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Abstract: Mangrove ecosystems play a dominant role in global, tropical, and subtropical coastal
wetlands. Remote sensing plays a central role in mangrove conservation, as it is the preferred tool for
monitoring changes in spatiotemporal distribution. To improve correlated estimation accuracies and
explore the influencing mechanisms based on the mangrove ground survey, this study used a support
vector machine (SVM) machine learning and Res-UNet deep learning algorithms to identify the land
area of mangrove forests and the crown surface cover area of mangrove forests in the Hainan Island
from 1991 to 2021. Both classification techniques were verified by a confusion matrix, which from
1991 to 2021, revealed overall accuracies of 93.11 ± 1.54% and 96.43 ± 1.15% for SVM and Res-UNet,
respectively. Res-UNet was more accurate in identifying the crown surface cover area, whereas SVM
was more suitable for obtaining the land area. Furthermore, based on the crown surface cover area of
the mangrove forests on the Hainan Island, influencing mechanisms were analyzed through dynamic
changes and landscape patterns. Since 1991, the Hainan Island mangrove forest area has increased,
with the center of mass moving from coastal areas to the ocean and increasing the overall landscape
fragmentation. Moreover, the change in the mangrove forests area was correlated with economic
development and the increasingly urban population of the entire island. Altogether, the reliable
assessment of the tropical mangrove forest land area and crown surface cover provides an important
research foundation for the protection and restoration plans of tropical mangrove forests.

Keywords: mangrove forests; Hainan Island; deep learning; spatiotemporal evolution;
influential mechanism

1. Introduction

Mangrove forests are an important type of coastal wetland that contain woody plant
communities mainly distributed in the intertidal zones of tropical and subtropical re-
gions [1]. These biomes constitute one of the most productive ecosystem types worldwide
and maintain substantial social, ecological, and economic values for the natural envi-
ronment and human society [2]. Specifically, mangrove forests play an important role in
maintaining the ecological balance of coastlines and protecting the land from erosion [3]. Re-
cently, these forests have also been recognized as the main contributor to “blue carbon sinks”
in the global coastal zone, playing an important role in the suppression of ever-increasing
atmospheric carbon dioxide concentrations [4]. Before the 21st century, mangrove forest
areas were continuously reduced and degraded due to increasing socioeconomic threats,
making them one of the most threatened ecosystems on the planet [5]. From 2000 to 2016, as
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government departments turned their attention to greater protection, the damaging human
activities against global mangrove forests gradually decreased; however, the number of
mangrove forests lost because of natural factors increased during the same period [6]. To
further protect and manage mangrove forests, it remains necessary to understand their spa-
tiotemporal evolution, as well as their response and adaptation mechanisms to population
growth, economic development, climate, and other factors [7]. Mangrove forests are usually
located within a large area of inaccessible mudflats, which complicates any corresponding
groundwork efforts [8]. Alternatively, the history of mapping the range of mangrove forests
with remote sensing data dates to the 1970s [9]; advances in sensor technology have offered
increasingly improved effective mapping and monitoring techniques.

Remote sensing has been widely used for the multi-scale and long-term monitoring
of environments and natural resources [10]. Over the past three decades, optical and
radar satellites commonly used in mangrove research have included Landsat, SPOT, IRS
1C, IRS 1D, ASTER, IKONOS, QuickBird, RADARSAT-1 SAR, ENVISAT ASAR, ERS-1
SAR, JERS-1, AIRSAR, and ALOS PALSAR. The first civilian Earth satellite, Landsat, was
launched in 1972, and the first commercial satellite, SPOT, was launched in 1986 [11].
Optical satellites are used more frequently than radar satellites in mangrove studies. For
example, Hauser et al. [12] studied the spatiotemporal dynamics of mangrove forests on
the Ga Mau Peninsula, Vietnam, from 2004 to 2013 using SPOT satellite imagery; moreover,
Proisy et al. [13] used IKONOS, QuickBird, and WorldView satellite images to map the
evolution of mangrove forests within an abandoned aquaculture estuary area in India from
2001 to 2015. Landsat time series are often the most common satellite data used to monitor
ecosystem change at larger scales [14]. For example, Gaw et al. [15] used Landsat remote
sensing imagery to study the dynamics of mangrove forests in Tanintharyi, Myanmar,
from 1989 to 2014. Hu et al. [16] showed that Landsat remote sensing image data are the
most commonly used data for mangrove forest feature classification because: (1) Landsat
imagery data of a 30 m medium resolution can effectively extract spatial information from
mangrove forests; (2) it contains rich waveform information; (3) it requires relatively short
time intervals for image acquisition; (4) it maintains a long history (>30 years); and (5) it
is characterized by relatively low imaging costs. Therefore, Landsat imagery data were
used in this study to ensure the spatiotemporal integrity of the mangrove forest data to the
maximum extent possible.

Although remote sensing technology can provide continuous spatiotemporal data
for monitoring ecosystem changes, the accuracy of information extraction is influenced
by image classification techniques and sensor resolution [17]. In land cover classification
studies, nascent shrubs and herbs remain difficult to classify due to their similar spec-
tral properties [18]. Similarly, a separate study in China showed that agricultural lands,
inland dwarf tree forests, shrub forests, and aquatic plants with highly similar spectral
characteristics to mangrove forests were easily misclassified [19]. Abdi [20] found that the
support vector machine (SVM) machine-learning algorithm produced the highest accuracy
for distinguishing regenerating shrubs and herbaceous plants (overall accuracy, OA = 76%).
Guo et al. [21] found that the U-Net deep learning algorithm obtained good classification re-
sults for mangrove forest identification by multilayer convolutional operations (OA = 81%);
however, the image elements in a small area near the mangrove forests’ boundary were also
misclassified. In response to the degradation problem exposed by deep learning algorithms
during network training, Li et al. [22] proposed a residual learning framework ResNet,
which, in a classification study of tree species, achieved a classification accuracy of 90.9%
for ResNet-18. Moreover, deep residual U-Net is also widely used in remote sensing image
classification [23]. Cao and Zhang [24] proposed the Res-UNet network, which combines
U-Net and Resnet, to extract multi-scale spatial features that can effectively improve the
accuracy of tree species classification. Therefore, in this study, to address issues with
mangrove forest misclassification in large-scale feature analyses, the SVM and Res-UNet
algorithms were chosen to remotely monitor the mangrove forest distribution on Hainan
Island and conduct a comparative analysis.
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Remote sensing technology can also accurately explore the dynamic changes in small-
scale mangrove reserves. For example, Ibharim et al. [25] used remote sensing techniques
to monitor changes in the Matang Mangrove Reserve, Malaysia, between 1993 and 2011,
proposing conservation recommendations in terms of species distributions and patch types.
Similarly, Son et al. [26] studied changes in the Can Gio Biosphere mangrove reserve in
Vietnam from 1989 to 2014 using Landsat imagery data, finding that ~24% of the mangrove
forests in the reserve were converted to aquaculture farms during this period and providing
suggestions to assist local managers with reserve development. Zhen et al. [27] used radar
and optical satellites combined with an improved mangrove classification method to
assess the spatial distribution and dynamics of mangrove forests in the Dongzhai Port
Mangrove Reserve, China, to improve the development of conservation and management
policies. Such small-scale mangrove reserve studies can provide more accurate data on
species distribution and land type but are limited in their ability to capture the effects
of climate, social benefits, and economic benefit changes. Therefore, exploring the large-
scale spatiotemporal evolution of mangroves can provide ideas for upstream planning,
an important component of their sustainable development. For example, Gilani et al. [28]
used Landsat imagery to monitor changes in the mangrove cover and fragmentation in
Pakistan to assess the conservation and sustainability of mangrove forests. Giri et al. [29]
used similar techniques at two spatial resolutions to study the proportion, patterns, causes,
and consequences of changes in mangrove cover in South Asia, which can regularly
monitor and manage mangroves in this region. Considering the advantages and limitations
of different research scopes, this study systematically explored the response and adaptation
mechanisms between the spatiotemporal evolution of tropical mangrove forests, climate,
and socioeconomic changes at the provincial/city/county levels hierarchically.

This study aimed to improve the accuracy of remote sensing estimates of tropical
mangrove forest spatial distributions and to explore the influential mechanisms of the
spatiotemporal evolution of tropical mangrove forests. Furthermore, this study aimed to
achieve the following three research objectives: (1) compare the advantages and limitations
of SVM machine-learning and Res-UNet deep learning algorithms for extracting spatial
information from the mangrove forest; (2) explore the spatiotemporal evolution of tropical
mangrove forests on the Hainan Island from 1991 to 2021; and (3) analyze the response and
adaptation mechanisms between the spatiotemporal evolution of tropical mangrove forests
and changes in climate, environment, and socioeconomic benefits.

2. Materials and Methods
2.1. Materials
2.1.1. Study Area

The Hainan Island is located at the southernmost tip of China, on the northern edge of
the tropics, between 108◦37′ to 111◦03′ E and 18◦10′ to 20◦10′ N. The island covers an area of
~3.54 × 104 km2, with a coastline of 1944.4 km, and maintains a tropical maritime monsoon
climate. It has the richest mangrove species and the most extensive mangrove forest area
in China, including 26 species of true mangrove plants and 12 species of semi-mangrove
plants [29]. The mangrove forests of the Hainan Island are mainly distributed along the
coastal areas of 12 cities and counties in the northeast, south, east, and west, including the
cities of Haikou, Wenchang, Danzhou, and Sanya.

