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Abstract: The generation of superpixels is becoming a critical step in SAR image segmentation.
However, most studies on superpixels only focused on clustering methods without considering
multi-feature in SAR images. Generating superpixels for complex scenes is a challenging task. It is
also time consuming and inconvenient to manually adjust the parameters to regularize the shapes
of superpixels. To address these issues, we propose a new superpixel generation method for SAR
images based on edge detection and texture region selection (EDTRS), which takes into account the
different features of SAR images. Firstly, a Gaussian function is applied in the neighborhood of each
pixel in eight directions, and a Sobel operator is used to determine the redefined region. Then, 2D
entropy is introduced to adjust the edge map. Secondly, local outlier factor (LOF) detection is used to
eliminate speckle-noise interference in SAR images. We judge whether the texture has periodicity and
introduce an edge map to select the appropriate region and extract texture features for the target pixel.
A gray-level co-occurrence matrix (GLCM) and principal component analysis (PCA) are combined to
extract texture features. Finally, we use a novel approach to combine the features extracted, and the
pixels are clustered by the K-means method. Experimental results with different SAR images show
that the proposed method outperforms existing superpixel generation methods with an increase of
5–10% in accuracy and produces more regular shapes.

Keywords: edge detection; texture region selection; superpixel generation; synthetic aperture radar
(SAR); regular shape

1. Introduction

Synthetic Aperture Radar (SAR) is an active Earth observation system penetrating
the ground and taking high-resolution images [1]. Benefiting from the all-day and all-
weather advantages of SAR, users can conduct monitoring and reconnaissance in specific
scenarios such as battlefields, mineral exploration [2], and oceans [3,4]. The content in
SAR images often contains a variety of targets, and accurate target detection or image
segmentation is highly critical. SAR image segmentation is a critical preprocessing step
before image interpretation, scene recognition, and object detection, and it has become
a research hotspot in remote sensing [5,6]. However, there is a considerable amount
of inherent speckle noise in SAR images because of the coherency of SAR [7], and the
speckle noise seriously reduces the accuracy of image segmentation. Although standard
filtering methods can suppress noise, de-noised images exhibit intensity fluctuations and
lose details [8]. Since SAR images often contain more target details and have a higher
resolution than optical images [9], taking pixels as processing units is undoubtedly a
time-consuming problem. Pixel-based SAR image segmentation techniques are sensitive
to noise and have high processing complexity. Therefore, the region fusion based on
superpixel has been widely used in SAR image segmentation nowadays. A superpixel
is an area that contains a certain number of pixels with the same characteristics [10].
An image can be divided into a specified number or size of small segments, with the
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same attribute using the superpixel method on an image. As a preprocessing step before
region merging, superpixel generation is able to over-segment an image, which makes the
pixels inside a superpixel have similar properties. Thus, it preserves image information
without destroying the edges of objects [11]. Superpixels can reduce the influence of
noise for further SAR image processing [12]. Moreover, superpixels will significantly
improve the processing efficiency of SAR images [13]. This simple and quick processing
method does not require much equipment and is widely used in large scene images
such as marine SAR images [14,15]. Therefore, many superpixel generation methods
have been proposed to preprocess SAR images and have achieved good results in several
critical applications, such as change detection [16,17], object detection [18,19], and image
segmentation [12,20,21]. In recent years, many superpixel methods have been proposed for
natural images. Simple linear iterative clustering (SLIC) [22] is a low-complexity method
that only uses the intensities and locations of pixels for clustering. SLIC has been extended
to many application scenarios [23,24], and wide varieties have been produced [25–27].
Simple non-iterative clustering (SNIC) [28] is a faster superpixel method that does not
require iteration and uses less memory. Superpixels extracted via energy-driven sampling
(SEEDS) [29] use the color consistency and the number of pixels contained in the region
to segment the image. SEEDS is efficient, but the homogeneity within the region is easily
affected by the quality of images. Content-adaptive superpixel segmentation (CAS) [30]
is also a superpixel method that extracts texture features by a robust texture descriptor,
and it integrates multiple features and introduces a cluster-based discriminability measure
that automatically adjusts feature weights to segment images adaptively. These methods
achieved good results on general color images.

In addition, some superpixel methods for SAR image segmentation have been pro-
posed according to the special properties of SAR images. Huang [31] proposed a local
Bayes-based method to generate superpixels using the probability distribution function of
pixels in SAR images. Jin et al. [32] applied an edge-aware-based superpixel generation
method and only needed one iteration to complete the segmentation. Mel [33] proposes
a gray-level co-occurrence matrix-based superpixel method, which uses the energy and
contrast of textures as features. Jing et al. [34] proposed an edge detector and used edge
penalty and shrink expansion strategies to generate superpixels. Liang et al. [35] defined
a new dissimilarity measure using fast pixel clustering for a noise-based application, fast
density spatial clustering, and edge penalty. The similarity ratio-based adaptive Maha-
lanobis distance algorithm (SRAMP) [36] uses Mahalanobis (instead of Euclidian) distance
for SAR images.

