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Abstract: Soil texture has a great influence on the physical–hydric and chemical behavior of soils. In
the Amazon regions, due to the presence of dense forest cover and limited access to roads, carrying
out surveys and mapping of soils is challenging. When data exist, they are relatively sparse and the
distribution is quite uneven. In this context, machine learning algorithms (ML) associated with remote
sensor covariates offer a framework to derive digital maps of soil attributes. The objective of this
study was to produce maps of surface and subsurface soil clay, silt, and sand contents in a 13.440 km2

area in the Amazon. The specific objectives were to (a) evaluate the gain in prediction accuracy when
using the P-band of airborne radar as a covariate; (b) evaluate two sampling approaches (Reference
Area—RA and Total Area—TA); and (c) evaluate the transferability and performance of three ML
algorithms: regression tree (RT), random forest (RF), and support vector machine (SVM). The study
site was divided into three blocks, called Urucu, Araracanga, and Juruá, respectively. The soil dataset
consisted of 151 surface and subsurface sand, silt, and clay observations and 21 covariates (20 relief
variables and the backscattering coefficient from the P-band). Both the RA and TA sampling approach
used 114 observations for training the prediction models (75%) and 37 for validation (25%). The
RA approach was better for the development of sand and silt models. Overall, RF derived the most
accurate predictions for all variables. The effect of introducing the P-band backscattering coefficient
improved the sand prediction accuracy at the surface and subsurface in Araracanga, which had the
highest sand content, with relative improvements (RI) of the R2, root mean square error (RMSE),
and mean absolute error (MAE) of 46%, 3%, and 4% at the surface, respectively, and 66.7%, 4.4%,
and 5.2% at the subsurface, respectively. For silt, the P-band improved the predictions at the surface
in Araracanga, which had the lowest silt contents among the blocks. For clay, adding the P-band
improved the RF predictions at the subsurface, with RI of the R2, RMSE, and MAE of 29%, 5%, and
5%, respectively. Despite the low observation density, inherently hindered by the low accessibility
of the area and high costs of sampling thereof, the results showed the potential of ML algorithms
boosted by airborne radar P-band to map soil clay, silt, and sand contents in the Amazon.

Keywords: digital soil mapping; soil texture; radar P-band; reference area; soil survey

1. Introduction

Soil texture is a fundamental physical property that strongly influences many other
soil properties. The soil particle size fractions, namely clay, silt, and sand, influence soil
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fertility, water infiltration and retention capacity, soil organic matter dynamics, and, thus,
the ability of soils to support plants, animals and life, and secure biodiversity [1–3]. Soil
sand, silt, and clay contents are input data needed for most hydrological, climatic, and
environmental models. They are also used to estimate hard-to-measure soil properties such
as bulk density, hydraulic conductivity, and water-holding capacity [4,5].

The Brazilian Amazon rainforest represents a major challenge for the development of
systematic soil mapping studies. The region covers an immense area (59% of the Brazilian
territory) and has a large portion covered by dense evergreen forest [6,7]. Additionally
noteworthy is the low density of roads, with most of the territory accessed only by boat
and air transport. In this region, the constant presence of clouds makes it difficult to
use satellite images and aerial photos obtained by passive (optical, infrared) remote sen-
sors [7,8]. This condition makes active sensors, such as radar, potential alternatives for
observing/surveying the land, serving as support for mapping environmental patterns and
resources, including soils, hydrology, geology, and geomorphology. In fact, the climatic
characteristics of the Amazon region and the intense land cover by native vegetation mo-
tivated the first project of systematic mapping of the Amazon region using radar images,
the RADAM Project [9], which was a pioneering effort by the Brazilian government in the
1970s to survey natural resources using airborne radar imagery. At the time, the use of
side-looking airborne radar (SLAR) represented a technological advance, because the radar
images could be obtained both during the day and at night and in cloudy conditions, as
radar microwaves penetrate most clouds. In the RADAM project [9], the X band was used
(wavelengths close to 3 cm and frequency between 8 and 12.5 GHz) and image mosaics were
generated at a scale of 1:250,000. Despite the advancement in the RADAM project as a source
of important maps for the Brazilian Amazon region (geological, geomorphological, soil and
vegetation maps), there is still a growing demand for more detailed maps of soil attributes to
support projects for different purposes, including research in soil water and carbon [7].

Among the available radar bands, for soil studies in the Amazon region under native
forest, the P band is ideal because the waves can pass the clouds and the tree canopies.
Most of the radar research found in the literature concentrates on forestry studies [10–16];
however, recently there has been an increase in the application of radar remote sensing
for soil assessment, mainly focusing on soil moisture [17–22]. As the dielectric behavior
of the soil is affected by the particle size distribution, by assessing the soil dielectric
properties, radar remote sensing indirectly assesses soil particle size distribution [23]. In the
Brazilian Amazon region [8], the addition of relief and vegetation covariates derived from
multispectral images with distinct spatial and spectral resolutions (Landsat 8 and RapidEye)
and L-band radar images (ALOS PALSAR) were evaluated for the prediction of soil organic
carbon stock (CS) and particle size fractions. Overall, the results showed that, even under
forest coverage, the ALOS PALSAR L-band backscattering coefficient improved the accuracy
of subsurface clay content predictions (8.2% higher) from regression kriging (RK) [8].

In addition to the limited availability of P-band radar images, especially in the Amazon,
the execution of soil surveys in this region faces challenges inherent to its remoteness
(low accessibility, little infrastructure, high transportation costs) [7,8]. Therefore, using
existing data and knowledge from soil databases and previous surveys is essential to
build predictive models of attributes such as soil particle size fractions. In this sense, the
Reference Area (RA) approach in association with machine learning (ML) techniques becomes
strategic. The RA approach assumes that a small area, if strategically chosen, can be surveyed
to build a detailed soil map or soil prediction models with the potential to be extended or
applied to other (ideally larger) areas with similar soil and landscape characteristics [24,25].
In this case, the RA approach would significantly reduce mapping costs, requiring only new
field studies to assess the accuracy of the predictions in the new area.

On the other hand, as soil databases are limited in remote areas, the available data do
not always present density and spatial distribution of soil observations that allow the use of
techniques commonly used in digital soil mapping, such as models based on multivariate
statistics and geostatistics. As an alternative, machine learning (ML) algorithms have been
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shown to be promising for mapping soil types and their attributes in large areas [1,4,26–31].
They refer to a large class of data-driven algorithms, some of which not following any
statistical assumptions. As such, ML algorithms have the capacity of handling a large
number of cross-correlated covariates (collinearity) as predictors [32].

The objectives of this study were to combine machine learning with remote sensor data
to map soil surface and subsurface clay, silt, and sand fractions in the Brazilian Amazon,
aiming specifically to (a) evaluate the gain in prediction accuracy from adding the P-band
of airborne radar as covariate; (b) evaluate two sampling approaches (Reference Area—RA
and Total Area—TA); and (c) evaluate the transferability and performance of regression
tree (RT), random forest (RF), and support vector machine (SVM) models.

2. Materials and Methods
2.1. Study Area

The study area is located in the central region of the Amazonas state (at about 640 km
from Manaus), covering an area of about 13.440 km2 between the municipalities of Coari and
Tefé (Figure 1). The area is remote and practically all covered by equatorial Amazon rainforest.
The elevation ranges from 23 to 112 m above mean sea level and the climate is equatorial (Af),
according to Köppen classification, with the temperature of the coldest month higher than
20 ◦C, mean annual precipitation of 2500 mm, and no pronounced dry period.
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Figure 1. (A) Location of the study area in Central Amazon, Brazil; (B) Total area (TA) sampling,
showing the 75% training and 25% validation random samples; and (C) Reference area (RA) sampling,
with the 75% training samples concentrated at the Geólogo Pedro de Moura Support Base, and the
25% validation samples lying outside the RA.
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According to ref. [8], most soils in the region have low base content, high aluminum
content, and medium-to-high sand content. Some soils in the region have hydromorphic
characteristics, especially those close to the floodplain of water courses and flat tops. The
study area was divided into three blocks, which represent the petroleum exploration blocks
by Petrobras (Brazilian Oil Company), namely Urucu (~4514 km2), Araracanga (~3751 km2),
and Juruá (~4703 km2), respectively (Figure 1A). The project database comprises data from
151 soil profiles surveyed in two field campaigns (year 2008 and 2018, respectively).