2.1.2. Ground Survey Data Sources

From January 2020 to September 2020, we organized over 200 people to identify the
range of the mangrove forests and record the distribution of dominant tree species on the
Hainan Island during the ground survey (Figure 1 and Table A1). In addition, during past
ground surveys, other members of our team recorded site data for mangrove forests on
the Hainan Island as follows: in 1991 (429 sites), in 1996 (423 sites), in 2000 (441 sites),
in 2007 (510 sites), in 2010 (485 sites), in 2015 (508 sites); site data for other land types
were: in 1991 (1747 sites), in 1996 (1777 sites), in 2000 (1814 sites), in 2007 (1816 sites),
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in 2010 (1809 sites), in 2015 (1744 sites). Based on the range of the mangrove forests in
the Hainan Island in 2020 and the site data previously surveyed by other members of
the team, in October 2021, we conducted another ground survey and recorded data from
504 mangrove sites and 1805 other land-type sites. In addition, in each ground survey, all
members of our team used a handheld GPS and Google Earth (Google Inc., Santa Clara
County, CA, USA) to collect site data. The size of each site was 30 m × 30 m.

Figure 1. Ground survey data in 2020. (a) Distribution of dominant mangrove forest tree species in
the Hainan Island. (b) Distribution range of mangrove forests in the Hainan Island.

2.1.3. Landsat Data Sources and Preprocessing

Landsat satellite image data were downloaded from the United States Geological
Survey (USGS) for Earth Resources Observation and Science (https://www.usgs.gov/,
accessed on 9 September 2022), from which the spatial resolution was 30 m. This study
required images with a cloud coverage of less than 20%, and thus, compared and se-
lected the Landsat satellite data obtained in 1991 (Landsat-5 TM), 1996 (Landsat-5 TM),
2000 (Landsat-5 TM), 2007 (Landsat-5 TM), 2010 (Landsat-5 TM), 2015 (Landsat-8 OLI),
and 2021 (Landsat-8 OLI) (Table 1). Considering the large study area and complexity
of the landscape, images of the same area were collected from adjacent years to reduce
data loss related to cloudiness. The selected Landsat remote sensing image data were
pre-processed with atmospheric correction, band combination, and image cropping. Be-
cause mangrove forests have more distinct spectral features in remote sensing image data,

https://www.usgs.gov/
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especially a strong reflectance in the near-infrared (NIR) band, they are more easily classi-
fied than other land cover types [30]. To distinguish the mangrove forests, Landsat-5 TM
usually uses B4 (NIR, 0.76–0.90 µm), B3 (Red, 0.63–0.69 µm), and B2 (Green, 0.52–0.60 µm)
bands to synthesize standard false color feature images. In such standard false color feature
images, mangrove forests typically appear as deep red. However, B5 (NIR, 0.85–0.89 µm),
B4 (Red, 0.63–0.68 µm), and B3 (Green, 0.53–0.60 µm) bands were used from Landsat 8 OLI.

Table 1. Information about the Landsat data images used in the study.

Year Landsat Data Acquisition Times Satellite Sensor Standard False Color

1991 15 June 20 August 30 October 30 October 16 April 1992

Landsat-5 TM

B4 (NIR, 0.76–0.90 µm),
1996 14 July 14 December 23 December 23 December 23 September 1995 B3 (Red, 0.63–0.69 µm),
2000 28 March 20 April 20 April 7 November 24 March 2001 B2 (Green, 0.52–0.60 µm)
2007 6 July 13 July 15 July 15 July 22 July
2010 7 February 24 March 7 July 16 September 21 August 2009

2015 16 April 16 April 5 September 17 November 8 March 2016
Landsat-8 OLI

B5 (NIR, 0.85–0.89 µm),
2021 1 January 1 January 11 March 13 June 19 June B4 (Red, 0.63–0.68 µm),

B3 (Green, 0.53–0.60 µm)

2.1.4. Population, Economy, and Climate Data Sources

This study was taken from the WorldClim data website (https://www.worldclim.org/
data/index.html, accessed on 9 September 2022) where a spatial resolution of 2.5 m of
monthly weather data over 1990–2018 years of history was downloaded. Then, the CNRM-
CM6-1 model and the sustainable development scenario (SSP226) were selected in CMIP6
to download the monthly climate data with a spatial resolution of 2.5 m. The average mini-
mum temperature (◦C), average maximum temperature (◦C), and total precipitation (mm)
in 1991, 1996, 2000, 2007, 2010, 2015, and 2021 were sorted out in the TIFF format climate
data set. Furthermore, the total population, urban population, rural population, GDP, and
gross output fishery value were obtained from the Annual Statistical Report of Hainan
Province in 1991, 1996, 2000, 2007, 2010, 2015, and 2021, respectively.

2.2. Methods
2.2.1. Support Vector Machine

The SVM machine-learning algorithm used here for supervised classification is based
on the statistical learning theory and was originally developed to solve dichotomous
classification problems [21]. SVM tries to identify the optimal thresholds that maximize
the separation or bounds between the support vectors [31]. In another way, this requires
finding the best hyperplane in a multidimensional space that splits two sets of vectors
so that the vectors closest to the hyperplane (i.e., the support vectors) are as far away as
possible from the hyperplane (Figure 2). Assuming that the Euclidean distance of the
vector to the hyperplane is di, the minimum value of di is required to represent the shortest
distance of this vector to the hyperplane. Accordingly, the mathematical expressions for
the hyperplane g(x) and di are defined by Equations (1) and (2):

g(x) = wT ·x + b; w, x ∈ Rn (1)

di =
|g(x)|
‖w‖ (2)

where w and x are vectors in the n-dimensional space. x is a function variable and w is a
normal vector. ‖w‖ is the parametrization of the hyperplane.

https://www.worldclim.org/data/index.html
https://www.worldclim.org/data/index.html
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Figure 2. Visualization of the hyperplane separating the two types of vectors (assuming g(x) = 0).

In this study, the radial basis function (RBF) was selected as the kernel function,
Gamma = 1, and the system default values were used for other parameters when SVM
was used to establish the mangrove forests distribution model in the Hainan Island.
The input band parameters were as follows: Landsat-5 TM: B4-Near IR (0.76–0.90 µm),
B3-Red (0.63–0.69 µm), B2-Green (0.52–0.60 µm); Landsat-8 OLI: B5-Near IR (0.85–0.89 µm),
B4-Red (0.63–0.68 µm), B3-Green (0.53–0.60 µm). The number of training samples selected
for SVM machine-learning each year is as follows: in 1991 (312 mangrove sites and
1245 non-mangrove sites), in 1996 (304 mangrove sites and 1260 non-mangrove sites),
in 2000 (318 mangrove sites and 1280 non-mangrove sites), in 2007 (380 mangrove sites and
1299 non-mangrove sites), in 2010 (351 mangrove sites and 1303 non-mangrove sites), in
2015 (374 mangrove sites and 1244 non-mangrove sites), and in 2021 (353 mangrove sites
and 1296 non-mangrove sites). The size of a single sample is 30 × 30 m.

2.2.2. Res-UNet

U-Net was first applied to medical image segmentation [32]. Later, it was also widely
used in remote sensing image classification [33]. The deep residual network ResNet can
avoid the problem of gradient degradation in the process of network deepening [34]. This
study used U-Net to equip the ResNet-18 backbone to train deep learning models (Figure 3)
in order to increase the feature expression ability of the model [35]. Among them, ResNet-18
is a two-level ResNet residual unit, and the network structure of residual learning can be
seen in Figure 4.

During model training, the average cross-entropy loss was used to calculate the model
loss via the function presented in Equation (3):

loss = − 1
n

n

∑
i=1

yilogai + (1− yi)log(1− ai) (3)

where n represents the batch size; yi and ai are the predicted and true values of the ith
sample in each batch, respectively. For the loss of the model, the network parameters
were optimized using the Adam optimizer proposed by Kingma and Ba [36], according to
Equation (4):

θt = θt−1 − α ∗ m̂t/
(√

v̂t + ε
)

(4)

where t is the number of training iterations, α is the learning rate, m is the exponential
moving average of the gradient, and v is the exponential moving average of the gradient
squared. The “ε” is usually a constant with a value of 1 × 10−8.
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Figure 3. Network structure of Res-UNet. “conv” referring to the feature map. “CAT” is a method of
concatenating feature maps with different numbers of channels.

Figure 4. Network structure of residual learning. “F(x)” refers to the residual and “x” is the feature
mapping of the output of the previous layer ResNet.

This study used Python based on the TensorFlow deep learning framework. The
hardware configuration of this operating platform included a Lenovo ThinkStation P620
AMD3955WX 64G and an NVIDIA Quadro RTX4000 8G GPU. Based on the site data
from the ground survey and the distribution range of mangrove forests from the ground
survey in 2020, the distribution range of mangrove forests in the Haikou, Wenchang, and
Danzhou cities were mapped by visual interpretation in Landsat remote sensing images.
When Res-UNet trained the model of mangrove forest distribution on the Hainan Island,
the Landsat remote sensing images were cut, referring to the visually interpreted man-
grove distribution range. The slice size was set to 32 × 32 pixels, the batch size = 8,
the backbone model was set to ResNet–18, and the default values for other parame-
ters were used. The input band parameters were as follows: Landsat-5 TM: B4-Near
IR (0.76–0.90 µm), B3-Red (0.63–0.69 µm), and B2-Green (0.52–0.60 µm); Landsat-8 OLI: B5-
Near IR (0.85–0.89 µm), B4-Red (0.63–0.68 µm), and B3-Green (0.53–0.60 µm). Finally, the
training samples for Res-UNet deep learning were obtained as follows: in 1991 (780 sites), in



Remote Sens. 2022, 14, 5554 8 of 27

1996 (873 sites), in 2000 (767 sites), in 2007 (875 sites), in 2010 (928 sites), in 2015 (1050 sites),
and in 2021 (1201 sites). The size of a single sample is 32 × 32 pixels.