Although the above methods can achieve superpixel generation for SAR images,
there are deficiencies. The main defect is that most superpixel methods only utilize image
intensity and location information for segmentation. Due to the limited usage of features,
errors inevitably occur when superpixels are generated, such as incorrect edge fitting and
texture region mis-segmentation for texture regions. Although some methods consider
boundary constraints when generating superpixels [34], edge extraction in the complex
background from SAR images is still challenging. Texture features are seldom used in
existing superpixel methods. In addition, some methods ignore the shape regularity of
superpixels. The messy shape increases the complexity of computing superpixel features
and creates problems for further processing tasks. Some researchers tried to add adjustable
coefficients to the method to adjust the shape of the superpixels [37,38] to solve this issue.
It is inconvenient to set the suitable coefficients and may cause a loss in precision.

To address this concern, we propose a superpixel method for SAR images based on
edge detection and texture region selection (EDTRS). Firstly, we utilize eight convolutional
kernels with different coordinate templates to fuse the information of the neighborhood
around the target pixel. By defining a detection template, the edge value of the pixel is
calculated. We divide the image into nine parts and calculate the 2-D entropy in each grid.
The pixels of each region are assigned a new edge intensity by processing the 2-D entropy.
Secondly, we take the target pixel as the center and judge whether the texture around the
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target pixel is periodic by the autocorrelation function. Then, the appropriate region for
extracting texture features is selected for the target pixel in combination with the detected
edges. The gray level co-occurrence matrix is used to extract the texture of the selected
region, and the dimension of the extracted multi-dimensional features is reduced by PCA.
Finally, superpixels are generated by K-means clustering using texture features, grayscale
differences, and spatial distances.

Compared with other superpixel algorithms, our main contributions and advantages
are shown as follows:

(1) A new edge detection method is proposed, which based on 2-D entropy to eliminate
the effect of noise. Using virtual points fused with region information, the resultant
edges of the proposed method form a band-shaped area, which meets the requirements
of generating superpixels in the later stage.

(2) A region selection method is proposed, which combines the periodic judgment and
edge constraint to select regions for texture feature extraction. The selected region can
accurately describe the texture of the target pixel for generating superpixels.

(3) A superpixel generation method is proposed, which combines edge penalty and
texture information. The generated superpixels always retain a regular shape and
high accuracy.

The remaining part is mainly constructed as follows: Section 2 elaborates the details
of the proposed methods, which contains edge detection, texture region selection, and
superpixel generation. Section 3 shows and analyzes the results. Section 4 concludes the
main findings.

2. Background and Related Works

The simple linear iterative clustering (SLIC) method was proposed by Radhakr-
ishna [22], where every pixel in the image is assigned to the nearest cluster center by
K-means clustering. The initial cluster centers are distributed near each grid’s geometric
center, and the grid’s size is set artificially. The integrated distance between the pixel and
the cluster center is as follows:

Dl =

√
(

d f

m
)

2

+ (
ds

S
)

2
(1)

where d f and ds represent the intensity proximity and spatiality proximity between the
pixel to be clustered and the center pixel, respectively. m and S are the parameters that
weigh the relative contributions of d f and ds to the Dl .

The standard SLIC method can accurately segment natural images and has attracted
many researchers [23], but it does not satisfactorily process SAR images, especially for
trap regions. As shown in Figure 1, Region A and B belong to one class, while the pixel
intensities of B and C are closer. We define Region B as a trap region. Since only intensity
features and location information are used, SLIC assigns some pixels in Region A and C to
a superpixel, resulting in an incorrect segmentation. Taking texture features into account
can reduce such errors.

However, there are three issues that need to be given attention when extracting the
texture features of pixels: (a) The unit for texture extraction is a region rather than a single
pixel [39], (b) texture features at different scales are distinct, and (c) speckle noise in SAR
images can be mistaken for texture. Many texture extraction methods have been proposed,
such as the Markov Random Field (MRF). These methods have been proven to describe
the global texture, but they cannot overcome the above three issues to extract the texture
feature of a single pixel.

In the SLIC method, the precision and compactness of superpixels can be adjusted by
controlling m and S. In some studies, compactness must be sacrificed to improve superpixel
accuracy. The compactness and accuracy of superpixels can be balanced in the following
way: increase the spatial constraint for the pixels inside the same object and decrease the
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spatial control for pixels near the edges of different targets during clustering. This requires
us to flexibly generate adaptive spatial constraints according to the detected edges, which
demands obtaining as many correct edges as possible and avoids false detections. Most
edge detectors use pixels in the eight neighborhoods around the central pixel as targets,
ignoring the influence of noise [40]. Some edge detection methods are also easily deceived
by gradient changes. In other words, these methods may mistake the texture as a boundary
when there is texture inside the target, thus leading to the wrong segments.
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Figure 1. Trap region. Region A and B belong to one class, and Region C is another.

Therefore, we use a texture region selection method combined with the fourth-order
moment to obtain the texture features of the pixels accurately. We also fuse the non-local
information of pixels to eliminate the influence of noise on the edge detector. The extracted
edge information is brought into clustering as a spatial constraint to generate accurate and
regularly shaped superpixels.