2.2. Soil Sampling Designs

The development of soil prediction models and maps involves financial and logistical
investments to support field soil surveys and laboratory and office work. Field sampling in
the Amazon is restricted by the low accessibility due to the absence of roads and limited or
no infrastructure to provide essential goods and services (e.g., lodging, food, and medical
services). This characteristic of the region makes the execution of soil surveys complex,
especially the more detailed ones.

The Reference Area (RA) for the study was the Geólogo Pedro de Moura Support
Base (BOGPM), which belongs to Petrobras (Petróleo Brasileiro S.A.) and spans across
circa 80 km2. The area is only accessed by air or river transport. In 2008, a detailed soil
survey was carried out at BOGPM. In this area, in addition to the soil map, a database
was organized containing 114 observations that included soil taxonomic class (Table 1),
chemical and physical, as well as co-located relief covariates. From these data, prediction
models of soil types and attributes have been developed for other areas, considering the
BOGPM as an RA.

Table 1. Number (n) and percent of soil taxonomic classes in the 151 field observations.

SiBCS a Soil Taxonomy b WRB b n Percent (%)

Argissolo Amarelo Ultisols Acrisols; Lixisols 41 27.15

Argissolo Vermelho Utisols (Typic
Rhodustults) Acrisols; Lixisols 2 1.32

Argissolo Vermelho Amarelo Ultisols Acrisols; Lixisols 29 19.20
Argissolo Acizentado Ultisol (Hapludult) Haplic Lixisol 3 1.98
Cambissolo Háplico Inceptisols Cambisols 49 32.45
Cambissolo Flúvico Entisols (Fluvents) Fluvisols 2 1.32

Espodossolos Humilúvicos Spodosols (Alorthods) Podzols 1 0.66
Espodossolos Ferri-Humilúvicos Spodosols (Orthods) Podzols 4 2.65

Neossolo Quartzarênico Entisols
(Quartzipsamments) Arenosols 1 0.66

Neossolos Flúvicos Entisols (Fluvents) Fluvisols 2 1.32
Planossolo Háplico Ultisols (Albaquults) Planosols 2 1.32
Gleissolos Háplicos Entisols (Aquents) Gleysols; Stagnosols 14 9.27

Gleissolos Melânicos Entisols (Fluvaquentic
Humaquepts) Umbric Gleysols 1 0.66

Total 151 100
a Brazilian Soil Classification System [3]. b Partial equivalence of the soil classes to WRB [33] and Soil Taxonomy [34].

As an RA, the BOGPM serves as a base for soil sampling, for understanding the
soil–landscape relationships of the region, and for training the prediction models aiming to
transfer this knowledge and derived models to a larger region expanding the soil maps and
its attribute maps to remote areas at a lower cost. However, the use of the RA approach
assumes that the soil and landscape data observed in the RA represent the new areas where
the prediction models are intended to be applied for deriving digital maps of soils and
their attributes.

In 2018, a field campaign was carried out to visit 37 new soil sites as model and map
validation sites for the RA approach. In this campaign, 16 remote clearings that allowed
the landing and take-off of helicopters were identified. At each clearing, soil sites located
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within a 2000 m buffer were visited and sampled, expanding the original soil database from
114 to 151 soil profiles (Figure 1; Table 1).

With this data set, two sampling approaches were tested to develop soil clay, silt,
and sand content prediction models for the whole area (13.440 km2), which encompasses
three exploration blocks (Figure 1). It is important to note that, for purposes of organizing
the cartographic bases, the area was divided into exploration blocks by Petrobras. In this
study, the same logic was followed for prediction and map generation. Thus, throughout
this study, the names adopted for each block will be used (Urucu, Araracanga, and Juruá,
as presented in Figure 1). In the first approach—Reference Area—all 114 soil profiles
occurring in the RA (Figure 1C) were used for model training, while the other 37 samples
outside the RA were used for external validation of the models and maps. In the second
approach—Total Area—the existence of an RA was ignored inasmuch as all 151 samples
were pooled together, and the 114 training (75% of the samples) and 37 validation samples
(25%) were randomly drawn from the pooled database of 151 samples.

The methodological strategy to predict sand, silt and clay for each soil depth (surf and
sub) is presented in the flowchart (Figure 2).
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Figure 2. Flowchart of the methodology used for mapping soil surface (Surf) and subsurface (Sub)
clay, silt, and sand contents. T—training; V—validation; RT—regression tree; RF—random forest;
SVM—support vector machine; R2—coefficient of determination.
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2.3. Soil Particle Size Fractions

During the soil survey, the soil profiles were described morphologically with the
separation of horizons/layers (A, AB, BA, B, C, AC, and CB, for example). For each of the
horizons/layers, samples were collected for chemical and physical analyses. The sand, silt,
and clay contents were determined from these samples using the Pipette method [35]. The
dataset with values of sand, silt, and clay of what is called the surface layer (surf) is the
weighted average of these fractions at horizons A, AB, AC, and AE (0–30 cm), while the
dataset of sand, silt, and clay of the subsurface layer refers to the weighted average of these
fractions in the BA, BE, and B horizons (0–100 cm) (Equation (1)). The values of the sand,
silt, and clay fractions in the BC, CB, and C horizons/layers were not considered in the
calculation, whereas CA and C were included when there was no B horizon, that is, for
soils such as Quartzipsamments and Fluvents.

PSFsurf/sub = ∑n
i=1 PSFi ∗ Ti/ ∑n

i=1 Ti (1)

where: PSFSurf/Sub is the particle size fraction (clay, silt, or sand content) in the desired
layer (surface or subsurface), in g kg−1; PSFi is the PSF at horizon i, in g kg−1; Ti is the
thickness, in m, of the portion of the horizon i that lies within the de-sired layer; and n is
the number of horizons that have a portion within the desired layer.

2.4. Radar-Derived P-Band and Relief Covariates

The use of a radar sensor is important in the Amazon region mainly due to atmospheric
conditions that include long rainy periods and the presence of clouds that often limit the
use of passive remote sensors. The exclusive use of P-band (72 cm wavelength) microwave
radar images in large regions covered by dense vegetation, such as the Amazon rainforest,
is essential to generate thematic and relief maps. The longer wavelengths (P-band) can
penetrate treetops and generate sufficiently strong reflections from the terrain below them
to be more sensitive to biomass variations than other bands such as X, C, and L, and can be
used to generate Digital Elevation Models (DEM).

A mosaic and a DEM of the study area were obtained from 84 Synthetic Aperture
Interferometric Radar OrbiSAR-1 images, developed by Orbisat. All appropriate treatments
were carried out, aiming to derive a mosaic and a DEM without interpolation failures,
resulting in a hydrologically consistent DEM with 20 m spatial resolution. Primary and
secondary relief derivatives were derived from the DEM using SAGA GIS version 7.7.0 [36],
including Convergence Index, Topographic Wetness Index, Relative Slope Position, Channel
Network Distance, Channel Network Base Level, LS-factor, Multiresolution Index of Valley
Bottom Flatness, Multiresolution Index of the Ridge Top Flatness, Convexity Index, Aspect,
Landforms, Profile Curvature, Plan curvature, Valley Depth, Slope Height, Mid Slope
Position, Slope Gradient, Melton Ruggedness Number, and Flow Accumulation. All the
data layers were brought to the same projection in ArcGIS (ESRI, Redlands, CA, USA).

The backscatter coefficient (σ◦) of the HH polarization of the P-band was derived from
the radar image mosaic. Reflector points in the ground were used for radiometric calibra-
tion. All calibration and radiometric corrections were performed using ENVI (L3Harris
Geospatial, Broomfield, CO, USA).