2.2.3. Accuracy Assessment

Here, two metrics, the Kappa coefficient, and the OA were used to evaluate the
classification accuracy of SVM and Res-UNet, respectively. Both metrics were calculated
based on a confusion matrix, which provided a clear picture of the number of features
correctly and incorrectly classified [37]. Specifically, the Kappa coefficient is typically used
to test the consistency of results and measure the effectiveness of classifications, whereas
OA is the ratio of correctly classified categories to the total category number [21]. Of the
sites obtained each year, approximately 30% were selected as a validation sample. The
sample types were divided into mangrove and non-mangrove (other land types). The
number of validation samples selected each year is as follows: in 1991 (117 mangrove sites
and 502 non-mangrove sites), in 1996 (119 mangrove sites and 517 non-mangrove sites), in
2000 (123 mangrove sites and 534 non-mangrove sites), in 2007 (130 mangrove sites and
517 non-mangrove sites), in 2010 (134 mangrove sites and 506 non-mangrove sites), in 2015
(134 mangrove sites and 500 non-mangrove sites), and in 2021 (151 mangrove sites and
509 non-mangrove sites). the size of a single sample is 30 × 30 m. The confusion matrix
was used to evaluate the classification results of the model, and the precise equations for
OA and Kappa, are presented in Equations (5) and (6):

OA =
∑2

i=1 aii

N
(5)

Kappa =
OA− ∑2

i=1 ai+∗a+i
N2

1−OA
, ai+ = ∑i aij, a+i = ∑j aij (6)

where aii denotes the accurate values of i predicted to be i, aij denotes the values of i
predicted to be j, and N is the total number of samples.

2.2.4. Dynamic Change and Landscape Pattern Analysis

Here, the area of mangrove forest cover change was evaluated and compared based on
the mangrove distribution of 1991, 1996, 2000, 2007, 2010, 2015, and 2021. The annual rate
of change in the crown surface area was used to analyze the mangrove forest changes over
the last 30 years for six stages: 1991–1996, 1996–2000, 2000–2007, 2007–2010, 2010–2015, and
2015–2021. Specifically, the annual rate of change in the crown surface area was calculated
using the formula proposed by Puyravaud [38]:

r =
1

t2 − t1
ln

A2

A1
(7)

where r is the annual percentage change rate; t1 and t2 are the starting and ending years
at the time of calculation, respectively; and A1 and A2 are the corresponding areas in
t1 and t2, respectively.

In evaluating the spatiotemporal changes in the landscape patterns of mangrove
forests, landscape indices, such as shape complexity and patch fragmentation, can further
reveal the impacts of human activities [39]. Five landscape indices were selected based
on the actual situation of the study area: the number of patches (NP), patch density (PD),
maximum patch index (LPI), landscape shape index (LSI) and aggregation index (AI),
where NP reflects the spatial pattern of the landscape; PD describes the degree of landscape
fragmentation; LPI indicates the expansion or fragmentation of the largest mangrove forest
patches, reflecting the health of the mangrove forests in the core area; LSI determines the
shape changes of the patch, corresponding to the resistance abilities of the mangrove forests
to external disturbances; and AI reflects the connectivity and degree of aggregation and
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dispersion within mangrove forest patches [40]. PD, LSI, and AI were calculated according
to Equations (8)–(10) [39]:

PD =
NP
A

, PD > 0 (8)

LSI =
0.25E√

A
, LSI ≥ 1 (9)

AI =
pij

max pij
× 100 (10)

where A is the total landscape area (ha), E is the total length of the edge in the landscape,
and pij represents the number of adjacent patches in patches of the same type as the
landscape, i represents a landscape type, and j represents patches of the same type as i.

The mangrove mass center offset trajectory can reflect the spatial distribution of
mangrove forests over different years, an important factor when studying the dynamic
changes over certain periods of time. Here, the principle was to adopt the change in the
mass center coordinates of the landscape patches to reflect the change laws of the mangrove
area mass center distributions. The center of mass formula was derived from Li et al. [41]
(Equation (11)):

Xt =
∑N

i=1(CtiXi)

∑N
i=1 Cti

, Yt =
∑N

i=1(CtiYi)

∑N
i=1 Cti

(11)

where Xt and Yt denote the latitude and longitude coordinates of the landscape mass center
in year t, respectively; Xi and Yi are the latitude and longitude coordinates of the mass
center of the ith patch of a landscape, respectively; Cti is the area of the ith patch, and N is
the total number of landscape patches.

2.2.5. Statistical Analysis of Driving Forces

Zheng and Takeuchi [42] showed that mangroves vary over space and time, with
changes related to the climate, environment, and socioeconomic benefits. To quantify
the main drivers affecting the evolution of mangrove landscapes, this study conducted
a Pearson bivariate correlation analysis of the mangrove area with socioeconomic and
natural environmental indicators. Eight indicators were selected for the study area: total
population, urban population, rural population, GDP, gross production fishery value,
average annual rainfall, minimum temperature, and maximum temperature.

3. Results
3.1. Analysis of the Classification Results
3.1.1. Classification Results of SVM Machine Learning

The SVM classification results are shown in Figure A1 in Appendix A. Confusion ma-
trix calculations were used to summarize the producer accuracy (PA), user accuracy (UA),
OA metrics, and Kappa coefficients. The SVM classification accuracy was the highest in
1996 and 2021 (Table 2), with the OA and Kappa coefficients at >94% and >0.80, respectively.
The lowest classification accuracy was recorded in 2010 (OA and Kappa coefficients of
91.6% and 0.71, respectively). The primary classification task was to identify the mangrove
forest presence; however, the spectral information of other land types can influence the
classification results. The highest PA of the mangrove forests was recorded in 1996 (77.3%),
and although the overall classification results of SVM were high, the identification results
of the mangrove forests remained relatively inaccurate as the probability of the mangrove
forests being misclassified persisted.



Remote Sens. 2022, 14, 5554 10 of 27

Table 2. Accuracy assessment of SVM classification results from mangrove forests in the Hainan
Island during 1991–2021, where µ depicts the average values.

Period Classified
Ground-Truth Summary

Mangrove Non-Mangrove Total PA UA

1991

Mangrove 79 7 86 67.5% 91.9%
Non-Mangrove 38 495 533 98.6% 92.9%

Total 117 502 619 83.1µ 92.4µ
OA = 92.7% Kappa = 0.74

1996

Mangrove 92 7 99 77.3% 92.9%
Non-Mangrove 27 510 537 98.7% 95.0%

Total 119 517 636 88.0µ 94.0µ
OA = 94.65% Kappa = 0.81

2000

Mangrove 79 2 81 64.2% 97.5%
Non-Mangrove 44 532 576 99.6% 92.4%

Total 123 534 657 81.9µ 95.0µ
OA = 93.00% Kappa = 0.74

2007

Mangrove 80 2 82 61.5% 97.6%
Non-Mangrove 50 515 565 99.6% 91.2%

Total 130 517 647 80.6µ 94.4µ
OA = 92.0% Kappa = 0.71

2010

Mangrove 83 3 86 61.9% 96.5%
Non-Mangrove 51 503 554 99.4% 90.8%

Total 134 506 640 80.7µ 93.7µ
OA = 91.6% Kappa = 0.71

2015

Mangrove 96 2 98 71.6% 98.0%
Non-Mangrove 38 498 536 99.6% 92.9%

Total 134 500 634 85.6µ 95.4µ
OA = 93.7% Kappa = 0.79

2021

Mangrove 114 1 115 75.5% 99.1%
Non-Mangrove 37 508 545 99.8% 93.2%

Total 151 509 660 87.7µ 96.2µ
OA = 94.2% Kappa = 0.82

3.1.2. Classification Results of Res-UNet Deep Learning

The classification results of the Res-UNet deep learning algorithm are shown in
Figure A2 in Appendix A. The extracted sample labels were divided into two categories:
mangrove and non-mangrove forests. The confusion matrix was selected for accuracy
verification, besides the PA, UA, OA, and Kappa coefficient calculations, for the classi-
fication results of the mangrove forests. When comparing the validation results across
different years (Table 3), it was found that Res-UNet produced superior classification results
(OA, 95%; Kappa coefficients, >0.80). Among them, the best classification accuracy was
achieved in 2021 (OA and Kappa coefficient of 97.6% and 0.93, respectively), and the worst
classification accuracy appeared in 1996 (OA and Kappa coefficient values of 95.3% and
0.83, respectively). Few mangrove forests were misclassified (low errors) using this deep
learning algorithm (Table 3), resulting in high PA values in all the mangrove forest classes
(reaching a maximum of 93.4% in 2021).
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Table 3. Accuracy assessment of Res-UNet classification results of mangrove forests in the Hainan
Island during 1991–2021, where µ depicts the averaged values.

