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Abstract: As a result of urbanization and climate change, urban areas are increasingly vulnerable
to flooding, which can have devastating effects on the loss of life and property. Remote sensing
technology can provide practical help for urban flood disaster management. This research presents
a review of urban flood-related remote sensing to identify research trends and gaps, and reveal
new research opportunities. Based on the Preferred Reporting Items for Systematic Reviews and
Meta-Analyses (PRISMA), the systematic literature search resulted in 347 documents classified as
geography, disaster management application, and remote sensing data utilization. The main results
include 1. most of the studies are located in high-income countries and territories and inland areas;
2. remote sensing for observing the environment was more popular than observing the building;
3. the most often applied disaster management activities were vulnerability assessment and risk
modeling (mitigation) and rapid damage assessment (response); 4. DEM is often applied to simulate
urban floods as software inputs. We suggest that future research directions include 1. coastal urban
study areas in non-high-income countries/territories to help vulnerable populations; 2. understudied
disaster management activities, which often need to observe the buildings in more urban areas;
3. data standardization will facilitate integration with international standard methods for assessing
urban floods.

Keywords: remote sensing technology; urban flood; urbanization; climate change; PRISMA; natural
environment; mitigation

1. Introduction

Floods have become one of the most common extreme natural events and represent a
significant threat worldwide [1,2]. In the long term, floods cause more deaths than other
weather-related events [3]. Recently, flood disasters have shown a growing frequency and
intensity and account for 47% of extreme natural events [4–6]. Flooding is a multifaceted
problem that can have a complex network of impacts affecting many sectors of the economy
because floods can destroy buildings, roads, and bridges; cause mudslides; tear out trees;
devastate agriculture; and threaten human lives [7,8]. Frequent floods can cause heavy
property damage and threaten human health, especially in densely populated urban areas.
Flooding in cities has a negative impact on people in both developed and developing
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countries [9–11]. Due to the rapid growth of the cities, the intense urbanization process,
and dense population, with the rapid development of many areas, often with insufficient
infrastructure, cities are at increased risk of flooding, and loss from flooding is expected to
increase in urban areas substantially [12]. An increasing number of urban floods severely
threatened sustainable urban development and people’s safety, leading to significant loss
and damage [13,14]. In order to adapt and mitigate flooding risks, performing disaster
management in urban flooding is indispensable and significant.

Disaster management usually consists of mitigation, preparedness, response, and
recovery, whose missions are to mitigate disaster risk, prepare for disasters, save lives
and minimize economic losses in disasters, and promote post-disaster recovery [15–17].
Remote sensing technology has played a crucial role in supporting disaster management
functions, especially for rapid and sudden urban flood hazards [18]. An example of
the remote-sensing-based mitigation function was the modeling software HAZUS (GIS
risk assessment) developed by FEMA, which applies digital elevation models (DEM)
based on remote sensing technology to predict floods and tsunamis [19–21]. An example
of the preparedness function was the digitization and manual interpretation of remote
sensing imagery by the Copernicus Emergency Management Service (EMS) to form pre-
disaster baseline data reflecting natural and built features [22,23]. An example of the
response function was rapid building damage mapping by Copernicus EMS based on a
manual comparison of pre-disaster and post-disaster remote sensing images and flood
extent mapping based on a semi-automatic analysis of pre-disaster and post-disaster
remote sensing images [24]. An example of the recovery function was the monitoring
reconstructions by the Copernicus EMS based on a manual comparison of multi-temporal
remote sensing images [25–27].

In addition, the classification of remote sensing technology can be determined accord-
ing to the type of sensor, as this is a variable identified in the study. Therefore, the sensor is
defined as the instrument or device used to acquire remote sensing data. Depending on
the radiation source, the sensor can be passive or active [28]. Remote sensing technology
with passive sensors is based on the application of information obtained exclusively with
passive sensors that detect radiation (natural energy) that is reflected or emitted from t
objects depending on an external radiation source (sunlight) [29]. These methods allow
classifying objects on the surface, determining land cover, etc. Remote sensing technology
with active sensors: compared with passive sensors, active sensors are based on their own
radiation source, which sends pulses to objects on the earth’s surface and measures the
backscattering reflected back to the sensor [30].

