
����������
�������

Citation: Li, M.; Yan, Q.; Li, G.; Yi, M.;

Li, J. Spatio-Temporal Changes of

Vegetation Cover and Its Influencing

Factors in Northeast China from 2000

to 2021. Remote Sens. 2022, 14, 5720.

https://doi.org/10.3390/rs14225720

Academic Editors: Konstantinos X.

Soulis, Thomas Alexandridis,

Emmanouil Psomiadis, Christos

Chalkias and Dionissios Kalivas

Received: 10 October 2022

Accepted: 7 November 2022

Published: 12 November 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

remote sensing  

Article

Spatio-Temporal Changes of Vegetation Cover and Its
Influencing Factors in Northeast China from 2000 to 2021

Maolin Li 1,2 , Qingwu Yan 1,3,*, Guie Li 1,3, Minghao Yi 1,3 and Jie Li 1,2

1 Observation and Research Station of Ministry of Education for Resource Exhausted Mining Area Land
Restoration and Ecological Succession, China University of Mining and Technology, Xuzhou 221116, China

2 College of Environment Science and Spatial Informatics, China University of Mining and Technology,
Xuzhou 221116, China

3 School of Public Policy and Management, China University of Mining and Technology, Xuzhou 221116, China
* Correspondence: yanqingwu@cumt.edu.cn

Abstract: The foundation of study on regional environmental carrying capacity is the detection
of vegetation changes. A case of Northeast China, we, with the support of normalized difference
vegetation index (NDVI) of MOD13A3 (MOD13A3-NDVI), use a three-dimensional vegetation cover
model (3DFVC) to acquire vegetation cover from 2000 to 2021. Vegetation trends are then monitored
by the spatio-temporal analysis models including the empirical orthogonal function (EOF), the Sen’s
slope (Sen), the Mann-Kendall test (MK) and the Hurst index (Hurst). Additionally, we, through the
multi-scale geographically weighted regression model (MGWR), explore the spatial heterogeneity of
vegetation response to its influencing factors. On the basis of this, it is by introducing the structural
equation model (SEM) that we figure out the mechanisms of vegetation response to climate and
human activity. The main results are as follows: (1) Compared with the dimidiate pixel model (FVC),
3DFVC, to some extent, weaken the influence of terrain on vegetation cover extraction with a good
applicability. (2) From 2000 to 2021, the average annual vegetation cover has a fluctuating upward
trend (0.03 · 22a−1, p < 0.05), and spatially vegetation cover is lower in the west and higher in the
east with a strong climatic zoning feature. In general, vegetation cover is relatively stable, only 7.08%
of the vegetation area with a trend of significant change. (3) In terms of EOF (EOF1+EOF2), EOF1

has a strong spatial heterogeneity but EOF2 has a strong temporal heterogeneity. As for the Hurst
index, its mean value, with an anti-persistence feature, is 0.451, illustrating that vegetation is at
some risk of degradation in future. (4) MGWR is slightly better than GWR. Vegetation growth is
more influenced by the climate (precipitation and temperature) or human activity and less by the
terrain or soil. Besides, precipitation plays a leading role on vegetation growth, while temperature
plays a moderating role on vegetation growth. What is more, precipitation, on different temperature
conditions, shows a different effect on vegetation growth.

Keywords: vegetation trends; MGWR; spatial heterogeneity; zoning characteristics; factor analysis

1. Introduction

In the terrestrial ecosystem, vegetation is both an essential component and a key
producer. It links several environmental components, including the atmosphere, soil,
and groundwater, and has an impact on the region’s biodiversity and ecological quality [1,2].
Vegetation cover is defined as the vertical projection area of the above-ground portion of
vegetation (including the leaves, stems and branches) as a percentage of the total surface
area [3]. It is not only a vital parameter for portraying the surface vegetation and a basic
indicator in the ecological environment, but also occupies a key position in the atmosphere,
soil and biosphere [4,5]. Therefore, it has both theoretical and practical significance for the
management of ecological process and the protection of ecological environment to monitor
spatio-temporal variations in vegetation cover and figure out the driving mechanism
of vegetation.
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The extraction of vegetation cover is to some extent dependent on the extraction
methods. At present, the methods for extracting vegetation cover, by remote sensing, can
be mainly classified into three types, including the regression method [6], the mixed-pixel
method [7] and the machine learning method [8]. Dimidiate pixel model (FVC) is one of
the most representative models in these methods, and is widely used for the estimation
of vegetation cover due to its formal simplicity and easy calculation [9]. However, it
is when the terrain is relatively complex that FVC has certain drawbacks. For instance,
when estimating vegetation cover, FVC usually idealizes the area occupied by vegetation
in a pixel as a two-dimension flat, while in reality, the area occupied by vegetation in
a pixel is a three-dimension curved surface. Besides, what a certain loss of information
may happen to replacing a three-dimensional curved surface with a two-dimensional flat
to estimate vegetation cover, which cannot represent the true level of vegetation cover.
Therefore, in order to weaken the influence of terrain on vegetation cover extraction, this
study, by means of the digital elevation model (Dem), modifies FVC, and the modified
model is called three-dimensional vegetation cover model (3DFVC).

In the context of global climate change, many studies on the driving forces of veg-
etation have been carried out at home and abroad in recent years. For instance, Cheng,
using the trend analysis and residual analysis, investigates vegetation trends in Qinling
Mountains, and quantifies the relative contributions of human activities and climate to
vegetation trends [10]. Otto, with the support of MODIS-NDVI, uses the regression analysis
to explore the relationship between vegetation and precipitation in north-western Morocco,
and carries out analysis and discussion on vegetation during the growing season [11]. Liu
acquires the actual and potential residuals in vegetation changes by means of the residual
analysis and has zoning statistics for the results obtained [12]. Besides, there are also many
related studies on the driving forces of vegetation, but they remain somewhat inadequate.
For example, some studies focus on vegetation response to climate changes [13,14], but
ignore the fact that vegetation growth is affected by multiple factors. Therefore, only taking
the impact of climate on vegetation growth into consideration may make the conclusions
one-side. On the basis of this, this study, from multiple factors (including climate, ter-
rain, soil and human activity) [15–17], explores the driving mechanism of vegetation in
combination with the natural and social characteristics in Northeast China. Additionally,
in terms of the analysis of affecting factors in vegetation, related studies mainly make use
of the correlation or regression analysis to investigate the connections between the affecting
factors and vegetation [18,19], and reveal the spatial heterogeneity characteristics in vegeta-
tion [20]. However, it is between the affecting factors and vegetation that the relationships
are relatively complex, which indicates that there may exist other relationships (except
for the correlation or regression) between the affecting factors and vegetation. Structural
equation model (SEM) is a method for estimating and testing causality, and it can replace
many methods (including the regression analysis, path analysis and other methods, etc.)
to diagnose the interrelationship among indicators [21]. As a result, this study uses SEM
to figure out the driving mechanism of vegetation, which is of great importance for the
restoration and reconstruction of ecology in different regions.

