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Abstract: Identifying the changes in dryland functioning and the drivers of those changes are critical
for global ecosystem conservation and sustainability. The arid and semi-arid regions of northern
China (ASARNC) are located in a key area of the generally temperate desert of the Eurasian continent,
where the ecological conditions have experienced noticeable changes in recent decades. However, it is
unclear whether the ecosystem functioning (EF) in this region changed abruptly and how that change
was affected by natural and anthropogenic factors. Here, we estimated monthly rain use efficiency
(RUE) from MODIS NDVI time series data and investigated the timing and types of turning points
(TPs) in EF by the Breaks For Additive Season and Trend (BFAST) family algorithms during 2000–2019.
The linkages between the TPs, drought, the frequency of land cover change, and socioeconomic
development were examined. The results show that 63.2% of the pixels in the ASARNC region
underwent sudden EF changes, of which 26.64% were induced by drought events, while 55.67%
were firmly associated with the wetting climate. Wet and dry events were not detected in 17.69%
of the TPs, which might have been caused by human activities. TP types and occurrences correlate
differently with land cover change frequency, population density, and GDP. The improved EF TP
type was correlated with the continuous humid climate and a reduced population density, while
the deteriorated EF type coincided with persistent drought and increasing population density. Our
research furthers the understanding of how and why TPs of EF occur and provides fundamental
data for the conservation, management, and better decision-making concerning dryland ecosystems
in China.

Keywords: ecosystem functioning; rain use efficiency; turning point; BFAST; arid and semi-arid
regions of northern China

1. Introduction

Drylands, regions where the aridity index (AI, the ratio of the average annual precipi-
tation to the average annual potential evapotranspiration) is lower than 0.65 [1], account
for approximately 41% of the Earth’s land area [2]. Dryland ecosystems provide a wide
range of important ecological services [3], including water, food, energy, and habitat. How-
ever, due to the scarcity of precipitation and an extremely fragile ecological environment,
dryland ecosystems are very sensitive to climate change and human activities [4,5].

The term “Ecosystem functioning (EF)” is used in the broader context of a complex
interactive system and refers to the ecosystem state or trajectory and to the sum of those
processes that sustain the ecosystem [6,7]. Hooper et al. [8] defined it as the collective
effect of multiple ecosystem processes that ultimately determines the rate of matter and
energy fluxes, such as primary production, ecosystem gas exchange, energy balance, evap-
otranspiration, nitrogen mineralization, decomposition, and nutrient loss etc. [9]. When
persistent pressures (e.g., climate change and variations of soil nutrients, vegetation cover,
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or biodiversity) appear, the ecosystems are considered disturbed, and their functions will
be affected. Once the disturbances are strong enough to exceed the threshold of ecosys-
tem stability, the ecosystem cannot maintain its original functional state. Strong external
disturbances (e.g., extreme events) or slow but sustained changes (e.g., increased graz-
ing/human pressure) may lead to large-scale vegetation die-off, biodiversity loss, and the
decline of EF, pushing the ecosystem into a new functional state; that is, its function may
change abruptly [10,11]. Here, we consider these abrupt changes in EF as turning points
(TPs) when the functioning changes significantly [12]. The TPs of EF may cause profound
ecological influences, particularly in dryland ecosystems, [13] and requires timely and
accurate detection.

There are many satellite based remote sensing studies on vegetation dynamics and
trends in global drylands [14–16], but few efforts were made from the perspective of
dynamic changes in EF [12,17,18]. Traditional Earth observation indices, such as the
normalized difference vegetation index (NDVI) [19], may not be the best indicator for
assessing EFs in drylands, because dryland productivity is significantly controlled by
precipitation [20–22], while NDVI is more suitable for characterizing the change information
for ecosystem functions caused by vegetation cover changes (e.g., forest degradation,
deforestation/reforestation, and bush encroachment) [23,24]. Rain use efficiency (RUE),
defined as the ratio of aboveground net primary productivity (ANPP) to precipitation [25],
is especially important for arid and semi-arid regions where precipitation is the main
constraint on vegetation growth. The variations in RUE are related to the response of EF
to human and climate drivers [12,23,24,26–28] and are used as a key proxy for assessing
EF [12,29], land degradation [30–32], and ecosystem resilience [18]. A sudden change in
RUE indicates a significant change in the ecosystem response to precipitation, implying
a potential location for abrupt changes in EF [33]. When an ecosystem is degraded and
species loss occurs, productivity declines, which severely affects the functioning of the
ecosystem and could be reflected by the reduction in RUE [30,34,35]. Drought may lead
to a decrease in RUE, indicating that ecosystem coping mechanisms have reached their
limits [18], and productivity was significantly influenced, thereby affecting EF.

The arid and semi-arid region of northern China (ASARNC) covers more than 40%
of the country’s land. Its ecological environment is fragile and is significantly affected by
climate change. This region is controlled by downdraft airflow with minimal precipitation,
making water the main limiting factor for regional development [36]. Under the back-
ground of global warming, the precipitation and productivity of grasslands in this region
have changed [37]. Since the late 1970s, 13 national measures of restoring and protecting
dryland have been undertaken [38] that make the dynamics of vegetation more complicated.
Previous studies have focused on the characteristics and factors influencing vegetation
dynamics [39–41] and on the assessment of arid ecosystem stability or services [42–44].
However, whether the EF in the region has changed abruptly over the past 20 years and
how natural and human activities affect these variations remains unclear.

The Breaks for Additive Season and Trend (BFAST) model is a time-series analysis
and breakpoint detection method that combines breakpoint analysis, ecosystem response
classification, and traditional trend analysis [45,46]. It provides a good way to analyze the
abrupt characteristics of EFs in the context of increasingly complex interactions between
anthropogenic and natural pressures on terrestrial ecosystems [12,17,47,48]. Although some
previous efforts were made to study the changes in EF using annual RUE time series based
on the BFAST model, there existed the problem of insufficient sampling points, which may
increase the uncertainty of TPs detection. Moreover, the TPs detected at the annual scale
lack more detailed time information. Though the relationship between TPs and potential
drivers (such as drought) was studied by correlation analysis method, the linkage between
TP occurrence time, type, and persistent drought was not investigated so far. Therefore, in
this study, we used monthly scale RUE data and BFAST family algorithms to determine the
month and year occurrence information of TPs in EF. The consistent relationship between
TPs and drought degree and duration was analyzed. This provides a possible way to more
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accurately quantify the characteristics of ecosystem function abrupt changes and their
relationship with the main influencing factors.