Many articles have reviewed the applications of remote sensing technology in urban
flooding [31–33]. These research works comprehensively interpreted specific applications
related to urban flooding: detection, monitoring, risk assessment and modeling, impact
assessment, protection structure inspection, and reconstruction monitoring. Most articles
also provided relevant information on remote sensing platforms, data collection, data
analysis, data processing, advantages, challenges, and limitations [34–37]. Existing knowl-
edge on urban flood applications has contributed to the awareness of operational uses
and potential standards of remote sensing to support disaster management, whereas most
existing studies only provide a snapshot of the current development of the applications of
remote sensing technology in urban flooding, show a partial view, and focus on a limited
number of selected methods and approaches (mainly developed by researchers). Moreover,
previous reviews do not allow us to comprehensively understand the development trends
of the applications of remote sensing technology in urban flooding or introduce the research
gaps and emerging fields. Only comprehensive analysis based on the disaster management
applications, methodological consistency, and collective geography of existing studies can
enable us to understand the research trends, gaps, and opportunities in the applications of
remote sensing technology in urban flooding.

Systematic reviews are very scarce in the field of urban flood-related remote sensing.
Based on existing knowledge, this research comprehensively reviews urban flood-related
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remote sensing to support the preparedness, mitigation, response, and recovery of urban
flood disasters. The main objective of this research was to review the remote-sensing-related
articles comprehensively. The remainder of this article is structured as follows. Section 2
applies a systematic literature search based on PRISMA. Section 3 summarizes statistics
based on geography, disaster management application, and remote sensing data utilization,
as well as explores urban flood-related remote sensing research trends and gaps. Section 4
presents recommendations for urban flood-related remote sensing research.

2. Materials and Methods

Literature retrieval was conducted systematically based on a reproducible method.
Table 1 shows the Web of Science (WoS; http://www.webofknowledge.com (accessed on
16 March 2022)) databases used, retrieval terms, retrieval strategy, and final records. Three
terms were used to generate retrieval results: term 1 contains urban, term 2 contains flood,
and term 3 contains remote sensing. The retrieval strategies include: the titles, abstracts,
and keywords of the articles retrieved; and combining terms 1, 2, and 3 based on the AND
operators. The entire query strings for the WoS database can be found in Supplementary
Materials. The final retrieval date was 23 April 2022, and the records for WoS were 1673.

Table 1. Retrieval terms, strategy, databases, and records.

Component Attributes

Retrieval terms â Term 1 (urban): “urban*” OR “city*” OR “metropolitan*”
â Term 2 (flood): “ flood*” OR “ flood* hazard*” OR “ flood* analysis*” OR “ flood* modeling*”
â Term 3 (remote sensing): “remote* sens*” OR map* OR inspection* OR surve* OR imag* OR

“search* area” OR “structure from motion” OR SFM* OR photograph* OR photogrammetr* OR
LIDAR OR “laser scan*” OR “synthetic aperture radar” OR “light detection and ranging” OR
infrared OR thermal OR hyperspectral OR multispectral OR “red green blue” OR RGB OR
video* OR camera* OR “point cloud*” OR orthophoto* OR orthomosaic* OR raster* OR “digital
terrain model*” OR “digital elevation model*” OR “elevation model*” OR “digital surface
model*” OR “digital terrain” OR DTM OR DTMs OR DEM OR DEMs OR DSM OR DSMs OR
3D OR “3 dimensional” OR “three dimensional” OR “deep learning” OR “computer vision” OR
“convolutional neural network*” OR convnet* OR “pixel based” OR “object based” OR
“informatics tool*” OR “target detection”

Retrieval strategy
â Titles, abstracts, and keywords
â Term 1 AND Term 2 AND Term 3

Databases Web of Science
Records (as of 2022-04-26) 1673

The definition of the Preferred Reporting Items for Systematic Reviews and Meta-
Analyses (PRISMA) is divided into two parts. A systematic review is a review of a formu-
lated problem that uses an explicit and systematic method to select, identify, and critically
evaluate relevant studies and to collect and analyze data from the studies included in
the review. The term “meta-analysis” refers to using statistical techniques to integrate
the results of included studies in a systematic review [38,39]. The PRISMA flow diagram
was provided to record the process of identification, screening, eligibility assessment, and
inclusion in Figure 1. Record identification consisted of 1673 unique records from WoS
databases. Record screening was performed using the following inclusion criteria:

â The language of documents was utilized in English only;
â The type of documents was limited to “Article” only;
â The documents were published before 2021.

http://www.webofknowledge.com
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In screening, records were excluded if they were nonconformant with these inclusion
criteria. Overall, 639 records were excluded from screening, and 1034 were used for
eligibility. Because of the language ability limitation and the lack of translation resources,
the language of documents is considered English only. This language constraint might
have led to the exclusion of high-quality and high-impact other-language documents,
which may have influenced the main conclusions of the study. Furthermore, the document
type constraint also might have led to the exclusion of high-quality and high-impact
documents of different types, which may have influenced the study’s main findings. The
year 2022 was excluded because looking only at some months can provide misleading
(non-homogeneous) results. The full-text eligibility assessment was performed using the
following inclusion criteria:

â The research was conducted in the context of an urban flood;
â Remote sensing technology was applied in the research.