As is known to us, there are few studies on the vegetation cover of the whole of
Northeast China, and most studies only cover parts of Northeast China. In this study,
it aims to explore the spatio-temporal evolutionary process and spatial heterogeneity in
vegetation in Northeast China, and mine the intrinsic driving mechanisms of vegetation
growth, which is of great significance for the ecological security governance and sustainable
development in Northeast China.

2. Study Area and Data Sources
2.1. Study Area

With a total area of around 1.44 × 106 km2, Northeast China (37.95°–53.56°N, 111.15°–135.09°E)
is a significant grain production base in China. It is bordered by mountains and rivers and has a
large expanse of rich land [22,23]. In terms of climate, Northeast China has a temperate continental
climate with cold winters and complex climatic zones. On the one hand, Northeast China has
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warm, temperate, and cold temperate variations in temperature from south to north. On the other
hand, Northeast China, in precipitation, owns humid, semi- humid, and semi-arid variations from
east to west. Moreover, the elevation of Northeast China is high in the west and low in the east,
according to its topography map (Figure 1). Northeast China is one of most sensitive areas in
ecological environment due to its complex climatic zones and intense human activities [24,25].

Figure 1. Location and climate zones map (a), land-use map (b) and topography (c) of study area.
Land-use map, including six categories, was monitored in 2021.

2.2. Data Sources

The dataset used in this study ranges from 2000 to 2021 and primarily contains veg-
etation data, climate data, topography data, soil data and human activity data (Table 1).
Vegetation data (NDVImax) with a spatial resolution of 1000 m, which is derived from
MOD13A3-NDVI, is synthesized by the maximum value compose method (MVC) in a year.
Climate data in the meteorological station includes precipitation (Pre) and temperature
(Tem), which are processed as Pre and Tem in raster type by Kriging [26]. Topography
data originates from SRTM DEM, which is processed as slope with the help of ArcMap
10.6 software. Soil data includes silt, clay and sand, which are expressed as a percentage
respectively. Landsat images are derived from the Google Earth Engine (GEE). With the
aid of ENVI 5.3 software, we process the Landsat images and acquire land-use classifica-
tion data (including cultivated land, forest land, grassland, water body, urban land and
unutilized land). Moreover, land-use classification, with the help of the comprehensive
index of land-use degree method [27], is processed as land-use degree data which is used
to represent human activity data (Ha). With the help of ArcMap 10.6 software, all raster
data are resampled into 1000 m × 1000 m.



Remote Sens. 2022, 14, 5720 4 of 21

Table 1. Data types and data sources.

Data Type Resolution Data Source Time

Vegetation Data: 1000 m United States Geological Survey (USGS)

2000–2021

MOD13A3-NDVI https://lpdaac.usgs.gov/accessed on 12 July 2022
Climate Data: null Meteorological Data Centre of China
Precipitation; Temperature http://data.cma.cn/accessed on 16 June 2022
Topography Data: 1000 m Resource and Environment Science and Data Center
Dem; Slope https://www.resdc.cn/accessed on 18 August 2022
Human Activity Data: 30 m Google Earth Engine (GEE)
Landsat https://code.earthengine.google.com/accessed on 17 June 2022
Soil Data: 1000 m Resource and Environment Science and Data Center
Sand; Clay; Silt https://www.resdc.cn/accessed on 15 July 2022
Boundary Data: null National Platform for Common Geospatial Information Services 2021Shapefile https://www.tianditu.gov.cn/accessed on 12 August 2022

3. Methodology

Figure 2 shows the frameworks of study, which includes three steps. The first step
is to compare FVC’s applicability for complex terrain with 3DFVC’s. In this work, we
calculate NDVImax into vegetation cover (including FVC1000 and 3DFVC1000 from 2000 to
2021) by means of FVC and 3DFVC. In order to reduce errors, FVC1000 and 3DFVC1000 are
processed as multi-year averages respectively. The extraction outcomes of FVC and 3DFVC
under different terrain situations are then compared and analyzed. According to their
outcomes, 3DFVC with a better applicability is selected for the next study. The second step
is to carry out the spatio-temporal analysis in vegetation changes, which is mainly include
three subsections. The first subsection is to use Sen and MK to study overall evolutionary
trends in vegetation; the second subsection, in different periods or local areas, is to use
EOF to analyze the spatio-temporal characteristics in vegetation; and the last subsection
is to use Hurst to forecast the future trends in vegetation. What is more, the third step
is to investigate the spatial heterogeneity features in vegetation and the intrinsic driving
mechanism in vegetation growth. More details are given in the following sections.

Figure 2. Framework of data processing flow.

3.1. Vegetation Cover Model
3.1.1. Three-Dimensional Vegetation Cover Model

In this study, the dimidiate pixel model (FVC) is corrected by means of the idea of
calculus. Generally, the area of three-dimensional curved surface is difficult to calculate,
but is approximatively approached by calculus method (Figure 3). Similarly, this study

https://lpdaac.usgs.gov/
http://data.cma.cn/
https://www.resdc.cn/
https://code.earthengine.google.com/
https://www.resdc.cn/
https://www.tianditu.gov.cn/
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applies this idea to remote sensing images, which means that the spatial resolution in
remote sensing images is higher and the area occupied by vegetation cover is closer to a
two-dimensional flat in a unit. In the meanwhile, the three-dimensional terrain shows less
influence on the estimation of vegetation cover and the vegetation information is closer to
the definition of vegetation cover in natural conditions.

