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Abstract: Large-scale monitoring of water quality parameters (WQPs) is one of the most critical issues
for protecting and managing water resources. However, monitoring optically inactive WQPs, such
as total nitrogen (TN), ammoniacal nitrogen (AN), and total phosphorus (TP) in inland waters, is
still challenging. This study constructed retrieval models to explore the spatiotemporal evolution of
TN, AN, and TP by Landsat 8 images, water quality sampling, and five machine learning algorithms
(support vector regression, SVR; random forest regression, RFR; artificial neural networks, ANN;
regression tree, RT; and gradient boosting machine, GBM) in the Nandu River downstream (NRD),
a tropical river in China. The results indicated that these models can effectively monitor TN, AN,
and TP concentrations at in situ sites. In particular, TN by RFR as well as AN and TP by ANN
had better accuracy, in which the R2 value ranged between 0.44 and 0.67, and the RMSE was
0.03–0.33 mg/L in the testing dataset. The spatial distribution of TN, AN, and TP was seasonal
in NRD from 2013–2022. TN and AN should be paid more attention to in normal wet seasons of
urban and agricultural zones, respectively. TP, however, should be focus on in the normal season
of agricultural zones. Temporally, AN decreased significantly in the normal and wet seasons while
the others showed little change. These results could provide a large-scale spatial overview of the
water quality, find the sensitive areas and periods of water pollution, and assist in identifying and
controlling the non-point source pollution in the NRD. This study demonstrated that multispectral
remote sensing and machine learning algorithms have great potential for monitoring optically inactive
WQPs in tropical large-scale inland rivers.

Keywords: machine learning; multispectral remote sensing; optically inactive water quality monitoring;
total nitrogen (TN); ammoniacal nitrogen (AN); total phosphorus (TP); tropical river

1. Introduction

Freshwater is a vital resource for both the environment and humanity. However, in
recent decades, water resources have been threatened by anthropogenic contamination
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with the rapid development of the economy and insufficient awareness of environmen-
tal protection [1–3]. Due to the indiscriminate discharges of industrial, agricultural, and
domestic sewage to water bodies, nutrient concentrations such as nitrogen (N) and phos-
phorus (P) increase dramatically, leading to non-point source pollution [4,5]. For example,
eutrophication, associated algal overgrowth, and declining water quality negatively impact
eco-environment services (e.g., drinking water, food supply, and biodiversity) and pose
a threat to human health [6–8].

The Nandu River, a tropical river and the largest river on Hainan Island, is one of
the primary sources of drinking water, livestock and poultry aquaculture, and agricultural
irrigation for Hainan Province, China. It is a typical tropical river basin consisting mainly
of agriculture and rural areas, without industry. In recent years, however, the Nandu River
has also been facing the problem of eutrophication. Due to the hot and humid climate, the
Nandu River basin has had a high multiple cropping index (158.6%) [9] with more nutrient
average input per crop season than in temperate regions [10]. Nutrient losses along with
the frequent strong rainfall in this area result in the concentrations of total nitrogen (TN),
ammoniacal nitrogen (AN), and total phosphorus (TP) exceeding the acceptable range
and having great spatial heterogeneity [11–13], as did other tropical rivers around the
world [14–16]. Therefore, providing effective strategies to monitor nutrient concentrations
of inland water and determining their spatiotemporal dynamics are critical for freshwater
resource protection and management [17,18].

In traditional water quality monitoring methods, extensive field monitoring networks
are required, including on-site measurements, samplings, and laboratory analysis. Water
quality monitoring networks, such as buoys and platforms deployed on some rivers and
lakes, can collect data continuously and increase the “temporality” of in situ samplings, but
are still spatially limited and costly. Although relatively accurate, most traditional methods
are time-consuming, expensive, and limited to point-based data, failing to give a large-scale
spatial overview of the water quality [19]. Therefore, researchers and managers aim for
a comprehensive, low-cost water quality monitoring method [20].

In recent years, as remote sensing techniques have rapidly developed, satellite remote
sensing has become a powerful tool that is widely used for monitoring large-scale variations
in water quality [21,22]. Compared to the traditional methods, satellite remote sensing
is cost-effective and less time-consuming and has been used as an effective detection
tool for the optically active water quality parameters (WQPs), including chlorophyll-a,
temperature, turbidity, and suspended solids with high spatiotemporal resolution [23–26].
However, retrieving the N and P concentrations for inland water remains challenging
because these WQPs are non-optically active [27]. Fortunately, some scholars have made
quantitative retrievals of N and P in bodies of water with empirical or machine learning
algorithms [21,28].

