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Abstract: Predicting the susceptibility of a specific part of a landslide (SSPL) involves predicting the
likelihood that the part of the landslide (e.g., the entire landslide, the source area, or the scarp) will
form in a given area. When predicting SSPL, the landslide samples are far less than the non-landslide
samples. This class imbalance makes it difficult to predict the SSPL. This paper proposes an advanced
artificial intelligence (AI) model based on the dice-cross entropy (DCE) loss function and XGBoost
(XGBDCE) or Light Gradient Boosting Machine (LGBDCE) to ameliorate the class imbalance in the
SSPL prediction. We select the earthquake-induced landslides from the 2018 Hokkaido earthquake
as a case study to evaluate our proposed method. First, six different datasets with 24 landslide
influencing factors and 10,422 samples of a specific part of the landslides are established using remote
sensing and geographic information system technologies. Then, based on each of the six datasets, four
landslide susceptibility algorithms (XGB, LGB, random-forest (RF) and linear discriminant analysis
(LDA)) and four class balancing methods (non-balance (NB), equal-quantity sampling (EQS), inverse
landslide-frequency weighting (ILW), and DCE loss) are applied to predict the SSPL. The results show
that the non-balanced method underestimates landslide susceptibility, and the ILW or EQS methods
overestimate the landslide susceptibility, while the DCE loss method produces more balanced results.
The prediction performance of the XGBDCE (average area under the receiver operating characteristic
curve (0.970) surpasses that of RF (0.956), LGB (0.962), and LDA (0.921). Our proposed methods
produce more unbiased and precise results than the existing models, and have a great potential to
produce accurate general (e.g., predicting the entire landslide) and detailed (e.g., combining the
prediction of the landslide source area with the landslide run-out modeling) landslide susceptibility
assessments, which can be further applied to landslide hazard and risk assessments.

Keywords: susceptibility prediction; various parts of landslides; imbalanced machine learning; class
balancing method; landslide feature extraction; earthquake-induced landslides; 2018 Hokkaido earthquake

1. Introduction

Regional landslide susceptibility is defined as an estimation of the probability that
a landslide will occur in a given area under certain environmental conditions [1,2]. A
landslide susceptibility assessment provides valuable information that can be utilized
in a landslide hazard and risk assessment and/or in land-use planning and traffic route
decision-making in order to reduce the impacts of future landslide damage. Regional
landslide susceptibility models usually focus on either predicting the susceptibility of an
entire landslide [3–6] or predicting the susceptibility of one specific part of a landslide
(SSPL) [7–14]. When the model focuses on predicting the SSPL, only the zones that contain
that specific part (e.g., the source area or a landslide scarp) are defined as the landslide class.
Compared with the prediction of the entire landslide, the prediction of SSPL can make the
landslide susceptibility assessments more precise and widely applied. For example, the
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prediction of the landslide source area can be combined with a physical-based landslide
run-out model to calculate the landslide deposition and the kinetic parameters of landslides
(i.e., velocity and landslide impact frequency or probability) in a way that is more precise
and consistent with physical laws. In addition, these parameters can be further used for
quantitative landslide hazard and risk assessment. Therefore, it is of great significance to
study the prediction of SSPL.