The objectives of this study are to (1) detect the TPs of RUE with the BFAST model
and determine the spatial distribution, occurrence time, change direction, and type of
the TPs; (2) analyze the consistency relationship between the standardized precipitation
evapotranspiration index (SPEI) and the TP type using correspondence analysis (CA) to
assess the impact of drought on the TPs; and (3) analyze the linkages between the frequency
of land cover changes, population density, and gross domestic product (GDP) changes and
the TPs, exploring the effect of human factors on the TPs of EF.

2. Materials and Methods
2.1. Study Area

A multi-year average AI during 1951–2019 was used to define our study area. Since
there is little vegetation in extremely arid regions (AI < 0.05), and precipitation may not be
the main limiting factor for productivity in sub-humid regions (0.5 < AI < 0.65), making
RUE an insufficient indicator of ecosystem functioning, only arid and semi-arid regions
(0.05 ≤ AI < 0.5) were extracted to analyze the abrupt characteristics of RUE [38]. A
monthly average NDVI less than 0.1 from March to November was used as the threshold
to eliminate areas of sparse/absent vegetation [15]. ASARNC finally defined in this study
covers an area of approximately 2.7 × 106 km2, accounting for approximately 28.1% of
the country’s land area (Figure 1). The annual precipitation decreases from east to west,
ranging from approximately 400 mm to less than 100 mm. Furthermore, animal husbandry
is the dominant industry in this region.

Remote Sens. 2022, 14, x FOR PEER REVIEW 4 of 25 
 

 

 

Figure 1. The sketch map of the arid and semi-arid area of northern China: (a) land cover in 2019 

(data from LAADS DAAC MOD12Q1); (b) landforms (data from Resource and Environment Sci-

ence and Data Center, Chinese Academy of Sciences); (c) location in China. 

2.2. Data Collection and Processing 

2.2.1. MODIS Data 

The MOD13A3 monthly composite NDVI from 2000 to 2019 and the MCD12Q1 

yearly global land cover data during 2001–2019 were downloaded from the MODIS offi-

cial website (https://ladsweb.modaps.eosdis.nasa.gov/ (accessed on 9 December 2021)). 

The MODIS Reprojection Tool (MRT) was used to perform band extraction, image mo-

saicking, and conversion from the sinusoidal projection to WGS84. Land cover types 

were reclassified into six classes, namely, cropland, grassland, shrubs, tree, barren, and 

others based on the plant functional types (PFT) classification scheme. In python3.8, the 

QA quality file was screened for the NDVI data, and the high-quality pixels of 00 were 

extracted to remove the interference of cloud, aerosol contamination, snow, and other 

factors on NDVI [49]. The resolution of the data is 0.00833 degrees per pixel, which is 

approximately 1 km × 1 km. The Earth trends modeler in the IDRISI TerrSet software  

(version 18.31) was used to fill the missing values of the images after the QA mask. The 

harmonic interpolation method was selected because it fully considered the phenologi-

cal characteristics of surface vegetation and crops and ensured that the reconstructed 

time series NDVI data had statistical and ecological significance. According to the local 

crop rotation law of one crop per year in northern China, the number of harmonics was 

set to 1, and the value of 0 was used to fill the pixel values that were missing in a large 

area and could not be reconstructed by the harmonics so that the high-quality NDVI 

time-series data were generated [50]. 

  

Figure 1. The sketch map of the arid and semi-arid area of northern China: (a) land cover in 2019
(data from LAADS DAAC MOD12Q1); (b) landforms (data from Resource and Environment Science
and Data Center, Chinese Academy of Sciences); (c) location in China.



Remote Sens. 2022, 14, 5396 4 of 23

2.2. Data Collection and Processing
2.2.1. MODIS Data

The MOD13A3 monthly composite NDVI from 2000 to 2019 and the MCD12Q1 yearly
global land cover data during 2001–2019 were downloaded from the MODIS official website
(https://ladsweb.modaps.eosdis.nasa.gov/ (accessed on 9 December 2021)). The MODIS
Reprojection Tool (MRT) was used to perform band extraction, image mosaicking, and
conversion from the sinusoidal projection to WGS84. Land cover types were reclassified
into six classes, namely, cropland, grassland, shrubs, tree, barren, and others based on the
plant functional types (PFT) classification scheme. In python3.8, the QA quality file was
screened for the NDVI data, and the high-quality pixels of 00 were extracted to remove the
interference of cloud, aerosol contamination, snow, and other factors on NDVI [49]. The
resolution of the data is 0.00833 degrees per pixel, which is approximately 1 km × 1 km.
The Earth trends modeler in the IDRISI TerrSet software (version 18.31) was used to fill the
missing values of the images after the QA mask. The harmonic interpolation method was
selected because it fully considered the phenological characteristics of surface vegetation
and crops and ensured that the reconstructed time series NDVI data had statistical and
ecological significance. According to the local crop rotation law of one crop per year in
northern China, the number of harmonics was set to 1, and the value of 0 was used to fill
the pixel values that were missing in a large area and could not be reconstructed by the
harmonics so that the high-quality NDVI time-series data were generated [50].

2.2.2. Meteorological Data

The TerraClimate dataset [51] is a global high-resolution (1/24 degrees, similar to 4-km)
monthly climate and climatic water balance dataset of the global terrestrial surfaces. Based on
Google Earth engine (GEE), the precipitation (P) and potential evapotranspiration (PET) data
of northern China from 1951 to 2019 were derived from the TerraClimate dataset. The gridded
meteorological data used in this study were the monthly precipitation (P) dataset of China
(1901–2020) with a spatial resolution of 0.008333 degrees (about 1 km × 1 km), downloaded from
the National Earth System Science Data Center (http://www.geodata.cn/data/ (accessed on
27 December 2021)), which was verified by the observations in 496 independent meteorological
stations. The monthly observed data from 692 meteorological stations from 1999 to 2019 were
extracted from the daily value data set of China surface climate data (V3.0), provided by the
National Meteorological Information Center (http://data.cma.cn/ (accessed on 25 April 2021)).