Empirical models and machine learning algorithms have been widely used in retriev-
ing WQPs from remote sensing images. The main principle of empirical methods is to use
several spectral band combinations as part of polynomial regression to predict the change
in water quality [29,30]. They are developed by long-term and large-scale experiments in
the fixed water body with high accuracy [31]. Therefore, an empirical model obtained at
one water body is not usually applicable for other water bodies, such as tropical rivers
having different climates and ambient conditions. With the advances in algorithm devel-
opment, computing power, sensor performance, and data availability, machine learning
algorithms have been widely used for estimating WQPs [27]. Many scholars have used
machine learning algorithms and remote sensing data to solve complex regressions such
as nonlinear regression, which has relatively obvious advantages in monitoring optically
inactive WQPs [32–35]. Popular machine learning algorithms including linear regression,
regression tree, random forest, boosted regression tree, support vector regression, and
artificial neural networks have been used in water quality monitoring along with various
remote sensing data such as Landsat 5/7/8, MODIS, Sentinel 2/3, and airborne systems.
Most of these studies focused on TN and TP in reservoirs and lakes with lower flow velocity
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in non-tropical regions [29,34,36], few AN, and did not involve in tropical rivers. In order
to improve the robustness, these machine learning algorithms must be carefully made
generalizable to tropical regions because they have higher temperatures and more frequent
precipitation than the other regions. Therefore, a customized model by machine learning
algorithms is needed for the monitoring of tropical rivers’ N and P concentrations.

The goals of this study are to: (1) develop retrieval models of WQPs to monitor the
concentrations of TN, AN, and TP in the Nandu River based on Landsat 8 images, machine
learning algorithms, and water quality samplings; (2) evaluate the accuracy of these models
and determine the best model for a long-term analysis from 2013 to 2022; and (3) explore
the spatiotemporal distribution and patterns of N and P concentrations and identify the
sensitive area and period in the tropical river.

2. Materials and Methods
2.1. Study Area

The Nandu River downstream (NRD, 19◦41′49′′–20◦4′56′′N, 109◦58′38′′–110◦26′7′′E)
is in the tropical area of northern Hainan Island, China (Figure 1). The waterway, which
runs about 110.7 km from the Shankou national cross-section to the river mouth, flows into
the Qiongzhou strait at the Haikou City Xinbu delta and occupies a total drainage area of
~2290 km2. It is a primary river system that flows through agricultural, rural, and urban
areas, mostly hilly tableland and coastal deltas. This area has a tropical monsoon marine
climate with an annual mean temperature of ~24.6 ◦C, long summers, and no winters.
The annual precipitation is ~1880.6 mm (1992–2021), most of which occurs in tropical
cyclones or typhoons from July to October, and the spatiotemporal distribution is highly
uneven. The annual average runoff is ~6.92 billion m3. The dry season (January–March),
wet season (June–October), and normal season (April, May, November, December) recur
throughout the year. Therefore, the area has a better agricultural foundation and a high
level of intensive cultivation and breeding, with an industrial advantage in the areas of
planting, freshwater aquatic, livestock, and poultry. To reveal the spatial variations of the
nutrients in the different environments, this study divided the NRD into three subregions
(Figure 1). More generally, the NRD was divided into an agriculture and rural mixed zone
(A), an agriculture zone (B), and an urban zone (C) based on location, shape, geomorphol-
ogy, and ecological function.

2.2. Data
2.2.1. Water Quality Sampling

Surface water quality data include the national cross-sections and the in situ site
samplings. Five national cross-sections were obtained from the Environmental Knowledges
Service System (http://envi.ckcest.cn/environment/data_Integration/data_Integration.jsp
accessed on 18 April 2022) at the NRD from January 2021 to March 2022. The data are
hourly (4 h) including the concentrations of TN, AN, and TP. The value at 12:00 was used
due to being near the Landsat 8 scene center time in the NRD. Based on the five national
cross-sections and field surveys, nine in situ water quality sites were established with
representativeness, easy sampling, stability, and reliability as supplementary monitoring in
the NRD. In situ water samples were collected once a month from the water surface (~20 cm)
in the time frame of March 2021 to September 2021, stored in acid-washed Niskin bottles
under ice conditions, and delivered to the laboratory on time. Then, WQPs were analyzed,
including the concentrations of TN, AN, and TP. In order to test the TN concentration,
the solutions were digested with potassium persulfate, and then a UV spectrophotometer
was used to characterize the sample at a wavelength of 210 nm. The spectrophotometry
running at the wavelength of 620 nm using Nessler’s reagent was used to test the AN
concentration. The TP concentration was tested by spectrophotometry at 700 nm using
ammonium molybdate. The environmental quality standards for surface water (GB 3838-
2002) in China (Table S1) were used to evaluation water quality. There are five levels,
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including classes I, II, III, IV, and V according to the standard limit values of WQPs from
low to high.
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2.2.2. Landsat 8 Satellite Images