3. Methods

In this section, we explain the proposed method in detail. We first obtain an edge
image with a new edge extraction method and 2-D entropy. We use the texture region
selection method to extract the texture feature of every pixel. In the final clustering, texture
features are used for distance calculation with spatial features and intensity features, and
the edge image is transformed into adaptive spatial constraints to control clustering. The
flow chart of our method is shown in Figure 2.
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3.1. Edge Detection Method

When generating superpixels, we hope the pixels near the target edge have less weight
on spatial distances, and more texture and gray features should be considered to improve
segmentation accuracy. Therefore, we propose a method to extract the edge of the SAR
image. In SAR image edge extraction, we hope that the extracted edge is as close to the
actual border as possible. In other words, the extracting edge should contain as many
actual borders as possible to reduce the number of wrong edges caused by texture and
noise. A Gaussian filter can reduce the influence of noise on edge detection. However, each
pixel contains 8 connected neighborhood information, which leads to gradient reduction
and edge blurring. Therefore, we redefined the edge detection region before calculating the
first derivative of the region.

3.1.1. Generate Virtual Pixel Values

We use the region instead of point to describe the neighborhood information of the
target pixel, which can reduce the influence of texture and noise. As shown in Figure 3a,
each black grid box represents a pixel, and green and purple boxes represent Gaussian
templates at different positions. In traditional Gaussian filtering, a blurred information
difference between adjacent pixels in the region to be detected is present. The method we
designed is to give the information in the purple box to the pixel where the red rectangle is
located to avoid detecting the averaging of the pixel intensity in the region. In each region
to be edge detected, its eight-connected neighborhood pixels are redefined, as shown
in Figure 3b. I(x, y) is a target pixel in image I, and its neighborhood with the size of
11× 11 is selected to calculate the edge intensity of I(x, y). We take I(x, y) as the center
and divide its neighborhood area into eight parts Ai(i = 1, 2, 3, 4, 5, 6, 7, 8) from left to right
and top to bottom, and each part contains 5× 5 pixels. The farther a pixel is from the target
pixel, the fewer the relationships between the pixel and I(x, y). Therefore, errors will occur
when directly summing the intensities of all pixels in this neighborhood area. We use a
Gaussian filter to convolute each area so that the eight areas can be replaced by eight virtual
pixel values.
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However, different from the previous Gaussian filter, we redefine the coordinate
template of the Gaussian filter. As shown in Figure 3, the coordinates of the position closest
to the target pixel are set to (0, 0) in each region. This new coordinate template uses a
two-dimensional Gaussian function to generate a Gaussian filter Gi for each part Ai, and
the calculation formula of Gi is defined as follows:

Gi(r, t) =
1

2πσi
2 exp(− r2 + t2

2σi
2 ) (2)
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where (r, t) denotes the coordinates. The value of σ in the Gaussian function controls how
much the weights are spread out. When σ is greater than 2, the value of the Gaussian
filter is more evenly dispersed. The farther away it is from the center pixel, the less weight
is obtained, and the more independent the final output value is from the pixel value at
that distant position. Otherwise, the absolute output value will be the same as the direct
summation. In this work, we need to make the value of the virtual point contain distant
information but not let the distant pixels have the same weight as the close pixels. When
the value of σ is less than 1, the pixels farther from the origin have negligible weights, and
the final value is only related to the pixels at the origin. When the homogeneity of the
pixels in the region Ai is poor, σi should be small, and the pixels close to the region to be
detected have a higher weight. The formula for σi is as follows:

σi =
1

10 ∗ var(Ai)
(3)

where var(Ai) represents the variance in the gray values of all elements in Ai. Each area
is convoluted with its corresponding Gaussian filter to form a new virtual pixel. The
calculation of the virtual pixel pointi is as follows.

pointi = Gi ⊗ Ai (4)

Finally, the eight connected neighborhood pixels in the target region to be detected
are replaced by the generated virtual pixels. The new connected region of I(x, y) is
shown as follows.

block =

point1 point2 point3
point4 I(x, y) point5
point6 point7 point8

 (5)

We simulate the intensity of the traditional Gaussian function and the output of our
method. As shown in Figure 4, for the target region, the Gaussian function will smooth the
intensity and reduce the gradient, while our method can make the gradient more intense.
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3.1.2. Using 2-D Entropy to Optimize Edge Values of Pixels

We use a Sobel operator to detect the edge of block of each pixel to obtain the edge
intensity e(x, y) of each pixel.

Choosing an appropriate threshold is a critical step in many edge detection methods,
and in this study, edge accuracy affects the efficiency and accuracy of the final generation
of superpixels. A high threshold will cause actual boundaries to be hidden, while too
low a threshold will expose more false boundaries. Yang [41] addressed that the edge
percentage of the image has a specific linear relationship with the 2-D entropy of the image
and provided edge proportions corresponding to different entropy values. However, SAR
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images do not have the bright contrasting content of optical images. SAR images also do
not have as much edge detail as optical images. For SAR images, the entropy value of
some regions exceeds that of others. This high entropy region contains a disordered target
instead of many boundaries, as shown in Figure 5. Therefore, where the entropy value
is too high, we should reduce the scale of the edge of this region. In the area with a low
entropy value, we should enhance the contrast of this region to obtain the actual boundary.
However, instead of directly increasing or decreasing the number of boundary pixels by
the threshold in an area, we nonlinearly enlarge or reduce the boundary value of the area.
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We divide the image into nine areas equally and calculate the 2-D entropy value
ENgrid(grid = 1, 2, . . . , 9) of each area by [41]. The boundary values of the pixels in each
grid are multiplied by their corresponding gain values to form new boundary values.

en(x, y) = e(x, y) · K∗(x,y)∈ENgrid
(6)

Here, the mean(EN) is the average entropy of the 9 grids in a SAR image, and the
K∗grid is the enlargement and reduction ratio of the boundary score in each grid according
to the entropy value. The ratio K∗grid is defined as follows.