Records were excluded during full-text eligibility assessment if the document indi-
cated nonconformance with these inclusion criteria. The full-text assessment showed that
347 records satisfied both criteria, while 687 were excluded. Finally, 347 records included
in the study were applied to fill in a table consisting of the following fields:

â Publication year;
â Source;
â Study area country;
â Study area economy classification;
â Study area location;
â Study area size;
â Disaster management function;
â Disaster management activity;
â Observation(s);
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â Observation category;
â Remote sensing technology type(s);
â Remote sensing method(s);
â Remote sensing data type(s);
â Data analysis method(s).

The table extracted frequency statistics based on publication, geography, disaster
management application, and remote sensing data utilization.

3. Results

To analyze our data, we estimated the dataset listing the 347 documents, their at-
tributes, and field descriptions (Supplementary File S2). The 347 documents selected
during screening were published between 2007 and 2021, with the number of documents
steadily increasing per year (Figure 2). This result is consistent with other remote-sensing-
related review papers [40–42]. The top 10 productive sources are shown in Table 2, which
covers a number of disciplines, including hydrological sciences, water resources, remote
sensing, risk management, and engineering. The following sections will describe research
trends in geography (Section 3.1), disaster management applications (Section 3.2), and
remote sensing data utilization (Section 3.3).
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Table 2. Top 10 Sources.

Sources Number

Natural Hazards 38
Water 34

Remote Sensing 28
Journal of Hydrology 18

Journal of Flood Risk Management 10
Sustainability 9

Water Resources Management 7
Journal of Hydrologic Engineering 7

Arabian Journal of Geosciences 7
Water Resources Research 6

3.1. Research Trends in Geography

The frequency and distribution of study areas from the 347 articles and the World
Bank’s economic classification of study areas (Figure 3) were provided. The most pro-
ductive countries include China (n = 42), the United States (n = 41), India (n = 39), the
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United Kingdom (n = 23), and Saudi Arabia (n = 15). We found that 43 % of the study
areas are located in high-income countries/territories (Figure 3), which may be due to the
more available research resources and scientific institutions than in lower-income coun-
tries/territories. Moreover, countries that are more prone to flood hazards should conduct
more urban flood disaster research. For example, as a lower-middle income country, India
has many more flood studies than the United Kingdom.
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Figure 3. The number of articles and World Bank economy classification for study area coun-
try/territory.

Concerning study area location, 35% was coastal urban, while 65% was inland urban.
The situation may relate to the compound flooding in coastal urban areas, where flooding
is often accompanied by the combined effects of typhoons, heavy rainfall, high tide levels,
and upstream flooding, leading to the lack of effective study of compound flood risk [43].
Moreover, the broad coverage may be sufficient to justify the scientific basis of remote
sensing applications. However, this finding may also be related to satellite remote sensing
technologies, which usually have an extensive visual line of sight [44–46].

3.2. Research Trends in Disaster Management Application

Table 3 reveals that 89% of the articles showed mitigation application of disaster man-
agement functions, most of which (84%) were vulnerability assessment and risk modeling
of the disaster management activity. The second most prominent disaster management
function was response application (7% of the articles), of which rapid damage assessment
was the most prominent disaster management activity. The third disaster management
function was preparedness. It should be noted that 310 articles displayed mitigation func-
tions, most of which (68%) were applied based on the simulated scenario, not the real event.
Moreover, of the 25 articles displaying response functions, the majotiry (64%) were applied
based on the simulated scenario. The research data on search and rescue was collected in
emergencies. Under strict time constraints, response functions require pre-established and
rehearsed data collection, analysis, and processing. The least frequent disaster management
function was recovery, with three studies showing in-depth damage assessment after a
disaster [47–49].
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Table 3. Disaster management function and activity.