2.5. Covariate Selection

The development of prediction models is a complex process that involves several
steps. In the specific case of developing prediction models based on ML algorithms, as
highlighted by ref. [32], conventionally, the choice of covariates is based on minimizing
errors in input and output values. That is, a priori, no conceptual model of soil processes is
contextualized. Only the processes that are transmitted by the input data are represented
on the map.

In this study, two ways of covariate selection to develop ML models were tested:
the “wrapper method” (WM) and “previous covariate selection” (PCS). In the first case
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(WM), all the covariates were made available for the training of the ML algorithms. In
the second case (PCS), two steps were followed: (a) evaluation of Pearson’s correlation
between particle size fractions and relief covariates, preferentially keeping the covariates
with highest correlations; and (b) expert pedological knowledge was used to choose which
covariates to keep on, in a case-by-case basis, aiming to better explain the soil–relief–
vegetation relationships (SRV) in the region, as proposed by ref. [7].

The existence of multicollinearity was also considered both in the WM ant PCS method
to make the covariates available to ML algorithms. The assessment of multicollinearity,
which assesses the increase in variance due to the presence of multicollinearity, was per-
formed based on the Variance Inflation Factor (VIF) [37], preferably keeping the covariates
with VIF < 10 Equation (2).

VIF = 1/
(

1− R2
)

(2)

2.6. Dissimilarities in Covariates between the Reference Area and Total Area

The similarity of the landscape between the areas is important for the adequate
transferability of the models. To examine the constraining effect of the relief characteristics
on the transfer of the models between the reference area and the Urucu Araracanga and
Juruá blocks, the descriptive statistics of the covariates were compared and the Gower
similarity index (GSI; Equation (3)) [38,39] was calculated between the RA and each block,
respectively.

Sij =
1
p ∑p

k=1

1−

∣∣∣xik − xjk

∣∣∣
range k

 (3)

where Sij is the GSI between sites i and j; k represents the relief variables; p is the number
of variables; range k is the range of variable k.

The GSI ranges between 0 and 1. A value of 1 means maximum similarity between
the sites, that is, that the sites differ in no variable, whereas 0 means that the sites differ
maximally in all their variables. In the literature, the GSI is generally used in its inverted
form (1—GSI), or the Gower Dissimilarity Index (GDI). In this case, the interpretation is the
opposite, that is, GDI values close to 0 mean that the two sites are similar, whereas values
close to 1 mean that they are dissimilar in their variables. The GDI (1—GSI) was calculated
from the relief covariates plus the backscatter coefficient derived from the radar images.

2.7. Model Training

The soil surface and subsurface sand, clay, and silt contents were modeled by regres-
sion tree (RT) [40], random forest (RF) [41], and support vector machine (SVM) [42]. The
regression tree represents a set of rules over a hierarchical sequence for the purpose of
partitioning the data. Its most important feature is the ability to convert complex decision
processes into a series of simple decisions [40]. The purpose of RT is to separate observa-
tions into smaller and homogeneous groups in relation to the result of interest, such as soil
class or attributes [40].

Random forest consists of a large number of individual RT models trained from
bootstrap samples of the data [41]. The results of all individual trees are aggregated to
make a single prediction. This method can also rank the predictor variable’s relative
importance based on the regression prediction error of out-of-bag (OOB) predictions [41].

Support vector machine aims to determine decision limits among categories or con-
tinuous values by fitting optimal hyperplanes in the feature space that separates the
samples minimizing prediction errors [42]. It can be used for classification and regression
tasks. Table 2 summarizes the hyperparameters of each ML algorithms used in this study,
R software environment [43].
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Table 2. Hyperparameters of machine learning algorithms used in this study.

Algorithms Hyperparameters Definition Tuning

RT
cp A non-negative number for complexity parameter. 0.001–0.01

method ANOVA anova

RF
mtry number of variables used to produce each tree 1–10
ntree the number of trees (default: 500) 100–1000

nodesize the minimum number of data points in each terminal node 5

SVM

Kernel type the kernel function polynomial

type

svm can be used as a classification machine, as a regression
machine, or for novelty detection. Depending on whether y is a
factor or not, the default setting for type is C-classification or

eps-regression, respectively, but may be overwritten by setting
an explicit value.

‘nu-regression’ or
‘eps-regression’

degree parameter needed for kernel of type polynomial (default: 3) 2–3

cost The cost of predicting a sample within or on the wrong side of
the margin. 0–10

gamma parameter needed for all kernels except linear
(default: 1/(data dimension)) 1

coef0 parameter needed for kernels of type polynomial and sigmoid
(default: 0) 0

tolerance tolerance of termination criterion (default: 0.001) 0.001

RT: regression tree; RF: random forest; SVM: support vector machine.

2.8. Evaluation of the Accuracy of Interpolation Methods

The coefficient of determination (R2; Equation (4)) was used to evaluate the goodness-
of-fit of the RT, RF, and SVM models for soil sand, clay, and silt content, and the mean
absolute error (MAE; Equation (5)), and the root mean square error (RMSE; Equation (6))
were used to assess their prediction accuracy.

R2 = 1− ∑n
i=1(Oi − Pi)

2

∑n
i=1 (Oi −O)

2 (4)

MAE =
1
n ∑n

i=1|Oi − Pi| (5)

RMSE =

√
1
n ∑n

i=1 (Oi − Pi)
2 (6)

where n is the number of observations, Oi and Pi are the observed and predicted values,
respectively, and O is the mean of observed values.

2.9. Evaluation of the Importance of P-Band to Model’s Performance

To evaluate the importance of adding the backscattering coefficient of the P-band in
the model, the Relative Improvements (RI) of the R2, RMSE, and MAEwere calculated,
respectively (Equation (7)).

RI =
AccuracyIn −AccuracyOut

AccuracyOut
× 100 (7)

where: RI is the relative improvement, in %, accuracy is the R2, MAE, or RMSE, respectively,
in is the error value using the P-band, and Out is the error value without using the P-band.

The evaluation of the importance of the P-band was made for the ML models with
the best performance and the covariate selection method with the best result. It was also
evaluated according to the best approach (RA or TA) for each soil attribute.
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3. Results
3.1. Summary Statistics

The soil sand, silt, and clay particle size fractions at the surface and subsurface layers
present a frequency distribution similar to the standard normal (both skewness and excess
kurtosis approximately 0), except surface clay (Table 3, whole dataset). The training and
validation datasets follow the same pattern (close to normal distribution), differing in terms
of minimum and maximum values, which is expected due to data partitioning. Based
on the mean and median values of the particle size fractions, taken together, the textural
classes vary from loan at the surface to clay loam at the subsurface. The mean and median
values of sand, silt, and clay in the validation data dataset of the RA approach (V(RA))
indicate that the soils visited in remote areas outside the reference area (accessed from the
16 clearings) present the same textural classes as those observed in the reference area.

Table 3. Descriptive statistics of soil texture.

Variables Dataset n Min Max Mean Median SD Sk K CV (%)

Sand Surf
(g kg−1)

W 151 80 918 458 437 156 0.36 −0.11 34
T(RA) 114 182 918 468 450 154 0.48 −0.07 32
V(RA) 37 80 793 428 409 162 0.11 −0.63 37

VU 21 225 721 425 401 144 0.46 −0.99 -
VA 11 80 793 507 549 176 −0.89 0.77 -
VJ 5 151 360 267 273 75 −0.36 −1.38 -

T(TA) 114 80 883 451 435 150 0.21 −0.36 33
V(TA) 37 208 918 481 460 173 0.59 −0.19 35

Sand Sub
(g kg−1)

W 151 44 855 353 314 160 0.50 −0.16 45
T(RA) 114 81 855 351 307 155 0.65 0.24 44
V(RA) 37 44 695 357 338 178 0.16 −1.09 49

VU 21 86 674 342 314 169 0.41 −1.00 -
VA 11 44 695 460 493 172 −0.97 0.51 -
VJ 5 99 279 192 201 64 −0.12 −1.45 -

T(TA) 114 44 695 337 308 145 0.24 −0.75 43
V(TA) 37 102 855 402 381 193 0.54 −0.65 48

Silt Surf
(g kg−1)