This study used Level-2 surface reflectance products in Landsat 8 operational land
imager collection 2, which can be freely downloaded from the website of the United States
Geological Survey (USGS) (http://earthexplorer.usgs.gov accessed on 19 May 2022). These
products are radiometrically and geometrically corrected. Landsat 8 was successfully
launched by NASA on 11 February 2013 and had a 16-day revisit cycle. This study used
bands 1–7 of Landsat 8 with a spatial resolution of 30 m and a spectrum range from visible

http://earthexplorer.usgs.gov
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to short-infrared. In this study, 25 Landsat 8 images were collected with little clouds over
the NRD from April 2013 to April 2022 at row 46 and path 124 (Table 1) to explore the
spatiotemporal evolution of TN, AN, and TP in the NRD. There were totals of 3, 11, and
11 images at the dry, normal, and wet seasons, respectively.

Table 1. Temporal distribution of Landsat 8 images used in this study.

Season Dry Normal Wet Normal
Total

Year January February March April May June July August September October November December

2013 \ \ \ 1 1 0 0 0 0 1 0 1 4

2014 0 0 0 0 0 0 0 0 0 0 0 0 0

2015 0 0 0 0 1 2 0 0 0 0 1 0 4

2016 0 0 1 0 0 0 0 0 0 0 0 1 2

2017 0 0 0 0 0 0 0 1 0 0 0 0 1

2018 0 0 0 0 0 0 1 0 0 0 0 0 1

2019 0 0 0 0 1 2 1 0 1 0 0 0 5

2020 1 0 0 0 1 1 0 1 0 0 0 0 4

2021 1 0 0 0 1 0 0 0 0 0 0 1 3

2022 0 0 0 1 \ \ \ \ \ \ \ \ 1

Total 2 0 1 2 5 5 2 2 1 1 1 3 25

2.2.3. Dataset for Modeling

There were 67 water samples collected, including national cross-sections (N = 39) and
in situ sites (N = 28) with quasi-synchronous Landsat 8 images ranging from January 2021 to
March 2022. The concentrations of TN, AN, and TP for all pixel–sample matchups were in
the ranges of 0.30–2.97 mg/L, 0.03–0.65 mg/L, and 0.01–0.30 mg/L, respectively, covering
the typical range for the NRD. The dataset, used to construct the retrieval models for TN,
AN, and TP, was combined with the surface water quality data of 67 samples (output data)
and the spectral values of seven bands of Landsat 8 images at the corresponding water
samples (input data). The dataset was randomly divided into two groups: the training
dataset and testing dataset. The training dataset contained 47 (AN) and 42 (TN and TP)
samples, which accounted for 70% of the data and were used to train the parameters of
retrieval models. The rest of dataset as the testing dataset contained 20 (AN) and 18 (TN
and TP) samples that were used to test the performance of retrieval models.

2.3. Methods
2.3.1. Support Vector Regression (SVR)

SVR is a classical machine learning approach due to its robust ability to capture
nonlinear trends. The basic idea of SVR [37] is that the original data points can be mapped
from the input space into a feature with higher or even infinite spatial dimensions, where an
optimal separating hyperplane with the minimum distance to all data points is established.
It has been widely used in water environment prediction [38,39]. In this study, SVR was
performed by the radial basis function of package “e1071” [40] in the R language.

2.3.2. Random Forest Regression (RFR)

RFR is a modern nonparametric technique for nonlinear multiple regression [41] and
has been one of the best machine learning algorithms in recent years. As an ensemble
algorithm, RFR constructs a large set of decision trees (typically hundreds or several
thousand) through integrated learning, using one decision tree as the basic unit and each
decision tree as a predictor. The composition of the forest is relatively simple, consisting
mainly of independent and disconnected decision trees. The result is predicted from the
average results of all decision trees with high accuracy and generalization performance.
In addition, RFR is efficient on large datasets, can evaluate the significance of each input
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feature, and can effectively avoid overfitting [42]. The “randomForest” [43] package of R
language was used to implement this regression technique.