2.2.3. Other Data

Population density data were collected from NASA’s Socio-Economic Data and Ap-
plication Center (https://doi.org/10.7927/H45Q4T5F (accessed on 22 December 2021)).
The gridded GDP data and Chinese geomorphological data were obtained from the
Resource and Environmental Science and Data Center, Chinese Academy of Sciences
(https://www.resdc.cn/Default.aspx (accessed on 20 October 2021)). Both the population
density and GDP data were taken every five years from 2000 to 2015 with a spatial reso-
lution of 1 km. Additionally, the DEM data in China (2000) with the original resolution
of 30 m were downloaded from the National Earth System Science Data Center, National
Science and Technology Infrastructure of China (http://www.geodata.cn (accessed on
6 March 2022)).

The basic information concerning the data used in the study is listed in Table 1. The
above data were subjected to coordinate system transformation, clipped, and resampled to
be consistent with the scope of the study area.

https://ladsweb.modaps.eosdis.nasa.gov/
http://www.geodata.cn/data/
http://data.cma.cn/
https://doi.org/10.7927/H45Q4T5F
https://www.resdc.cn/Default.aspx
http://www.geodata.cn
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Table 1. The general information of the data used in our study.

Data Source Layer(s) Temporal Resolution Spatial Resolution Links

MOD13A3 NDVI, VI Quality monthly about 1 km × 1 km https://ladsweb.modaps.eosdis.nasa.gov/
(accessed on 9 December 2021)MCD12Q1 Land Cover Type 5 yearly 500 m × 500 m

Grid P, monthly about 1 km × 1 km http://www.geodata.cn/data/ (accessed on 27
December 2021)

TerraClimate P, PET monthly about 4 km × 4 km https://code.earthengine.google.com/
(accessed on 8 October 2021)

Meteorological
stations P, T daily 692 meteorological

stations http://data.cma.cn/ (accessed on 25 April 2021)

Population density
2000, 2005, 2010, 2015

1 km × 1 km

https://doi.org/10.7927/H45Q4T5F (accessed
on 22 December 2021)

GDP
https://www.resdc.cn/Default.aspx (accessed

on 20 October 2021)Chinese
geomorphological data

DEM 2000 30 m http://www.geodata.cn (accessed on
6 March 2022)

2.3. Methods
2.3.1. Estimation of RUE

Prince et al. [52] observed that seasonal/annual cumulative NDVI could be used
instead of NPP. Many studies have also demonstrated that changes in canopy optical
thickness have no significant effect on NDVI variation in arid and semi-arid regions;
therefore, NDVI can act as a proxy for ANPP, especially in the growing season [31,53,54].
In this study, the monthly MODIS NDVI (March to November) [55] were used to estimate
RUE by the following equation:

RUEi =
NDVIi

Pi
(1)

where NDVIi represents the NDVI value of the ith month, and P represents the accumu-
lated precipitation of the ith month.

2.3.2. Calculation of Drought Index

The standardized precipitation evapotranspiration index (SPEI) combines the sensitiv-
ity to evapotranspiration and the computational simplicity of the Palmer drought severity
index (PDSI) with the multitemporal nature of the standardized precipitation index (SPI),
making it ideal for exploring the impact of global warming on wet and dry regions [56–58].
According to China’s national meteorological drought standard, the SPEI is divided into
nine categories, four drought, four wet, and one normal (Table 2) [59–61].

Table 2. Categorization of drought and wet grade according to the SPEI.

Mark Grade SPEI Values

SPEI 1 Extreme drought SPEI ≤ −2.0
SPEI 2 Severe drought −2.0 < SPEI ≤ −1.5
SPEI 3 Moderate drought −1.5 < SPEI ≤ −1.0
SPEI 4 Mild drought −1.0 < SPEI ≤ −0.5
SPEI 5 Normal −0.5 < SPEI < 0.5
SPEI 6 Mild wet 0.5 ≤ SPEI ≤ 1.0
SPEI 7 Moderate wet 1.0 ≤ SPEI ≤ 1.5
SPEI 8 Severe wet 1.5 ≤ SPEI < 2.0
SPEI 9 Extreme wet 2.0 ≤ SPEI

Based on the monthly average temperature and accumulated precipitation of 692
meteorological stations in China from 1999 to 2019, we calculated the potential evapo-
transpiration (PET) by the Thornthwaite method and the monthly SPEI on a 12-month

https://ladsweb.modaps.eosdis.nasa.gov/
http://www.geodata.cn/data/
https://code.earthengine.google.com/
http://data.cma.cn/
https://doi.org/10.7927/H45Q4T5F
https://www.resdc.cn/Default.aspx
http://www.geodata.cn
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scale [59,62–64] using the SPEI package in R (vesion 4.1.1, https://cran.r-project.org/web/
packages/SPEI/index.html (accessed on 23 February 2022)). Taking the DEM as a covariate,
SPEI data were interpolated by the AUNSPLIN program. The gridded SPEI data were cor-
related with the global 0.5 degree 12-month SPEI data (https://spei.csic.es/spei_database/
#map_name=spei01#map_position=1415 (accessed on 23 February 2022)) for validation,
and 97.61% of the pixels passed the significance test (p < 0.05) (Supplementary Materials
Figure S1).

2.3.3. BFAST Family Algorithms

BFAST family algorithms [65] enable the detection of breakpoints within earth obser-
vation time series, assuming that nonlinearity can be approximated by fitting a piecewise
linear model [45,46]. The basic principle of the BFAST algorithm is to decompose the time
series into seasonal, trend, and residual components, and choose a season-trend model
to detect breakpoints in both trend and seasonal components. According to the number
of breakpoints detected, there are the original BFAST model (detect all breakpoints in the
time series) and BFAST01 model [15] (only detect 0 or 1 breakpoint in the time series) to
provide. To improve speed and flexibility, BFAST Lite, derived from the original BFAST,
can fit time series in a single step by using a multivariate piecewise linear regression [65]; it
may overcome the problem of missing values in the RUE time series.