W 151 26 792 389 375 145 0.16 −0.27 37
T(RA) 114 26 687 364 351 131 0.03 −0.12 36
V(RA) 37 155 792 466 481 160 −0.11 −0.94 34

VU 21 155 688 476 481 142 −0.42 −0.59 -
VA 11 202 534 354 321 122 0.19 −1.70 -
VJ 5 597 792 668 643 78 0.56 −1.59 -

T(TA) 114 58 792 398 378 139 0.21 −0.40 35
V(TA) 37 26 696 364 350 160 0.17 −0.32 44

Silt Sub
(g kg−1)

W 151 84 600 339 340 105 0.05 −0.21 31
T(RA) 114 84 600 332 328 101 −0.04 0.01 30
V(RA) 37 168 570 361 349 115 0.14 −1.05 32

VU 21 191 570 359 343 113 0.39 −0.87 -
VA 11 168 486 309 303 104 0.19 −1.42 -
VJ 5 388 551 480 479 61 −0.30 −1.61 -

T(TA) 114 84 600 349 349 100 0.07 −0.21 29
V(TA) 37 112 582 309 306 116 0.23 −0.43 37

Clay Surf
(g kg−1)

W 151 4 500 152 140 86 0.87 1.12 56
T(RA) 114 34 500 169 155 82 0.79 1.08 48
V(RA) 37 4 423 99 78 77 1.99 5.82 78

VU 21 6 203 98 86 51 0.23 −0.65 -
VA 11 4 423 118 73 121 1.34 0.83 -
VJ 5 27 130 64 57 40 0.66 −1.37 -

T(TA) 114 4 500 152 139 90 0.87 1.10 59
V(TA) 37 39 351 154 142 74 0.81 0.33 48

Clay Sub
(g kg−1)

W 151 13 573 308 326 111 −0.28 −0.27 36
T(RA) 114 13 530 314 330 108 −0.60 0.00 34
V(RA) 37 70 573 288 267 120 0.52 −0.43 42

VU 21 70 573 298 288 131 0.36 −0.76 -
VA 11 150 532 250 200 117 1.12 0.20 -
VJ 5 259 410 327 340 60 0.13 −1.86 -

T(TA) 114 70 573 314 327 105 −0.09 −0.57 33
V(TA) 37 13 530 289 317 127 −0.49 −0.46 44

Surf: surface; Sub: subsurface; W: whole dataset; T: training dataset; V: validation dataset; RA: reference area
approach; TA: total area approach; VU: Urucu block data set; VA: Araracanga block data set; VJ: Jurua block
data set n: number of observations; Min: minimum; Max: maximum; SD: standard deviation; Sk: skewness;
K: kurtosis; CV: coefficient of variation.
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The large coefficients of variation (CV) values (>28%) characterize the heterogeneity
of sample sets in both training and validation datasets. The range of sand, silt, and clay
values was high. Sand contents ranged from 80 to 918 g kg−1 and from 44 to 855 g kg−1 at
the surface and subsurface layers, respectively.

Clay contents had similar amplitude in the two layers (4.67 to 500 on the surface and
13 to 573 on the subsurface); however, in average terms, the clay contents in the subsurface
practically doubled in relation to the surface (from 152 to 308 g kg−1). In the opposite
direction, both the average levels of sand and silt tended to decrease with increasing depth
(from 458 to 353 g kg−1 for sand and from 389 to 339 g kg−1 for silt).

The feasibility of prediction models that are based on the RA approach depends on the
transferability of these models to other target areas. Thus, the statistics of the validation data
of sand, silt, and clay in the three blocks (Urucu—VU, Araracanga—VA, and Juruá—VJ)
separately allow a view of the similarity of the soils. The RA is located in the Urucu block,
and the ideal is that the training data used there captures the great diversity of values
found in all blocks. Comparing the minimum, maximum, and average sand values in
the Araracanga (VA) block, both on the surface and in the subsurface, it is noted that in
this region the soils had higher sand values than in the Urucu and Juruá blocks. In the
first case (surface), the average sand (507 g kg−1) was 19% higher than in the Urucu block
(425 g kg−1), while in the subsurface this difference was even greater (34%, 459 g kg−1

in Araracanga and 342 g kg−1 in Urucu). The statistics of silt data for the Juruá block
(VJ) highlight the significant superiority of this fraction, both on the surface and in the
subsurface, in relation to the other blocks. Specifically, in relation to the Urucu block
(VU), the average value of silt in Juruá was 40% higher (668 g kg−1 against 476 g kg−1)
and 34% higher (480 g kg−1 against 359 g kg−1), considering the surface and subsurface
layers, respectively.

Additionally, in the Juruá block, the average clay content was 35% lower on the surface
in relation to the data from the Urucu block (64 g kg−1 against 98 g kg−1). However, in
the subsurface this relationship was reversed. The average clay content was 10% higher
(327 g kg−1) than that found in the Urucu block (298 g kg−1). This inversion explains
another distinction in the clay data of the Juruá block in relation to the other blocks. In
Juruá, the average value of clay in the subsurface layer was 5 times higher than on the
surface (64 g kg−1 against 327 g kg−1). In the other blocks, the increase in clay content with
increasing depth was also marked but reached lower rates (3 and 2 times higher in the
Urucu and Araracanga blocks, respectively).

Analyzing the statistics of sand, silt, and clay content of the validation dataset (V)
using the TA approach (dataset 2), it is noted that differences of the average values in
relation to training dataset (T) were lower. Only the average values of sand and silt, both at
subsurface layer, presented values 10% higher than in the training dataset. In the first case
(sand at subsurface) the average value was 19% higher (337 g kg−1 against 402 g kg−1). In
the second case (silt at subsurface), the average values of the validation dataset were 11%
lower than the training dataset (309 g kg−1 against 349 g kg−1).

Considering the evaluation of the statistics of the different granulometric fractions,
in the different depths and approaches (RA and TA), it can be considered that the data
present a frequency distribution close to the standard normal and that the textural classes
of the soils of the reference area and the other regions visited present the same textural
class (Loan and Clay loan). However, there were greater differences between the mean
values of the sand, silt, and clay fractions of the validation dataset in relation to the training
dataset when using the RA approach. The effect of these differences on the development
and validation of prediction models is presented below, as well as the relationship between
the granulometric fractions and the relief and radar covariates.

3.2. Similarity among the Reference Area and Exploration Blocks

Table 4 presents the statistics of the prediction covariates. Comparing the data between
the blocks, it is noted that the region of the Juruá block was the one with the greatest
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discrepancy in relation to the reference area. Some relief covariates in the Juruá block had
very different minimum, maximum, average, and median values compared with the RA,
which reinforce the dissimilarity between these landscapes (Table 4). The covariates CNBL,
CND, MRRTF, and MRVBF stand out as those with the most different relief statistics in the
Juruá region in relation to RA (Table 4).

Table 4. Descriptive statistics of the covariates in the study area by blocks.