K∗grid = arctan

(
ENgrid −mean(EN)

10

)
+ 2 (7)

In Section 3.3, we set 89% of the maximum edge value as the threshold to generate
edge images.

3.2. Texture Feature Extraction Based on Region Selection

Only relying on the intensity of pixels to cluster can distinguish objects with significant
differences in the gray level, but this method cannot easily distinguish objects with similar
gray levels but different textures. Therefore, it is necessary to compute the texture features
of each pixel. Since the texture is periodic in the image plane, one period of the texture
should be contained in the image area when we extract the corresponding texture feature.
We compose the pixel intensities in a specific direction into a sequence, and if the texture is
not periodic, we consider that the two sides of the gradient extreme points of the sequence
belong to different objects. The procedure of the extraction texture feature is presented
as follows.
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We take the target pixel (x, y) as the center and construct two sequences with the
length of L + 1 along its horizontal and vertical directions, respectively.

av =

{
I(x− L

2
, y) . . . I(x, y) . . . I(x +

L
2

, y)
}

(8)

ah =

{
I(x, y− L

2
) . . . I(x, y) . . . I(x, y +

L
2
)

}
(9)

Outlier detection is used to check the noise to suppress the influence of noise points in
SAR images. We use the Local Outlier Factor (LOF) [42] to calculate the local outlier factor
for all elements in av or ah. The formula for calculating the factor LOFL(r) of the element in
av or ah is as follows:

LOFL(r) =
∑O∈NL(r) lrd(O)

|NL(r)| · lrd(r)
(10)

where NL(r) is a range. The value of the element in av or ah is a(r), the distance of a(r)
and the Lth element closest to a(r) is NL(r) represents [a(r)− dL(r), a(r) + dL(r)]. lrd(O)
and lrd(r) are the local reachability density of the elements satisfying O ∈ NL(r) and
a(r), respectively.

When the LOF coefficient of the Rth element in a is greater than 1, we consider it an
outlier, meaning that it is a noise point. Because all elements in this set are continuous in
the SAR image, we reassign a(R) using mean interpolation.

a(R) =
a(R− 1) + a(R + 1)

2
(11)

We regard the processed sequence as a sequence of sequential signals and introduce
an autocorrelation function to analyze it.

R(τ) = ∑L+1
1 a(r) · a(r− τ) (12)

The autocorrelation function R(τ) of sequence a has a large crest when τx(τx 6= 0),
which means that the sequence probability is periodic and the period is τx. We synthesize
an image containing periodic and aperiodic regions and add a lot of speckle noise. The
autocorrelation functions of different regions are shown in Figure 6. The autocorrelation
function image of the aperiodic region has no obvious wave crest outside τ = 0, while the
autocorrelation function image of the periodic region has an important wave crest, and
the abscissa corresponding to the wave crest represents the period of the texture in the
region. In sequence av and ah, we define the abscissa of the important wave crest as τa
and τb, respectively. The four vertices of the texture region TR are set to the following:

(x− τa/2, y− τb/2) , (x+ τa/2, y− τb/2) , (x− τa/2, y+ τb/2), and (x+ τa/2, y+ τb/2).
When the sequence is nonperiodic, the TR is a fixed area centered on (x, y). However,

when the detected edge appears inside the texture area, the detected edge acts as the edge
of the TR. We place the TR of each pixel into a rectangular patch with a fixed area to
decrease the effect of area size on texture feature extractions.

The grayscale co-occurrence matrix (GLCM) is an excellent texture feature extractor for
SAR images segmentation [43]. It shows significant effectiveness in selecting appropriate
features due to second-order statistical parameters. We extracted the entropy, energy,
contrast, and homogeneity of all regions using GLCM in four directions for a total of
16 features. As shown in Figure 7, the data are reduced to two dimensions by principal
component analysis, and the two main features were recorded as FT = {FT1, FT2}. The
extraction of texture features FT can distinguish pixels with similar intensities but different
attributions and improve the accuracy of superpixels.
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3.3. Specification for Generating Superpixels Based on the Edge and Texture Features

To account for the accuracy and efficiency of generating superpixels, we combined the
features extracted in the above two sections. We proposed a superpixel generation method
based on edge detection and texture region selection (EDTRS). The detailed flow of pixel
clustering is described as follows.

Firstly, set the number of superpixels to K and then compute e and FT of each pixel by
the proposed methods in the above two sections. Divide the image into K square grids with
size S× S, select a 3× 3 region in the center of the grid, and set the pixel with the smallest
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boundary coefficient as the seed point of the grid. Define the seed point as k(k ∈ [1, K]),
where its coordinate is (xk, yk), it has a gray value gk, and the texture feature is FTk.