In our study, we mainly used the BFAST01 algorithm to detect the most influential
changes in RUE, NDVI, and precipitation time series. With the BFAST01 model, the most
influential break point with the largest amplitude in the time series can be detected [15]. For
the time series obtained, a season-trend model is assumed with linear trend and harmonic
season to fit the RUEt, NDVIt, Pt at time t:

RUEt = a0 + a1t + ∑k=3
n=1 bn sin

(
2πnt

f
+ cn

)
+ dt (2)

ere a0 represents the intercept; a1 denotes the slope of trend; b1, b2, b3 represents the
amplitudes; and c1, c2, c3 are phases (i.e., season); f is the frequency of annual observations.
In our study, f was 9 because we had nine observations in a year (March to November),
and dt was the unobservable error term at time t. k = 3 means that three harmonic terms
are employed to robustly detect abrupt changes in the time series.

The season-trend model can remove the stationary part (constant or periodically chang-
ing or slightly changing components) in the time series, and then focus on the residuals;
that is, the time series is “detrended” and “deseasonalized” [66] after removing the fitted
season-trend patterns. Equation (2) can be expressed as a standard linear regression model
(see Chapter 3.3 in [67]), whose coefficients can be estimated and tested using ordinary least
squares (OLS) techniques, and more details can see the reference [15]. In R 4.1.1, a time
series was first computed by the above season-trend model to obtain a data frame with
the response, seasonal terms, a trend term, (seasonal) autoregressive terms, and covariates,
which could subsequently be fitted in a linear model. If there was a breakpoint that could
minimize the segmented residual sum of squares, then the model with 1 breakpoint was
selected to estimate the dating of the breakpoint. Finally, four tests for the null hypothesis
of zero breaks were performed. Each test resulted in a decision for FALSE (no breaks) or
TRUE (break(s)). The test decisions were then aggregated to a single decision (by using the
function of any() in our research).

The detected break, if significant, could be considered a potential turning point in the
ecosystem dynamics [17,24]. Then, the TP type could be determined based on linear trend
fitting before and after the detected TP, and the regions where no TPs were detected could
be divided into two monotonic types. We finally identified eight trend types based on De
Jong’s [15] classification method, that is, two types of no TPs and six TP types (Table 3 and
Figure S2). Additionally, the linear trend fitting before and after the detected TP could be
tested using OLS techniques. There are four test results according to the significance of
each segment, which are shown in Table 4.

https://cran.r-project.org/web/packages/SPEI/index.html
https://cran.r-project.org/web/packages/SPEI/index.html
https://spei.csic.es/spei_database/#map_name=spei01#map_position=1415
https://spei.csic.es/spei_database/#map_name=spei01#map_position=1415
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Table 3. Trend types of ecosystem functioning based on rain use efficiency.

Type Trend before
Break Break Trend after Break Mark

Monotonic increase increase NA increase Type 1
Monotonic decrease decrease NA decrease Type 2

Monotonic increase with positive break increase positive increase Type 3
Monotonic decrease with negative break decrease negative decrease Type 4
Interruption: increase with negative break increase negative increase Type 5
Interruption: decrease with positive break decrease positive decrease Type 6

Reversal: increase to decrease increase positive/negative decrease Type 7
Reversal: decrease to increase decrease positive/negative increase Type 8

Table 4. Significance of both segments before and after the detected TP.

Type Significance of the Trend before TP Significance of the Trend after TP

Both segments significant(or no TP and significant) p < 0.1 p < 0.1
Only first segment significant p < 0.1 insignificant
Only 2nd segment significant insignificant p < 0.1

Both segments insignificant (or no TP and not significant) insignificant insignificant

In addition, the BFAST algorithm was used to analyze the SPEI time series to detect
its maximum abrupt amplitude. The natural breakpoint method in ArcGIS was applied
to reclassify the break amplitude. According to the meaning of the SPEI, we assigned a 0
value as the threshold to distinguish whether the break direction of the SPEI was positive
(wet) or negative (drought).

All the BFAST family algorithms used in this study were carried out in R 4.1.1, and
the parameter settings are illustrated in Table S1.

2.3.4. Determining the Turning Point Occurrence Index (TPOI)

The TP confidence level was used to identify the areas with high/low TP confidence.
Different significance test methods identified different TPs. To avoid the issue of TPs
being affected by the limitations of an individual significance test, we adopted four tests
(BIC, OLS-MOSUM, SupF, and SupLM) in BFAST01 to develop the TPOI proposed by
Bernardino et al. [24]. Provided that any of the significance tests passed (p < 0.1), the
pixel was considered to have undergone a TP. Combining the test result of the BFAST Lite
algorithm with those of BFAST01, the number of TPs in each pixel was obtained using
spatial overlay analysis in ArcGIS, from which the TPOI was then calculated. In this case,
if all four test methods and the BFAST Lite algorithm detected the TPs in a pixel, the TPOI
of the pixel was 1. If only one test detected the TPs, then the TPOI was 0.2, and so on, thus
obtaining the map of the TPOI during 2000–2019.

2.3.5. Correspondence Analysis (CA) of SPEI Grades and TP Types

CA is a data visualization method suitable for two-dimensional contingency table data.
The results can reveal the correlation between two categorical variables and the differences
or similarities of the same categorical variable [68,69]. Therefore, we employed CA to
explore the impact of drought on TP types in the EF. The drying or wetting conditions
corresponding to the occurrence of TPs were analyzed based on the SPEI. The closer one
RUE type was to a certain SPEI grade, the greater the consistency between them. Due to the
potential lagging effects, the SPEI three months before TPs were also considered to analyze
the duration of continuous drought or wetness [58]. According to the number of drought
or wet occurrenced in these four months, the duration was marked as 0–4 months.

2.3.6. Frequency of Land Cover Change

Here, we focus on the frequency of changes rather than the type of land cover change.
For example, if the land cover type was converted between grassland, cropland, grassland,
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and cropland in 19 years, then we considered the times of land-use change in this pixel to
be 3, and so forth.