Figure 3. Basic principle in calculus method. When the area of curved surface is small enough, it can
be approximated as a bevel surface.

According to the definition of vegetation cover, this study regards FVC as the numer-
ator and the three-dimensional curved surface as the denominator, and then acquires a
three-dimensional vegetation cover model. The procedures are as follows:

(1) It is assumed that there are two different mixed components (bare land and pure veg-
etation) in a pixel. Besides, FVC is constructed by the weighted linear combination of
two pure components (bare land and pure vegetation) [28]. The equation is as follows:

FVC =
NDVI − NDVIsoil

NDVIveg − NDVIsoil
(1)

where FVC represents the dimidiate pixel model, NDVIveg and NDVIsoil represents the
NDVI values of soil and vegetation respectively. In addition, NDVIveg and NDVIsoil
get their NDVI values in the interval of 95% and 5% [29].

(2) Figure 4 shows that Cosα is equal to the ratio of Spixel and Sslope (the lengths of adjacent
and hypotenuse). Similarly, it is obvious that the ratio of S2

pixel and Sslope×Spixel is
equal to Cosα as well. The equation is as follows:

Figure 4. The flow of equation derivation for the curved surface.
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Sslope

Spixel
=

1
Cos(π × slope/180)

(2)

where α (π × slope/180) is the angle between Spixel and Sslope, and slope is originated
from Dem and π is approximately equal to 3.1415926. Spixel is the side length of the
bottom surface and S2

pixel is the bottom surface area. Sslope is the side length of the
bevel surface and the bevel surface area is Spixel × Sslope.

(3) This study divides FVC by 1/Cosα and gets the three-dimensional vegetation cover
model. The equation is as follows:

3DFVC = FVC× Cos(π × slope/180) (3)

where 3DFVC represents the three-dimensional vegetation cover model and Cos(α
× slope/180) indicates the curved surface indicator. In addition, vegetation cover is
divided into five categories including high coverage (0.8–1.0), middle high coverage
(0.6–0.8), middle coverage (0.4–0.6), middle low coverage (0.2–0.4) and low coverage
(0.0–0.2) [30].

3.1.2. Accuracy Assessment Method of Vegetation Cover

In this study, sub-pixel comparison method (SCM) is used to evaluate the accuracy
of FVC and 3DFVC, and it not only tests the accuracy, but also correlates the obtained
vegetation cover with the actual vegetation cover derived from the higher resolution
images [31,32]. The images used for the actual vegetation cover are MOD13Q1-NDVI
(originated from Google Earth Engine) with a spatial resolution of 250 m, which has the
same data processing process as MOD13A3-NDVI. The accuracy of vegetation cover model
is higher if the regression coefficient between the vegetation cover to be validated and the
actual vegetation cover is closer to 1 [33]. Besides, root mean square error (RMSE) is also
used to test the accuracy of vegetation cover model [34]. The equation is as follows:

RMSE =

[
n

∑
i=1

(Xi −Yi)
2/n

]1/2

(4)

where Xi indicates the vegetation cover to be validated; Yi represents the actual vegetation
cover; and n indicates the samples. Furthermore, the lower the RMSE is, the higher the
accuracy of vegetation cover model is.

3.2. Spatio-Temporal Analysis Model for Vegetation Cover
3.2.1. Trend Analysis

Sen’s slope (Sen) is a method of trend analysis, which can simulate and explain the
trends in vegetation cover from 2000 to 2021 through pixel by pixel [35]. The equation is
as follows:

ρ =
yj − yi

j− i
(0 < i < j < n) (5)

where yi and yj represent the vegetation cover of monitoring years i and j, respectively.
Additionally, ρ indicates the trends in vegetation cover. When ρ > 0, vegetation coverage
has an upward trend; when ρ < 0, vegetation coverage has a downward trend; and when
ρ = 0, vegetation coverage has no change.

The Mann-Kendall trend test (MK) is a method used for significance testing, which
removes a small number of outliers and is also applied to the non-standard normal distri-
bution [36]. The equation is as follows:

Q =
n−1

∑
i=1

n

∑
j=i+1

sign
(
yj − yi

)
(6)
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Z =


Q−1√
Var(Q)

(Q > 0)

0 (Q = 0)
Q+1√
Var(Q)

(Q < 0)
(7)

where Q is the test statistics; Z is the standard test statistics; and n indicates the samples.
When yj−yi > 0, sign is equal to 1; when yj−yi = 0, sign is equal to 0; and when yj−yi < 0,
sign is equal to −1. When |Z|>Z1−0.05/2 = 1.96, there is a significant trend in vegeta-
tion changes, and when |Z| ≤ 1.96, there is no significant trend in vegetation changes.
Therefore, the study, by overlaying Sen with MK, divides the vegetation trends into five
categories (Table 2).

Table 2. The categories for vegetation cover trend.

Theme Sen Z Trend

1 ≥0.0005 >1.96 significant improvement
2 ≥0.0005 −1.96–1.96 slight improvement
3 −0.0005–0.0005 −1.96–1.96 stable
4 ≤−0.0005 −1.96–1.96 slight degradation
5 ≤−0.0005 <1.96 serious degradation

3.2.2. Empirical Orthogonal Function

Empirical Orthogonal Function (EOF) is a statistical method commonly used in the
field of atmosphere and ocean [37]. Besides, it primarily, by means of the variance statistics,
concentrates the useful information of data on a few spatial distributions and time series so
as to reflect the spatio-temporal characteristics in vegetation changes. Assume that there
are m observation points in the study area and each observation point has n observation
values. The observation matrix is as follows:

X =
(

xij
)
=
(

x1, x2, · · · , xj
)
=

 x11 · · · x1n
...