Period Classified
Ground-Truth Summary

Mangrove Non-Mangrove Total PA UA

1991

Mangrove 92 3 95 78.6% 96.8%
Non-Mangrove 25 499 524 99.4% 95.2%

Total 117 502 619 89.0µ 96.0µ
OA = 95.5% Kappa = 0.84

1996

Mangrove 93 4 97 78.2% 95.9%
Non-Mangrove 26 513 539 99.2% 95.2%

Total 119 517 636 88.7µ 95.5µ
OA = 95.3% Kappa = 0.83

2000

Mangrove 106 4 110 86.2% 96.4%
Non-Mangrove 17 530 547 99.3% 96.9%

Total 123 534 657 92.7µ 96.6µ
OA = 96.8% Kappa = 0.89

2007

Mangrove 108 1 109 83.1% 99.1%
Non-Mangrove 22 516 538 99.8% 95.9%

Total 130 517 647 91.4µ 97.5µ
OA = 96.5% Kappa = 0.88

2010

Mangrove 115 3 118 85.8% 97.5%
Non-Mangrove 19 503 522 99.4% 96.4%

Total 134 506 640 92.6µ 96.9µ
OA = 96.6% Kappa = 0.89

2015

Mangrove 112 1 113 83.6% 99.1%
Non-Mangrove 22 499 521 99.8% 95.8%

Total 134 500 634 91.7µ 97.5µ
OA = 96.4% Kappa = 0.88

2021

Mangrove 141 6 147 93.4% 95.9%
Non-Mangrove 10 503 513 98.8% 98.1%

Total 151 509 660 96.1µ 97.0µ
OA = 97.6% Kappa = 0.93

The cross-entropy loss curve of the Res-UNet model is shown in Figure 5. Under
the optimal model, the batch size was eight. After ~5000 training iterations, the loss of
Res-UNet stabilized at 0.1, where the model weights gained certainty.

Figure 5. Res-UNet loss curve, where the x-axis indicates the number of training iterations.
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3.1.3. Comparison of Mapping Results between SVM Machine Learning and Res-UNet
Deep Learning

The SVM and Res-UNet classification results were compared with ground truth remote
sensing imagery data to analyze the ability of the two algorithms to identify the distribution
range of mangrove forests on the Hainan Island (Figure 6). Here, it was found that Res-
UNet was more accurate in identifying the crown surface cover area, whereas SVM better
reproduced the land area covered by entire wetlands or protected areas, including man-
grove forests. The inability of SVM to distinguish mangrove forests from water and aquatic
plants was evident (Figure 6a,b); therefore, the extracted mangrove distributions were
more contiguous. Furthermore, numerous pixels with mixed low trees and shrubs were
misclassified as “mangrove forests” (Figure 6e,f). In Figure 6c,d, an under-classification
is observed due to the non-recognition of mangrove forests. In contrast, Res-UNet more
accurately distinguished mangrove forests from other feature types with similar spectral
information within mixed vegetation areas, greatly reducing the probability of mangrove
forest misclassification on a large scale.

Figure 6. Illustrative examples of the classification method limitations for SVM and Res-UNet:
(a,b) Haikou City, (c,d) Wenchang City, (e,f) Danzhou City; red represents mangrove forests, and
white represents all other land types, each square is captured from a 30 m Landsat remote sensing
image, and the side length is about 975 × 975 m.

3.2. Analysis of Spatiotemporal Changes of Mangrove Forests in the Hainan Island
3.2.1. Change in Mangrove Forest Crown Surface Cover Area during 1991–2021

Based on the validation of the Res-UNet algorithm, this trained model was applied
to a large-scale mangrove forest crown surface mapping to compare the extent of the
mangrove forest crown coverage changes in 1991, 1996, 2000, 2007, 2010, 2015, and 2021
on the Hainan Island. The crown surface cover area of the total mangrove forests on
the Hainan Island in each of these seven periods was 1740.15, 2076.66, 1984.68, 2371.59,
2694.78, 2233.80, and 3438.63 ha, respectively (Figure 7 and Table 4). The mangrove forests
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were mainly distributed over 12 cities and counties around the coast of the Hainan Island.
By 2021, the forest crown surface cover areas in the cities of Haikou, Wenchang, and
Danzhou increased, whereas those of the Wanning City, Ledong Li Autonomous County,
and Changjiang Li Autonomous County receded during the analysis period. In addition,
Wanning City, Ledong Li Autonomous County, Lingshui Li Autonomous County, and
Changjiang Li Autonomous County were characterized by the disappearance of mangrove
forests in individual years, with mangrove forests in Changjiang Li Autonomous County
only present in 2000 and 2010. Overall, the mangrove forest crown surface cover area in the
Hainan Island showed an increasing trend over the last three decades, with a net increase
of 1698.48 ha from 1991 to 2021, representing an annual change rate of 2.27% (Table 4). The
highest growth rate of the surface cover area of the mangrove forest crown was recorded
throughout the analysis period in Dongfang City (16.24%), whereas the annual change rate
peaked in the autonomous Ledong Li County from 2007 to 2021 (≤35.50%).

Figure 7. Trends of mangrove forest crown cover area in the Hainan Island during 1991–2021.

Table 4. Mangrove forest crown surface cover area (ha) and annual rate of area change (%) in the
Hainan Island and in each city/county for every year of analysis.

City/County
Mangrove Forests Crown Cover (ha) Annual Rate of

Change (%)1991 1996 2000 2007 2010 2015 2021

Haikou 898.20 1259.73 1221.12 1343.07 1294.74 1233.09 1183.59 0.92
Sanya 49.50 14.76 3.06 4.95 35.91 13.14 57.96 0.53

Wenchang 286.83 552.24 356.94 598.95 755.19 449.82 1083.42 4.43
Qionghai 25.02 1.26 11.61 6.12 41.31 1.80 32.13 0.83
Wanning 4.95 0.00 2.43 0.90 0.00 0.00 6.3 0.80

Chengmai 48.06 63.45 53.01 36.54 66.78 98.82 191.97 4.62
Lingao 46.71 9.9 24.39 42.3 80.01 40.23 129.96 3.41

Danzhou 377.73 155.07 277.29 319.86 369.18 364.86 610.56 1.60
Dongfang 0.63 18.54 33.84 16.29 9.36 30.51 82.17 16.24

Ledong 0.00 0.00 0.00 0.09 3.51 0.36 12.96 35.50 *
Lingshui 2.61 0.00 0.27 2.52 38.07 1.17 47.61 9.68

Changjiang 0.00 0.00 0.72 0.00 0.72 0.00 0.00 0.00 *

Total Area 1740.15 2076.66 1984.68 2371.59 2694.78 2233.80 3438.63 2.27

* Monitoring time starts from the year that mangrove forests appeared.

The changes in the surface cover area of the mangrove forest crown were compared
and analyzed for each city and county in the Hainan Island across six periods: 1991–1996,
1996–2000, 2000–2007, 2007–2010, 2010–2015, and 2015–2021. Although the surface cover
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area increased for all cities and counties in the Hainan Island over the analysis period
(Table 4), the observed growth was unstable in terms of phase changes. The surface cover
area decreased in the Hainan Island from 1996 to 2000 and 2010 to 2015 (annual rates of
change: −1.13% and −3.75%, respectively; Table 5), while the highest growth rate in the
island was observed from 2015 to 2021 (7.19%·yr−1). However, the area of surface coverage
of the mangrove forest crown in Haikou City decreased in the three phases from 2007
to 2021. Conversely, the crown surface cover area increased in Chengmai County from
2007 to 2021. In addition, the mangrove forest crown surface cover area in Lingao County
and Danzhou City increased between 1996 and 2010, and the crown surface coverage of
Lingshui Li Autonomous County also showed an increasing trend from 2000 to 2010.

Table 5. Annual rate of change (%) in the crown surface cover area of mangrove forests in the Hainan
Island during 1991–1996, 1996–2000, 2000–2007, 2007–2010, 2010–2015, and 2015–2021.

City/County
Annual Rate of Change

1991–1996 1996–2000 2000–2007 2007–2010 2010–2015 2015–2021

Haikou 6.77 −0.78 1.36 −1.22 −0.98 −0.68
Sanya −24.20 −39.34 6.87 66.05 −20.11 24.73

Wenchang 13.10 −10.91 7.39 7.73 −10.36 14.65
Qionghai −59.77 55.52 −9.15 63.65 −62.67 48.03
Wanning 0.00 0.00 −14.19 0.00 0.00 0.00

Chengmai 5.56 −4.49 −5.32 20.10 7.84 11.07
Lingao −31.03 22.54 7.87 21.25 −13.75 19.54

Danzhou −17.81 14.53 2.04 4.78 −0.24 8.58
Dongfang 67.64 15.04 −10.44 −18.47 23.63 16.51

Ledong 0.00 0.00 0.00 122.12 −45.55 59.73
Lingshui 0.00 0.00 31.91 90.51 −69.65 61.77

Changjiang 0.00 0.00 0.00 0.00 0.00 0.00

Hainan
Island 3.54 −1.13 2.54 4.26 −3.75 7.19

3.2.2. Spatial Distribution and Changes in Mangrove Forests during 1991–2021

The landscape-level pattern index can reflect the corresponding change characteristics
of the entire study area (Figure 8). From 1991 to 2021, the NP, PD, and LSI of mangrove
forests in the Hainan Island showed repeated trends of decreasing, followed by an increase.
NP and LSI both reached a maximum in 2021, with 732 and 30.03%, respectively. This
indicates that the patch shape of mangrove forests was complex as the NP increased. LPI
and AI also fluctuated from an increase to a decrease several times, with LPI reaching at
least 6.42 in 2021. In conclusion, the edge shape of the mangrove patch in the Hainan Island
in 2021 is complex, with low connectivity and substantial fragmentation. At the city and
county levels, only Haikou City and Dongfang City displayed relatively reduced landscape
fragmentation and strong landscape connectivity by 2021.