Disaster Management Function Disaster Management Activity Number of Documents Percentage (n = 347)

Mitigation
Vulnerability assessment and

risk modeling 290 84%

Hazard detection 20 5%
Preparedness Provision of baseline data 7 2%

Response Search and rescue 1 1%
Rapid damage assessment 24 7%

Recovery In-depth damage assessment 5 1%

The majority of articles (99%) had the environment as the observation category, which
is in line with the most common disaster management activities, while the other observation
categories were building (building damage) and human (for search and rescue activities)
(supplementary file S2). Because some articles applied more than one observation, we
counted the data instead of a percentage of the article. The observations as a percentage of
the articles (n = 347) were: topography for flood risk mapping/modeling (223 articles); land
cover for flood risk mapping/modeling (120 articles); flood events (61 articles); rainfall
for flood risk mapping/modeling (30 articles); building damage (2 articles); and humans
(1 article; Figure 4).

Remote Sens. 2022, 14, x FOR PEER REVIEW 8 of 18 
 

 

Table 3. Disaster management function and activity. 230 

Disaster management 

function 
Disaster management activity  

Number of 

documents 

Percentage  

(n = 347)  

Mitigation 

Vulnerability assessment and risk 

modeling  
290 84 % 

Hazard detection 20 5 % 

Preparedness Provision of baseline data 7 2 % 

Response 
Search and rescue 1 1 % 

Rapid damage assessment 24 7 % 

Recovery In-depth damage assessment 5 1 % 

 231 

Figure 4. Number of articles corresponding to observations. 232 

3.3. Research Trends in Remote Sensing Data Utilization 233 

The most representative remote sensing technology type was satellite technology 234 

(70%; 244 articles). The rapid development of satellite technology has greatly promoted 235 

the progress of remote sensing technology (supplementary file S2). The rest of the remote 236 

sensing technology types were airborne technology (108articles) and terrestrial technol- 237 

ogy (17 articles). In addition, among airborne remote sensing technologies, it is worth 238 

noting that unmanned aerial vehicles (UAV) technology (14 articles) has been increas- 239 

ingly used in recent years. Concerning the remote sensing method, 48% applied active 240 

sensors (165 articles), 29% applied passive sensors (102 articles), and 23% applied both 241 

(80 articles; supplementary file S2). Moreover, the most popular remote sensing data type 242 

was the DEM (214 articles), which commonly provided topography data for vulnerability 243 

assessment, risk modeling, and rapid damage assessment (Figure 5a). Land use/land 244 

cover (LULC) was the second most representative remote sensing data type (117 articles), 245 

which often provided land cover data for risk modeling and rapid damage assessment. 246 

The following representative data type is the raw image (68 articles), often used for ob- 247 

serving building damage, flood events, and humans. Rainfall data types were less com- 248 

monly applied (30 articles), commonly providing rainfall data for vulnerability assess- 249 

ment, risk modeling, and rapid damage assessment. Digital terrain model (DTM) and 250 

normalized difference vegetation index (NDVI) were rarely applied (four and four arti- 251 

cles, respectively) and most often for providing data and observing building damage. 252 

DEM and LULC have been continuously used since 2007 and 2009, respectively, and 253 

their usage has increased significantly in the past six years (Figure 5b). Images and rain- 254 

Figure 4. Number of articles corresponding to observations.

3.3. Research Trends in Remote Sensing Data Utilization

The most representative remote sensing technology type was satellite technology
(70%; 244 articles). The rapid development of satellite technology has greatly promoted
the progress of remote sensing technology (Supplementary File S2). The rest of the remote
sensing technology types were airborne technology (108 articles) and terrestrial technol-
ogy (17 articles). In addition, among airborne remote sensing technologies, it is worth
noting that unmanned aerial vehicles (UAV) technology (14 articles) has been increasingly
used in recent years. Concerning the remote sensing method, 48% applied active sensors
(165 articles), 29% applied passive sensors (102 articles), and 23% applied both (80 articles;
supplementary file S2). Moreover, the most popular remote sensing data type was the DEM
(214 articles), which commonly provided topography data for vulnerability assessment,
risk modeling, and rapid damage assessment (Figure 5a). Land use/land cover (LULC)
was the second most representative remote sensing data type (117 articles), which often
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provided land cover data for risk modeling and rapid damage assessment. The following
representative data type is the raw image (68 articles), often used for observing building
damage, flood events, and humans. Rainfall data types were less commonly applied
(30 articles), commonly providing rainfall data for vulnerability assessment, risk modeling,
and rapid damage assessment. Digital terrain model (DTM) and normalized difference
vegetation index (NDVI) were rarely applied (four and four articles, respectively) and most
often for providing data and observing building damage.
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DEM and LULC have been continuously used since 2007 and 2009, respectively, and
their usage has increased significantly in the past six years (Figure 5b). Images and rainfall
data started being continuously used in 2010 and 2013, followed by relatively slow growth
over time. NDVI was sporadically applied during the publication period and started being
used in 2014. This situation may be due to the similar functions of NDVI and LULC in
urban flood applications. DTM was rarely used until 2013. The lag in the utilization of
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DTM may be due to their function (providing topography data) in urban flood applications,
with a similar function to DEM.