. . .
...

xm1 · · · xmn

 (8)

where xij denotes the j-th observation on the i-th grid. X can be decomposed into a time
matrix and a space matrix. The equation is as follows:

X = VT (9)

where V is the space matrix; and T is the time matrix. V and T are both orthogonal matrices.
In addition, X can also be expressed as the product of the spatial eigenvector and the time
coefficient. The equation is as follows:

xij =
m

∑
k=1

viktkj = vi1t1j + vi2t2j + · · ·+ vimtmj (10)

where xik denotes the spatial eigenvector; and xkj indicates the time coefficient. In geogra-
phy, the spatial eigenvector, called the spatial mode, corresponds to the spatial distributions
in study subjects. The larger the variance contribution (VC) of spatial mode is, the better
it reflects the spatial distribution characteristics in the eigenvector field. Also, the larger
the absolute value of spatial mode is, the greater the magnitude of its change over time
is [38]. The time coefficient, which corresponds to the primary component, conveys the time
change information of spatial mode in addition to indicating the weight of the spatial mode.
The larger the time coefficient is, the more significant the spatial variation characteristics
is [39]. In general, EOF can dissect the spatio-temporal development of vegetation by
decomposing the temporal and spatial variables.
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Moreover, it is necessary to check whether the spatial mode is meaningful before
the result is gotten, which is achieved by calculating the error range for the characteristic
roots [40]. The equation is as follows:

|λk+1 − λk| ≥ λk × (2/m)1/2 (11)

where λk+1 and λk represent the eigenvalues, respectively; k indicates the ordinal number
in eigenvalues; and m is the total number in eigenvalues. When k = 3, the inequality
does not hold (|14656.16–16205.74|<16205.74 × (2/13)1/2). Therefore, the first and second
eigenvalues (λ1 and λ2) are only reserved. λ1 corresponds to the first eigenvector field
(EOF1) and its time coefficient; λ2 corresponds to the second eigenvector field (EOF2) and its
time coefficient; and the variance contributions of λ1 and λ2 are respectively VC1 and VC2.

3.2.3. Hurst Index

Hurst index (Hurst) is a method for quantitatively describing the information depend-
ence [41], which can quantify the relationship between the future trend and the previous
trend and try to figure out whether vegetation changes have continuity through time series.
In this study, rescaled range analysis method (R/S) is used to reveal the evolutionary
characteristics in vegetation future changes [42]. The equation is as follows:

X(t, τ) =
t

∑
u=1

(
ξ(u)− 1

τ

τ

∑
t=1

ξ(t)

)
(12)

R(τ) = max
16t6τ

X(t, τ)− min
16t6τ

X(t, τ) (13)

S(τ) =

[
1
τ

τ

∑
t=1

(ξ(t)− ξτ)
2

]1/2

(14)

where X(t, τ) represents the sequences in cumulative deviations (τ=1, 2, 3,· · · , n); R(τ)
indicates the range sequences; and S(τ) represents the standard deviation sequences. When
R(τ)/S(τ)ατH, vegetation cover has a certain continuity in trends. Hurst usually ranges
from 0 to 1. When H = 0.5, vegetation cover has no significant change in future; when
H > 0.5, vegetation cover has a positive continuous trend with a persistence feature in future;
and when H < 0.5, vegetation cover has a negative continuous trend with an anti-persistence
feature in future. In addition, the study overlays Sen with Hurst index, which can divide the
vegetation future trends into four categories including continuous improvement (Sen > 0
and H > 0.5), continuous degradation (Sen < 0 and H > 0.5), degradation to improvement
(Sen < 0 and H < 0.5) and improvement to degradation (Sen > 0 and H < 0.5).

3.3. Influencing Factor Analysis Model for Vegetation Cover
3.3.1. Multi-Scale Geographically Weighted Regression

Geographical weighted regression (GWR) is an extension for ordinary least squares
(OLS), and its weight is a function of distance between the geospatial location of obser-
vation point and the regression point, aiming to weigh the influence degree to which the
observations at different geographic locations have an impact on the parameter estimates
at regression points [43]. Multi-scale geographically weighted regression (MGWR) is an
improvement of GWR, which produces multiple adaptive bandwidths at different spatial
scales with a good level of spatial smoothing [44]. The equation is as follows:

yi =
k

∑
j=1

βbwj(ui, vi)xij + εi (15)

where i, j represent the sample size and the independent variable size, respectively; k
denotes the maximum value of j; yi indicates the explained variable; (ui,vi) represents the



Remote Sens. 2022, 14, 5720 9 of 21

spatial location; xij is on behalf of the explanatory variable; εi indicates the stochastic error
term; bwj represents the bandwidth.

In this study, corrected akaike information criterion (AICc) and R-square (R2) are used
to evaluate the goodness in models, which specifically means that a lower AICc indicates
a better model superiority and a higher R2 represents a better model fit [45]. In addition,
the multicollinearity problem in multiple variables tends to affect the accuracy of regression
results. Therefore, we use variance inflation factor (VIF) to test the multicollinearity in
multiple variables [46]. When VIF < 10, it means a weak collinearity in multiple variables;
when 10 ≤ VIF < 100, it means a strong collinearity in multiple variables; and when
VIF ≥ 100, it indicates a severe collinearity in multiple variables.

3.3.2. Mediating Effect Model and Moderating Effect Model

Traditional geological models focus on exploring the direct relationship between
vegetation and its influencing factors, but ignore the indirect effects between them in
practical applications [47,48]. Structural equation model (SEM) is a statistical method for
testing causality [49], which can replace many methods (including the multiple linear
regression, path analysis and other methods) to analyze the relationships between each
variable and be a multivariate statistical technique used for modeling [50]. In this study,
mediating effect model and moderating effect model in SEM are used to explore the
potential relationships between them. The rationale is as follows (Figure 5). M is the
independent variable; N is the dependent variable; and Z is the mediator or the moderator.
Besides, the two models cannot hold simultaneously. As shown in Figure 5a, if M has an
effect on N through Z, ME can hold. For example, precipitation has an effect on vegetation
and temperature also has an effect on vegetation. However, precipitation does not affect
vegetation directly but indirectly through temperature. As shown in Figure 5b, when Z has
an effect on the relationship between M and N, MO holds. For instance, precipitation has
an effect on the relationship between temperature and vegetation. But when temperature is
higher or lower, precipitation has a different effect on vegetation. Moreover, the growth of
R2 (∆R2) is used to evaluate the models in this study. The higher R2 and ∆R2 are, the better
the fitting results for ME and MO are. For the testing of significance in models, the lower Fp
(the significance of F value) and p (the significance of interaction) are, the more significant
ME and MO are.