However, by dividing a landslide into smaller areas and only classifying one or a few of
these areas as the landslide class, an extreme class imbalance arises between the number of
non-landslide samples and the number of landslide samples. This class imbalance makes it
more difficult to predict the SSPL than it is to predict the susceptibility of an entire landslide.
In order to ameliorate this class imbalance, it is necessary to apply a class balancing
method. There are three types of class balancing methods in current landslide susceptibility
assessments: under-sampling techniques, over-sampling techniques, and cost-sensitive
techniques. Under-sampling methods synthetically or randomly collect the same number of
landslide samples and non-landslide samples using algorithms such as the equal-quantity
sampling (EQS) [12–14], fuzzy c-means [15], easy ensemble [16], density peak clustering [17]
and self-organizing-map [18] algorithms. While under-sampling significantly reduces the
sample size and improves the computational efficiency, model training may be affected
by the loss of data from the original samples. In over-sampling methods, algorithms
such as SMOTE (synthetic minority oversampling technique) [19] and ADASYN (adaptive
synthetic sampling) [20] sample or synthetically generate landslide samples to ensure
that the number of landslide samples is equal to the number of non-landslide samples.
While over-sampling maintains the sample balance and increases the overall sample size,
it may result in higher computational costs due to the introduction of incorrect and/or
redundant information into the sample data. In cost-sensitive techniques such as the
direct approach, the pre-processing approach, and the post-processing approach, the class
balance is maintained by explicitly accounting for the cost of model mispredictions during
the training process [21]. In general, most landslide susceptibility studies employ under-
sampling methods such as EQS, while over-sampling, cost-sensitive methods, inverse
landslide-frequency weighting, and loss correction are hardly ever used. The EQS method
sets a landslide frequency (in this article the term frequency refers to the relative frequency)
of 50% in the model training and validation sets. Because the actual landslide frequency is
much lower than 50%, the EQS method is not a true representation of real-world conditions,
and thus yields a biased prediction of landslide susceptibility.

The susceptibility algorithm is important in predicting the SSPL, or the susceptibility of
an entire landslide. Early research on this topic focused mainly on susceptibility algorithms
reliant on data-driven statistical methods such as linear discriminant analysis (LDA) [2,22],
logistic regression [8,23], and the weight of evidence method [24,25]. However, the land-
slide influencing factors used in these algorithms must be conditionally independent and
linearly independent, and it is difficult to solve complicated nonlinear problems using
such algorithms. In the past ten years, machine learning techniques such as decision tree
(DT) [26,27], random forest (RF) [5,9,28], support vector machine (SVM) [29–32], artificial
neural network (ANN) [33–35], and deep neural network [36] have been widely used in
landslide susceptibility assessments. While these machine learning techniques can deal
with nonlinear problems, they struggle with large datasets, which limits the sample size
and resolution of the resulting landslide susceptibility assessment. Recently, several new
breakthrough ensemble learning methods, such as the XGBOOST (XGB) [37] and LightGBM
(LGB) [38] methods, have been invented. XGB and LGB can handle large datasets and have
more flexible and accurate objective functions. These ensemble machine learning methods
can provide new solutions for landslide susceptibility prediction.

Although a great deal of research has been carried out on prediction of the SSPL,
several problems remain unsolved.

(1) The EQS class balancing method is commonly used in current research. However,
this method sets a landslide frequency of 0.5 in the model training and validation sets,
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which is not a true representation of real-world conditions. At present, a more reasonable
class balancing method has not been proposed. (2) No studies in the literature have
systematically compared and evaluated the application of different class balancing methods
in SSPL prediction. (3) The commonly used linear and nonlinear landslide susceptibility
algorithms have many limitations. Despite the numerous advantages of using the XGB and
LGB algorithms, no studies have employed these frameworks in prediction of the SSPL.

The goals of this study were to develop a landslide susceptibility model that combines
the XGB, LGB, and dice cross-entropy (DCE) loss function to solve the class imbalance
problem and achieve better model performance in SSPL prediction. We explored how
the choice of class balancing methods (EQS, inverse landslide-frequency weighting (ILW),
DCE loss, or non-balance (NB) methods) and susceptibility algorithms (XGB, LGB, RF,
or LDA) affects the prediction of the SSPL. In this study, the landslides triggered by the
2018 Hokkaido earthquake (MW 6.6) were taken as a case study, and the prediction of the
susceptibility of six different landslide parts was considered.