The most popular remote sensing data analysis method was to simulate urban flood
risk in software (230 articles) (Figure 5c) and has been continuously used for the most pro-
longed period starting in 2007 (Figure 5d), with a similar growth trend to DEM (Figure 5b).
Manual interpretation of remote sensing data products has also been an often-used data
analysis method since 2010 (62 articles), followed by relatively slow growth over time.
Furthermore, remote sensing data was also commonly applied to assess the spatial and
temporal impacts of Change in LULC (CiL) on urban flooding (43 articles).

The fourth most representative remote sensing data analysis method was machine
learning (39 articles). Although it has only been in use since 2014, machine learning is
rapidly gaining popularity, especially with the rapid growth of related research after 2018
(Figure 5d). The situation may be because machine learning has higher generalization
abilities and reported classification accuracies than traditional classifiers, which makes
it more and more popular in the field of remote sensing [50–52]. Moreover, regarding
the elevation data analysis, the most representative method was to perform a DEM of
Difference (DoD; 5 articles), which reveals differences between multi-temporal DEMs to
determine the height of features (buildings and vegetation). This data analysis method has
been applied since 2016 (Figure 5d), which follows the DEM application starting in 2007
(Figure 5b).

Of the observations in Section 3.2, most seemed to be close to standardization in
terms of remote sensing analysis method and data type. For example, many articles that
observed the topography for flood risk mapping/modeling were to apply DEM and DTM
along with simulation analysis, machine learning, and DoD analysis. The LULC and
NDVI were the most common for observing land cover, although CiL analysis, simulation
analysis, and machine learning have also been used. The observation of flood events
was commonly performed using images, simulation analysis, and machine learning. For
observing rainfall, we found that rainfall products were often combined with machine
learning, simulation analysis, and manual interpretation, respectively. Moreover, DTM
and machine learning were used most prevalently for response-related building damage.
However, UAV (airborne) images and manual interpretation most represented recovery-
related building damage. Finally, UAV (airborne) images and manual interpretation were
also often used to observe humans for search and rescue activities.

4. Discussion

Based on the systematic retrieval of the research articles on urban flood-related remote
sensing, 347 documents were ascertained and applied from geography, disaster manage-
ment applications, and remote sensing data utilization. The systematic review of studies
reveals several research trends, gaps, and opportunities. In addition, the following sections
provide limitations of this study (Section 4.1), recommendations for future studies on
geography (Sections 4.2–4.4), disaster management applications (Sections 4.5 and 4.6), and
remote sensing data utilization (Section 4.7).

4.1. Limitations of This Study

This systematic review is not comprehensive enough because of the limitations of
the retrieval tool and database. Using only the WoS database has both advantages and
disadvantages over other studies that combine multiple databases. Multiple sources
can reduce the potential for sample bias, but using a high-quality database means that
the research sample is homogeneous, avoiding the requirement to eliminate duplicate
records [53]. Moreover, the Google databases and the criteria for classification, keyword
searches, and record selection have been criticized for more than a decade [54–56]. Finally,
the language of documents was limited to English only. This language constraint might
have led to the exclusion of high-quality and high-impact other-language documents,
which may have influenced the main conclusions of the study.
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The document type constraint might have led to the exclusion of high-quality and
high-impact documents of other types, which may have influenced the main conclusions of
the study. It is important to note that the systematic analysis results are incomplete when
the grey literature on urban flood-related remote sensing is excluded. The influence of
excluding the grey literature, especially with a greater focus on the practical application of
this research in management and practice, will make a difference. However, the complete
integration of all the grey literature is an endless task, and it is impossible to carry out
objectively and homogeneously. Furthermore, as we pointed out earlier, their inclusion
breaks with the homogeneity linked to the use of the WoS database regarding quality,
accessibility, or the field expert peer-review process of manuscripts. In future research, we
will consider more sources such as Chinese literature, meeting proceedings, grey literature,
media and other databases (Scopus, etc.) and consider more comprehensive keywords in
our searches to obtain more detailed results.