2.3.3. Artificial Neural Networks (ANNs)

ANNs are similar to the mediation of the human brain, with a nerve cell model as
a numerical analysis unit. The back-propagation neural network algorithm [44] used in this
study is the most commonly used ANN in simulating the nonlinear relationship between
variables. Thus, ANNs play a vital role in artificial intelligence. There are two processes in
the primary learning of this algorithm, i.e., a forward computation process and an error
back-propagation process. ANNs consist of three main layers: the input layer, hidden
layer, and output layer. Neurons in different layers are connected by the corresponding
weights, which can be updated in the error back-propagation process by back-propagating
the output error in some form layer-by-layer through the hidden layer to the input layer,
assigning the error to individual neural units of each neuron in each layer. The details of
the ANN can be found in previous studies [21,36,45]. The “neuralnet” package [46] in R
language was used to implement the ANN using the “neuralnet” function.

2.3.4. Regression Tree (RT)

RT analysis has been widely used for remote sensing-based environmental
monitoring [47]. Generally speaking, the RT model can be considered as a binary splitting
process in which the feature space is recursively stratified into subdivisions. Each node
has two possible values, i.e., “Yes” or “No”. The basis of stratification is to minimize
the deviation from the mean of the response variable. This rule-based regression model
consists of four parts, i.e., root nodes, internal nodes, branch nodes, and terminal nodes.
The prediction accuracy of the model is highly related to the total number of nodes. The
redundant growth of the model leads to a higher possibility of overfitting, which can
reduce the prediction accuracy of the test set. Therefore, the necessary pruning of the tree
is required. RT analysis can also be applied in nonlinear regression modeling to interpret
the relationships between the independent and dependent variables in the form of rulesets.
The “rpart” package [48] in the R language was used in this study.

2.3.5. Gradient Boosting Machine (GBM)

The GBM is another popular machine learning algorithm that has the advantages of
high accuracy, a fast training process, short prediction time, and a small memory footprint
in various applications [49]. Similar to RFR, the GBM [50] also consists of an ensemble
of decision trees, but the sequence of trees is created, and each tree in the sequence fo-
cuses on the previous tree’s prediction residuals. The innovation of the GBM is its use of
a nonparametric approach to estimate the basis function and using gradient descent to
approximate the solution in function space. It does not depend on the pre-processing of
variables, it can handle missing data, and it can solve overfitting problems. The “gbm” [51]
package in the R language was used in this study.

2.4. Accuracy Assessment

The accuracy of these WQP retrieval models was evaluated by the coefficient of
determination (R2), the root-mean-square error (RMSE), and the mean absolute percentage
error (MAPE). The training and testing of these models, the statistical analysis of model
parameters, the calculation of correlation coefficients, and the error analysis were mainly
implemented by the R 4.2.0 language with the “raster”, “dplyr”, “e1071”, “randomForest”,
“neuralnet”, “rpart”, and “gbm” packages. ArcGIS 10.2.2 and R with the “ggplot2” package
were used to map the nutrient concentrations in the NRD spatially and temporally.
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3. Results
3.1. Model Training and Testing

The WQP retrieval models for TN, AN, and TP were constructed by SVR, RFR, ANN,
RT, and GBM algorithms through training and testing. ANN, RFR, and SVR showed better
prediction results than RT and GBM for TN, AN, and TP (Figure 2, Table 2). Since the
regression results were close to classification and narrowed the prediction range, the RT
and GBM algorithms were unsuitable for the prediction of these WQPs. In addition, the
R2 of RT and GBM were below 0.55, and the average was 0.29 in the training and testing
datasets (Figure 2(a4,b4,c4,a5,b5,c5), and Table 2).

Table 2. Comparison of different machine learning algorithms for the training and testing datasets.