Figure 5. Mediating effect model map (a) and moderating effect model map (b).

4. Results
4.1. Comparison and Analysis in FVC and 3DFVC
4.1.1. Comparison of FVC and 3DFVC

In order to reduce random errors, FVC1000 and 3DFVC1000 from 2000 to 2021 are
calculated into average annual vegetation cover (including FVCAve1000 and 3DFVCAve1000)
in this study. The difference (D1000 = FVCAve1000 − 3DFVCAve1000) between FVCAve1000 and
3DFVCAve1000 is then acquired by subtraction (Figure 6). In general, the more complex
terrain is, the higher D1000 is. On particular, D1000 is higher in Daxing’an Mountains and
Changbai Mountains, but lower in the Northeast Plain. It indicates that the difference in
FVC and 3DFVC is not significant where the terrain is relatively simple in some areas (such
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as plain and platform). However, as the terrain becomes more complex, the difference in
FVC and 3DFVC becomes more obvious.

Figure 6. The spatial distribution of terrain and D1000.

4.1.2. Statistical Validation in FVC and 3DFVC

D1000 only indicates the difference between FVC and 3DFVC, but does not represent
the extraction accuracy of FVC and 3DFVC. Thus, we use sub-pixel comparison method
to validate the extraction accuracy of FVC and 3DFVC (Figure 7). The results show that
3DFVC’s regression coefficient increases by 0.07 and is closer to 1 than FVC’s. But the
improvement of 3DFVC’s regression coefficient is not extremely obvious, which may be
caused by small percentage of complex terrain area in total area, and more details are
explained in the terrain analysis. In addition, 3DFVC’s root mean square error (RMSE)
decreases by 16.5 and is lower than FVC’s. Obviously, in contrast to FVC, 3DFVC, with the
Cosα function, lowers the influence of complex terrain on vegetation extraction, making
itself have a higher extraction accuracy and a stronger applicability.

Figure 7. Accuracy comparison between FVC and 3DFVC.

4.2. Spatio-Temporal Analysis in Vegetation Changes
4.2.1. Spatio-Temporal Characteristics for Vegetation Changes

As shown in Figure 8, vegetation cover is overall high in Northeast China and its
mean value is equal to 0.7174. Additionally, spatially vegetation cover has a distinct zonal
characteristic (Region I, Region II and Region III). It is necessary to remind that Region II
also includes a small piece of region (II) in the southwest.

As shown in Figure 8a, vegetation cover has a fluctuating upward trend from 2000
to 2021 (k = 1.4 × 10−3), ranging from 0.686 to 0.739, with the lowest and highest values
occurring in 2001 and 2016, respectively. In addition, the span in vegetation changes can
be broadly divided into three periods from 2000 to 2021 (T1 in 2000–2007, T2 in 2007–2013
and T3 in 2013–2021). Vegetation cover increases fast in T1 (k = 3.9 × 10−3), modestly in
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T2 (k = 1.1 × 10−3) and slowly in T3 (k = 0.4 × 10−3). Overall, vegetation cover increases
significantly in Northeast China from 2000 to 2021, but vegetation cover is gradually stable
with passage of time.

As shown in Figure 8b, vegetation cover, with a strong spatial heterogeneity, is high
in the east and low in the west, spatially. In particular, the spatial distribution of vegeta-
tion cover is correlated with the climate zones to some extent. Region I is in the humid
region with a high vegetation cover, Region II is in the semi-humid region with a middle
vegetation cover, and Region III is in the semi-arid region with a low vegetation cover.
In addition, the spatial distribution of vegetation cover not only associates with the climatic
zones, but also has a certain correlation with topography and land use (Figure 1). There-
fore, vegetation cover, with a strong spatial heterogeneity, may be influenced by climate,
topography or other factors, as detailed in the following sections.

As shown in Figure 8c, vegetation cover in Northeast China is dominated by high and
middle high coverage, accounting for more than 70% of the total area. Less than 30% of
vegetation area is covered by the middle coverage and below. In addition, from 2000 to 2021,
the area of high coverage increases significantly, the area of middle high coverage remains
relatively stable and the area of middle coverage and below decreases significantly. Overall,
vegetation cover gradually evolves from low coverage to high coverage in Northeast China.

Figure 8. Spatio-temporal characteristics in vegetation changes.
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4.2.2. Spatio-Temporal Evolution in Vegetation Cover

As shown in Figure 9, we use Sen and MK to acquire the spatio-temporal trends in
vegetation change. The results show that the vegetation trends in most areas are relatively
stable. Besides, 60.32 % of vegetation area shows a stable trend, 24.36% of vegetation area
shows an improving trend and 15.32% of vegetation area shows a degrading trend. It is
in terms of 24.36% of vegetation area with an improving trend that 19.08% of vegetation
area has a slight improvement and only 5.28% of vegetation area has a significant trend of
improvement. The regions with a significant improvement of vegetation are mostly found
in Regions II and Region III, which is probably due to the fact that vegetation cover in these
areas is previously low and is significantly improved with the implementation of Grain for
Green Project later on. Only 1.80% in 15.32% of vegetation area with a trend of degradation
shows a significant trend of degradation, whereas 13.52% of vegetation area shows a slight
trend of degradation. What is more, the areas with a significant vegetation degradation are
mainly found in the north of Region III, which is likely a result of the region’s semi-arid
climate and lack of heat in high latitude locations. The vegetation in Region I shows a
relative stable trend overall, but changes significantly in local areas. Additionally, especially
in the east of Region I, vegetation has a significant trend, which is probably caused by the
dual impact of human activity, such as ecological governance and resource development.

Figure 9. Distribution of vegetation cover change trends in Northeast China from 2001 to 2021 and
its percentages.

Sen and MK can reveal the overall process in vegetation change from 2001 to 2021,
but it is in different periods or locations that they never reflect the detailed characteristics in
vegetation change. On the basis of this, EOF, in order to uncover more details in vegetation
change, is used to conduct the spatio-temporal decomposition in vegetation from 2001 to
2021 in this study, as shown in Figure 10 (including the variance contributions (VC1 and
VC2), the eigenvector fields (EOF1 and EOF2) and the time coefficients).