4.2. Recommendation 1: Smaller Study Areas

While large area coverage is sufficient to observe the overall impact of flood events,
the impacts associated with urban flood hazards also need to be reflected in smaller areas.
Data collection on a smaller scale will challenge the continued application of the most
representative type of platform, namely satellites (70% of articles). UAV (airborne) has
advantages, including affordability, centimeter-level spatial resolution, flexible deployment,
and ease of operation, which can well compensate for this gap. However, UAV (airborne)
was also limited by regulatory requirements, such as remaining in the line of sight of
operators and maximum altitudes (unless specifically approved).

We found that future research on urban floods does not need to identify remote sensing
coverage of the entire affected areas. On the contrary, the advantage of UAV (airborne) can
be complemented by the wide-extent observation of traditional remote sensing platforms.
For example, the satellite images were used by Copernicus EMS to identify varying degrees
of infrastructure and building damage in the entire affected areas after a flood event [57,58].
These data can be used to “triage” higher-resolution remote sensing areas with UAVs
(airborne) to provide information for in-depth damage assessments, prioritizing highly
damaged areas. The UAV (airborne) survey should be used to increase the productivity of
information extraction and data collection and encourage reporting of the time required
to collect and process data per unit area. Moreover, although manned aircraft can achieve
a similar spatial resolution, it is not affordable for all countries. Therefore, it is crucial to
develop UAV (airborne) applications.

4.3. Recommendation 2: Coastal Study Areas

According to previous studies, the most economic losses, people affected, and deaths
caused by floods occur in more urbanized coastal areas with a high concentration of popu-
lation and assets [59–61]. Our findings are consistent with previous studies in which most
of the study areas were inland (65%), and the observation category was the environment
(63%). However, previous studies tended to focus mainly on inland areas and observation
of the environment, and more research is necessary to identify the application of remote
sensing to buildings in coastal areas. At present, the primary constraint is the complexity
of the coastal urban flood; in general, coastal urban flooding is often accompanied by the
combined effects of typhoons, heavy rainfall, high tide levels, and upstream flooding, lead-
ing to the lack of compound flood risk being effectively studied. Therefore, it is necessary
to research remote sensing applications for compound flood risks in coastal urban areas.

4.4. Recommendation 3: Study Areas in Lower-Income Countries/Territories

Most of the study areas (43%) were located in high-income countries or territories.
Although this result may be due to more available research resources and scientific in-
stitutions in these countries/territories, it must be noted that urban flood disasters have
a disproportionate impact on low-income countries/territories [62]. In addition, lower-
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income countries/territories can be said to benefit most from the high accessibility of
remote sensing with respect to their affordability. Few resources are demanded to obtain
remote sensing data.

The scarcity of detailed DEM can be regarded as a significant but not sole obstacle of
the limited related research in lower-income countries/territories. In most lower-income
countries/territories, the best data can be chosen from the 30 m spatial resolution DEM
based on the Advanced Spaceborne Thermal Emission Reflection Radiometer (ASTER)
project, the Shuttle Radar Topography Mission (SRTM) project, the ‘Bare-Earth’ DEM
derived from SRTM and the Multi-Error-Removed Improved-Terrain (MERIT) DEM [63].
Moreover, this dilemma will continue for a long time.

One promising solution to this challenge is the continuous development of the WeR-
obotics Flying Labs network, which localizes the UAV (airborne) application for geo-
graphically relevant public health, environmental, and humanitarian issues [64–66]. Most
WeRobotics Flying Labs (85%) are not located in the high-income countries/territories
(https://flyinglabs.org/; accessed 11 May 2022). WeRobotics Flying Labs promote lo-
cal remote sensing capacity through the following methods: 1. training and workshops;
2. collaboration among academic institutions, government, businesses, and not-for-profit
organizations; 3. working with civil aviation authorities to establish and refine regulatory
processes; 4. working with technology suppliers for free or discounted products. There are
numerous articles on this project and disaster management activities on the WeRobotics
webpage (https://blog.werobotics.org; accessed 11 May 2022).

It is crucial to apply machine learning based on remote sensing data for future research
in non-high-income countries/territories. For machine learning techniques to be applied to
low-income countries/territories, these countries/territories’ data should be used to train
models because different geographic environments lead to variations in the appearance of
ground objects (buildings, roads, and vegetation). Usually, geographic environments are
essential for establishing local disaster management applications.

4.5. Recommendation 4: Response Functions

Rapid damage assessment (response functions) is critical to timely reducing economic
losses and casualties during urban floods. However, in disaster management functions,
the response accounts for only 7% of all studies (Table 3). In addition, less than half of the
articles on response function pertained to real flood events, and only nine articles indicated
that remote sensing data were used in the emergency phase. The lack of research on the
response function based on actual events may reflect the strict requirements of the response
function, including the timely availability of data resources and pre-establishment and
rehearsing for data collection, processing, and analysis.