2. Materials and Methods

The main framework of this article is presented in Figure 1. In Part I, we describe our
study area and construct our dataset. Our high-quality dataset consists of 10,422 earthquake-
induced landslides in the 2018 Hokkaido earthquake and 24 landslide influencing factors.
We discuss our methodology in Parts II and III. Our technique automatically extracts six
different parts of the landslide (e.g., the entire landslide, the landslide source area, and
the landslide scarp) and compiles separate inventories for them. Each type of landslide
inventory is combined with 24 landslide factors and then separated into six datasets.
We created 13 landslide susceptibility models using combinations of four susceptibility
algorithms (XGB, LGB, linear discriminant analysis (LDA), and random forest (RF)) and
four class balancing methods (non-balance (NB), equal-quantity sampling (EQS), inverse
landslide-frequency weighting (ILW), and DCE loss). We input all six datasets into each
of the 13 models and generated 78 sets of results. In each case, the modified group cross-
validation method (MGCV) was used for the model training, prediction, and validation.
Part IV includes the Results and Discussion sections. We used machine learning metrics
and landslide statistics to evaluate and analyze the results of the landslide susceptibility.

2.1. Study Area

Our study area (Figure 2) is located in the eastern Iburi area of central Hokkaido
(bounded by latitudes of 42.49◦N and 43.02◦N and longitudes of 141.69◦E and 142.36◦E;
Figure 2a). The terrain in this area is low and hilly, with flatter profiles in the west and
steeper topography in the east. The altitude ranges from 1 m to 873 m and the slope degree
ranges from 0.1◦ to 57.7◦. The minimum and maximum monthly average temperatures are
−7 ◦C and 20.4 ◦C, respectively. Most (42%) of the yearly precipitation falls between July
and September, with a monthly average precipitation of 142 mm.

The lithology of our study area (Figure 2a) is predominantly (63.4%) marine sedimen-
tary rocks such as marine siliceous mudstones, marine conglomerates, marine mudstones,
and marine sandstones. The igneous rocks (5.2%) in our study area mainly consist of
rhyolite, andesite, basalt, and diorite, while metasandstone chlorite, pelitic schist, and mafic
schist are the main metamorphic rocks (1.1%) found in this area. The remaining strata are
mainly Quaternary deposits. In terms of its structural features, our study area is located
in an active compression collision zone created by the tectonic action of the Amur Plate,
the Philippine Sea Plate, the Okhotsk Plate, and the Pacific Plate. Per the USGS seismic
database, a MW 6.6 earthquake (epicenter location of 42◦41′10”N 141◦55′44”E and focal
depth of 35 km) struck central Hokkaido on 6 September 2018. According to our landslide
inventory, this earthquake triggered at least 10,422 landslides.
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Figure 1. The scheme of the present study.

Table 1. Data set sources and meta-data.

Basic Data Source Date Resolution

Digital elevation
model (DEM)

Geospatial Authority Institute of Japan
(https://fgd.gsi.go.jp/download/menu.php

accessed on 1 September 2022)
1 October 2016 10 m

QuiQuake

Geological Survey of Japan, AIST
(https://gbank.gsj.jp/QuiQuake/QuakeMap/

index.en.html accessed on
1 September 2022)

6 September 2018 250 m

Shakemap
United States Geological Survey (USGS)

(https://earthquake.usgs.gov/data/shakemap/
accessed on 1 September 2022)

6 September 2018 —

CHIRPS
Climate Hazards Center

(https://www.chc.ucsb.edu/data/chirps
accessed on 1 September 2022)

3 September 2018–6 September 2018 5000 m

MODIS Vegetation Index NASA (https://earthdata.nasa.gov/
accessed on 1 September 2022) 13 August 2018–28 August 2018 250 m

Geological map
Geological Survey of Japan, AIST

(https://gbank.gsj.jp/seamless/v2.html
accessed on 1 September 2022)

22 January 2021 1:200,000

Google earth imagery Google earth pro 30 September 2016–10 July 2020 0.2 m

Aerial photos

Geospatial Authority Institute of Japan
(https://kmlnetworklink.gsi.go.jp/

kmlnetworklink/index.html accessed on
1 September 2022)

6 September 2018–13 September 2018 0.2 m

QuiQuake = Quick estimation system for earthquake maps triggered by observation records; CHIRPS = Climate
Hazards Group InfraRed Precipitation with Station data.