EOF1’s variance contribution is 25.5% and it represents the main spatial distribution
features of vegetation in Northeast China. In the first eigenvector field, EOF1 has a good
spatial consistency with mostly positive values, and the high values mainly are located
in Region II and the south of Region III. According to EOF1’s time coefficient, which has
an upward trend (k = 6.464), it indicates that vegetation cover overall shows an upward
trend from 2000 to 2021. Additionally, vegetation cover obviously increases, particularly in
Region II and the south of Region III, which is largely consistent with Sen’s results.

EOF2’s variance contribution is 14.2% and it indicates the local spatial distribution
features of vegetation in Northeast China. In the second eigenvector field, EOF2’s time
coefficient showing an increasing followed by decreasing trend (k = −1.062) is different
from EOF1’s. Spatially, the values of EOF2 below 0 (EOF2 < 0) are mostly found in the
north of Region II and Region III, whilst the values of EOF2 above 0 (EOF2 > 0) are largely
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situated in the south of Region II and Region III. Besides, the span of EOF2’s time coefficient
can be broadly divided into two periods (T1 and T2). It is during T1 that vegetation is
improved in Region II and Region III, but it is during T2 that vegetation is degraded in
Region II and Region III. It is obvious that vegetation in Region II and Region III changes
sensitively, and vegetation is locally degraded in spite of the overall improvement.

Figure 10. The eigenvector fields and their time coefficients.

Sen, MK and EOF aim to study the spatio-temporal evolution in vegetation, whilst
future trend of vegetation is not yet clear. As shown in Figure 11, future trend of vegetation
is acquired by overlaying Hurst and Sen in this study.

Hurst ranges from 0.064 to 0.985. Besides, the average Hurst is 0.451 and 70.71% of
vegetation area has a Hurst of less than 0.5, which indicates that the anti-persistence feature
of vegetation sequence is stronger than the persistence feature of vegetation sequence.
The statistics show that 37.56% of vegetation area varies from improvement to degradation,
13.87% of vegetation area has a continuous degradation trend and only 15.42% of vegetation
area has a continuous improvement trend. Furthermore, the vegetative area with a Hurst
between 0.4 and 0.6 accounts for 64.46% of the total. However, the vegetation area with
a Hurst less than 0.4 and more than 0.6 accounts for 29.39% and 6.15% of the total area,
respectively, it indicates that local vegetation area has a significant anti-persistence feature
in future. It is worth noticing that the Hurst in Region S is higher, which indicates that
vegetation change in Region S is going to be more sensitive than in other areas.
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Figure 11. Distribution of hurst in Northeast China and its percentages.

4.3. Analysis of Influencing Factors in Vegetation Cover
4.3.1. Analysis of Spatial Heterogeneity in Vegetation Changes

The results of spatio-temporal analysis in vegetation show that vegetation in Northeast
China has a strong spatial heterogeneity. However, the severe multicollinearity exists be-
tween explanatory variables can weaken the model’s ability to explain spatial heterogeneity.
Therefore, before that, the explanatory variables ought to be tested for multicollinearity,
leaving those with a weak multicollinearity. GWR and MGWR then are applied to ac-
quire the regression coefficients for the explanatory variables. Besides, the statistics is
shown in Table 3 (including mean, standard error (STD), minimum (Min), maximum (Max),
significance (p) and VIF).

The results show that the explanatory variables have a weak multicollinearity (VIF < 5)
and a high level of significance (p < 0.05). In GWR and MGWR, Pre and Clay have a positive
influence on vegetation changes (Pre+ and Clay+); Tem, Ha and Dem have a negative
influence on vegetation changes (Tem−, Ha− and Dem−); and Slope and Silt have a weak
influence on vegetation changes without positive or negative influences significantly.

Table 3. Comparison of parameter estimate and testing result for GWR and MGWR. The explanatory
variables including precipitation (Pre), temperature (Tem), elevation (Dem), gradient (Slope) and
human activity (Ha).

Model Variable VIF Mean STD Min Max p

GWR

Intercept 0.649 0.524 −0.95 2.845 1.000
Pre 2.285 0.154 0.594 −0.729 1.916 0.000
Tem 2.15 −0.236 0.856 −3.772 2.406 0.000
Ha 2.612 −0.598 0.484 −1.158 0.656 0.000

Dem 3.028 −0.05 0.907 −3.277 3.095 0.000
Slope 3.985 0.037 0.472 −1.004 2.924 0.000
Clay 2.676 0.105 0.334 −0.839 0.729 0.000
Silt 1.753 −0.031 0.23 −0.509 0.548 0.005

MGWR

Intercept 0.617 0.005 0.607 0.622 1.000
Pre 2.285 0.201 0.473 −0.977 1.338 0.000
Tem 2.15 −0.35 0.378 −0.759 0.138 0.000
Ha 2.612 −0.706 0.459 −1.324 0.777 0.000

Dem 3.028 −0.286 0.351 −0.962 0.303 0.000
Slope 3.985 −0.05 0.005 −0.057 −0.038 0.000
Clay 2.676 0.128 0.264 −0.878 0.622 0.000
Silt 1.753 0.036 0.034 −0.032 0.079 0.005
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As shown in Figure 12, it is found that the influencing factors for vegetation cover
vary with spatial locations, and there exists a positive or negative correlation between its
influencing factors and vegetation growth. The results show that the spatial distribution
for influencing factors between GWR and MGWR overall has a high similarity, but there
are some differences in local areas. Climate and Ha are the main influencing factors on
vegetation growth, with a significant zoning characteristic. On the one hand, it is in GWR
that vegetation changes in Region II are primarily influenced by Pre but in Region I are
mainly influenced by Ha, with a total of 71.2% of vegetation area influenced by Pre and
Ha. On the other hand, it is in MGWR that vegetation changes in Region II are mainly
influenced by a combination of Pre and Tem but in Region I are influenced by Ha, with a
total of 95.8% of vegetation area influenced by Pre, Tem and Ha.