WQP Dataset Model Slope Intercept R2 p RMSE (mg/L) MAPE (%)

TN

Training
N = 42

SVR 0.24 0.70 0.50 <0.01 0.44 24.39

RFR 0.42 0.62 0.75 <0.01 0.34 27.50

ANN 0.97 0.03 0.97 <0.01 0.09 7.70

RT 0.21 0.82 0.21 <0.01 0.48 38.69

GBM 0.06 0.99 0.31 <0.01 0.51 40.20

Testing
N = 18

SVR 0.18 0.73 0.20 0.06 0.41 35.05

RFR 0.30 0.70 0.49 <0.01 0.33 33.53

ANN 1.04 0.01 0.45 <0.01 0.48 33.11

RT 0.25 0.71 0.17 0.08 0.40 38.32

GBM 0.07 0.97 0.25 0.04 0.40 43.59

AN

Training
N = 47

SVR 0.21 0.17 0.31 <0.01 0.14 202.56

RFR 0.44 0.13 0.66 <0.01 0.10 153.12

ANN 0.99 0.00 0.99 <0.01 0.01 6.09

RT 0.37 0.14 0.37 <0.01 0.13 169.79

GBM 0.22 0.17 0.55 <0.01 0.13 195.37

Testing
N = 20

SVR 0.06 0.19 0.07 0.25 0.16 305.05

RFR 0.16 0.18 0.24 0.03 0.15 284.84

ANN 0.96 −0.05 0.44 <0.01 0.19 318.07

RT 0.14 0.18 0.17 0.08 0.15 273.77

GBM 0.05 0.20 0.13 0.11 0.16 312.73

TP

Training
N = 42

SVR 0.58 0.04 0.66 <0.01 0.03 59.51

RFR 0.60 0.03 0.86 <0.01 0.02 30.01

ANN 0.69 0.02 0.69 <0.01 0.03 46.23

RT 0.23 0.05 0.23 <0.01 0.04 49.24

GBM 0.06 0.06 0.46 <0.01 0.04 59.89

Testing
N = 18

SVR 0.26 0.05 0.59 <0.01 0.04 52.53

RFR 0.14 0.05 0.21 0.06 0.04 48.23

ANN 0.60 0.03 0.67 <0.01 0.03 46.44

RT 0.21 0.05 0.24 0.04 0.04 54.84

GBM 0.06 0.06 0.42 <0.01 0.05 64.46
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The ANN had the best prediction for TN in the training dataset, with the R2 above
0.95 and the RMSE around 0.09 mg/L (Figure 2(a3)). However, according to the values of
the R2 and RMSE, the ANN performed worse than RFR (R2 = 0.49 and RMSE = 0.33 mg/L)
in the testing dataset (Figure 2(a2)). RFR also had a better prediction in the training dataset
(R2 = 0.75 and RMSE = 0.34 mg/L). Thus, RFR is the best model for TN. For the prediction
of AN, the algorithms are ranked as ANN, RFR, and SVR from the best to the worst in the
training and testing datasets. Furthermore, the ANN had the highest R2 values, which
were close to 1 and 0.44 for the training and testing datasets, respectively, and the RMSE
was less than 0.20 mg/L (Figure 2(b3)). RFR had the highest R2 (0.86) and the lowest RMSE
(0.02 mg/L) in the training dataset for TP, but its R2 and RMSE values were the lowest in
the testing dataset (Figure 2(c2)). The ANN was the best in the testing dataset (R2 = 0.67
and RMSE = 0.03 mg/L) and similar to RFR in the training dataset (Figure 2(c3)). Therefore,
ANN is the best method for TP.

In general, these models constructed by Landsat 8 and machine learning algorithms
can consistently monitor TN (by RFR), AN, and TP (both by ANN) at the national cross-
section and in situ site samplings. The spread of predicted and measured WQPs was
close to the 1:1 line. In addition, these WQPs had significant linear correlations for the
testing dataset (Table 2), where the R2 ranged between 0.44 and 0.67, and the RMSE was
0.03–0.33 mg/L. The results indicated that these selected models could quantitatively
monitoring TN, AN, and TP in the study area.

3.2. Spatiotemporal Variability of N and P Concentrations

TN, AN, and TP concentrations in the NRD were monitored for the whole region (All)
and three subregions (A, B, and C) in the dry, normal, and wet seasons from 2013 to 2022
using the selected models. Temporal change analysis was not conducted in the dry season
due to the small amount of Landsat 8 images (N = 3).
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Table 2. Comparison of different machine learning algorithms for the training and testing datasets. 
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TN 

Training 

N = 42 

SVR 0.24 0.70 0.50 <0.01 0.44 24.39 

RFR 0.42 0.62 0.75 <0.01 0.34 27.50 

ANN 0.97 0.03 0.97 <0.01 0.09 7.70 

RT 0.21 0.82 0.21 <0.01 0.48 38.69 

GBM 0.06 0.99 0.31 <0.01 0.51 40.20 

Testing 

N = 18 

SVR 0.18 0.73 0.20 0.06 0.41 35.05 

RFR 0.30 0.70 0.49 <0.01 0.33 33.53 

ANN 1.04 0.01 0.45 <0.01 0.48 33.11 
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Figure 2. Relationships between in situ measured and Landsat 8 predicted TN (a), AN (b), and TP (c)
for pixel–sample matchups. (1–5) indicate different machine learning algorithms: SVR, RFR, ANN,
RT, and GBM, respectively. The orange text and circles represent the training results, and the blue
text and triangles represent the testing results. The blue line is 1:1, and the red line is 15% variation.