https://fgd.gsi.go.jp/download/menu.php
https://gbank.gsj.jp/QuiQuake/QuakeMap/index.en.html
https://gbank.gsj.jp/QuiQuake/QuakeMap/index.en.html
https://earthquake.usgs.gov/data/shakemap/
https://www.chc.ucsb.edu/data/chirps
https://earthdata.nasa.gov/
https://gbank.gsj.jp/seamless/v2.html
https://kmlnetworklink.gsi.go.jp/kmlnetworklink/index.html
https://kmlnetworklink.gsi.go.jp/kmlnetworklink/index.html
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Figure 2. Overview map of the study area. (a) Geologic map at a scale of 1:200,000 overlain by the
distribution of co-seismic landslides (source: geologic map in Table 1. The classification of rock
groups has been modified.). (b) The locations and satellite imagery (source: http://goto.arcgisonline.
com/maps/World_Imagery accessed on 1 September 2022) of the study area. (c) Distribution of
peak ground acceleration in the Hokkaido region during the 6 September 2018, earthquake (source:
QuiQuake in Table 1). (d) Satellite imagery (source: Maxar imagery acquired on 11 September 2018)
of the co-seismic landslides in the local zone in (a).

2.2. Basic Data

Before carrying out a landslide susceptibility assessment, it is necessary to prepare the
basic data such as the landslide inventory and the landslide influencing factors. These data
were gained and processed through the remote sensing technology, geographic informa-
tion system (GIS) technology, and field surveys. The dataset for preparing the landslide
inventory and the landslide influencing factors are presented in Table 1. By comprehen-
sively considering the data quality, sample size, and calculation cost, we selected the grid
cells (referred to as pixels) as the mapping units and resampled all of the basic data to a
resolution of 30 m.

We prepared a landslide inventory containing 10,422 co-seismic landslides from the
Hokkaido earthquake on 6 September 2018. Our landslide inventory was created based on

http://goto.arcgisonline.com/maps/World_Imagery
http://goto.arcgisonline.com/maps/World_Imagery
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the landslide data (3307 landslides) obtained from the Geospatial Information Authority of
Japan and the landslide inventory of [39] (5625 landslides, covering an area of 46.3 km2).
We fully expanded and revised the original landslide inventories through visual interpreta-
tion of high-resolution Google Earth images and UAV photos taken before and after the
earthquake (Table 1) and through digitization. We interpreted the landslides by starting at
the area with the highest seismic intensity and working our way outwards until we found
no further landslides; the total area of the interpretation was greater than 2000 km2. The
interpretation and digitization of each landslide covered the range from the source area to
the deposition area (Figure 2d).

The landslides in this inventory have a total area of 49.97 km2, a total volume
of 62 × 106 m3 (based on the volume formula for soil landslides proposed by
Larsen, et al. [40]), and a density of 5.2 landslides/km2. The quartiles and the average
of the area of the individual landslides are 1378 m2, 2763 m2, 5575 m2, 170,255 m2, and
4795 m2. The landslides mainly occurred in the Quaternary deposits and the mudstone
layer, and can be classified as flow-slides, debris avalanches, debris slides, and rock slides.
The study area had experienced prolonged rainfall and strong earthquakes, and numerous
landslides liquefied as a result.

In our landslide susceptibility assessment, we focused on 24 landslide influencing
factors (Table 2 and Figure 3), including the seismology, geomorphology, hydrology, geol-
ogy, vegetation, and rainfall of our study area. PGA, PGVA, and distancefocus are directly
related to both the amount of ground shaking and earthquake intensity. The distanceridge
factor provides insight into the seismic site effects. Sites that are located close to mountain
ridges generally experience seismic amplification, as after propagating through a mountain,
seismic waves are reflected, diffracted, and channeled toward the mountain ridge, where
the waves interfere constructively with one another [41]. By summarizing the relationship
between the direction of seismic wave propagation and the slope attitude [42], factors
such as the epicentral direction, angleES, angleFH, and angleFS influence the occurrence
of landslides.