3. Results
3.1. Turning Points in Ecosystem Functioning Based on RUE
3.1.1. Spatial Distribution of TPOI

As shown in Figure 2, the EF in the ASARNC has significantly changed in the
past 20 years. TPs were detected in a total of 63.2% of the study area (approximately
1.71 × 106 km2), of which 50.92% passed two or more significance tests. A high TPOI
(TPOI > 0.6) accounted for 15.2% of the total TPs. Of these TPs with a high TPOI, 5.7% were
extremely high (TPOI > 0.8) and located at the junction of the northwestern Songnen Plain,
western Hulunbuir, and central Inner Mongolia.
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Figure 2. TPOI of ecosystem function in arid and semi-arid regions of northern China (p < 0.1, of
which 89.22% of the pixels have passed the p < 0.05).

3.1.2. Trend Types of EF

From 2000 to 2019, Type 6 (Interruption: decrease with positive break) was the domi-
nant TP type, mainly observed in central and eastern Inner Mongolia, central Gansu, and
western Ningxia (Figure 3a). There was a clear correlation between the spatial distribution
of Type 5 (Interruption: increase with negative break) and Type 7 (Reversal: increase to
decrease), implying that these areas might have encountered the same external interfer-
ence. In some areas, the anti-interference was relatively strong, so the RUE could return
to the previous state after a short drop. Conversely, RUE decreased in other areas due to
the weaker ecosystem resilience. There were very few Type 3 (Monotonic increase with
positive break) and Type 4 (Monotonic decrease with negative break) pixels detected. We
speculate that these two types might be identified as Type 1 (Monotonic increase) and Type
2 (Monotonic decrease) by the algorithm due to the relatively small magnitude of breaks
in the study area. Meanwhile, the significance of trend types was analyzed. According
to Figure 3b, 91.2% of the pixels with monotonic trend were found to be insignificant,
indicating that the change trend of RUE in these areas was not obvious and the ecosystem
functioning was stable. For 66.5% of the pixels in TP types, changes in trend both before
and after TP were not significant. External interference caused RUE in these areas to rise or
fall significantly, causing the ecosystem to turn to a new and stable functional state.
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3.1.3. Timing of TPs

To more intuitively display the year and month of TPs (such as June 2007, November
2007, and June 2008) and better understand the year and month characteristics of TPs in the
study area, the timings of TPs were classified by year (Figure 4a) and month (Figure 4b).
For example, the TPs that occurred in June 2007 and November 2007 were both expressed
as 2007 by year, and the TPs that occurred in June 2008 and June 2007 were both expressed
as June by month. Combined with Figure 4a,b, the specific year and month of the TPs in a
region were determined. In the past 20 years, there were several years in which the break
in EF in the study area was overwhelmingly pronounced, such as 2004, 2013, 2014, and
2015, accounting for 59.6% of the total TPs (Figure 4a). In 2008 and 2009, there were the
lowest numbers of TPs, indicating that the EF was relatively stable. Most TPs occurred in
October, followed by November (Figure 4b). Additionally, June and July also contained a
greater number of TPs. Only 14% of the TPs were detected in March.
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3.2. Effects of Drought on TPs in Ecosystem Functioning
3.2.1. TPs of SPEI

During 2000–2019, 67.3% of the largest magnitudes of break in the SPEI were positive,
showing a wetting trend. However, the pixels with negative changes accounted for ap-
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proximately 32.7% of the study area, indicating that these areas were strongly affected by
drought (Figure 5).
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3.2.2. CA of Drought and TP Types

The relationships between drought/wet status when a TP occurred and the duration
of drought/wet before the TP occurrence and the TP types were analyzed. From Figure 6,
22.2% of the pixels detected drought when TPs occurred, which mainly occurred in the
Xilingol League, Inner Mongolia in March 2006, northern Xinjiang in July 2015, and south-
western Heilongjiang in November 2007, while the rest of the pixels were in a drought-free
or humid state. Namely, only 22.2% of the TPs could be explained by drought.
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The CA result shows that the first two dimensions together explained 91.69% of the
deviation from independence between the SPEI level and the TP type, indicating that
there was a strong correlation between them (Figure 7). Furthermore, the CA method
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distinguished drought and drought-free types and different SPEI categories well. From
Figure 7, Type 8 (Reversal: decrease to increase) was the closest type to SPEI 8 (Severe wet)
and SPEI 9 (Extreme wet). This result might be due to the sudden increase in precipitation
in the extremely humid climates, which promoted vegetation growth and increased the net
primary productivity, thereby improving the rain use efficiency. In contrast, the nearest TP
type to SPEI 1 (Extreme drought) and SPEI 2 (Severe drought) was Type 5 (Interruption:
increase with negative break). This might be attributed to the death of vegetation caused by
drought, causing the RUE to decrease suddenly. After drought, the vegetation productivity
slowly recovered, and the RUE increased accordingly. Drought was not the main cause of
Type 7 (Reversal: increase to decrease), as seen from the positional relationship between
Type 7 (Reversal: increase to decrease) and SPEI 5 (Normal). Similarly, Type 6 (Interruption:
decrease with positive break) had little correlation with drought.
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Figure 7. Correspondence analysis between SPEI grades when TPs occurred and TP types (Only
the categories that contribute more than 70% to the coordinate axis are showed in the figure. As the
pixels of the detected SPEI 1, SPEI 2 and SPEI 8, SPEI 9 were much less than those of other types, they
were combined to express).