The TN concentration, ranging from 0.69 to 1.72 mg/L (Figures 3 and S1) in class III
to V water quality, was low in the dry season (mean 1.09 ± 0.11 mg/L) with the lowest
concentration in region A, and high in the wet season (mean 1.27 ± 0.20 mg/L) with
the highest concentration in region C. In all seasons, the maximum value of TN always
occurred in region C, followed by region B. In addition, the spatial distribution of the TN
concentration varied enormously in the normal and wet seasons but was more consistent
in the dry season. Temporally, the TN had no significant change in the wet and normal
seasons (Table S2, Figures 4 and S1). The highest value (1.44 ± 0.17 mg/L) of TN was
monitored in region C in 2016, and the lowest value (1.06 ± 0.11 mg/L) was monitored in
region A in 2019 in the NRD’s normal season.
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Figure 3. Spatial distributions of mean Landsat 8-monitored TN, AN, and TP concentrations in the
whole region of the NRD (All) and three subregions (A, B, and C) in the dry, normal, and wet seasons
from 2013 to 2022. Different lowercase letters indicate significant differences at the level of 0.05. I, II,
III, IV, and V are the quality standards for surface water from low to high.

The AN concentration, ranging between 0.03 and 1.21 mg/L (Figures 3 and S2) in class
I to III water quality, was low in the dry season (mean 0.29 ± 0.21 mg/L) and high in the
normal season (mean 0.48 ± 0.21 mg/L); the lowest and the highest concentrations both
occurred in region B. The maximum concentration of AN in the dry season was monitored
in region C, followed by region A; and in the normal and wet seasons, it was monitored in
region B, followed by region C. Moreover, the spatial distribution of AN varied strongly
in all seasons, especially in the dry season. Temporally, the AN concentration decreased
significantly in the normal and wet seasons, especially in the normal season with a rate
of 0.02 mg/a (Table S3, Figures 5 and S2). The highest (0.71 ± 0.21 mg/L) and lowest
(0.08 ± 0.14 mg/L) concentrations of AN were in region B’s wet seasons of 2015 and
2020, respectively.
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quality standards for surface water from low to high.
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The TP concentration, ranging from 0.01 to 0.28 mg/L (Figures 3 and S3) in class I
to IV water quality, was low in the wet season (mean 0.07 ± 0.02 mg/L) with the lowest
concentration in region A, and high in the normal season (mean 0.09 ± 0.03 mg/L) with the
highest concentration in region B. In the dry and wet seasons, the maximum concentration
of TP occurred in region C, followed by region B; and in the normal season, the maximum
concentration of TP occurred in region B, followed by region A. In addition, the spatial
distribution of TP varied strongly in the dry and normal seasons but was more consistent
in the wet season. Temporally, the decrease rate of TP passed the significance test only in
the normal season in region A but was close to 0 (Table S4, Figures 6 and S3). The highest
value (0.10 ± 0.01 mg/L) of TP was observed in the wet season of 2013 in region C, and the
lowest value (0.06 ± 0.01 mg/L) was observed in the normal season of 2015 in region C.
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quality standards for surface water from low to high.

4. Discussion
4.1. Models Comparison and Future Optimization

The results show that the concentrations of TN, AN, and TP, especially TP, can be
accurately monitored faster, easier, and more low-cost by machine learning algorithms
and Landsat 8 data in the tropical river. In these models, the underlying hydrologic and
environmental processes don’t need to be explicitly described in a mathematical form [52].
Therefore, these models can be used without many variables. In other words, these
constructed models only need a sufficient amount of surface water quality monitoring data
and remote sensing data from the same period.