The spatial distribution of the surface cover area of the mangrove forest crown in
the 12 cities and counties along the coast of the Hainan Island was used to investigate
the path of mass center offsets across the six periods. From 1991 to 2021, most centers
of the mangrove forest mass in the Hainan Island showed a trend of coastal movement
toward the ocean or inlets, the distance of movement in the first stage being the largest
(Figure 9). Specifically, the mass center of Changjiang Li Autonomous County moved in
a unidirectional line, as mangrove forests were only positively identified in two of the
analysis years; moreover, the mass centers of the mangrove forests in Sanya, Danzhou, and
Wanning cities also moved unidirectionally until 2021, when they showed a folded-back
trend. The movement trajectories in all the remaining locations appeared circular or crossed
and overlapped, indicating the factors influencing mangrove forest survival.
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Figure 8. Landscape pattern index of mangrove forests in the Hainan Island during 1991–2021.
(a) NP (m) index; (b) PD (m/ha) index; (c) LPI (%) index; (d) LSI (%) index; (e) AI (%) index.
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Figure 9. Mass center offset maps of mangrove forests across the Hainan Island for (a) Haikou,
(b) Sanya, (c) Lingao, (d) Chengmai, (e) Wenchang, (f) Danzhou, (g) Dongfang, (h) Qionghai, (i)
Lingshui, (j) Wanning, (k) Ledong, and (l) Changjiang.

3.2.3. Influential Mechanisms of Mangrove Forest Landscape Evolution

From 1991 to 2021, the total and urban populations of the Hainan Island grew continu-
ously, whereas the rural population slowly decreased. Furthermore, the GDP of the island
increased from 10.793 billion yuan in 1991 to 553.229 billion yuan in 2021, from which the
value of fishery rose from 836 million yuan to 39.080 billion yuan (Figure 10). However,
the overall patterns of average annual rainfall and minimum and maximum temperatures
throughout the study period were complex, although all increased (Table 6).

Figure 10. Population and socioeconomic development dynamics of the Hainan Island during 1991–2021.
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Table 6. Climate and environmental indicator dynamics in the Hainan Island during 1991–2021.

Period Average Annual Rainfall (mm) Average Annual Minimum
Temperature (◦C)

Average Annual Maximum
Temperature (◦C)

1991 1289.12 21.65 28.5
1996 1531.08 21.12 27.68
2000 1804.22 21.6 27.76
2007 1334.88 21.72 28.01
2010 1507.96 21.45 27.88
2015 1554.69 22.27 28.66
2021 1548.06 22.44 29.11

Linear Fit y = 18.849x + 1434.6 y = 0.1614x + 21.104 y = 0.1396x + 27.67
R2 R2 = 0.0585 R2 = 0.5760 R2 = 0.3163

According to the correlation analyses with mangrove forest crown surface cover areas
in the Hainan Island (Table 7), positive correlations were observed with the socioeconomic
factors of the total population, GDP, and the gross output value of fisheries (p < 0.05). More-
over, the change in the surface cover of the mangrove forest crown showed a significant
positive correlation with the urban population (p < 0.01). Specifically, in the correlation
analysis of the mangrove forest crown surface cover area change in each city and county,
Wenchang City and Lingshui Li Autonomous County showed a significant positive correla-
tion between mangrove forest crown surface cover area and urban population; the growth
of the mangrove forest crown surface cover area in Wenchang City, Chengmai County, Lin-
gao County, Danzhou City, Dongfang City, and Ledong Li Autonomous County displayed
significant positive correlations with the local GDP; whereas that of Chengmai County
showed a highly significant positive correlation with both GDP and the gross output value
of fisheries. Regarding climatic factors, all correlations with the mangrove forest crown
surface cover area across the Hainan Island were positive but weak; however, analyses
at city and county levels found that the crown surface cover area changes in Chengmai
County and Danzhou City were significantly positively correlated with both the average
annual minimum and maximum temperatures.

Table 7. Pearson correlation analysis results of mangrove forest crown surface cover area with
socioeconomic and climatic factors over the Hainan Island during 1991–2021.

City/County Total
Pop 1

Rural
Pop.

Urban
Pop. GDP Gross Output

Fishery Value
Average Annual

Rainfall
Average Annual Minimum

Temperature
Average Annual Maximum

Temperature

Hainan
Island 0.836 * −0.42 0.875 ** 0.853 * 0.801 * 0.09 0.56 0.52

Haikou 0.51 0.37 0.49 0.19 0.29 0.28 −0.16 −0.37
Sanya 0.21 −0.70 0.39 0.47 0.30 −0.48 0.33 0.63

Wenchang 0.72 −0.764 * 0.901 ** 0.797 * 0.788 * 0.11 0.35 0.41
Qionghai 0.29 0.14 0.18 0.28 0.21 −0.04 0.07 0.24
Wanning −0.15 −0.52 0.15 0.27 0.23 −0.20 0.44 0.63

Chengmai 0.61 −0.775 * 0.73 0.922 ** 0.885 ** 0.21 0.767 * 0.797 *
Lingao 0.59 0.57 0.58 0.772 * 0.71 −0.14 0.66 0.73

Danzhou 0.53 0.51 0.47 0.800 * 0.75 −0.15 0.842 * 0.867 *
Dongfang 0.57 −0.30 0.73 0.770 * 0.64 0.49 0.71 0.62

Ledong 0.62 0.58 0.40 0.810 * 0.67 0.00 0.63 0.64
Lingshui 0.60 −0.40 0.825 * 0.69 0.62 −0.03 0.39 0.38

Changjiang 0.19 0.49 −0.01 −0.17 −0.21 0.62 −0.16 −0.47

1 Pop. refers to the population; * p < 0.05; ** p < 0.01.

4. Discussion
4.1. Comparative Analysis of Mangrove Classification Methods

In this study, the accuracy of the SVM and Res-UNet algorithms used to identify the
distribution range of mangrove forests in the Hainan Island from 1991 to 2021 produced
OA values of 93.11 ± 1.54% and 96.43 ± 1.15%, respectively; the PA of Res-UNet was
resultantly much greater than SVM. It was observed that the Res-UNet algorithm based on
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a convolutional neural network produced a higher correct classification rate for the crown
surface cover area of the mangrove forest.

In their examination of the Pichavaram mangrove wetland that spans 2335.5 ha,
Singh et al. [43] achieved the highest overall classification accuracy by using an SVM to
identify mangrove images (94.53%). Zhen et al. [27] used an SVM to classify the land use of
the Dongzhai Port National Nature Reserve in Hainan, finding that OA could reach 83.5%;
thus, it has been shown that SVMs can delineate the distributions of mangrove forests in
small-scale wetland parks or natural reserves. Similarly, this study found that SVM can
effectively extract the land area of mangrove forests in the Hainan Island, which has the
advantage of identifying mangrove forest land areas at a large scale.

However, the SVM algorithm often failed to accurately distinguish spectrally similar
mangrove forests from aquatic herbs and water surfaces. Hu et al. [19] found that spectral-
temporal variability metrics could distinguish mangrove forests from agricultural fields or
other natural terrestrial vegetation with high spectral similarity, but some aquatic plants
were still misclassified. Alternatively, Jia et al. [44] used K-nearest neighbor (KNN) for
object-based classification; however, mangrove forests were still incorrectly distinguished
from water surfaces. Thus, the results show that machine-learning algorithms have yet to
clearly resolve the misclassification problem of mangrove forest land cover classifications.

In the ground survey of mangrove forests on the Hainan Island, in areas with high man-
grove mortality, the local government would usually plant mangrove seedlings frequently,
which caused the mangrove forests in most areas to be at the seedling stage. However,
Landsat satellite data with a 30 m spatial resolution were not effective in identifying man-
grove forests at the seedling stage, which caused the mangrove forest land area identified by
SVM and the mangrove crown surface cover identified by Res-UNet to be smaller than the
studies of Hu et al. [19] and Jia et al. [44] (Table 8). Furthermore, the area of the mangrove
crown surface cover identified by Res-UNet was more detailed and could better reflect
the characteristics of the distribution of the patches of mangrove forests while offering
more advantages for analyzing the fragmentation of mangrove forests. The Res-UNet deep
learning not only produced a high OA but also significantly reduced misclassifications.
Specifically, most of the mixed pixels containing spectrally similar aquatic plants and water
surfaces to the mangrove forests were correctly separated by this algorithm. Therefore, in
mangrove areas difficult to access in the surface cover of the ground survey, the mangrove
forest crown could be obtained with the help of Res-UNet deep learning. The Res-UNet is
more effective in identifying a large-scale area of mangrove crown surface cover area. In
addition, the mangrove forest crown surface cover area is helpful for us to explore changes
in mangrove biomass and carbon storage.

Table 8. Comparison of mangrove forest areas in the Hainan Island among different studies.

Name Classification Algorithm
Mangrove Forests Area (ha)

1991 1996 2000 2007 2010 2015 2021

Mangrove forest land area in this study SVM 3081 2917 2851 3030 3072 3493 3827
Mangrove forests crown surface cover

area in this study Res-UNet 1740 2077 1985 2372 2695 2234 3439

Mangrove forest land area
Hu et al. [19] RF

1990 1995 2000 2005 2010 2015

3701 3141 3235 3305 3623 3702

Mangrove forest land area
Jia et al. [44] KNN

1990 2000 2010 2015

4809 3978 3576 4017

4.2. Spatiotemporal Evolution of Mangrove Forests in the Hainan Island

During 1991–2021, the total area of the mangrove forest crown surface coverage on
the Hainan Island showed a net increase of 1698.48 ha, corresponding to an annual change
rate of 2.27%·yr−1. Related studies have shown that since the early 1990s, China has paid
increasing attention to wetland conservation, with the government enacting a series of
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corresponding protective laws and regulations, including the China Biodiversity Con-
servation Action Plan (State Environmental Protection Administration, 1994), Agenda 21
Forestry Action Plan (State Forestry Administration, 1995; 1996), Ecological Environmental
Protection Plan (State Council, 1998), and the Wetland Conservation Action Plan (State
Forestry Administration, 2000) [42]. Combining the change in center mass, population
trends, and socioeconomic developments in the Hainan Island, it was further revealed that
mangrove forests near landed areas were rapidly decreasing and expanding to the mudflats
by the sea due to population growth and urbanization.