The distribution of continuous drought/wetness detected in the same month and
three months preceding the TPs is shown in Figure 8. The drought/wetness continuity was
essentially consistent with the dry/humid state when the TP occurred, suggesting that the
12-month SPEI could reflect the drought/humidity state in the study area. According to the
CA of the TP type and the duration of drought/wetness (Figure 9), the first two dimensions
explained 94.9% of the deviation from independence, indicating that the lasting dry/humid
state before the TP had a stronger correlation with the TP type. LD2, LD4, and LD3 could
be well separated from LW1, LW2, LW3, and LW4 by CA analysis (Figure 9). Type 4
(Monotonic decrease with negative break), Type 5 (Interruption: increase with negative
break), and Type 8 (Reversal: decrease to increase) were associated with lasting drought,
while Type 3 (Monotonic increase with positive break), Type 6 (Interruption: decrease with
positive break), and Type 7 (Reversal: increase to decrease) were more consistent with the
condition of continuous wetness; in other words, they had very little linkage to drought.
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Figure 9. Consistency of lasting drought/wet and TP types (LD1, 2, 3, and 4 represent the SPEI’s
lasting drought (LD) for 1–4 months, and LW1, 2, 3, and 4 represent the SPEI’s lasting wetness (LW)
for 1–4 months, respectively).
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3.3. The Linkage between the Frequency of Land Cover Change and TPOI

From 2000 to 2019, 13.4% of the land cover pixels changed (Figure 10). Most of
the land-use types changed at least three times, and grassland was the most frequently
changed type.
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A high TPOI (TPOI ≥ 0.6) is more likely to be found in areas with more frequent land
changes (Figure 11); however, the proportion of TPOI for different frequencies of land cover
change has little overall difference.
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3.4. The Impact of Population Density and GDP Changes on the TPs

To analyze the relationship with the TPs of EF, the population density was classified
into three classes using the equivalence method [24], while GDP was divided into three
categories at equal intervals (Table 5). We calculated the differences between population
density and GDP for every 5-year interval, and the results showed that both the population
density and GDP have changed greatly in some areas over the past 20 years (Figure S3).
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Table 5. Classification of population density and GDP.

Class Population Density
Difference (Person/km2)

GDP Difference
(Ten Thousand Yuan/km2)

Decrease <0 <0
Lower increase 0–0.13 0–100
Higher increase >0.13 >100

During 2000–2015, 65.33% of the TPs occurred in areas with increasing population
density, of which 38.52% were found in rapidly growing areas. On the other hand, there
were also many TPs in areas with reduced population density, accounting for 34.67% of the
total TPs (Figure 12a). TPs were concentrated in areas of slow GDP growth, while fewer
TPs were found in regions with declining GDP. Especially from 2005 to 2010, 95.36% of the
TPs were found in places with GDP growth (Figure 12b). According to Figure 13, Type 8
(Reversal: decrease to increase) accounted for a high proportion of areas with decreased
population density, while Types 7 (Reversal: increase to decrease) and Type 5 (Interruption:
increase with negative break) occupied more areas with increased population density. Type
6 (Interruption: decrease with positive break) and Type 3 (Monotonic increase with positive
break) accounted for higher proportions in locations where population density increased
more slowly.
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4. Discussion
4.1. Relationship between Change Trends of Precipitation, NDVI, and RUE

To understand the whole-view on the changes in corresponding variables in the study
area, the temporal profiles for the whole regional mean P, NDVI, RUE, and SPEI were
presented. As shown in Figures S4 and S5, NDVI and precipitation in the study area
showed an overall increasing trend from 2000 to 2019, making the RUE trend almost stable,
which was consistent with the results obtained by using the BFAST method (In Figure 3b,
75.6% of the pixels in the study area had no significant change trend).

The trend analysis of NDVI and precipitation time series based on Theil-Sen [70,71]
and the BFAST01 method helped to identify their underlying effects on RUE variations for
the period of 2000–2019. The abrupt change in precipitation mainly occurred in the eastern
part of the study area, namely, southwestern Heilongjiang, the west of Jilin, Xingan league,
and Tongliao City of Inner Mongolia (Figure S7). Precipitation in the central and eastern
part of the study area showed a positive trend, among which the central Inner Mongolia
(i.e., the west of Xilingol League and the north of Ulanqab) experienced significant increase
in precipitation (Figure S6a). In southwestern Heilongjiang and western Jilin, a significant
increase trend of precipitation was found before 2015 (Figures S7 and S8). However, a
sudden decrease in precipitation in these areas was detected around 2015, resulting in an
increase in RUE in southeastern Hulunbuir, northwestern Chifeng, and Xingan league in
Inner Mongolia during this period (Figure S6b). The decreasing trend of precipitation was
detected only in the northern part of Xinjiang, where the precipitation suddenly increased
in 2015, leading to the abrupt decrease in RUE accordingly (Figure S6c). In addition, we
found that the abrupt change in precipitation mainly occurred in summer, followed by
spring and autumn. This partially reflects the importance of changes in summer and spring
precipitation for ecosystem function variations in ASARNC.

According to Figure S6, 86.03% of NDVI pixels in the study area suffered abrupt
changes in the past 20 years (p < 0.1), and the overall trend of NDVI detected by BFAST01
was in good agreement with the results of the Theil-Sen trend analysis (Figure S11, p < 0.05).
Spatially, NDVI shows a significant trend of increase on the whole, and the results of
BFAST01 provide more information about NDVI abrupt changes. In the northeast of the
study area and Xinjiang, the abrupt changes were mainly positive (Figure S6d), while
NDVI values in the middle of the study area, Qinghai and Tibet were affected by negative
interference (Figure S6e). In terms of occurrence time, the break years of NDVI were
relatively scattered, slightly more in 2015 (Figure S10). The break months of NDVI were
mainly distributed in summer (taking up 50.5% of the total) and spring (32.8%), which
was consistent with the seasonal distribution characteristics of precipitation, implying that
NDVI is easily affected by external factors in summer.

Precipitation in western Tibet experienced a significant decrease, while its NDVI
had a significant upward trend (Figures S11 and S12). Therefore, the RUE in central and
western Tibet (p < 0.1) showed a significant increase in trend (Figure S6e). In eastern
Inner Mongolia, especially in the Xing’an League and Tongliao areas, both the NDVI and
precipitation showed a significant upward trend, making the RUE in these regions stable
(Figures S13 and S6f). Although the abrupt characteristics of NDVI or precipitation in
some regions might determine the break features of RUE, TPs in RUE in most area of
ASARNC attributed to the combined effects of the above two variables, forming different
TP types associated with the differences of regional ecological environment. The TPs that
only occurred in NDVI or precipitation may not cause the abrupt change in RUE.