Using field measurements, sampling, and laboratory analysis to monitor the concen-
tration of WQPs is expensive and time-consuming. Currently, the remote sensing retrieval
models have not completely replaced experimental analysis. However, the pixels of Land-
sat 8 images are equivalent to setting a sampling point in a 30 × 30 m2 water area. Thus,
Landsat 8 has a much higher spatial sampling density than conventional sampling. Higher
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resolution can better indicate large-scale changes in nutrient concentrations [38]. It can
further help to optimize the location of water samples in watersheds and maximize the
effectiveness of the data collection strategy. In the long term, satellite observations highly
reduce uncertainty due to the sampling intervals and the uneven spatial distribution of
sampling. It is of great significance to help fully interpret the changes and rules of river
nutrient concentrations and the contribution of various non-point source pollution.

As a complex biogeochemical system, the aquatic ecosystem contains numerous
chemical, physical, and biological components that undergo a large range of integrated
transformation processes. It is challenging to find the associations between WQPs and
bands of remote sensing in bodies of water. The existing regression equations had high
accuracy when fitted in fixed waters. However, when they were extended and applied to
other waters, the results were relatively coarse. This study also compared the monitoring
performance of the selected models with previous regression equations [29,30,53] for TN
and TP concentrations in the NRD. Since there are few regression equations existing for
AN, it is not compared in the study. Figure 7, Tables S5 and S6 indicate that the previous
regression equations applicable to specific regions are difficult to apply to monitoring TN
and TP in the NRD. Most empirical methods establish statistical relationships between
nutrient concentrations and remotely sense reflectance on the basis of linear, exponential, or
logarithmic regressions [36,54,55] without strict theoretical foundations. Furthermore, the
regression fits for single and multiband combinations were susceptible to changes in the
specified bands. Thus, they were poorly generalized and did not apply to other conditions
or locations [56].
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Figure 7. Comparison of prediction performance between machine learning algorithms and previous
regression equations for TN (a) and TP (b) in the NRD.

While excellent model performance was demonstrated in this study, some additional
aspects need to be further investigated in future studies. More advanced deep learning and
artificial intelligence algorithms with large training and testing datasets from various rivers
should be used to avoid overfitting and improve the monitoring accuracy and robustness
of the retrieval model. Considering the uncertainties of the model parameters, structure,
and input data, monitoring results’ uncertainty should be quantified to facilitate data
interpretation [39].

4.2. Water Quality Evaluation

This study area is located in the Haikou, Dingan, and Chengmai regions of Hainan
Province, China. From the Hainan statistical yearbook [9], this area has a resident pop-
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ulation of ~3.67 million (75.66% in urban), a cultivated land area of ~10.29 × 104 ha,
a freshwater aquatic area of ~7742 ha, chemical fertilizer consumption of ~26.46 × 104 t,
numbers of livestock and poultry raised in the whole year of ~162.17 and ~5645.26 million
heads, and little industry in 2020, respectively. The area is a typical tropical agricultural
town non-point source pollution area, and the pollution source is mainly the discharges of
agriculture and domestic sewage [57].

The results indicated the seasonality of TN, AN, and TP distribution in the NRD. TN
and AN concentrations were high in the wet and normal seasons and low in the dry season.
This result was similar to previous studies on the Yiluo River [58], the Ru River [18], and the
Yangtze River [30]. The wet and normal seasons almost overlap with the rainy season in this
area. Increased rainfall could result in N being exported into the water body through runoff.
Rainfall often imports a lot of N from agricultural and domestic sources [59,60]. Another
reason may be N deposition. Chen et al. [61] found that there was more atmospheric N
deposition in summer than in other seasons. In the urban region, wastewater is probably
the largest nutrient source [62,63], and this area has structurally unsound sewers and
relatively simple sewage treatment processes. Sewers often leak at low flows and may
surcharge and overflow during the inflow and infiltration in wet weather, which is related
to the age of infrastructure, the pipe materials, and the dimensions of pipes [64,65]. Thus,
the NRD showed a gradually decreasing distribution of N concentration from the estuary
to the upstream with the inflow of other tributaries.

However, TP concentration was high in the normal season and low in the wet season.
This result was similar to previous studies on the Pearl River [66] and the Fuyang River [67].
In contrast to N, there are more forms of P existing in water bodies, especially dissolved
P, which can be adsorbed on mineral surfaces [68]. Thus, P is easily present in sediments
by binding to aluminum oxides, interiors of iron, and calcium oxide [69]. Replenishing
many clean water bodies in the NRD has diluted the TP of surface water in the wet season.
The replenishment decreases during the normal and dry seasons, aquatic plant residue
decomposes, and sediments release nutrients into surface water, increasing the TP. In
addition, Berthold et al. [70] reported that for coastal waters, P deposition is a considerable
nutrient flux. These may be the reasons for the order of TP in these regions, i.e., C > B > A,
in the wet and dry seasons.