Reference Area (199,167 Pixels) Urucu (11,209,198 Pixels)
Covariates (Unity) Mean Median SD Min Max Mean Median SD Min Max

CI (d) 0.03 0.59 16.80 −94.51 96.07 −0.0002 0.54 16.41 −98.08 98.91
TWI (d) 7.66 7.56 1.06 4.61 12.30 8.07 7.98 1.23 4.33 12.54

RSP (0–1) 0.48 0.51 0.30 0 1 0.44 0.45 0.30 0 1
CND (m) 6.40 6.15 4.01 0 25.39 5.41 4.88 3.95 0 29.64
CNBL (m) 61.72 61.16 5.95 46.56 79.59 63.47 64.07 7.16 23.03 83.16
MRVBF (d) 5.73 9.38 4.52 0 9.98 6.69 9.82 4.33 0 9.98
MRRFT (d) 2.84 1.97 2.67 0 7.93 4.02 4.76 3.09 0 7.99

CXI (d) 51.34 52.41 7.63 0.15 69.19 50.29 51.85 8.89 0 73.19
ASP (◦) 177.10 175.22 106.81 0 360 173.78 171.04 107.03 0 360
LF (d) 5.32 5.00 2.41 1.00 10.00 5.18 5.00 2.11 1.00 10.00

ProfC (m−1) −0 −0 0 −0.009 0.01 −0 0 0 −0.013 0.011
PlanC (m−1) 0.0 3.40 0.0 −0.007 0.01 0 0 0 −0.010 0.013

SH (m) 4.08 3.55 1.85 1.47 18.94 3.84 3.36 1.79 1.13 25.51
MSP (%) 0.27 0.25 0.17 0.00 0.82 0.25 0.23 0.16 0.00 0.85

S (%) 6.23 5.15 4.87 0.00 48.86 5.16 3.70 4.77 0.00 67.20
MR (d) 0.25 0.16 0.29 0.00 2.49 0.21 0.10 0.27 0.00 2.95
FC (d) 2451 2996 3090 400 81207 2347 1449 2956 400 14170

P-band (σ◦) 0.43 0.43 0.07 0 0.99 0.44 0.44 0.06 0 0.90

Araracanga (9,364,993 Pixels) Juruá (11,730,902 Pixels)
Covariates (Unity) Mean Median SD Min Max Mean Median SD Min Max

CI (d) 0 0.49 16.45 −98.78 99.01 0.00 0.78 18.10 −99.21 99.40
TWI (d) 7.92 7.72 1.41 4.36 12.37 7.58 7.38 1.28 3.86 12.01

RSP (0–1) 0.41 0.41 0.31 0 1 0.35 0.32 0.29 0 1
CND (m) 6.01 5.32 4.83 0 33.92 4.45 3.42 4.08 0 40.50
CNBL (m) 63.93 65.28 8.85 34.16 85.97 76.03 77.62 8.40 49.88 95.63
MRVBF (d) 4.96 4.77 4.13 0 9.96 3.70 3.89 2.82 0 9.65
MRRFT (d) 3.37 2.67 3.15 0 9.73 6.53 9.36 4.19 0 9.98

CXI (d) 48.32 50.92 11.07 0 73.40 39.58 41.13 8.27 0 63.48
ASP (◦) 171.04 168.26 109.06 0 360 168.08 166.38 109.74 0 360
LF (d) 5.26 5.00 2.32 1.00 10.00 5.32 5.00 2.03 1.00 10.00

ProfC (m−1) −0.0 0.0 0.0 −0.011 0.012 −0.0 −0.0 0 −0.014 0.016
PlanC (m−1) 0.0 0.0 0 −0.012 0.011 0.0 0.0 0 −0.013 0.018

SH (m) 4.18 3.59 2.11 1.16 27.33 3.62 3.12 1.73 1.14 32
MSP (%) 0.31 0.29 0.20 0 0.88 0.22 0.18 0.16 0 0.89

S (%) 5.81 4.25 5.34 0 50.21 5.39 4.02 5.24 0 76.92
MR (d) 0.24 0.11 0.32 0 3.01 0.18 0.00 0.27 0 4.23
FC (d) 2332 1421 2993 400 13304 1609 1059 1735 400 6948

P-band (σ◦) 0.45 0.45 0.11 0 0.93 0.43 0.43 0.10 0 0.94
RA: Referencea area; U: block Urucu; A: block Araracanga; J: block Jurua; n: number of observations; Referencea
area: (n = 199,167); Urucu: (n = 11,209,198); n Araracanga: (n = 9,364,993); n Jurua: (n = 11,730,902); Min: mini-
mum; Max: maximum; SD: standard deviation. d: dimensionless. CI—Convergence Index; TWI—Topographic
Wetness Index; RSP—Relative Slope Position; CND—Channel Network Distance; CNBL—Channel Network Base
Level;; MRVBF—Multiresolution Index of Valley Bottom Flatness; MRRFT—Multiresolution Index of the Ridge
Top Flatness; CXI—Convexity Index; ASP—Aspect; LF—Landforms; ProfC—Profile Curvature; PlanC—Plan
curvature; SH—Slope Height; MSP—Mid Slope Position; S—Slope Gradient; MR—Melton Ruggedness; FC—Flow
Accumulation; P-band.

In Figure 3A–C, graphs are presented with the general GDI (red bars) and the same
index for each covariate (gray bars). According to the GDI values, the RA and the Urucu,
Araracanga, and Juruá blocks were similar in their relief variables, with GDI values of 0.155,
0.164, and 0.171, respectively (Figure 3). The dissimilarity increased by about 10% departing
from the Urucu block towards Juruá (farthest from the reference area). The areas with the
highest GDI were those associated with lowland areas (hydromorphic lowlands—black
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arrows on maps) and higher regions located at watershed upper boundaries (pixels with
more discrete values highlighted with blue arrows on maps). The relief covariates that
contributed most to differentiate the blocks in relation to RA were MRVBF, MRRTF, and
RSP. These covariates were also the ones that had the highest correlations with the soil
particle size fractions under study (Figure 4). From the results seen in Figure 3, the GDI
can be used to both support the choice or to change a previously selected RA. In this study,
the RA was imposed because it is the only accessible area in the region. However, it is
possible to conjecture that if we were to change the RA, this change should be in the sense
of including regions that expand the expression of the covariates that most differentiated
the exploration blocks in relation to the RA (in this case, MRVBF, MRRTF, and RSP). It is
important to highlight that these areas are the most difficult to access and cause the most
undersampling in these environments.
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From the data obtained (Table 4 and Figure 3), it appears that although there were
differences in the statistics of the covariates of the blocks in relation to the reference
area, the Gower index of similarity showed that the blocks had a very low dissimilarity
value, indicating that the models developed in the reference area have the potential to be
transferred to other areas.

3.3. Remote Sensing Covariates and Soil Particle Size Fractions Relationships

In both the RA and TA training datasets, all covariates had correlations lower than
0.50 against soil particle size fractions (Figure 4). In the RA dataset (Figure 4A), the highest
correlation values for each particle size fraction were found between the topographic
wetness index (TWI) and clay at the surface (−0.47) and subsurface (−0.45), surface silt
(0.33) and multiresolution index of ridge top flatness (MRRTF), subsurface silt and TWI
(0.30), and relative slope position (RSP) and sand at the surface (−0.26) and subsurface
(−0.35). In the TA dataset (Figure 4B), the highest correlations were surface clay against
slope (0.39) or TWI (−0.39), subsurface clay against TWI (−0.32), surface silt against
channel network base level (CNBL) (0.49) or MRRTF (0.49), subsurface silt against TWI
(0.44), surface sand against CNBL (−0.34), and subsurface sand against CNBL (−0.28).
Overall, sand content had the lowest correlations against remote sensing covariates.

The results of the general Gower index (Figure 3) showed that there was little dissim-
ilarity between the RA and the Urucu, Araracanga, and Juruá blocks, with GDI (values
of 0.155, 0.164, and 0.171, respectively). However, even though these dissimilarity values
are low, most of the covariates that had higher correlations (Figure 4) also had greater



Remote Sens. 2022, 14, 5711 14 of 28

contributions of dissimilarity index values in relation to the general Gower index (RSP, CI,
MRVBF, MRRTF, LF) (Figure 3).

Importance of predictor covariates for the attributes evaluated in the RF model is seen
in (Figure 5).
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The source material, relief, vegetation, and climate act in tandem to explain the spatial
distribution patterns of soil types in the region. These same covariates were contextualized
in the soil–relief–vegetation model (SRV) (Figure 6).
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Figure 6. Soil–relief–vegetation relationships for soil sand, silt, and clay contents in the study
area. Green arrow—positive correlation with the covariate; red arrow—negative correlation with
the covariate. MU—mapping unit; Fac—Flooded Plain Open Tropical Forest; FDA—Dense High-
land Tropical Forest; Fdb—Planalto Open Tropical Forest; APf—River plains; C11—Well-drained
flat top areas; T21—Tabular Interfluves; EP2—Biplain-plain surfaces; H.S.—Holocene Sediments;
P.S.—Pleistocene Sediments. (Source: modified from ref. [7]).