It is worth noting that machine learning technology has been widely used in response
functions (32% of articles). It reveals that machine learning technology has unique advan-
tages (higher computation speed, lesser data requirements, and more robust results) in
rapid damage assessment and has been paid attention to by relevant researchers. Moreover,
the access cycles of remote sensing technology are long because of the limitation of low
spatiotemporal resolution of data and lack of easy satellite due to cloud obscuration [67–70].
However, urban floods are often of short duration, requiring high-temporal-resolution
data [71]. This limitation can be well compensated by street surveillance, onboard vehicle
cameras, social media, and crowdsourced data, which deserves attention [72–74].

4.6. Recommendation 5: Disaster Management Activities

Most disaster management activities focused on vulnerability assessment and risk
modeling (84 % of articles; mitigation) (Table 3). The rest of the disaster management
activities were rarely reflected by the articles. These disaster management activities include
rapid damage assessment (7% of articles; response); hazard detection (5 % of articles;
mitigation); provision of baseline data (2% of articles; preparedness); in-depth damage
assessment (1% of articles; recovery); and search and rescue (1% of articles; response).

https://flyinglabs.org/
https://blog.werobotics.org
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Shifting the focus of the study to these disaster management activities will require that
the study area be located in a more populated region, as the observations are usually
associated with built features. For example, the observations of search and rescue may
include management facilities and road obstacles.

We cannot provide the best standards or practices because few studies demonstrate
these disaster management activities. Furthermore, this research serves as a start, and
readers can apply our complete database (Supplementary File S2) to find articles repre-
senting these disaster management activities. For instance, only showing the built articles
by filtering the “observation category” reveals many examples of remote-sensing-based
infrastructure inspections, including buildings, facade openings, and roads. As there is
a significant overlap in the observations of various disaster management activities, this
research can be applied to guide the future direction in under-demonstrated research fields.

4.7. Recommendation 6: Data Standardization

Since the future research direction is understudied disaster management activities,
data standardization of remote sensing data analysis methods and data types may emerge.
For instance, most observations seem to be approaching data standardization in terms
of remote sensing data analysis method and data type (Section 3.3). There is no data
standard in the observation of building damage, and we recommend that future research
focuses on establishing data standards for observations related to the recovery and response
of building damage [75–77]. Standardizing remote sensing data analysis methods and
data types will facilitate integration with standard methods for assessing urban flood
impacts [78,79]. The standard methods for assessing urban floods are as follows:

1. The MIRA is a response function that initially assesses flooding impacts within the earli-
est three days after its occurrence (https://www.humanitarianresponse.info/en/programme-
cycle/space/document/multi-sector-initial-rapid-assessment-guidance-revision-july-2015; ac-
cessed on 15 May 2022);

2. The GRADE is a recovery function that reports flooding impacts within two weeks
after its occurrence (https://www.gfdrr.org/sites/default/files/publication/DRAS_web_
04172018.pdf; acessed on 15 May 2022);

3. The PDNA also is a recovery function that assesses flooding impacts within two
to six weeks after its occurrence (https://recovery.preventionweb.net/build-back-better/
post-disaster-needs-assessments; accessed on 15 May 2022). Finally, with the development
of remote sensing technology, data standardization will be established to ease integration
with international standard methods for assessing urban floods.

5. Conclusions

This research performed a systematic review of the articles on urban flood-related
remote sensing technology. The search based on the WoS database resulted in 347 rel-
evant articles, which were classified and summarized according to geography, disaster
management application, and remote sensing data utilization. This research showed that
most of the studies are located in high-income countries and territories and inland areas.
The mitigation function and response function were the most representative disaster man-
agement functions, of which the most often applied disaster management activities were
vulnerability assessment and risk modeling (mitigation) and rapid damage assessment
(response). Remote sensing for observing the environment was more popular than observ-
ing the building. The most representative remote sensing technology type was satellite
technology. The most popular remote sensing data type was DEM, which is often applied
to simulate urban floods as software inputs. In recent years, machine learning has also
been widely used. Based on the observations, the remote sensing analysis method and data
type seem to be approaching standardization.