Temporally, AN had a significant decreasing trend in the normal and wet seasons.
The reason for this is the significant investments in wastewater discharge standards and
pollution control strategies that were made to address the water pollution crisis and
promote eco-environment restoration [5].

4.3. Limitations

Ideally, the more Landsat 8 images are used, the more accurate the retrieval model
will be, and the N and P concentrations’ spatial distribution and temporal trends will be
more clearly identified in the NRD. However, this study only obtained a limited number
of Landsat 8 images due to the coarse temporal (16 days) and spatial (30 m) resolutions
and the heavy cloud cover in tropical areas. These disadvantages limit the application of
satellite remote sensing for inland water research in tropics [35].

Furthermore, satellite observations are almost instantaneous, and therefore the high
temporal variability of nutrient concentrations is an important consideration. The results
of 24 h continuous TN, AN, and TP monitoring that grouped different subregions and
hydrological seasons in the NRD are shown in Figure 8. Nutrient concentrations varied
slightly throughout the day except on a few individual dates, and the scene center time of
Landsat 8 does not overlap the time in which the extremum value occurs. Therefore, the
satellite monitoring results are representative of the daily mean values. Further studies
should focus on achieving high-temporal-resolution (e.g., hourly) monitoring of nutrient
concentrations in a river by using geostationary satellite images [71,72] or assimilating
remote sensing and water quality models [73–75].
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Figure 8. Diurnal cycle of TN (a), AN (b), and TP (c) measured at national cross-sections. Vertical
dashed lines at 11:05 represent the Landsat 8 scene center time in the NRD.

In addition, hyperspectral remote sensing is a feasible solution to improve the accuracy
of the WQP retrieval model. It can obtain abundant information about inland water bodies,
making it possible to accurately identify nutrient concentrations due to high spatial and
spectral resolution [76]. It has been applied to inland water quality monitoring, such as
TN, TP, AN, cyanobacterial blooms, chlorophyll-a, total suspended matter, and colored
dissolved organic matter [33,35,77–80]. However, portable, proximal, and unmanned aerial
vehicle-borne hyperspectral data can only observe limited areas. The entire area of the
NRD is difficult to explore because it has about 110.7 km of waterways. Furthermore,
trade-offs among spectral, spatial, and radiometric resolutions limit the spatial resolution
of the spaceborne hyperspectral images to medium or coarse resolutions [81,82]. Moreover,
few long-term series continuous data of hyperspectral remote sensing are now available
for temporal variation studies. Therefore, multispectral remote sensing is a better choice
for studying the spatiotemporal variation of WQPs in large-scale inland areas.

5. Conclusions

Machine learning algorithms for monitoring optically inactive WQPs were constructed
in this study by Landsat 8 images and ground monitoring data. The TN concentration can
be effectively predicted by RFR, and AN and TP by ANN. These retrieval models had much
higher spatial resolutions than conventional field sampling and were more accurate than
previous regression equations for TN and TP in the NRD, which is a large-scale tropical
inland river. They can be used to interpret the changes and rules of TN, AN, and TP in the
NRD. The spatiotemporal evolution of TN, AN, and TP in the NRD was explored in the dry,
normal, and wet seasons at the pixel level from 2013 to 2022. The concentrations of N and P
showed significant seasonal changes. In the normal and wet seasons, AN had a significant
decreasing trend, while TN and TP had almost no significant change. Considering the
supervision and management of non-point source pollution in the NRD, TN and AN should
be paid more attention to in the normal and wet seasons of urban and agricultural zones,
respectively; TP, however, should be focused on in the normal season of agriculture zones.
The results can give a large-scale spatial overview of the water quality, identify the sensitive
areas and periods with water pollution, provide an important basis for the supervision
and management of non-point source pollution in the whole region, and be applied to
other similar tropical rivers. This study demonstrated that multispectral remote sensing,
currently, is a better choice for studying the spatiotemporal variation of optically inactive
WQPs in large-scale and long-term tropical inland waters. Further studies can use more
advanced deep learning and artificial intelligence algorithms with hyperspectral remote
sensing to improve the robustness and accuracy of these retrieval models in different water
bodies. In the future, the retrieval model could be extended for larger tropical regions and
more WQPs, assist in identifying the pollution source, and provide insight into nutrient
dynamics and transfers from inland to ocean waters.
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