In general, the covariates convergence index (CI), landforms (LF), radar P-band
backscattering coefficient (P-band), profile curvature (ProfC), RSP, and MRRTF were the
most important for sand prediction by RF (Figure 5A,B). The CI represents the behavior of
the surface runoff, which was influenced by the shapes of the terrain, represented by LF. The
sand contents were higher close to river channels, where CI values were negative, meaning
converging terrains towards lowland channels. Positive CI values indicate divergent areas,
where well-drained tops and flatter slopes predominate, from which surface runoff occurs
in all directions. In these areas the sand contents were lower. The RSP was applied to
identify topographical features and its values ranged from 0 to 1. The values closer to 0
were characterized by lowland regions, that is, the V- and U-shaped valleys, which have
high levels of sand. Values closer to 1 represent upper slopes and ridge tops with low sand
contents. The profile curvature (ProfC) expressed the difference between convex curvatures
of the concave ones, influencing the surface flow velocity from the higher to the lower parts
(Figure 6). It also allowed greater distinction between well-drained soils on ridge tops
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(convex surfaces) and imperfectly drained soils on concave to flat surfaces, for instance in
V- and U-shaped valleys.

The covariates MRRTF, TWI, multiresolution index of valley bottom flatness (MRVBF),
and ProfC had positive correlations with silt. The flat tops on the uplands were represented
by high MRRTF values, whereas the valley bottoms had the highest MRVBF values. These
covariates, associated with TWI, characterize the spatial distribution of soil saturation zones,
adding important information to locate hydromorphic soils. In turn, these zones had the higher
silt contents (Figure 6) and are the zones where the lowlands (MU2—Aquents, Aquepts)
and uplands with flat tops (MU4—Aquults, Aquents) occur. Again, the ProfC helped
to separate the areas of well-drained soils (convex surfaces) from those with imperfectly
drained ones (concave to flat surfaces), mainly at the subsurface.

The combination of the slope and TWI covariates allowed identifying the regions
with the highest clay contents, where the MU1 (Ultisols, Inceptisols) and MU3 (Ultisols,
Inceptisols) units are found (Figure 6). The MU1 regions were represented by steeper slopes
generally closer to large drainage networks where the slope influences the speed of surface
and subsurface flows. The slope has great potential to help in the identification of Ultisols
areas where the highest clay contents predominate. The MU3 unit occurs on well-drained
tops with smoother slopes and relatively flat to smoothly wavy relief with good drainage,
also with high clay contents (Figure 6).

3.4. Model Prediction Performance

Random forest derived the best predictions, with the least errors, for all soil particle
size fractions at both layers, followed by SVM (Tables 5–8). Regression tree is the simplest
among the three methods tested. It creates a series of decision rules based on the covariates
to make a prediction at a terminal leaf. As such, it was uncapable of outperforming RF,
which is a combination of RTs, and SVM. On the other hand, RF outperformed SVM,
meaning that decision rules derived from a series of RTs are better than a single set of
hyperplanes. In fact, in general the prediction errors were more similar between RT and
SVM than between SVM and RF. Favoring RF is the fact that it uses random selections of
covariates and training and validation (OOB) sets for building each tree, which control
overfitting minimizing validation errors.

Table 5. Accuracy assessment soil surface and subsurface sand content predictions using the Refer-
ence Area (RA) sampling design.

RT RF SVM

Atributtes Data R2 RMSE MAE R2 RMSE MAE R2 RMSE MAE

Sand
Surf
PCS

T 0.34 124 96 0.93 67 53 0.47 113 91
VU 0.09 144 117 0.24 131 113 0.07 141 125

VUA 0.03 165 129 0.19 140 116 0.01 162 140
V 0.01 176 135 0.24 144 120 0.08 173 149

VUJ 0.03 166 128 0.31 138 119 0.12 162 141

Sand
Surf
WM

T 0.36 122 96 0.94 67 53 0.57 106 86
VU 0.21 132 103 0.20 132 114 0.04 144 129

VUA 0.06 164 128 0.18 141 116 0.20 140 118
V 0.03 175 132 0.19 148 123 0.19 145 123

VUJ 0.09 157 113 0.22 143 125 0.08 151 134

Sand Sub
PCS

T 0.45 114 90 0.92 63 50 0.47 113 95
VU 0.09 161 137 0.24 147 126 0.20 148 126

VUA 0.01 181 152 0.15 163 140 0.18 166 141
V 0.00 190 155 0.11 165 143 0.24 168 139

VUJ 0.02 179 145 0.17 154 132 0.21 155 127

Sand Sub
WM

T 0.48 111 87 0.92 64 51 0.57 105 86
VU 0.14 159 133 0.36 137 113 0.13 154 128

VUA 0.05 181 155 0.25 158 134 0.15 173 146
V 0.00 194 163 0.16 162 138 0.17 167 141

VUJ 0.03 183 149 0.25 147 123 0.17 148 124

PCS—Previous Covariate Selection; WM—Wrapper Method; T: Training dataset; V: validation data set; VU: Urucu
block validation dataset; VUA: Urucu/Araracanga block validation dataset; V: Urucu/Araracanga/Jurua block
validation dataset; VUJ: Urucu/Jurua block validation dataset.
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Table 6. Accuracy assessments of soil surface and subsurface silt content predictions using the
Reference Area (RA).

RT RF SVM

Atributtes Data R2 RMSE MAE R2 RMSE MAE R2 RMSE MAE

Silt Surf
PCS

T 0.49 93 72 0.91 56 43 0.50 93 71
VU 0.19 163 138 0.58 130 112 0.33 130 107

VUA 0.07 154 129 0.37 120 99 0.17 175 123
V 0.07 175 144 0.36 141 114 0.28 185 133

VUJ 0.18 189 158 0.52 155 131 0.38 156 124

Silt Surf
WM

T 0.46 95 73 0.92 55 42. 0.58 87 65
VU 0.26 163 144 0.46 139 120 0.24 143 122

VUA 0.06 157 136 0.26 128 106 0.13 149 119
V 0.08 174 149 0.26 149 122 0.22 159 128

VUJ 0.26 186 161 0.42 164 140 0.26 158 134

Silt Sub
PCS

T 0.47 73 58 0.91 43 32 0.39 79 61
VU 0.36 90 72 0.51 89 71 0.38 91 77

VUA 0.38 86 72 0.41 88 73 0.33 111 91
V 0.26 99 80 0.46 89 74 0.39 131 101

VUJ 0.22 106 83 0.56 90 73 0.39 126 93

Silt Sub
WM

T 0.49 72 57 0.92 43 32 0.53 72 56
VU 0.35 89 72 0.42 93 74 0.42 84 67

VUA 0.33 89 73 0.31 93 76 0.39 91 76
V 0.22 102 81 0.37 94 78 0.39 115 89

VUJ 0.21 106 83 0.50 95 78 0.37 120 88

PCS—Previous Covariate Selection; WM—Wrapper Method; T: Training dataset; V: validation data set; VU: Urucu
block validation dataset; VUA: Urucu/Araracanga block validation dataset; V: Urucu/Araracanga/Jurua block
validation dataset; VUJ: Urucu/Jurua block validation dataset.

Table 7. Accuracy assessment of soil surface and subsurface clay content predictions using the
Reference Area (RA) sampling design.