Secondly, update the labels of pixels and cluster centers. For each cluster center, its
search range is 2S× 2S, so each pixel is searched by several cluster centers. By calculating
the distance between the pixel and these cluster centers, the pixel is assigned to a certain
label. For SAR image, the distance D between the pixel j to be classified and the cluster
center is defined by the following formula:

D = α · dl + dg + dt (13)

where dg =
√
(gi + gj)

2 is the distance of the gray value, and

dt =
√
(FT1,i − FT1,j)

2 + (FT2,i − FT2,j)
2 is the texture distance. dl is the normalized spatial

distance according to the search radius. Parameter α is a highly influential coefficient that
determines the quality of the superpixels. The larger α is, the more compact and organized
the superpixels are, but the more serious the wrong segmentation is. Since the wrong seg-
mentation occurs entirely at the edge, α should be different for the target pixel located at the
edge and not located at the edge. The edge-dependent coefficient α is defined as follows:

α =

{
exp(ej) ej < n ·max(EI)

exp(−ej) ej ≥ n ·max(EI)
(14)

where ej is the edge coefficient of pixel j, and max(EI) is the largest value in the edge image
EI. Experimentally, n = 89% yielded the best robustness. When the pixel is on the edge, the
value of α is small, ensuring that the classification here follows its features more than the
distances. Conversely, when the pixel is far from the edge, the value of α is large, ensuring
that the shape of the superpixels in the same object is regular. Afterwards, after assigning
all pixels to the label with the smallest distance, update the cluster centers and repeat the
above steps.

The proposed EDTRS considers various situations and reduces clustering errors caused
by similar intensities but different textures by adding texture distance. In addition, using
the calculation of the edge coefficient, whether the pixel is located at the target boundary is
determined. The superpixel can retain a regular shape and fit the boundary well using the
parameter.

4. Results

In this section, three simulated SAR images and three real SAR images are used
to test the performance of the superpixel algorithm. As shown in Figure 8, the three
simulated images SI1,SI2, and SI3(512× 512) have three, four, and five types of target
images, respectively, and the SI1 and SI2 images have textures of different complexities
and different average intensities. The SI3 images do not contain textures. It was proved
that using multiplicative Nakagami distribution to add noise to simulate SAR images
is effective [44]. We added speckle noise to SI1,SI2, and SI3 by using a multiplicative
Nakagami distribution model with a variance of 0.1. The first real image SI4 is Chinalake
image with a resolution of 3 m taken by a Ku-band radar. The second real SAR image
SI5 is Piperiver with a resolution of 1 m. Moreover, the third real image SI6 is from the
WHU-OPT-SAR data set, which was taken by the GF-3 satellite. The ground truth that
we marked is shown in the Figures 8–10. By comparing the segmentation results with the
ground truth, the segmentation quality of different algorithms can be objectively evaluated.
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4.1. Edge Detection and Texture Region Selection

An excellent edge extraction method is required to extract most of the natural bound-
aries and should extract a few false boundaries. Therefore, we use two metrics, boundary
recall (BR) and boundary precision (BP), to evaluate edge extraction. Their calculation
formulas are as follows:

BP =
TP

TP + FP
(15)

BR =
TP

TP + FN
(16)
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where TP represents the number of pixels in the detected edge that are true edges, FP
represents the number of pixels in the detected edges that are not actual edges, and FN
represents the number of true edges that are not detected.

We use four edge detection algorithms as comparison algorithms, namely the Sobel
operator, the Log operator, saliency-driven region edge-based top-down level set evolution
segmentation (SDREL) [45], and fuzzy logic [46]. The edge extraction method proposed
in this paper can obtain the edge value of each pixel, and we use n = 89% as indicated in
Section 3.3 as the threshold to generate a binarized edge image. To test the reliability of our
proposed edge extraction method, we conduct edge extraction experiments on SI1, SI3, SI4,
and SI5.

We performed edge detection on four SAR images, which contain high amounts of
noise and texture, which is a tremendous challenge for edge detection algorithms. As
shown in Figure 11, the edge detection results were obtained from the four contrasting
algorithms and the proposed algorithm on four SAR images. Due to the intense noise and
texture of the image, the four algorithms were affected to different degrees. The algorithm
presented in this paper outperforms all of them. For SI1 and SI4, all four contrast algorithms
detected many false edges in strongly textured regions. In contrast, the proposed method
effectively alleviated this. For image SI3 with only noise and no texture, Sobel and the
algorithm in this paper detected the boundary well, but the other three methods were
inferior. The four contrast algorithms were weak in overcoming noise and detected too
many false boundaries for actual images.
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As shown in Figure 12, we also computed the edge extraction scores of these five
methods for different images. As shown in Figure 12a, the PR scores of the algorithms
in the play are shallow, while the proposed algorithm could maintain a high level. The
situation in Figure 12b is the same: the edge detection method we proposed can detect
almost all of the edges.
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Additionally, we demonstrate the performance of the proposed texture region search
method. The texture area search is used to obtain an area that can represent accurate texture
information of a given point. Therefore, as long as the texture of this area is consistent, we
can consider that the searched area is correct. However, when the explored area contains
different surfaces, the method has failed. We used image A as the experimental object
and set a target point near the edge, as shown in the red point in Figure 13a. The target
point belongs to the same region as the green box. The area for texture feature extraction
of the target point in our proposed method is in the orange box, while the fixed size area
centered on the target point is in the yellow box. The area inside the yellow box contains
two categories of pixels, while the basic and target pixels inside the orange box belong to
one category. We use GLCM to extract the texture features of these regions for quantitative
analysis. The texture features of the area in the green box in Figure 13a are considered
accurate and the texture features extracted from the selected area are very close to the
accurate value.
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4.2. Superpixel Results

To verify the effectiveness of the proposed algorithm, we compare five representative
segmentation algorithms, including SLIC, SNIC, SEEDS, CAS, and SPAMP.