Vegetation growth is primarily affected by climate in Region II. In terms of Pre, the cli-
matic zones in Northeast China transition from the humid region in the east to the semi-arid
region in the west. It is with weak conservation of soil and water that vegetation cover is
low in Region II, and vegetation grows mainly from Pre. Therefore, Pre shows a positive
dominant influence on vegetation growth in Region II. In terms of Tem, the climatic zones
in Northeast China transition from the cold temperate zone in the north to the temperate
zone in the south. The heat of cold temperate zone is scarce and vegetation growth is
largely dependent on Pre. Besides, the heat of temperate zone is relatively adequate in
contrast to the cold temperate zone, which creates favorable conditions for vegetation
growth. However, the south of Region II is mainly located in the semi-arid region where
the transpiration of vegetation is significant in hot and dry summers. Therefore, Tem shows
a negative dominant influence on vegetation growth in the south of Region II.

Vegetation growth is not only affected by the hydrothermal conditions but also suscep-
tible to Ha. In terms of Ha, there is a high land-use intensity in Region I with a relatively
suitable climate. It is analyzed that a suitable climate only guarantees the conditions for
vegetation growth, but does not play a major role. Especially in the areas of land-use
intensity, climate has a weaker impact on vegetation growth than Ha. Therefore, Ha shows
a negative dominant effect on the vegetation growth in Region I. Additionally, topography
has a less dominant effect on vegetation growth, which has a significant difference in the
spatial distribution between GWR and MGWR. It is analyzed that different bandwidth
conditions are the reasons why topography has a different spatial distribution in GWR and
MGWR. At last, soil also affects vegetation growth, but it is not represented in GWR and
MGWR because its estimated parameters are not significant compared to other factors.

Figure 12. Spatial heterogeneity analysis of influencing factors in vegetation. A positive influence
on vegetation growth (+); a negative influence on vegetation growth (−) and the influencing factors
including precipitation (Pre), temperature (Tem), elevation (Dem), gradient (Slope) and human
activity (Ha).
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As shown in Table 4, MGWR produces multiple adaptive bandwidths with a good
spatial smoothing level. The AICc, BIC and residual sum of squares (RSS) in MGWR
are obviously lower than in GWR, which indicates that MGWR uses fewer parameters
to make the regression results close to the true values and shows a better explanatory
ability. However, it is in terms of adjusted R2 that MGWR’s adjusted R2 is only slightly
higher than GWR’s. In addition, what a quite similar spatial distribution of GWR and
MGWR also proves that the differences between MGWR and GWR are not very significant.
In conclusion, MGWR is slightly better than GWR in this study.

Table 4. Comparison of model superiority in GWR and MGWR.

Model Bandwidth RSS AICc BIC Adjusted R2

GWR 55 27.219 356.079 629.651 0.889
MGWR 27-333 25.342 268.471 499.671 0.904

4.3.2. Analysis of Dominant Factors in Vegetation Changes

The results of GWR and MGWR indicate that Pre, Tem and Ha play a major role
in vegetation growth. As shown in Figure 13, we, in order to figure out the driving
mechanisms in vegetation growth, use SEM to further mine the relationships between
vegetation and its dominant factors. Besides, the statistics is shown in Table 5 (including
the growth value of R2 (∆R2), adjusted R2, Fp and p).

The results show that there is a significant moderating effect between Pre, Ha and
vegetation. Of the three models, model 1 has the highest significance level, adjusted R2

and model explanatory ability, indicating that Pre has a direct effect on vegetation growth
and Tem has a moderating effect on vegetation growth. In model 2, when Ha is the
moderating variable, R2 is 0.721 with a high significance, indicating that Pre plays a major
role in vegetation growth and Ha has a moderating effect on vegetation growth. However,
by comparison, it is found that R2 (0.827) for model 1 is higher than that (0.721) for model 2,
which indicates that Tem shows a stronger moderating ability over vegetation growth than
Ha. In addition, it is when Tem is the independent variable that ∆R2 for model 3 is 0.343,
which indicates that Ha has a certain moderating effect on vegetation growth. However,
as a result of the lower R2 (0.349), model 3 has a poor explanatory ability.

Figure 13. Mechanisms of dominant factors on vegetation growth in Northeast China. The dominant
factors including precipitation (Pre), temperature (Tem) and human activity (Ha).
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Table 5. Comparison of model testing result.

Model Adjusted R2 ∆R2 Fp p

1 0.827 0.161 0.000 0.000
2 0.721 0.051 0.000 0.008
3 0.349 0.343 0.336 0.000

5. Discussion
5.1. Strength and Weakness for FVC and 3DFVC

The complex terrain can have a certain effect on vegetation cover extraction, and the
most effective way is to conduct a terrain correction on vegetation information [51,52].
3DFVC, to some extent, weakens the limitation of FVC by introducing Cosα, and it is
not only suitable for the flat terrain, but also for the complex terrain. It is in terms of the
operability in 3DFVC that Cosα can be acquired directly by Dem and its calculation process
is extremely simple and quick. 3DFVC is expressed as the ratio of FVC to the curved
surface area, which has a better physical meaning than FVC. Besides, 3DFVC has a better
applicability than FVC, but it requires the of support Dem. It is when the remote sensing
images have a higher spatial resolution that 3DFVC also needs Dem with a higher spatial
resolution to meet the demand, which is also its shortcoming.

5.2. Advantages for Applying MGWR to Study Spatial Heterogeneity of Vegetation

The spatial distributions of MGWR and GWR are somewhat similar, but they also
have some differences. In terms of the models, the biggest difference between MGWR
and GWR is that they have different bandwidths (Table 6). The bandwidth of influencing
factors is equal to 55 in GWR, and the bandwidth of influencing factors is between 27
and 333 in MGWR. In GWR, it usually uses initial bandwidth and step size to get an
optimal bandwidth [53,54]. Therefore, the optimal bandwidth is somewhat affected by
initial bandwidth and step size, and only reflects the general level. In addition, it may
affect the robustness of GWR and thus indirectly the spatial heterogeneity of GWR. On the
contrary, MGWR acquires the bandwidths for multiple variables by means of local adaption.
On the one hand, the adaptive process can make MGWR generate multiple bandwidths for
explanatory variables. On the other hand, it can also avoid capturing too much noise and
bias and make MGWR have a better level of spatial smoothing [55], which is the important
reason why MGWR shows a weaker spatial heterogeneity than GWR.