According to these results, we found some future research opportunities. We suggested
that more research should be performed in non-high-income countries/territories because
urban flood disasters have a disproportionate impact on low-income countries/territories.

https://www.humanitarianresponse.info/en/programme-cycle/space/document/multi-sector-initial-rapid-assessment-guidance-revision-july-2015
https://www.humanitarianresponse.info/en/programme-cycle/space/document/multi-sector-initial-rapid-assessment-guidance-revision-july-2015
https://www.gfdrr.org/sites/default/files/publication/DRAS_web_04172018.pdf
https://www.gfdrr.org/sites/default/files/publication/DRAS_web_04172018.pdf
https://recovery.preventionweb.net/build-back-better/post-disaster-needs-assessments
https://recovery.preventionweb.net/build-back-better/post-disaster-needs-assessments
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This geographic environment is essential for machine learning applications because obser-
vations from different geographic environments can be used to train models. Moreover, we
also suggested that more research should be focused on understudied disaster management
activities, most of which need to observe the buildings in more urban areas. These disaster
management activities include rapid damage assessment (response); hazard detection (mit-
igation); provision of baseline data (preparedness); in-depth damage assessment (recovery);
and search and rescue (response). More research on these neglected disaster management
activities will promote the practical applications of urban flood-related remote sensing. Ulti-
mately, data standardization will emerge based on extensive research. Data standardization
will facilitate integration with international standard methods for assessing urban floods.
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modelling considering multiple information sources and urban features. Environ. Model. Softw. 2018, 107, 85–95. [CrossRef]
59. Jongman, B.; Ward, P.J.; Aerts, J.C.J.H. Global exposure to river and coastal flooding: Long term trends and changes. Glob. Environ.

Change 2012, 22, 823–835. [CrossRef]
60. Bates, P.D.; Quinn, N.; Sampson, C.; Smith, A.; Wing, O.; Sosa, J.; Savage, J.; Olcese, G.; Neal, J.; Schumann, G.; et al. Com-

bined modeling of US fluvial, pluvial, and coastal flood hazard under current and future climates. Water Resour. Res. 2021,
57, e2020WR028673. [CrossRef]

61. Vousdoukas, M.I.; Mentaschi, L.; Voukouvalas, E.; Verlaan, M.; Jevrejeva, S.; Jackson, L.P.; Feyen, L. Global probabilistic projections
of extreme sea levels show intensification of coastal flood hazard. Nat. Commun. 2018, 9, 2360. [CrossRef] [PubMed]

http://doi.org/10.5194/nhess-18-1079-2018
http://doi.org/10.1007/s13753-021-00384-0
http://doi.org/10.1080/1331677X.2020.1734853
http://doi.org/10.1016/j.cscm.2022.e01236
http://doi.org/10.1016/j.jclinepi.2009.06.006
http://www.ncbi.nlm.nih.gov/pubmed/19631507
http://doi.org/10.7326/0003-4819-151-4-200908180-00135
http://doi.org/10.1061/(ASCE)HE.1943-5584.0002164
http://doi.org/10.1016/j.habitatint.2017.11.013
http://doi.org/10.1016/j.pce.2021.103019
http://doi.org/10.1038/nclimate2736
http://doi.org/10.1016/j.rse.2021.112577
http://doi.org/10.1007/978-1-4020-5835-6_48
http://doi.org/10.1080/00221686.2008.9521842
http://doi.org/10.3390/rs13101864
http://doi.org/10.1016/j.ijdrr.2021.102076
http://doi.org/10.3390/rs10101548
http://doi.org/10.3390/rs12122012
http://doi.org/10.3390/rs13040647
http://doi.org/10.3390/rs14174213
http://doi.org/10.1111/jebm.12266
http://doi.org/10.1080/02626669809492189
http://doi.org/10.1016/j.advwatres.2014.11.008
http://doi.org/10.2760/29876
http://doi.org/10.1016/j.envsoft.2018.06.010
http://doi.org/10.1016/j.gloenvcha.2012.07.004
http://doi.org/10.1029/2020WR028673
http://doi.org/10.1038/s41467-018-04692-w
http://www.ncbi.nlm.nih.gov/pubmed/29915265


Remote Sens. 2022, 14, 5505 16 of 16

62. Guo, B.; Wang, X.; Pei, L.; Su, Y.; Zhang, D.; Wang, Y. Identifying the spatiotemporal dynamic of PM2. 5 concentrations at multiple
scales using geographically and temporally weighted regression model across China during 2015–2018. Sci. Total Environ. 2021,
751, 141765. [CrossRef]

63. Díez-Herrero, A.; Garrote, J. Flood risk analysis and assessment, applications and uncertainties: A bibliometric review. Water
2020, 12, 2050. [CrossRef]
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