Good superpixel segmentation requires improved boundary adherence, less error
segmentation, and a more regular shape. In this study, three commonly used accuracy
evaluation metrics are adopted for quantitative comparison: boundary recall (BR), under-
segmentation error (UE), and achievable segmentation accuracy (ASA). These three metrics
are used to evaluate the precision and accuracy of segmentation. In addition, a metric used
to evaluate the shape of superpixels, compactness, and regularity (CR), which is defined
as follows:

CR =

(
1
δ2 ·∑

i

C2
i

4π

)
/(M× N) (17)

where δ2 is the variance of all superpixel sizes in an image, C is the perimeter of a superpixel,
and (M× N) is the area of the image. The larger the CR, the more regular and compact the
shape of the superpixel.

4.2.1. Superpixel Results of Simulated SAR Images

The segmentation results of the six methods on the SAR simulation map containing
three types of targets are shown in Figure 14. Each image contains three different numbers
of segmentation results, namely 800, 500, or 300 blocks. It can be seen that the superpixel
shapes and effects produced by the six methods have their characteristics. The superpixels
generated by the SLIC algorithm are more regular in simple textures but perform less well
in complex regions. The superpixels generated by the SNIC method do not fit well with
the edges, producing many wrong segmentations near the edges. SEEDS divides many
pixels with obviously inconsistent intensities into one area, with many wrongly segmented
areas. SPAMP and CAS show poor shape consistency in low-textured highlight regions and
high-textured regions, but with higher accuracy than the first three algorithms. Compared
with the above five algorithms, the performance of the proposed algorithm is superior
because the superpixels it generates fit the boundary of the target well and maintain the
regularity of the shape in complex textured regions.

As shown in Figure 15, the evaluation curves represent the six methods with different
numbers of superpixels. The performance of superpixels is related to the number of super-
pixels to a certain extent. The values of ASA and BR rise with the number of superpixels,
and the value of UE decreases with the increase in the number of superpixels. When the
number of superpixels increases, the pixels in each superpixel decrease, leading to a smaller
variance in the number of all superpixels and resulting in a smaller BR value. Therefore,
although the BR value can indeed reflect the regularity and compactness of the superpixels,
the decrease in the BR value does not necessarily represent a direct relationship between the
regularity of the superpixel shape and the number of superpixels. The three indicators of
ASA, UE, and BR have shown that the three methods of SLIC, SNIC, and SEEDS generally
perform accurately. SPAMP and CAS methods are similar in accuracy and better than the
above three methods. The method proposed in this paper achieves the best results in all
three metrics. Therefore, our algorithm significantly outperforms other algorithms in terms
of shape regularity and compactness.

The SI2 image has complex textures, and the strongly varying textures make the
computer mistake them for edges, which is a massive test for the accuracy of the texture
region selection method in the proposed method. Here, we set the number of superpixels
as K = 900, and six methods were used to segment the SI2 image. The results are shown in
Figure 16.
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Figure 15. (a) BR curves for the SI1 image. (b) UE curves for the SI1 image. (c) ASA curves for the
SI1 image. (d) CR curves for the SI1 image.
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(c) SEEDS, (d) SPAMP, (e) CAS, and (f) EDTRS.

We magnified the regions containing strong textures and the regions containing curved
edges to observe the performance of the segmentation results. Regions containing strong
textures are interior regions that belong to the same object, although the intensity of the
pixels inside this region varies significantly. Combined with Figure 11, the edge detector
we proposed does not identify this part as an edge, so the weight of the spatial distance
is larger than the distance of other features of the pixels, which enables our method to
generate regularly shaped and compact superpixels. In contrast to other methods, since
they cannot easily identify real edges, the generated superpixels have chaotic shapes, which
are unacceptable to human vision. For the regions containing edges shown in the last row,
the superpixel edges generated by our method continuously adhere to the real edges. In
contrast, the edges of the superpixels generated by SLIC, SEEDS, and SPAMP are broken
with the real edges at several positions, leading to many segmentation errors.

For more clarity, we also calculated the values of the four metrics when the number of
superpixels is K = 900 and list them in Table 1.

Table 1. Segmentation metrics of SI2 by four methods.