This study revealed that in both 2000 and 2015, the area of the mangrove forest crown
surface cover on the Hainan Island decreased, NP increased, and both LPI and AI decreased,
indicative of the continued deterioration and fragmentation of the mangrove forest connec-
tivity during these two phases. Changes in LSI indicated that landscape shape complexity
was also increasing. With the gradual progress of urbanization, the interference of human
activities on the landscape pattern also proved to be increasing; therefore, in landscape
pattern evolution, fragmentation levels are growing, leading to the increased complexity of
landscape patches. Although the area of the mangrove forest crown surface cover in the
Hainan Island has increased over the past three decades largely due to the intensification
of mangrove forest restoration efforts, negative growth occurred approximately every
10 to 15 years throughout the study period. Especially in 2015, the crown surface cover
area of the mangrove forest on the Hainan Island decreased significantly. However, in
six years, it added more than a thousand hectares. The reason for this can be found in
the Annual Statistical Report of the Hainan Province. From 2015 to 2021, the total area of
shelter forests planted on the Hainan Island reached 14,661 hectares. This shows that the
increase in planted mangrove forests based on conservation strategies and the decrease
in naturally occurring mangrove forests may cause increased landscape fragmentation,
and the landscape shape is single. Furthermore, the survival rate of artificially planted
mangrove forests is low [44], indicating a relatively low overall conservation efficiency.
Therefore, future mangrove protection and management should be based on protection
and supplemented by restoration, as maintaining the current health of existing mangrove
ecosystems to improve their resilience is usually more time efficient and economical than
planting large amounts of new mangrove forests [45].

Spatially, the arial changes in the mangrove forest crown surface cover observed in
each city or county over the 30-year analysis period followed the overall growth trends. In
addition, the landscape patterns in Haikou and Danzhou cities showed a significant im-
provement. According to the preliminary analysis, this results from the excellent landscape
patterns in these cities due to the presence of mangrove nature reserves [46]. The expan-
sion of the mangrove forest crown surface coverage in the Hainan Island was positively
correlated with the development of the whole island economy, fishery production, and
expanding urban population. This suggests that the mangrove forest crown surface cover
area in the Hainan Island will increase as the rural population shifts toward urban areas
with greater socioeconomic development. The rapid development of this tertiary industry
and the shift of the rural population to cities have reduced the damage to mangrove forests
caused by agricultural practices, such as constructing coastal lands. Furthermore, because
mangrove forests maintain their natural purification ability and can provide a constant
source of organic debris and other food sources for benthic organisms, organized fish
farming activities may play a certain role in promoting the growth of mangrove forest areas.
Therefore, the local government and residents’ awareness of mangrove forest protection
should be increased while focusing on maintaining the ecological environment of mangrove
forests; furthermore, the benefits of resources should be optimized for sustainable fish
farming, so a synergistic effect between ecological protection and economic development
can be achieved.
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5. Conclusions

Using Landsat imagery data in this study alongside employed machine-learning
(SVM) and deep learning algorithms (Res-UNet) to extract information from tropical
mangrove forests meant that the accuracy of these two methods could be analyzed and
compared. The OA for the extraction of the mangrove forest spatial distribution extraction
produced values of 93.11 ± 1.54 and 96.43 ± 15% for SVM and Res-UNet, respectively. The
superior classification results were produced by the deep learning algorithm compared to
machine learning, as the proposed model of Res-UNet combined a semantic segmentation
network (U-Net) and the feature extraction network ResNet-18. This method effectively
resolved previous issues regarding the misclassification of spectrally similar pixels in large-
scale study areas. Moreover, the Res-UNet algorithm was more efficient and accurate
at extracting the crown surface cover area of mangrove forests, providing an important
foundation for the refined calculation of the carbon sequestration potential for these forests.

The present study analyzed the spatiotemporal changes in the tropical mangrove
landscape patterns on the Hainan Island over the past 30 years from multiple perspectives,
including the corresponding changes in crown surface cover, landscape fragmentation,
mass centering offsets, as well as anthropogenic and climatic factors. The results revealed
that mangrove forests in most areas underwent an overall trend of growth. Although there
were various spatial differences among cities and counties, the recorded changes to the
mangrove forests were mainly influenced by an increase in landscape fragmentation due to
human disturbance. Additionally, this study assessed the relationships between changes to
the tropical mangrove forested land area or crown surface coverage as responses to mecha-
nisms of shifting climate and socioeconomic factors across the Hainan Island. Although
this study focused on the socioeconomic factors affecting mangrove forest dynamics, and
climatic and environmental factors, it also investigated how these factors contributed to
these corresponding changes. For example, it was found that the average annual rainfall, as
well as average annual minimum and maximum temperatures, were positively correlated
with mangrove forest crown surface cover area changes in the Hainan Island; however,
these correlations were not significant. Only the growth of mangrove forests in Chengmai
County and Danzhou City was significantly correlated with climatic factors. Because,
compared with human activity disturbances, the process of climate factors affecting man-
grove wetlands has an inherent lag component, the impacts of more gradual environmental
changes on mangrove ecosystems appear relatively insignificant [47]. Furthermore, the
strong interference of human activities makes the evolutionary mechanisms that affect
mangrove landscapes highly complex; therefore, it is necessary to obtain additional data
related to the influencing factors for in-depth analyses. Therefore, more field surveys and
remote sensing monitoring data are required to further study the integrated driving forces
of mangrove forest dynamics. More detailed and perfect suggestions must be presented for
mangrove forest nature reserve-related landscape planning to provide more appropriate
ideas for tropical mangrove forest protection.
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Appendix A

Appendix A.1

In this study, a handheld GPS and Google Earth were used to survey the main distri-
bution areas of the mangrove forests in 12 cities and counties along the coast of the Hainan
Island in October 2021. The dominant tree species in each city are shown in Table A1.

Table A1. Information on dominant tree species of mangrove forests in the Hainan Island obtained
from a ground survey.

Distribution of Dominant Mangrove Forests Tree Species in Hainan Island, 2021

City/County Tree Species

Haikou

Acanthus ilicifolius L. Excoecaria agallocha Linn.
Acrostichum speciosum Will. Hibiscus tiliaceus Linn.

Aegiceras corniculatum (Linn.) Blanco Kandelia obovata Sheue, Liu et Yong
Avicennia marina (Forsk) Vierh. Laguncularia racemosa Gaertn. f.

Bruguiera gymnorrhiza (Linn.) Sav. Pongamia pinnata (Linn.) Pierre
Bruguiera sexangula (Lour.) Poir. Rhizophora apiculata Blume

Bruguiera sexangula (Lour.) Poir. var. rhynchopetala Ko Rhizophora stylosa Griff
Ceriops tagal (Perr.) C. B. Rob. Sonneratia apetala Buch. -Ham.

Sanya

Aegiceras corniculatum (Linn.) Blanco Rhizophora stylosa Griff.
Avicennia marina (Forsk) Vierh. Sonneratia × hainanensis Ko, E. Y. Chen et W. Y. Chen
Ceriops tagal (Perr.) C. B. Rob. Sonneratia alba J. Smith

Lumnitzera racemosa Willd Sonneratia ovata Backer
Rhizophora apiculata Blume Xylocarpus granatum J. Koenig

Wenchang

Avicennia marina (Forsk) Vierh. Lumnitzera littorea (Jack) Voigt
Bruguiera gymnorrhiza (Linn.) Sav. Rhizophora apiculata Blume

Bruguiera sexangula (Lour.) Poir. var. rhynchopetala Ko Rhizophora stylosa Griff.
Ceriops tagal (Perr.) C. B. Rob. Sonneratia × hainanensis Ko, E. Y. Chen et W. Y. Chen

Excoecaria agallocha Linn. Sonneratia alba J. Smith
Hibiscus tiliaceus Linn. Sonneratia caseolaris (Linn.) Engl.

Kandelia obovata Sheue, Liu et Yong Sonneratia ovata Backer
Laguncularia racemosa Gaertn. f.

Qionghai
Bruguiera gymnorrhiza (Linn.) Sav. Sonneratia × hainanensis Ko, E. Y. Chen et W. Y. Chen

Cerbera manghas L. Sonneratia alba J. Smith
Hibiscus tiliaceus Linn. Sonneratia ovata Backer

Wanning
Bruguiera gymnorrhiza (Linn.) Sav. Hibiscus tiliaceus Linn.

Cerbera manghas L. Nypa fruticans Wurmb.
Excoecaria agallocha Linn. Sonneratia caseolaris (Linn.) Engl.

Chengmai

Aegiceras corniculatum (Linn.) Blanco Lumnitzera littorea (Jack) Voigt
Avicennia marina (Forsk) Vierh. Rhizophora apiculata Blume

Hibiscus tiliaceus Linn. Rhizophora stylosa Griff.
Kandelia obovata Sheue, Liu et Yong Sonneratia caseolaris (Linn.) Engl.

