52 53 57 63 69 72 74 84 92 93 97 99 100 117 121 122 126 137 139 140 142 199
50 6 9 11 12 15 20 22 23 25 26 29 30 31 32 33 36 41 42 43 44 45 46 49 50 51 55 56 59 65 71 73 74 75 76 77 84 92 95 98 102 114 117 119 121 122 130 138 168

172 199

Pavia University image

10 21 42 55 70 72 73 75 83 85 98
20 15 18 28 46 49 55 56 60 61 63 65 71 83 85 88 89 91 95 99 103
30 10 16 20 22 31 36 38 40 50 54 59 61 62 64 65 67 70 72 74 77 80 83 85 91 92 94 96 98 100 102
40 3 10 11 14 16 17 18 20 23 27 38 39 44 46 51 56 58 59 61 62 63 65 67 69 71 72 74 75 76 78 80 83 84 85 91 94 96 98 100 103
50 9 10 11 13 15 17 18 20 23 25 26 28 29 31 33 35 37 40 41 44 56 57 59 61 62 63 65 66 67 69 71 72 73 75 77 79 81 83 84 85 88 90 92 94 95 96 98 100 102 103

4. Discussion

The proposed method was introduced in Section 2.2 and its performance was reviewed
in Section 3.2.

It is still important to emphasize the advantages of using the proposed method CW.
On the other hand, the deficiencies of the algorithm will also be highlighted.

4.1. Pros

As shown in Tables 2–4, with their corresponding Figures 4, 6 and 8, each classifier,
due to its intrinsic characteristics, performed differently when compared to the others. SVM
classifiers are well known for their effectiveness in high-dimensional spaces, such as the
feature space of a hyperspectral image. Thus, for this reason, we see SVM outperforming
the other classifiers. On this topic, we see an exception in Table 4 and Figure 8, where
SVM is less accurate than the other two classifiers. Given that KNN and CART exhibit
stable performances as the band numbers increase, the reason for the bad performance of
SVM, in this case, as the dimensionality became higher, may lie in the fact that the Pavia
University data were not well discriminative for the SVM algorithm (this phenomenon
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happened with all competitors). When it comes to the KNN classifier, we set the number of
neighbors equal to 7, i.e., K = 7 in all experiments; the objective here was not to find the
best settings for the KNN but to provide equal conditions for the comparison of the band
selection methods. As KNN classifies an input pattern based on its neighbors in the feature
space, it performed better than the CART classifier, whose decision trees rely on binary
rules, which become more complex as dimensionality increases.

In general, the proposed CW method outperformed its competitors in lower dimen-
sions, due to the fact that the CW algorithm selected its bands based on the class separations
in the feature space. Thus, even in lower dimensions, we saw a good performance of the
proposed method, which was designed to be used as a filter method, i.e., a preprocessing
step of hyperspectral data classification tasks. As the dimension increased, the CW method
maintained good results when compared to its competitors. In fact, considering all of the
results, we see that the proposed method achieved the best results in 9+10+8

45 = 60% in the
experiments. This is likely due to the fact that the CW method is capable of selecting the
best spectral bands for each individual cluster (or class) in a one-versus-all fashion, even in
an unsupervised case. Moreover, the cluster separability criterion used during the band
selection process makes the job of the classifiers easier.

In terms of processing times, the proposed method does not appear amongst the
fastest ones, as Figure 10 indicates. However, its outstanding accuracy mean compensates
for this fact. Moreover, the mean processing time of the CW method was less than 50 s,
which caused no problems in offline applications.

Figure 10. Mean processing time of all images and all classifiers together.

4.2. Cons

The proposed CW algorithm is not capable of addressing all the issues concerning
a band selection application, such as the optimal number of bands to be selected. In fact,
we do not address this topic in this paper. Here, the number s of bands to be selected is a
user-defined parameter.

Moreover, it is necessary to know the number k of classes in the scene depicted by the
image. Even though a remote sensing expert may easily infer the number of classes in a
given scene, this topic remains unsolved.
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5. Conclusions

The high dimensionality of a hyperspectral image can be useful in terms of good
discrimination amongst objects and classes. On the other hand, it can also be a source of
problems, such as the curse of dimensionality and overfitting of the classifier.

In order to alleviate such issues, this paper proposes a novel unsupervised band
selection framework based on partitional clustering, in which each cluster stands for a real
class of the data set. A hyperplane was used to separate all clusters in a one-versus-all
fashion. After this, we proceeded to fine-tuning the initially selected bands based on the
cluster separability in the feature space.

The proposed method achieved the best classification results in 60% of the experiments.
In future works, it is advisable to verify the performance of support vector machines to

find a separating hyperplane between clusters. Furthermore, other numbers of initially chosen
bands should be tested, rather than only 4(s/k). Moreover, some more recent clustering
algorithms could be tested in order to check their effects on the final results. Finally, one could
use optimization algorithms to find a suitable subset of bands during the fine-tuning process.
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