RT RF SVM

Atributtes DATA R2 RMSE MAE R2 RMSE MAE R2 RMSE MAE

Clay
Surf
PCS

T 0.53 55 41 0.91 31 23 0.47 61 45
VU 0.09 73 59 0.24 71 59 0.21 67 53

VUA 0.04 90 70 0.02 92 72 0.08 115 73
V 0.03 90 73 0.02 92 73 0.04 111 73

VUJ 0.06 78 65 0.19 76 64 0.17 69 57

Clay
Surf
WM

T 0.54 54 40 0.92 31 23 0.56 56 41
VU 0.08 74 59 0.18 71 59 0.27 65 50

VUA 0.04 89 70 0.02 91 71 0.17 82 61
V 0.03 90 73 0.02 91 72 0.10 96 72

VUJ 0.05 78 66 0.15 75 63 0.15 91 68

Clay Sub
PCS

T 0.61 67 53 0.91 39 30 0.58 70 52
VU 0.16 119 90 0.20 114 86 0.14 120 93

VUA 0.02 136 101 0.08 122 95 0.17 117 95
V 0.02 130 93 0.07 116 89 0.13 113 92

VUJ 0.15 113 81 0.18 107 80 0.12 114 90

Clay Sub
WM

T 0.62 65 52 0.92 38 29 0.65 65 49
VU 0.02 138 103 0.18 115 87 0.07 128 99

VUA 0.00 146 111 0.08 120 93 0.14 118 93
V 0.00 141 104 0.07 114 88 0.03 152 116

VUJ 0.03 131 95 0.17 108 81 0.02 170 131

PCS—Previous Covariate Selection; WM—Wrapper Method; T: Training dataset; V: validation data set; VU: Urucu
block validation dataset; VUA: Urucu/Araracanga block validation dataset; V: Urucu/Araracanga/Jurua block
validation dataset; VUJ: Urucu/Jurua block validation dataset.
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Table 8. Accuracy assessment of soil surface and subsurface sand, silt, and clay content predictions
using the Total Area (TA) sampling design.

RT RF SVM

Atributtes Data R2 RMSE MAE R2 RMSE MAE R2 RMSE MAE

Sand Surf PCS
T114 0.51 104 79 0.93 62 49 0.52 105 84
V37 0.00 198 152 0.11 161 124 0.15 163 127

Sand Surf WM
T114 0.51 104 79 0.94 64 50 0.77 73 44
V37 0.00 198 152 0.13 159 124 0.03 209 158

Sand Sub PCS
T114 0.54 97 80 0.93 58 47 0.40 113 94
V37 0.03 202 148 0.23 174 137 0.21 180 138

Sand Sub WM
T114 0.55 97 80 0.95 59 48 0.81 64 41
V37 0.03 202 148 0.22 177 145 0.19 207 162

Silt Surf PCS
T114 0.58 89 69 0.91 53 41 0.50 98 78
V37 0.04 182 140 0.14 147 113 0.20 142 108

Silt Surf WM
T114 0.92 54 42 0.92 54 42 0.60 89 72
V37 0.17 144 111 0.17 144 111 0.14 147 112

Silt Sub PCS
T114 0.49 71 57 0.91 39 31 0.42 76 61
V37 0.06 123 97 0.03 120 98 0.29 102 79

Silt Sub WM
T114 0.51 69 55 0.92 38 30 0.55 69 54
V37 0.04 126 99 0.06 116 94 0.21 107 84

Clay Surf PCS T114 0.56 58 44 0.91 34 25 0.59 60 46
V37 0.23 71 58 0.23 65 50 0.15 70 52

Clay Surf
WM

T114 0.58 57 43 0.92 33 25 0.65 56 42
V37 0.20 74 62 0.21 65 48 0.12 80 62

Clay Sub PCS T114 0.54 70 55 0.93 38 30 0.57 70 56
V37 0.19 117 94 0.31 107 81 0.29 114 92

Clay Sub WM T114 0.51 73 58 0.93 39 30 0.61 68 53
V37 0.21 116 93 0.30 107 82 0.26 122 94

PCS—Previous Covariate Selection; WM—Wrapper Method; T: Training dataset; V: validation data set; RT: regression
tree; RF: random forest; SVM: support vector machine.

The fitted model R2 varied from 0.34 to 0.62 for RT models, from 0.91 to 0.95 for RF,
and from 0.39 to 0.81 for SVM models. The validation RMSE, considering all 37 validation
samples, varied across all sampling approach and methods of covariate selection in the
ranges of 144 to 198 for the surface sand and 162 to 202 (g kg−1) for the sand subsurface
layer. For silt, the range was from 141 to 182 at the surface layer and from 89 to 102 (g kg−1)
at the subsurface layer. The RMSE range of clay was from 65 to 111 at the surface and 107
to 141 (g kg−1) at the subsurface layer.

The RA sampling approach outperformed the TA approach for the surface and sub-
surface sand and silt contents, whereas surface and subsurface clay contents were best
predicted using TA approach. The PCS covariate selection method was the best option to
predict surface sand, and surface and subsurface silt and clay contents, whereas WM was
the preferred choice only for subsurface sand prediction.

3.5. Relative Improvement (RI%) from Adding the Radar P-Band

Considering the combination of best results (the algorithms—RF, RT and SVM, the
approach—RA or TA, and the covariate selection method—WM or PCS), the gain in accuracy
of the models, with and without the P-band, was evaluated applying the RI index (%) on the
R2, RMSE and MAE metrics at surface and sub surface layers (Figures 7 and 8 respectively).
Considering the surface layer (Figure 7), in the prediction of sand and silt, the RA approach
had better results and so the metrics were separated by blocks (Urucu, Araracanga, and
Jurua), how much the P-band influences the accuracy when the model generated in the
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RA is transferred to other blocks was evaluated. For clay, as the TA approach performed
better, the metrics do not distinguish between blocks. Note that the introduction of the
P-band had a greater effect on the R2 results. For the sand fraction, the introduction of the
P-band allowed the R2 (the proportion of the variation of a response variable is explained
by the variation of other explanatory variables) to increase by 41%, 46%, and 24% for the
Urucu, Araracanga, and Juruá blocks, respectively. However, when analyzing the RMSE
and MAE metrics, the gain was low (<5%). In the case of silt, the introduction of P-band
also increased R2, but to a lesser extent (7.4%, 12%, and 10.6% for Urucu, Araracanga, and
Juruá, respectively). As in the case of sand, the change in the RMSE and MAE metrics
for silt prediction was low (between 0% and 1.8%). In the case of the clay attribute, the
introduction of the P band did not change the metric values (RI% = 0).
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Figure 7. Accuracy with and without radar P-band for surface sand, silt, and clay prediction with the best model and approach. 
Figure 7. Accuracy with and without radar P-band for surface sand, silt, and clay prediction with the
best model and approach.

Analyzing the subsurface layer (Figure 8), the pattern observed on the surface was
maintained. In other words, the use of radar images is important to generate maps of
covariates (in this case, the relief and hydrographic attributes) under native forest cover;
however, the effect of the backscatter coefficient with polarization HH, by itself, did not
bring a significant gain (≥10%) in the accuracy of the models (RMSE and MAE). For
example, adding the P-band improved the RF predictions of clay content at the subsurface
layer, with RI of the R2, RMSE, and MAE of 29%, 5%, and 5%, respectively.
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Figure 8. Accuracy with and without radar P-band for subsurface sand, silt, and clay prediction with the best model and approach. 
Figure 8. Accuracy with and without radar P-band for subsurface sand, silt, and clay prediction with
the best model and approach.

Analyzing the subsurface layer (Figure 8), the pattern observed on the surface was
maintained. In other words, the use of radar images is important to generate maps of
covariates (in this case, the relief and hydrographic attributes) under native forest cover;
however, the effect of the backscatter coefficient with polarization HH, by itself, did not
bring a significant gain (≥10%) in the accuracy of the models (RMSE and MAE). For
example, adding the P-band improved the RF predictions of clay content at the subsurface
layer, with RI of the R2, RMSE, and MAE of 29%, 5%, and 5%, respectively.