In terms of topography and geomorphology, slopeMAX and the elevation difference
are used to describe the steepness of the terrain. Landslides rarely develop in gentle terrain
because it is difficult to generate effective free faces and the potential energy required to
trigger a landslide. The elevation ratio describes the position of a point with respect to the
slope (e.g., at the bottom of the slope, on the shoulder of the slope, etc.). Differences in the
slope stress state and the thickness of the weathering layer or unloading layer affect the
slope stability as well. In terms of the hydrological conditions, we considered river factors
such as distanceSR, distanceMR, and SPI [44]. We accounted for these variables because a
river can alter the stress state (e.g., by undercutting unloading or via the seepage force)
and/or the physical properties (e.g., by softening the rock or soil) of a slope. According to
the influence a river of a given size exerts on a slope, that river is classified as either a major
river or a minor river according to the Strahler stream order. The meteorological factors
include the cumulative precipitation in the four days preceding the earthquake. Because the
earthquake occurred during the rainy season, we inferred that abundant rainfall facilitated
the onset of multiple landslides during the earthquake by saturating and softening the
slope rocks and soils.

Other geological factors include the lithological and structural features of a given area.
The lithology affects the material composition, strength, structure, and weathering resis-
tance of the slope. For example, mudstone is characterized by low strength, low structural
integrity, and weak intercalation. Structural factors include distancefault, distancefold, and
fault density. Slopes with faults and folds often develop additional joints, fissures, weath-
ered zones, and groundwater paths; naturally, these features increase the slope instability.
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Table 2. Description of factors influencing landslides.

Type Factor Basic Data Range Unit Resolution

Seismic

Peak ground acceleration (PGA)
QuiQuake

11.0–131.6 g% 250 m
PGVA, the product of PGV (peak ground velocity)

and PGA 4.4–9.4 — 250 m

The Euclidean distance to the focus (distancefocus) Shakemap 35.0–52.2 km 30 m
Epicentral direction 0.0–180.0 ◦ 30 m

The Euclidean distance to the nearest ridge
(distanceridge) DEM 0.0–488.4 m 30 m

The angle between epicentral direction and the slope
aspect (angleES)

DEM and
QuiQuake

0.0–360.0 ◦ 30 m

The angle between the horizontal and the line from
calculated cell to focus (angleFH). AngleFH represents
the direction of seismic wave propagation at a location,
which would influence the occurrence of landslides.

42.9–90.0 ◦ 30 m

The sum of angleFH and the slope degree (angleFS) 43.7–126.8 ◦ 30 m

Geomorphologic

The maximum slope in the neighbourhood of the
calculated cell (slopeMAX)

DEM

0.0–57.7 ◦ 30 m

The variation of the slope aspects in the
neighbourhood of the calculated cell (aspectVAR) 0.0–1.0 — 30 m

The ratio of the elevation to the maximum elevation in
the neighbourhood of the calculated cell

(elevation ratio)
0.0–1.0 — 30 m

Elevation difference 0.0–233.0 m 30 m
The percentage of convex cells in the neighbourhood
of the calculated cell (surface convexity) [43]. Surface
convexity describes the shape (convex, concave, flat) of
the slope, which affects the stability of the slope under

earthquake shaking.

1.2–74.4 — 30 m

The standard deviation of the curvature in the
neighbourhood of the calculated cell (curvatureSTD) 0.0–4.1 — 30 m

Hydrological

The shortest Euclidean distance to minor
rivers (distanceSR)

DEM

0.0–1855.6 m 30 m

The shortest Euclidean distance to major
rivers (distanceMR) 0.0–10.2 km 30 m

Stream power index (SPI) −13.8–15.6 — 30 m

Climatic Cumulative precipitation in the 4 days before an
earthquake (precipitation) CHIRPS 0.0–39.1 mm 5000 m