SLIC SNIC SEEDS SPAMP CAS Proposed

ASA 0.9015 0.9187 0.8910 0.9409 0.9638 0.9789
UE 0.2213 0.2409 0.2501 0.2134 0.2015 0.1204
BR 0.8126 0.8789 0.7968 0.8902 0.8919 0.9866
CR 1.2253 0.6042 0. 4519 0.3188 0.4043 9.9311

Both SI1 and SI2 are images that contain complex textures. Since the EDTRS has good
texture detection characteristics, the segmentation results are excellent. To explore how
the algorithm performs in the image without textures, we experiment with images in SI3,
which do not have texture. We set the number of superpixels to 400, and the segmentation
results of the six methods for SI3 are shown in Figure 17. In the segmentation results
of SLIC and SNIC, the target boundary is ignored, and the number of wrong segments
is relatively large. In comparison, SEEDS, and the proposed method have almost no
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inaccurate segmentation and can fit the edge well. Since the images do not contain strong
textures, the superpixels produced by the CAS method are regularly shaped and perform
better than the first two images.
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Figure 17. Superpixel generation results for the SAR image SI3. The edge of the position indicated
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As shown in Table 2, we calculated the values of four indicators to more accurately
verify the reliability of the algorithm proposed in this study.

Table 2. Segmentation metrics of SI3 by four methods.

SLIC SNIC SEEDS SPAMP CAS Proposed

ASA 0.9215 0.9314 0.9421 0.9510 0.9329 0.9844
UE 0.1911 0.1576 0.1301 0.1209 0.1596 0.0993
BR 0.9090 0.9564 0.9609 0.9732 0.9530 0.9918
CR 2.6271 1.4289 0.8809 0.4528 6.2910 10.8972

4.2.2. Superpixel Results of Real SAR Images

When segmenting the Chinalake image, the number of superpixels was set to 2500.
The segmentation results of each method on this image are shown in Figure 18. The average
intensity inside each superpixel represents the intensity of the entire image. The superpixel
in the left part of the image is surrounded by a red line, which clearly shows the shape of
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superpixels. In the right part of the image without the red line, the quality of the target
boundary segmentation can be distinguished according to the misclassification between
regions with different intensities. The results show that the proposed method outperforms
the other five in boundary adherence. The superpixels generated by the algorithm in
this paper have a regular shape and high compactness. Moreover, the target area with
a small area can be well segmented. The superpixels generated by the SLIC, SNIC, and
CAS are messy, irregularly shaped, and of varying sizes. Additionally, the segmentation
performance of these methods for narrow and long targets is not well satisfactory.
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Figure 18. Superpixel generation results for the real SAR image SI4. (a) SLIC, (b) SNIC, (c) SEEDS,
(d) SPAMP, (e) CAS, and (f) EDTRS.

To further compare the superpixel generation results of each algorithm on the Chi-
nalake image, the metrics of each method are shown in Table 3. The superpixels produced
by the six methods have curved boundaries and different sizes, but their accuracy is lower
than that of the proposed algorithm. The EDTRS algorithm can detect object edges and
maintain high shape constraints at non-edges, making the superpixels appear organized
and compact overall. At the edge, the clustering of pixels is constrained by adding texture
information, which reduces the erroneous segmentation caused when clustering only relies
on intensity. Moreover, texture extraction uses the region selection method, which can
accurately describe the texture information of pixels. In this way, the algorithm proposed
in this paper outperforms the other three algorithms in terms of results.

Table 3. Segmentation metrics of the real SAR image by four methods.

SLIC SNIC SEEDS SPAMP CAS Proposed

ASA 0.9016 0.9266 0.9402 0.9281 0.9353 0.95744
UE 0.0608 0.0603 0.0306 0.0598 0.0457 0.0257
BR 0.6474 0.6916 0.7268 0.7019 0.7240 0.7987
CR 2.0627 1.0275 2.1160 2.6723 1.2341 14.32

The actual SAR image SI5 contains more details for its higher resolution compared
with Chinalake. Moreover, the background of SI5 is very complex, containing trees of
different sizes and long and narrow bridges. Therefore, it is a massive challenge for the
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superpixel generation algorithm to overcome the complex texture to generate a regular
shape superpixel and to make the edge of the superpixel more consistent with the actual
edge. We use six methods to divide SI5 into superpixels and set the number of superpixels
to 1500. The segmentation results are shown in the Figure 19, and almost all methods
except SPAMP can fit most of the boundaries. However, seeds and SNIC methods cannot
accurately generate superpixels for bridges, and these two methods cannot fully distinguish
small and independent trees. On the contrary, the superpixels generated by our method
can identify the boundary well and distinguish the small objects in the background. In
addition, the superpixels generated by our method are regular in shape and compact.
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Figure 19. Superpixel generation results for the real SAR image SI5. (a) SLIC, (b) SNIC, (c) SEEDS,
(d) SPAMP, (e) CAS, and (f) EDTRS.
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The third actual image is much larger than the other two and has more noise. The
generated superpixels must have good homogeneity to obtain accurate information in the
subsequent processing. For SI6, the superpixels belonging to buildings should not include
the pixels belonging to the land, and the superpixels containing bridges should also avoid
pixels belonging to rivers. The more regular the shape, the easier the subsequent extraction
of superpixel features. Considering that the original image size is too large, we select
a part of the area for display, as shown in Figure 20. Due to the interference of speckle
noise, almost all the target edges in SI6 are not clear, which is a tremendous challenge in
generating superpixels. As shown in the blue circle in Figure 20, except for the method in
this paper and SEEDS, other methods cannot distinguish the islands in the river well.

Remote Sens. 2022, 14, 5589 23 of 27 
 

 

  
(e) (f) 

Figure 19. Superpixel generation results for the real SAR image 
5

SI . (a) SLIC, (b) SNIC, (c) SEEDS, 
(d) SPAMP, (e) CAS, and (f) EDTRS. 