The spatial distribution of the monotonic RUE increase was similar to that of the
monotonic decrease; 13.7% of the monotonic increases and 16% of the monotonic decreases
were stable. Stable pixels mostly occurred at the junction of the above two types and were
distributed in strips near the mountains. In most of these areas, NDVI and precipitation
showed a synchronous increasing and decreasing trend; thus, the stable RUE might be due
to limited human intervention and a relatively smaller human footprint. Meanwhile, the
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detected monotonic changes were mostly insignificant, indicating that changes in RUE were
characterized by volatility and stability in these regions, that is, EF was stable (Figure S13).

4.2. Abrupt Change Characteristics of Ecosystem Functioning

We detected TPs by using monthly RUE data so that the changes in EF in the ASARNC
at a finer spatiotemporal scale could be explored. From 2000 to 2019, 63.2% of the pixels
were classified as TPs in the study area, and 15.2% of the pixels had a high TPOI (TPOI > 0.6).
Among the eight trend types, Type 6 (Interruption: decrease with positive break) was the
most common, accounting for 20.4% of the total pixels and 32.4% of the TPs.

The detected TPs were not only the result of the deterioration of EF caused by fac-
tors such as drought but also might be attributed to the improvement of the ecological
environment. Figure 5 shows that 67.1% of the most significant TPs in SPEI were positive,
i.e., breaks toward climate wetting, which was similar to previous studies [72]. Negative
changes were detected only in northwest China, which was also demonstrated in the study
presented by Miao et al. [73]. According to the types detected by BFAST01 (Figure S14), the
SPEI in the eastern part of the study area showed a significantly positive increase (p < 0.1),
but negative interference also occurred. SPEI in the northwest mainly showed negative
growth, during which positive TPs occurred. The overall trend detected in this study was
consistent with the future changes in China’s drylands estimated by Miao et al. [73]. The
study area was much more affected by humid climate than drought in the past 20 years.
We found that the precipitation in most areas showed an insignificant increasing trend
(Figure S12), similar to the findings of Miao et al. [73] and Liang et al. [74], while the NDVI
increased significantly for 57.8% of the pixels (Figure S11). To a certain extent, the overall
ecological environment in the study area is improving, which may be related to the various
ecological restoration projects that have begun since approximately 2000 [75–77], which
have enhanced greening trends. On the other hand, 59.4% of the detected TPs in this study
occurred after 2010. Related studies similarly found that the overall warming and wetting
climate in northwest China since 2010 had a positive impact on vegetation health [78–81].
Additionally, afforestation, grazing prohibition, and other ecological restoration projects
were regarded as the major drivers of vegetation restoration [82,83]. The lowest number
of TPs were detected between 2008 and 2009, and some studies found that there was no
significant climate change in northern China during this period [84].

4.3. Influencing Factors of TPs in Ecosystem Functioning

The occurrence time (i.e., year and month) and types of the TPs may indicate a
transformation in the underlying mechanism of ecosystem functions. During 2000–2019,
persistent drought events were detected in 16.56% of the TPs in the study area (Figure 8),
which were mainly distributed in the Xilingol League of Inner Mongolia, northern Xinjiang,
and southwestern Heilongjiang. Among these, we detected drought events around the
TPs on March 2006 and November 2007 in the eastern part of Xilingol League, an interval
coinciding with the driest year in Xilingol, 2007 [62,85]. Zhao et al. [86] also found that the
aboveground biomass of the Xilingol steppe fluctuated greatly from 2007 to 2010, and the
lowest value was observed in 2007. The TP types in the Xilingol League showed obvious
spatial differences, and Type 5 (Interruption: increase with negative break) and Type 7
(Reversal: increase to decrease) dominated in the central and eastern parts, respectively. The
same drought event had different effects on EF, which might be related to the distribution of
grassland coverage increasing from west to east [86]. The resistance of grassland ecosystems
with different coverage varied, resulting in different effects on the change in the ecosystem
after interference [17]. High-coverage grassland ecosystems with a strong ability against
disturbances might restore their functions after drought; thus, the TP type was mainly Type
5 (Interruption: increase with negative break). In contrast, the anti-disturbance ability of
low-coverage grassland ecosystems was weak, and drought might cause the rising trend of
RUE to begin to fall.
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Similarly, drought-dominated TPs were also detected in Suihua city of Heilongjiang
Province in November 2007, causing RUE to undergo a negative break (Figure S6d). It was
verified that Suihua experienced a 50-year drought event in the summer of 2007 [87], which
caused a decline in RUE. The TPs detected in northern Xinjiang were mainly in July 2015,
when that region experienced a lasting drought event. There are several TP types, and the
RUE trends before and after the TPs differ, but they have in common the fact that the TPs
were negative, which can be considered the effect of drought.

The linkage between TPs and drought was weak in the remaining areas. For instance,
no drought events were detected at the TPs in the western part of Hulunbuir, Inner Mongo-
lia, in November 2013. We diagnosed the continuous humid events, which were consistent
with the results of Zhang et al. [88]. The TP type was Type 8 (Reversal: decrease to increase),
and RUE showed a significant decreasing trend before the break but did not increase
significantly after break (Figure S6g). This may be related to the fact that vegetation in
Hulunbuir generally declined before 2010 and slowly increased after 2010 [89].

Therefore, persistent drought was not the main factor causing most of the TPs in the
study area over the past 20 years. This might be due to the regularity and stability of RUE,
i.e., the surrogate index of EF used in this paper. Drought events had a limited impact on
RUE. In contrast, we detected persistently humid states in most of the TPs, which suggested
that a humid climate affected the EF in the ASARNC to some extent, which was similar
to the results of Na [90]. In addition, the SPEI was in a neutral condition when the break
was detected in the western Xilingol League, indicating that the TPs might be attributable
to human activities and have nothing to do with drought or wet events. Spatially, the
SPEI values were within the normal range when the TPs in this study occurred mainly in
southwestern East Ujumqin Banner, the middle of Abaga Banner, and northern Xilinhot.
This pattern was similar to the spatial distribution of higher grazing pressure found in
previous studies [91–93].