Vegetation cover Enhanced vegetation index (EVI) MODIS Vegetation
Index Products −3879.0–9748.0 — 250 m

Geological

Lithology

Geological map

— — —
The Euclidean distance to the nearest

fault (distancefault)
0.0–13.2 km 30 m

The Euclidean distance to the nearest
fold (distancefold) 0.0–12.3 km 30 m

Fault density (LF ×WF/AF). LF, WF, and AF are the
total fault length, fault width, and area of the statistical

zone, respectively.
0.0–2.2 — 30 m

Fold density (LO ×WO/AO). LO, WO, and AO are the
total fold length, fold width, and area of the statistical

zone, respectively.
0.0–1.6 — 30 m

2.3. Methodology
2.3.1. Automatic Extraction of Different Parts of Landslides

In order to establish the landslide susceptibility model, we developed an algorithm
that automatically and efficiently extracts the different parts of the landslide. This algorithm
assumes that each part of a landslide has a different relative elevation [45]. As is shown
in Figure 4a, a landslide can be divided into two parts at a certain elevation Em, namely,
the upper part (i.e., landslide scarp or landslide source area) as the landslide class and
the lower part (i.e., landslide accumulation area) as the non-landslide class; this allows us
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to specifically extract the areas where the landslide initiates, such as the source area. To
facilitate this process, we can define the relative elevation ratio Rd (0–100%) as follows:

Rd =
Em − Emin

Emax − Emin
=

Hd
H

(1)

where Emax and Emin (m) are the highest and lowest elevation of the landslide, respectively,
and Hd and H (m) represent the height difference of the accumulation zone and the height
of the entire landslide, respectively. In order to accurately represent the landslide feature,
we chose to define the landslide parts as different sections of a surface rather than as a
single point (e.g., the centroid). The grid cells are used as the mapping units, with the
landslide class and non-landslide class cells assigned values of one and zero, respectively.
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Figure 4. Automatic extraction method for different parts of a landslide. (a) The division and
extraction of the landslide parts. (b) A flowchart of our automatic extraction methodology. (c–f) The
results of the landslide parts corresponding to Rd values of (c) 0.1, (d) 0.3, (e) 0.5, and (f) 0.9. The
solid black lines represent the boundaries of the landslides. The colored cells represent the extracted
parts of the landslide.
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Using our algorithm (Figure 4b), we were able to automatically extract and identify
62,532 parts representing six different landslide features (Figure 4c–f). Instead of extracting
the landslide accumulation area separately, we extracted the area containing the landslide
source area for landslide susceptibility prediction, as the landslide accumulation area is not
the location where the landslide initiates. We compared and analyzed the extraction results
with satellite images of the landslides. An Rd value of 0% corresponds to an entire landslide,
from the source area to the accumulation area. An Rd of 10–30% encompasses the parts of
the landslide that are not the accumulation area, such as the source and the transport area
of a rock avalanche. An Rd value of 50–70% corresponds to the source area. An Rd value of
90% corresponds to the landslide scarp. In the automatic landslide extraction algorithm,
the accuracy of the landslide polygon boundaries is related to the output resolution, while
the accuracy of landslide cell extraction and identification is affected by the DEM quality. A
statistical analysis of each part of the landslide is shown in Table 3. Here, we use realistic
landslide frequency values, rather than the ideal value of 0.5 that has often been used in
previous studies.

Table 3. Inventories of different landslide parts.

Rd
Number of

Landslide Parts
Number of

Landslide Cells
Number of

Non-landslide Cells
Ratio of Landslide to

Non-Landslide

Area of Landslide Cells Total Study
Area (km2)

Landslide
FrequencySum (km2) Mean (m2)

0.0 10,422 10,4826 2,101,479 1:20 94.34 9052.33 1985.67 0.048
0.1 10,422 83,663 2,122,642 1:25 75.30 7224.78 1985.67 0.038
0.3 10,422 66,120 2,140,185 1:32 59.51 5709.84 1985.67 0.030
0.5 10,422 48,864 2,157,441 1:44 43.98 4219.69 1985.67 0.022
0.7 10,422 31,152 2,175,153 1:70 28.04 2690.16 1985.67 0.014
0.9 10,422 16,061 2,190,244 1:136 14.45 1386.96 1985.67 0.007

Landslide frequency: the ratio of the sum of the areas of the landslide parts to the total study area.