MGWR mitigates the effect of scale noise on spatial heterogeneity, which can allow the
spatial distribution of influencing factors to be more compact. It is in both MGWR and GWR
that the growth of vegetation is influenced firstly by climate and human activity, secondly
by topography and thirdly by soil. Firstly, it is in terms of climate and human activity that
the bandwidths of Tem (193 and 55) have a large difference in GWR and MGWR, but the
bandwidths of Pre and Ha (43 and 55; 27 and 55) have a small difference in GWR and
MGWR. Therefore, it is in Figure 12 that Tem has a large variation in spatial heterogeneity
between GWR and MGWR, but Pre and Ha have a small variation. Secondly, in terms of
topography, Dem and Slope have the similar phenomenon with Pre, Ha and Tem. Thirdly,
in terms of soil, Clay and Silt are not represented spatially due to their lower regression
coefficients (Table 3). Furthermore, MGWR not only explores the spatial heterogeneity of
vegetation, but it also filters out non-essential influencing factors (Dem, Slope, Clay and
Silt). Therefore, it retains the main influencing factors (Pre, Tem and Ha), which can reduce
a certain amount of work for the study of vegetation dominant factors.

Table 6. Comparison of bandwidth between GWR and MGWR.

Bandwidth Pre Tem Ha Dem Slope Clay Silt

MGWR 43 193 27 61 333 36 242
GWR 55 55 55 55 55 55 55
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5.3. MO’s Inspiration for Study on Vegetation Influencing Factors

Since mediating effect model (ME) and moderating effect model (MO) cannot hold
simultaneously. Therefore, when MO holds, ME becomes irrelevant. The results show
that Pre has a direct effect on vegetation growth and Tem has a moderating effect on
vegetation growth (Figure 13), which indicates Pre has different effects on vegetation
growth on different temperature conditions. By contrast, previous studies mainly explore
the direct relationship between vegetation growth and its influencing factors through the
correlation or regression analysis [56,57]. In addition, few studies are to mine the potential
relationship between vegetation growth and its influencing factors. It is in terms of Pre
that Pre has a direct contribution to vegetation growth, which is generally consistent with
the conclusions of previous studies [58,59]. However, it is in terms of Tem that Tem has
no direct contribution to vegetation growth but plays a moderating role, which means
that Tem is only used as a condition factor for vegetation growth, not as a dominant factor
in Northeast China. Therefore, it is tried to explore the intrinsic driving mechanisms of
vegetation growth by introducing MO, which can provide an inspiration for the relevant
studies in other regions.

5.4. Recommendations for Ecological Management of Vegetation

There is a strong zoning characteristic in vegetation. The results of GWR and MGWR
show that vegetation in Region I is mainly influenced by human activity, while vegetation
in Region II is primarily influenced by climate. Combining with the natural features in
Northeast China, here are two suggestions for protecting vegetation. The first suggestion is
to adopt a zoning approach to implement ecological management. The specific measures are
that vegetation is conserved in Region I via anthropogenic ecological restoration strategies
(such as land restoration, afforestation and so on), while vegetation is protected in Region
II by natural restoration (such as eco-migration, establishment of nature reserves and so
on). The second suggestion is that the relevant policies or regulations should be improved
concerning “environmental protection”, so as to promote the sustainable development of
Northeast China.

5.5. Limitations

It is in terms of the influencing factors of vegetation that only those that can be easily
quantified are included in this study such as climate, soil, topography and human activity.
Besides, there are far more factors affecting the growth of vegetation than those mentioned
above [60]. However, some factors (such as grazing, ecological governance or other factors)
that are difficult to quantify, are not taken into account in this study and they also may
have an impact on vegetation growth. It is in future that a wider range of factors can be
considered for inclusion.

6. Conclusions

In Northeast China, this study uses 3DFVC to study the spatio-temporal vegetation
changes from 2000 to 2021. With the support of GWR and MGWR, the spatial hetero-
geneity analysis between vegetation and its influencing factors is carried out. In addition,
the driving mechanisms on vegetation growth are acquired by the moderating effect model.
The main conclusions are reached, as follows:

(1) 3DFVC has a better physical meaning than FVC. 3DFVC has a higher regression
coefficient and a lower RMSE, which indicates that 3DFVC is better than FVC on
vegetation cover extraction. Additionally, 3DFVC has a better applicability than FVC,
not only for areas with complex terrain, but also for areas with flat terrain.

(2) Vegetation in Northeast China improves overall with a strong zoning characteristic.
From 2000 to 2021, vegetation cover shows a fluctuating increasing trend. Spatially,
vegetation in Northeast China is dominated by middle high coverage and high cov-
erage with highest vegetation cover in the humid region, second highest vegetation
cover in the semi-humid region and lowest vegetation cover in the semi-arid region.
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(3) Vegetation trends are stable in most areas and significant in local areas. 24.36% of
vegetation area improves and its spatial distribution is clustered. 15.32% of vegetation
area degrades and its spatial distribution is fragmented. The cumulative variance
contribution of EOF accounts for 39.7%. VC1 accounts for 25.5%, EOF1 and its time
coefficient indicate that vegetation is obviously improved in the semi-humid region
with a strong spatial heterogeneity. EOF2 and its time coefficient, VC2 accounting
for 14.2%, indicate that vegetation changes sensitively in the semi-arid region with a
strong temporal heterogeneity. The mean hurst is less than 0.5, which indicates that
vegetation is at some risk of degradation in future. Additionally, it is in future that
vegetation changes significantly in the south of Northeast China and continues to be
stable in the north of Northeast.

(4) Vegetation growth is most strongly influenced by climatic and human activity, second
most by topography and least by soil. Besides, precipitation plays a leading role on
vegetation growth, while temperature and human activity play a moderating role on
vegetation growth. What is more, precipitation has a better explanatory power on
vegetation growth when temperature is the moderating variable.
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