3.6. Soil Particle Size Fraction Maps

In the study area, sand contents ranged from 303 to 721 g kg−1 at the surface (Figure 9),
and from 212 to 635 g kg−1 at the subsurface (Figure 10), decreasing slightly with depth. The
lowest sand values were predicted in hydromorphic flat tops and areas with steeper slopes
(Figures 9 and 10). The highest levels of sand were present in the floodplain regions, close to
the channels of the large rivers and streams, and on terraces around the main watercourse
(U-shaped valleys). Large sand contents were also found in the more embedded valleys (V-
shaped valleys) of slope regions. These environments are characterized by the accumulation
of sandy sediments from natural erosive processes, making the lowlands clogged. In these
areas, the predominant soils were classified as Aquents or Aquepts (MU2 unit).
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sampling design, Random Forest, and Wrapper Method), (A) Urucu block, (B) Araracanga block,
(C) Jurua block.
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Predicted silt contents varied from 209 to 577 g kg−1 at the surface (Figure 11), and
from 215 to 517 g kg−1 at the subsurface (Figure 12). The largest silt contents were found in
the areas of hydromorphic flat tops (Figures 11 and 12). These areas usually occur at the
highest elevations of the study area, at the upland watershed boundaries. Flat relief and
insufficient drainage characterize these areas, where there is a predominance of Hapludults,
Aquults, and Aquents (MU4 unit) (Figure 6). Relevant silt values were also found in
lowland regions, where Aquents (MU2) occur.
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The increase of clay with depth is consistent with the occurrence of Ultisols, which present 

Figure 11. Map of the silt content at the surface layer. (Map generated using the Reference Area
sampling design, Random Forest, and Previous Covariate Selection), (A) Urucu block, (B) Araracanga
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Predicted clay contents ranged from 47 to 303 g kg−1 at the surface (Figure 13), and
increased at the subsurface, ranging from 154 to 458 g kg−1 at the subsurface (Figure 14).
The increase of clay with depth is consistent with the occurrence of Ultisols, which present a
diagnostic argillic B horizon at the subsurface. The highest clay contents occur in areas with
steep slopes and well-drained tops (Figures 13 and 14). These regions were represented by
the mapping units MU1 and MU3 where there is a predominance of Ultisols.
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design, Random Forest, and Previous Covariate Selection).
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4. Discussion

The challenge of mapping soil fraction in the Amazon rainforest comes from the
difficulties in obtaining soil data that are related with the fact that a major portion of the
area is covered by a dense evergreen forest, a low density of roads, with most of the territory
accessed only by boat and air transport. Additionally, the difficulty of obtaining data on
representative environmental covariates, because of the constant presence of clouds in
the region, makes it difficult to use satellite images and aerial photos obtained by passive
(optical, infrared) remote sensors. Despite all these limitations, the results of this study
illustrate the potential advantages of using ML algorithms associated with remote sensor
covariates (terrain attributes and P-band of airborne radar) and RA approach to map
particle size fractions in this region.

The comparison of these approaches highlighted that the non-linear model introduced
significant improvements in the prediction of soil texture fractions and consequently
ML are potentially superior to linear methods of spatial prediction of soil texture [44].
Additionally [45], ML algorithms, in this case Support Vector Regression (SVR), produced
the best prediction accuracy compared with the geostatistical interpolation techniques. The
results of this study, with best the prediction for the RF model, corroborate those of ref. [46],
which also used radar data to estimate soil texture and obtained better results with RF than
SVM. As already highlighted by refs. [8,47], the maximum silt values are relatively high
when compared with the average contents found in Brazilian soils. According to ref. [8], in
the Amazon region, silt greater than 400 g kg−1 are manly found in hydromorphic soils in
the region of hydromorphic soils, which are not only found on lowlands but also in broad
plateaus located in higher-altitude regions [7]. These regions have specific environmental
characteristics (Figure 6) that allowed a good capture of patterns by the environmental
covariates, which resulted in good prediction results for this fraction.

In general, both the correlation coefficients (Figure 4) and the most important covari-
ates used to predict and map soil particle size fractions by RF (Figure 5) coincide with the
hypotheses raised in ref. [9], as well as with previous studies in the region [7,8,48].

Some of these covariates also appear as important predictors of soil particle size
fractions in ref. [49], where slope and TWI predictors had 80% of the importance for
predicting surface clay (0 to 30 cm), and TWI and MRVBF were important covariates for
silt prediction. In Iran, ref. [2] found TWI as one of the most important covariates for clay
prediction, and similarly TWI and MRVBF were important ones for silt prediction.

The spatial patterns of the soil particle size fractions found in this study corroborate
the results of ref. [8] carried out in the same study region.

A few studies have investigated the potential of P-band in mapping soil properties,
most of them focus on the soil moisture and soil dielectric variations [20,22]. It is even rarer
to study the P-band in the soil mapping or vegetation in the Brazilian Amazon [50]; for the
authors, P-band data can make a substantial contribution to the development of models in
tropical rainforest regions, especially in those areas where it is difficult to obtain data from
optical sensors. Although it is not possible to compare the results with other studies, as
there has been no work conducted on the use of P-band to predict soil texture, our results
showed that it has great potential to improve the predictions of clay, silt, and sand fractions
at the surface and subsurface, and new studies with more soil data are required to formulate
better conclusions. Besides, if the VV polarization of the P-band image were available,
perhaps it would be possible to extract greater knowledge of the interaction of the ratios and
crosses of polarizations with granulometric fractions. For example, ref. [51], working with
the X-Band, found that the sensitivity of soil texture is better observed at higher-incidence
angles than lower-incidence angles in both polarizations, i.e., HH- and VV-pol. Besides,
changes in soil texture are also sensitive to polarization and it was observed that VV-pol
is more sensitive than HH-pol for different soil texture field. On the other hand, ref. [52],
also working with the X-Band, found that a strong change in specular scattering coefficient
is observed by changing the sand percentage in soil for HH polarization, while in the
case of VV-polarization a lesser change is observed. It is difficult to observe the change in
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specular scattering coefficient with change in soil texture when the surface is considered
as rough. Finally, the authors highlighted that it is important to minimize the roughness
effect while observing the texture with specular scattering and that for higher-incidence
angles (P50◦), the distinction in soil texture fields are clearly observable on the basis of the
copolarization ratio.

The Amazon region has peculiar characteristics that demand an enormous logistical,
financial, and personal effort to survey soils. It is not by chance that the major soil surveys
date from the 70′s and 80′s [9] and they are exploratory or reconnaissance types. Despite
all the limitations imposed by the condition of the region, this study showed that the
RA approach can reduce logistical, financial, and personnel costs. In addition, the use of
covariables such as P-band, which is able to surpass the tree canopy and suffers little or no
interference from clouds, combined with covariate selection methods and the training of
robust ML algorithms can greatly increase the prediction results, producing more detailed
and very useful maps.

5. Conclusions

This work investigated the use of remote sensing covariates derived from airborne
synthetic aperture interferometric radar images to predict soil surface and subsurface sand,
silt, and clay contents in the Brazilian Central Amazon. A Reference Area sampling design
was proposed to reduce costs and expedite soil survey was contrasted against a random
sampling design (that is, Total Area sampling), and combined with three machine learning
methods (RT, RF, and SVM) and two covariate selection approaches (WM and PCS).

The RA approach was the best sampling option, deriving the least errors, for surface
and subsurface silt and sand content prediction. Total Area random sampling was preferred
for surface and subsurface clay content prediction, though the errors were similar to those
from the RA approach. The RA was 80 km2, whereas the whole area to be mapped was
13.440 km2. This means that a tiny fraction of 0.6% of the total area served to collect soil
and remotely sensed relief and P-band data to train soil particle size prediction methods,
and transfer them to the whole area, composed by three relatively huge exploration blocks.
Thus, the RA approach combined with remote sensing is recommended for expediting soil
mapping and saving costs, especially in large areas.

From the relief attributes derived from the DEM, it was possible to establish relation-
ships between the soil particle size fractions and the landscape. The selection of covariates
(PCS) obtained, in general, better results than the all-in WM option that is commonly
employed in digital soil mapping studies. The most important covariates to predict the
soil particle size fractions in the Central Amazon region were CI, LF, MRRTF, MRVBF, TWI,
slope, and ProfC for all fractions, in addition to the radar P-band backscatter coefficient for
surface sand and clay contents.

Random forest outperformed RT and SVM for all soil particle size fractions and both
layers. It is recommended for its robustness and ease to implement in free and open-source
software. The P-band backscatter coefficient was considered an important covariate for the
prediction of surface sand and clay contents by RF, showing its potential use for mapping
these attributes.
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