2.3.2. Validation Method

In this study, we devised and implemented the modified group cross-validation
method (MGCV) for validation of the landslide susceptibility models. In this method, we
treat each landslide or landslide part as a whole; in this way, we ensure that the cells in a
given landslide can only be assigned to the training set or to the validation set. The process
of the MGCV is as follows: (1) MGCV randomly divides all of the landslides (or landslide
parts) in the inventory into KG groups (KG = 4 in this study), where each independent group
is composed of the same number of samples. It then randomly selects non-landslide cells
and distributes them evenly amongst the four groups. This ensures that the training set,
validation set, and total sample set have the same realistic landslide frequency. (2) Then,
taking the i-th group of samples as the model validation set, the remaining KG − 1 groups
are combined into a model training set, the model landslide susceptibility prediction is
compared to the observed landslides of the validation set, and the evaluation metric is
calculated. (3) Finally, step 2 is repeated KG times to complete the cross-validation process,
with each group of samples used as the validation set exactly once. The model performance
is the average of the metric scores calculated in KG iterations.

2.3.3. Evaluation Metrics

The receiver operating characteristic curve (ROC) [46] is an evaluation metric fre-
quently used in landslide susceptibility assessments. The area under the ROC (AUC) is
used as a quantitative indicator of model performance; a higher AUC corresponds to a
better model performance. This study employs the ROC as a baseline reference for compar-
ison with other studies, not as a core indicator of model performance. In fact, the ROC only
measures the relative ranks of landslide susceptibility, rather than the size of the landslide
susceptibility value.

The Jaccard index (Jaccard), which ranges from 0 to 1, measures the similarity between
the landslide susceptibility and the presence or absence of a landslide. Larger Jaccard
values correspond to better model performance. In this paper, Jaccard is the geometric
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mean of JaccardP and JaccardN, which measure the similarity in negative samples (i.e., the
non-landslide cells) and positive samples (i.e., the landslide cells), respectively:

JaccardP = TP/(TP + FP + FN) (2)

JaccardN = TN/(TN + FN + FP) (3)

By equally considering the contributions of both the positive and negative samples
to the final prediction result, the Jaccard value avoids placing too much influence on
classes that have proportionally more samples in a given dataset. More traditional metrics
(i.e., accuracy score) can be biased by such classes. The F1 score is ideal for tasks in which a
class imbalance may arise, as it considers both the recall and precision:

F1 = 2
Precision× Recall
Precision + Recall

(4)

where Precision = TP/(TP + FP) and Recall = TP/(TP + FN). The true positive (TP), false
positive (FP), true negative (TN), and false negative (FN) are calculated using the confusion
matrix approach [46], where the terms positive and negative refer to the presence or absence
of landslides, respectively.

2.3.4. Landslide Susceptibility Algorithms

XGBoost (XGB) [37] is a gradient boosting framework that supports GPU and parallel
computing. Because XGB is flexible, efficient, and accurate, it can handle large datasets
such as those found in landslide susceptibility assessments. XGB is a tree-based ensemble
machine learning approach. The generation of an XGB model begins with a single classifi-
cation and regression tree (CART); in each model iteration, a new CART is created using
the current error, then that CART is then added to the output of the existing model. The
XGB model grows iteratively in this fashion until the convergence criteria are satisfied. The
output of an XGB model is the combination of the outputs of K CARTs:

ŷi = φ(xi) =
K

∑
t=1

ft(xi), (5)

where i represents the i-th sample, xi is the landslide influencing factors, ŷi is the landslide
susceptibility prediction, K is the number of iterations, and ft(xi) is the landslide suscepti-
bility prediction generated by CART Tt added in the t-th iteration. Here, Tt is determined
mainly by minimizing L(t), which is the objective function