Land cover is another way in which human activities promote changes in EF [17].
Our results show that the frequency of land cover changes in this study area was not
the main factor causing the TPs of EF. This may be due to the absolute dominance of
grassland and the limited number of times that the land cover changed. Population density
is closely related to changes in ecosystems. The TPs were not highly concentrated where the
population density was increasing in our study, which was associated with the population
decline in the study area over the past 20 years [94]. Overall, there is a definite correlation
between population density changes and the TP type. In areas with reduced population
pressure, the trend of EF following TPs was upward, while more negative TPs were detected
in areas with a relatively increased population and where the EF trend was downward.

4.4. Applicability of the BFAST Family Algorithms for Detecting Changes in Ecosystem Functioning

In this study, the TPs detected from the time series RUE ranged from 40 to 140,
corresponding to the years 2004 to 2015. It can be seen that the BFAST algorithm could not
detect breakpoints at the beginning and end of the time series (i.e., the first 40 and the last
40 time points). The limitations of this algorithm itself might also reduce the thoroughness
of our TP detection while ignoring the information on ecosystem function changes before
2004 and after 2015. Almost all pixels with TPOI values greater than 0.6 were detected
by the BFAST Lite algorithm, implying its high reliability in detecting TPs in the study
area. Moreover, the TPOI detected by BIC was almost 100%, while the two testing methods
with the greatest disagreement were SupLM and OLS-MOSUM. SupLM detected the most
TPs, accounting for 56.46% of the total pixels, while OLS-MOSUM detected the fewest TPs,
accounting for only 4.74% (Figure S15).

Some previous studies proved that the 12-month SPEI could better characterize the
regional dry and wet state, but Tong et al. found that the Xilingol grassland had a stronger
response to short-term (SPEI-1), seasonal (SPEI-3), and medium-term (SPEI-6) drought [62].
Thus, the response of the SPEI on short-term, seasonal, and medium-term scales to the TPs
of EF in the ASARNC deserves further investigation.
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5. Conclusions

The traditional trend analysis method can help us understand the overall change
over time in a study area; however, it cannot reflect the changes in different time periods
and the abrupt characteristics. In this study, we characterized ecosystem functioning
TPs and the climate and anthropogenic causes over the arid and semi-arid regions of
northern China from 2000 to 2019 using rain use efficiency time-series data retrieved by
MODIS. More accurate timing of TPs (i.e., specific month and year) was detected by using
a monthly RUE time series, and the trend types and timing of TPs detected by the BFAST
model can better provide disturbance information of the vulnerable hotpot areas under
highly human or environmental pressure (Xilingol League, western Jilin, southwestern
Heilongjiang, northern Xinjiang and Tibet, etc.) in the study area. The impact of drought
on TPs was analyzed by combining the SPEI for the timing of TP occurrence with the three
preceding months. The linkages between the TPs, the frequency of land cover change, and
socioeconomic development were investigated. The main findings are as follows:

(1) The ecosystem functions of the arid and semi-arid regions of northern China changed
significantly over the past 20 years. TPs were detected in 63.2% of the study area.
High TPOI (TPOI > 0.6) accounted for 15.2% of the total pixels. In terms of the year of
occurrence, 59.4% of the TPs were observed after 2010. The most frequent TP type
was Type 6 (Interruption: decrease with positive break), followed by Type 8 (which is
a reversal: decrease to increase).

(2) A total of 26.64% of the TPs in EF were dominated by drought events, while 55.67%
of the TPs might be related to a humid climate. There were no wet and dry events
detected in 17.69% of the TPs, which was possibly related to human factors. A total of
95.36% of the TPs occurred in the areas with GDP growth, and the TPs were not highly
concentrated in areas of increasing population density. There was little difference in
the proportions of TPOI among different frequencies of land cover change.

(3) The two TP types of ecosystem function, i.e., Type 6 (Interruption: decrease with
positive break) and Type 7 (Reversal: increase to decrease) had a strong correlation
with persistent climate wetting, and the former type simultaneously accounted for a
larger proportion in the regions with decreasing population density. In contrast, Type
5 (Reversal: increase to decrease), Type 4 (Monotonic decrease with negative break),
and Type 8 (Reversal: decrease to increase) were strongly correlated with continuous
drought events, among which Type 5 accounted for a higher proportion in areas of
increased population density (76%).

(4) The combination use of BFAST family algorithms and multiple breakpoint test meth-
ods provide an effective way to reveal more spatial and temporal characteristics of
ecosystem functioning abrupt changes. The year and month information for TPs in
EF detected from monthly RUE time series enables us to more accurately link them
with occurrence and duration of drought. The implementation of CA analysis helps
us understand the consistent relationship between dry/wet conditions and TP types,
so as to better characterize the overall situation of regional ecosystem functioning
abrupt changes.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/rs14215396/s1, Figure S1: Correlation analysis between the SPEI obtained by
AUNSPLIN interpolation and the global 0.5 degree SPEI dataset; Figure S2: Trend types of ecosystem
functioning based on rain use efficiency detected by BFAST01; Table S1 Arguments setting of (a) BFAST01,
(b) BFASTclassify, (c) BFAST, and (d) BFASTLite in R 4.1.1(other arguments use default settings); Figure S3:
Changes in population density and GDP over a 5-year interval from 2000 to 2015; Figure S4. Regional
mean NDVI, P, RUE, and SPEI from 2000 to 2019 (From March to November every year); Figure S5.
Annual regional mean NDVI, P, and RUE from 2000 to 2019 (From March to November every year);
Figure S6: Trend types of some typical samples detected by BFAST01 model; Figure S7. Distribution
of break types of precipitation (a) and significance test of break types (b) (p < 0.1); Figure S8. Timing
of TPs in precipitation (p < 0.1): (a) year; (b) month; Figure S9. Distribution of break types of NDVI (a)
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(b) month; Figure S11: Inter-annual variation Sen trend of annual cumulative (March-November) NDVI;
Figure S12: Inter-annual variation Sen trend of annual cumulative (March-November) precipitation;
Figure S13: Spatial distribution of stable ecosystem function change; Figure S14: Distribution of break
types of SPEI (a) and significance test of break types (b)(p < 0.1); Figure S15: The spatial distribution map
of TPs obtained by BFAST Lite and the four test methods of BFAST01 (all the above results were tested
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