Lingao
Aegiceras corniculatum (Linn.) Blanco Hibiscus tiliaceus Linn.

Avicennia marina (Forsk) Vierh. Rhizophora stylosa Griff.
Excoecaria agallocha Linn.

Danzhou
Aegiceras corniculatum (Linn.) Blanco Kandelia obovata Sheue, Liu et Yong

Avicennia marina (Forsk) Vierh. Lumnitzera littorea (Jack) Voigt
Hibiscus tiliaceus Linn. Rhizophora stylosa Griff.

Dongfang Avicennia marina (Forsk) Vierh. Laguncularia racemosa Gaertn. f.

Ledong Rhizophora stylosa Griff. Avicennia marina (Forsk) Vierh.
Lumnitzera littorea (Jack) Voigt Laguncularia racemosa Gaertn. f.
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Table A1. Cont.

Distribution of Dominant Mangrove Forests Tree Species in Hainan Island, 2021

City/County Tree Species

Lingshui

Avicennia marina (Forsk) Vierh. Rhizophora stylosa Griff.
Bruguiera gymnorrhiza (Linn.) Sav. Sonneratia × hainanensis Ko, E. Y. Chen et W. Y. Chen

Bruguiera sexangula (Lour.) Poir. var. rhynchopetala Ko Sonneratia alba J. Smith
Kandelia obovata Sheue, Liu et Yong Sonneratia apetala Buch. -Ham.

Laguncularia racemosa Gaertn. f. Sonneratia ovata Backer

Changjiang Avicennia marina (Forsk) Vierh. Rhizophora stylosa Griff

Appendix A.2

Figure A1 indicates the classification results of the SVM machine-learning algorithm,
and Figure A2 indicates the classification results of the Res-UNet deep learning algorithm.

Figure A1. Cont.
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Figure A1. SVM machine-learning classification results. (a) 1991; (b) 1996; (c) 2000; (d) 2007; (e) 2010;
(f) 2015; (g) 2021.
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Figure A2. Cont.
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Figure A2. Classification results of Res-UNet machine-learning. (a) 1991; (b) 1996; (c) 2000; (d) 2007;
(e) 2010; (f) 2015; (g) 2021.

References
1. Tomlinson, P.B. The Botany of Mangroves; Cambridge University Press: Cambridge, MA, USA, 2016.
2. Simard, M.; Fatoyinbo, L.; Smetanka, C.; Rivera-Monroy, V.H.; Castañeda-Moya, E.; Thomas, N.; Van der Stocken, T. Mangrove

canopy height globally related to precipitation, temperature and cyclone frequency. Nat. Geosci. 2019, 12, 40–45. [CrossRef]
3. Getzner, M.; Islam, M.S. Ecosystem services of mangrove forests: Results of a meta-analysis of economic values. Int. J. Environ.

Res. Public Health 2020, 17, 5830. [CrossRef] [PubMed]
4. Donato, D.C.; Kauffman, J.B.; Murdiyarso, D.; Kurnianto, S.; Stidham, M.; Kanninen, M. Mangroves among the most carbon-rich

forests in the tropics. Nat. Geosci. 2011, 4, 293–297. [CrossRef]
5. Lee, S.Y.; Primavera, J.H.; Dahdouh-Guebas, F.; McKee, K.; Bosire, J.O.; Cannicci, S.; Diele, K.; Fromard, F.; Koedam, N.; Marchand,

C. Ecological role and services of tropical mangrove ecosystems: A reassessment. Glob. Ecol. Biogeogr. 2014, 23, 726–743. [CrossRef]
6. Goldberg, L.; Lagomasino, D.; Thomas, N.; Fatoyinbo, T. Global declines in human-driven mangrove loss. Glob. Chang. Biol. 2020,

26, 5844–5855. [CrossRef]
7. Friess, D.A.; Rogers, K.; Lovelock, C.E.; Krauss, K.W.; Hamilton, S.E.; Lee, S.Y.; Lucas, R.; Primavera, J.; Rajkaran, A.; Shi, S. The

state of the world’s mangrove forests: Past, present, and future. Annu. Rev. Environ. Resour. 2019, 44, 89–115. [CrossRef]
8. Murray, N.J.; Phinn, S.R.; DeWitt, M.; Ferrari, R.; Johnston, R.; Lyons, M.B.; Clinton, N.; Thau, D.; Fuller, R.A. The global

distribution and trajectory of tidal flats. Nature 2019, 565, 222–225. [CrossRef]
9. Wang, L.; Jia, M.; Yin, D.; Tian, J. A review of remote sensing for mangrove forests: 1956–2018. Remote Sens. Environ.

2019, 231, 111223. [CrossRef]
10. Liu, X.; Yang, X.; Zhang, T.; Wang, Z.; Zhang, J.; Liu, Y.; Liu, B. Remote sensing based conservation effectiveness evaluation of

mangrove reserves in china. Remote Sens. 2022, 14, 1386. [CrossRef]
11. Purnamasayangsukasih, P.R.; Norizah, K.; Ismail, A.A.; Shamsudin, I. A review of uses of satellite imagery in monitoring

mangrove forests. Proceeding of 8th IGRSM International Conference and Exhibition on Geospatial & Remote Sensing (IGRSM
2016), Kuala Lumpur, Malaysia, 13–14 April 2016; 37, p. 012034. [CrossRef]

12. Hauser, L.T.; Vu, G.N.; Nguyen, B.A.; Dade, E.; Nguyen, H.M.; Nguyen, T.T.Q.; Le, T.Q.; Vu, L.H.; Tong, A.T.H.; Pham, H.V.
Uncovering the spatio-temporal dynamics of land cover change and fragmentation of mangroves in the Ca Mau peninsula,
Vietnam using multi-temporal SPOT satellite imagery (2004–2013). Appl. Geogr. 2017, 86, 197–207. [CrossRef]

13. Proisy, C.; Viennois, G.; Sidik, F.; Andayani, A.; Enright, J.A.; Guitet, S.; Gusmawati, N.; Lemonnier, H.; Muthusankar, G.; Olagoke,
A. Monitoring mangrove forests after aquaculture abandonment using time series of very high spatial resolution satellite images:
A case study from the perancak estuary, bali, indonesia. Mar. Pollut. Bull. 2018, 131, 61–71. [CrossRef] [PubMed]

14. Pham, T.D.; Xia, J.; Ha, N.T.; Bui, D.T.; Le, N.N.; Takeuchi, W. A review of remote sensing approaches for monitoring blue carbon
ecosystems: Mangroves, seagrasses and salt marshes during 2010–2018. Sensors 2019, 19, 1933. [CrossRef] [PubMed]

15. Gaw, L.Y.; Linkie, M.; Friess, D.A. Mangrove forest dynamics in tanintharyi, myanmar from 1989–2014, and the role of future
economic and political developments. Singap. J. Trop. Geogr. 2018, 39, 224–243. [CrossRef]

http://doi.org/10.1038/s41561-018-0279-1
http://doi.org/10.3390/ijerph17165830
http://www.ncbi.nlm.nih.gov/pubmed/32806567
http://doi.org/10.1038/ngeo1123
http://doi.org/10.1111/geb.12155
http://doi.org/10.1111/gcb.15275
http://doi.org/10.1146/annurev-environ-101718-033302
http://doi.org/10.1038/s41586-018-0805-8
http://doi.org/10.1016/j.rse.2019.111223
http://doi.org/10.3390/rs14061386
http://doi.org/10.1088/1755-1315/37/1/012034
http://doi.org/10.1016/j.apgeog.2017.06.019
http://doi.org/10.1016/j.marpolbul.2017.05.056
http://www.ncbi.nlm.nih.gov/pubmed/28651863
http://doi.org/10.3390/s19081933
http://www.ncbi.nlm.nih.gov/pubmed/31022958
http://doi.org/10.1111/sjtg.12228


Remote Sens. 2022, 14, 5554 26 of 27

16. Hu, L.; Li, W.; Xu, B. The role of remote sensing on studying mangrove forest extent change. Int. J. Remote Sens. 2018, 39,
6440–6462. [CrossRef]

17. Thakur, S.; Mondal, I.; Ghosh, P.; Das, P.; De, T. A review of the application of multispectral remote sensing in the study of
mangrove ecosystems with special emphasis on image processing techniques. Spat. Inf. Res. 2020, 28, 39–51. [CrossRef]

18. Buck, O.; Millán, V.E.G.; Klink, A.; Pakzad, K. Using information layers for mapping grassland habitat distribution at local to
regional scales. Int. J. Appl. Earth Obs. Geoinf. 2015, 37, 83–89. [CrossRef]

19. Hu, L.; Li, W.; Xu, B. Monitoring mangrove forest change in china from 1990 to 2015 using landsat-derived spectral-temporal
variability metrics. Int. J. Appl. Earth Obs. Geoinf. 2018, 73, 88–98. [CrossRef]

20. Abdi, A.M. Land cover and land use classification performance of machine learning algorithms in a boreal landscape using
sentinel-2 data. GIScience Remote Sens. 2020, 57, 1–20. [CrossRef]

21. Guo, Y.; Liao, J.; Shen, G. Mapping large-scale mangroves along the maritime silk road from 1990 to 2015 using a novel deep
learning model and landsat data. Remote Sens. 2021, 13, 245. [CrossRef]

22. Li, H.; Hu, B.; Li, Q.; Jing, L. Cnn-based individual tree species classification using high-resolution satellite imagery and airborne
lidar data. Forests 2021, 12, 1697. [CrossRef]

23. Zhang, Z.; Liu, Q.; Wang, Y. Road extraction by deep residual u-net. IEEE Geosci. Remote Sens. Lett. 2018, 15, 749–753. [CrossRef]
24. Cao, K.; Zhang, X. An improved res-unet model for tree species classification using airborne high-resolution images. Remote Sens.