The third actual image is much larger than the other two and has more noise. The 
generated superpixels must have good homogeneity to obtain accurate information in the 
subsequent processing. For 

6
SI , the superpixels belonging to buildings should not in-

clude the pixels belonging to the land, and the superpixels containing bridges should also 
avoid pixels belonging to rivers. The more regular the shape, the easier the subsequent 
extraction of superpixel features. Considering that the original image size is too large, we 
select a part of the area for display, as shown in Figure 20. Due to the interference of 
speckle noise, almost all the target edges in 

6
SI  are not clear, which is a tremendous 

challenge in generating superpixels. As shown in the blue circle in Figure 20, except for 
the method in this paper and SEEDS, other methods cannot distinguish the islands in the 
river well. 

   
(a) (b) (c) 

   
(d) (e) (f) 

Figure 20. Superpixel generation results for the real SAR image SI6. (a) SLIC, (b) SNIC, (c) SEEDS,
(d) SPAMP, (e) CAS, and (f) EDTRS.

4.3. Computation Cost Comparison

Although EDTRS needs to perform boundary detection and texture information
extraction before clustering, similarly to SLIC, it only needs to traverse all pixels for
clustering to generate satisfactory superpixels. Thus, the time complexity of EDTRS is O(n),
where n is the number of pixels in the image.

Table 4 shows the time cost of the six methods of dividing different images into
500 superpixels. All experiments in this paper were performed on a machine with a
2.9 GHz i5 CPU. To obtain the correct texture region, the texture region selection algorithm
is used before iterative clustering, and the time consumption of EDTRS also includes the
process of obtaining boundary information. Although the proposed algorithm takes longer
than other algorithms, the improvement in accuracy and regularity brought by EDTRS
makes up for this shortcoming.

Table 4. Computation times of four methods in seconds.

SLIC SNIC SEEDS SPAMP CAS EDTRS

Simulated SAR Image
(512× 512) 0.1020 0.1014 0.0930 10.7392 0.2489 0.5718

Real SAR image
(446× 479 ) 0.0984 0.0956 0.0867 10.5327 0.2403 0.5450
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5. Discussion

The experimental results of several different edge extraction methods on simulated
and real SAR images are shown in Figure 8, showing that most of the edges can be extracted
efficiently. Due to solid texture and noise, if the threshold is set too low, too many non-edges
will be detected, while if the threshold is set too high, the actual edges will not be extracted
completely. Before calculating the edge value of each pixel, our method redefines its eight
connected neighborhoods to reduce the influence of noise and texture. Moreover, the edge
values of the pixels in the high entropy region are weakened to reduce false edges. Our
results show that such a treatment is effective.

In Figure 10, the texture feature of the region selected by our method is closer to the
actual texture feature value. However, the edges of objects are curved, leading to some
deviations in the extracted features. We will keep focusing on this point in further work.
CAS uses texture features to generate superpixels. However, its texture descriptor only
focuses on the local information of the target pixel and cannot accurately reflect texture
features. Although the accuracy of the superpixels generated by CAS is occasionally higher
than other comparison methods, it is lower than the superpixels generated by our method.

In Figure 11, most superpixels can conform to the edges. However, for neighboring
regions with similar gray values, the situation becomes worse. In the right half of SI1,
almost all superpixel generation methods in the intersection of the two regions produce
errors. However, the texture features of the two regions are quite different. We can solve the
segmentation error caused by the gray similarity by integrating the texture features into the
clustering. Figure 12 shows that the greater the number of superpixels, the more significant
the relative increase in accuracy. However, when the number of superpixels increases, the
number of pixels in a superpixel decreases, and the advantages of superpixels cannot be
well reflected. In the blue circle of Figure 15, the superpixels generated by our method are
the same in shape and size, but they can still be distinguished when small targets appear.
In three real images, the superpixels generated by most methods make fitting the edges
well challenging due to the scene’s complexity and noise. Although our methods are also
affected, they are generally satisfactory.

6. Conclusions

This study proposes a superpixel generation method based on edge detection and
texture region selection. Firstly, we use a Gaussian function to fuse non-location information
to generate eight virtual pixels around the target pixel. The edge intensities of all pixels
are calculated by convolving the virtual pixels and Sobel operator. Moreover, we use 2-D
entropy to assign different edge weights to different regions to reduce the number of wrong
edges caused by texture. Secondly, we use the autocorrelation function to analyze the
periodicity of the texture and select the region that best represents the texture of the target
pixel and calculate the texture features of this region by GLCM. Finally, edge intensities
and texture features are combined for pixel clustering.

To evaluate the accuracy of the proposed method, we performed corresponding ex-
periments for three steps of this method. Firstly, we compared our edge detection method
with four methods on four SAR images, and the results suggest that our method is superior
in terms of accuracy. Secondly, the texture region selection method was tested, and the
experimental results directly prove the feasibility of the method. Finally, comparative exper-
iments demonstrate that our proposed method makes excellent progress in segmentation
accuracy, boundary adhesion, and superpixel shape regularity. In future work, we will seek
to improve the structure of the method to reduce time consumption while maintaining the
performance of the results.
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