2020, 12, 1128. [CrossRef]
25. Ibharim, N.; Mustapha, M.; Lihan, T.; Mazlan, A. Mapping mangrove changes in the matang mangrove forest using multi

temporal satellite imageries. Ocean Coast. Manag. 2015, 114, 64–76. [CrossRef]
26. Son, N.T.; Thanh, B.X.; Da, C.T. Monitoring mangrove forest changes from multi-temporal landsat data in can gio biosphere

reserve, vietnam. Wetlands 2016, 36, 565–576. [CrossRef]
27. Zhen, J.; Liao, J.; Shen, G. Mapping mangrove forests of dongzhaigang nature reserve in china using landsat 8 and radarsat-2

polarimetric sar data. Sensors 2018, 18, 4012. [CrossRef]
28. Gilani, H.; Naz, H.I.; Arshad, M.; Nazim, K.; Akram, U.; Abrar, A.; Asif, M. Evaluating mangrove conservation and

sustainability through spatiotemporal (1990–2020) mangrove cover change analysis in pakistan. Estuar. Coast. Shelf Sci.
2021, 249, 107128. [CrossRef]

29. Giri, C.; Long, J.; Abbas, S.; Murali, R.M.; Qamer, F.M.; Pengra, B.; Thau, D. Distribution and dynamics of mangrove forests of
south asia. J. Environ. Manag. 2015, 148, 101–111. [CrossRef]

30. Liao, J.; Zhen, J.; Zhang, L.; Metternicht, G. Understanding dynamics of mangrove forest on protected areas of hainan island,
china: 30 years of evidence from remote sensing. Sustainability 2019, 11, 5356. [CrossRef]

31. Vapnik, V. The Nature of Statistical Learning Theory; Springer Science & Business Media: Berlin/Heidelberg, Germany, 1999.
32. Maxwell, A.E.; Warner, T.A.; Fang, F. Implementation of machine-learning classification in remote sensing: An applied review.

Int. J. Remote Sens. 2018, 39, 2784–2817. [CrossRef]
33. Ronneberger, O.; Fischer, P.; Brox, T. In U-net: Convolutional networks for biomedical image segmentation. In Proceedings of the

International Conference on Medical Image Computing and Computer-Assisted Intervention, Munich, Germany, 5–9 October
2015; Springer: Berlin/Heidelberg, Germany, 2015; pp. 234–241. Available online: https://lmb.informatik.uni-freiburg.de/
people/ronneber/u-net/ (accessed on 1 September 2022).

34. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. Available online: https://openaccess.
thecvf.com/content_cvpr_2016/html/He_Deep_Residual_Learning_CVPR_2016_paper.html (accessed on 1 September 2022).

35. Chaurasia, A.; Culurciello, E. Linknet: Exploiting encoder representations for efficient semantic segmentation. In Proceedings
of the 2017 IEEE Visual Communications and Image Processing (VCIP), St. Petersburg, FL, USA, 10–13 December 2017;
pp. 1–4. [CrossRef]

36. Kingma, D.P.; Ba, J. Adam: A method for stochastic optimization. arXiv 2014, arXiv:1412.6980. [CrossRef]
37. Anand, A. Unit-14 Accuracy Assessment. Processing and Classification of Remotely Sensed Images. Remote Sensing and Image Interpretaion;

Indiara Gandhi National Open University: Delhi, India, 2017; pp. 59–78.
38. Puyravaud, J.-P. Standardizing the calculation of the annual rate of deforestation. For. Ecol. Manag. 2003, 177, 593–596. [CrossRef]
39. Zhang, J.; Yang, X.; Wang, Z.; Zhang, T.; Liu, X. Remote sensing based spatial-temporal monitoring of the changes in coastline

mangrove forests in china over the last 40 years. Remote Sens. 2021, 13, 1986. [CrossRef]
40. Fu, F.; Deng, S.; Wu, D.; Liu, W.; Bai, Z. Research on the spatiotemporal evolution of land use landscape pattern in a county area

based on ca-markov model. Sustain. Cities Soc. 2022, 80, 103760. [CrossRef]
41. Li, H.; Man, W.; Li, X.; Ren, C.; Wang, Z.; Li, L.; Jia, M.; Mao, D. Remote sensing investigation of anthropogenic land cover

expansion in the low-elevation coastal zone of liaoning province, china. Ocean Coast. Manag. 2017, 148, 245–259. [CrossRef]
42. Zheng, Y.; Takeuchi, W. Quantitative assessment and driving force analysis of mangrove forest changes in china from 1985 to

2018 by integrating optical and radar imagery. ISPRS Int. J. Geo-Inf. 2020, 9, 513. [CrossRef]
43. Singh, S.K.; Srivastava, P.K.; Gupta, M.; Thakur, J.K.; Mukherjee, S. Appraisal of land use/land cover of mangrove forest

ecosystem using support vector machine. Environ. Earth Sci. 2014, 71, 2245–2255. [CrossRef]

http://doi.org/10.1080/01431161.2018.1455239
http://doi.org/10.1007/s41324-019-00268-y
http://doi.org/10.1016/j.jag.2014.10.012
http://doi.org/10.1016/j.jag.2018.04.001
http://doi.org/10.1080/15481603.2019.1650447
http://doi.org/10.3390/rs13020245
http://doi.org/10.3390/f12121697
http://doi.org/10.1109/LGRS.2018.2802944
http://doi.org/10.3390/rs12071128
http://doi.org/10.1016/j.ocecoaman.2015.06.005
http://doi.org/10.1007/s13157-016-0767-2
http://doi.org/10.3390/s18114012
http://doi.org/10.1016/j.ecss.2020.107128
http://doi.org/10.1016/j.jenvman.2014.01.020
http://doi.org/10.3390/su11195356
http://doi.org/10.1080/01431161.2018.1433343
https://lmb.informatik.uni-freiburg.de/people/ronneber/u-net/
https://lmb.informatik.uni-freiburg.de/people/ronneber/u-net/
https://openaccess.thecvf.com/content_cvpr_2016/html/He_Deep_Residual_Learning_CVPR_2016_paper.html
https://openaccess.thecvf.com/content_cvpr_2016/html/He_Deep_Residual_Learning_CVPR_2016_paper.html
http://doi.org/10.1109/VCIP.2017.8305148
http://doi.org/10.48550/arXiv.1412.6980
http://doi.org/10.1016/S0378-1127(02)00335-3
http://doi.org/10.3390/rs13101986
http://doi.org/10.1016/j.scs.2022.103760
http://doi.org/10.1016/j.ocecoaman.2017.08.007
http://doi.org/10.3390/ijgi9090513
http://doi.org/10.1007/s12665-013-2628-0


Remote Sens. 2022, 14, 5554 27 of 27

44. Jia, M.; Wang, Z.; Zhang, Y.; Mao, D.; Wang, C. Monitoring loss and recovery of mangrove forests during 42 years: The
achievements of mangrove conservation in china. Int. J. Appl. Earth Obs. Geoinf. 2018, 73, 535–545. [CrossRef]

45. Schmitt, K.; Duke, N.C. Mangrove management, assessment and monitoring. In Tropical Forestry Handbook; Springer:
Berlin/Heidelberg, Germany, 2015; pp. 1–29. [CrossRef]

46. Chen, L.; Wang, W.; Zhang, Y.; Lin, G. Recent progresses in mangrove conservation, restoration and research in china. J. Plant Ecol.
2009, 2, 45–54. [CrossRef]

47. Wang, Q.; Wang, H.; Zhang, W.; Wang, Z.; Xiao, D. The correlations between wetland landscape and social-natural factors on
Northwestern Yunnan Plateau. Acta Ecol. Sin. 2019, 39, 726–738. Available online: https://kns.cnki.net/kcms/detail/11.2031.Q.
20181018.1458.050.html (accessed on 1 September 2022). (In Chinese).

http://doi.org/10.1016/j.jag.2018.07.025
http://doi.org/10.1007/978-3-642-41554-8_126-1
http://doi.org/10.1093/jpe/rtp009
https://kns.cnki.net/kcms/detail/11.2031.Q.20181018.1458.050.html
https://kns.cnki.net/kcms/detail/11.2031.Q.20181018.1458.050.html

	Introduction 
	Materials and Methods 
	Materials 
	Study Area 
	Ground Survey Data Sources 
	Landsat Data Sources and Preprocessing 
	Population, Economy, and Climate Data Sources 

	Methods 
	Support Vector Machine 
	Res-UNet 
	Accuracy Assessment 
	Dynamic Change and Landscape Pattern Analysis 
	Statistical Analysis of Driving Forces 


	Results 
	Analysis of the Classification Results 
	Classification Results of SVM Machine Learning 
	Classification Results of Res-UNet Deep Learning 
	Comparison of Mapping Results between SVM Machine Learning and Res-UNet Deep Learning 

	Analysis of Spatiotemporal Changes of Mangrove Forests in the Hainan Island 
	Change in Mangrove Forest Crown Surface Cover Area during 1991–2021 
	Spatial Distribution and Changes in Mangrove Forests during 1991–2021 
	Influential Mechanisms of Mangrove Forest Landscape Evolution 


	Discussion 
	Comparative Analysis of Mangrove Classification Methods 
	Spatiotemporal Evolution of Mangrove Forests in the Hainan Island 

	Conclusions 
	Appendix A
	 
	 

	References