L(t) =
n

∑
i=1

l(yi, ŷ(t)i ) + R( ft), (6)

where ŷ(t)i =
t

∑
k=1

fk(xi) = ŷ(t−1)
i + ft(xi) is the output of the model in the t-th iteration;

yi represents whether landslides occur (1) or do not occur (0), l is the loss function, and

R(ft) is the regularization term of the model. By further expanding
n
∑

i=1
l(yi, ŷ(t)i ) using the

second-order Taylor expansion, we account for the structure of the CART in the objective
function and rewrite the objective function as [37]:

L(t) = −1
2

V

∑
j=1

(
∑i∈Ij

gi

)2

∑i∈Ij
hi + α

+ βV (7)

Where gi = ∂l(yi, ŷ(t−1)
i )/∂ŷ(t−1)

i and hi = ∂2l(yi, ŷ(t−1)
i )/∂(ŷ(t−1)

i )
2
, V is the total

number of leaves in Tt, Ij is a sample group belonging to leaf node j, and α and β are
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regularization coefficients. The optimal structure of Tt and ft(xi) can be determined based
on Equation (7) and the specific growth mode of the CARTs. This ŷ(t)i calculation completes
the tth iteration.

LightGBM (LGB) [38] is a gradient boosting framework that is similar to XGB. LGB
was specifically designed to expedite the slower parts of XGB. Gradient-based one-sided
sampling reduces the training cost while preserving the accuracy of the model. The his-
togram algorithm divides the continuous landslide influencing factors into discrete bins
and uses those bins to create new CARTs, which greatly reduces the costs of computation
and storage in model training. Exclusive feature bundling binds mutually exclusive land-
slide factors to reduce the factors involved in model training, which significantly improves
training speed without affecting model accuracy.

Linear discriminant analysis (LDA) and random forest (RF) have been widely used
in studies of debris flows and landslides. Detailed descriptions of LDA and RF can be
found in [47] and the [48], respectively. None of the aforementioned algorithms considers
hyperparameter optimization, because LDA, RF, XGB, and LGB all have good initial
hyperparameters. The main hyperparameters are described as follows. In LDA, the solver
is singular value decomposition and the threshold for a singular value is 1 × 10−4. In RF,
the number of trees is 100, the split criterion is Gini impurity, and the depth of the tree is
unlimited. In XGB, the number of trees is 100, the learning rate is 0.3, the subsample ratio
is 1, and the depth of the tree is 6. In LGB, the number of trees is 100, the learning rate is
0.1, the subsample ratio is 1, and the depth of the tree is unlimited. The above algorithms
and the DCE loss function (described below) were coded and calculated using Python’s
scientific computing libraries (i.e., NumPy, XGBoost and LightGBM).

2.3.5. DCE Loss Function

This study proposed two new XGB and LGB frameworks that employ the DCE loss
function. We synthesize the DCE loss using the dice loss [49] and weighted cross-entropy
loss algorithms, where the dice loss is actually equivalent to the F1 score. Let l(y, ŷ) be
defined as an n-dimensional vector l(y, ŷ) = [l1, l2, . . . , ln] where li is the DCE loss of the
i-th sample. The relevant formulas are as follows:

li(yi, ŷi) = blCi + (1− b)lDi (8)

lCi = −[(1− a)yi log pi + a(1− yi) log(1− pi)] (9)

lDi = nl(1−
2 < p, y > +ε

∑ pi+∑ yi+ε
) (10)

where lCi and lDi are the weighted cross-entropy loss and dice loss of the i-th sample,
respectively, and a and (1 − a) are the weights of the non-landslide and landslide samples
in lCi respectively. It is possible to address the class imbalance by using a smaller a weight
in the training process; this choice reduces the contribution of non-landslide samples and
increases the contribution of landslide samples. The parameters b and (1 − b) are the
weights of lCi and lDi in li. The parameters a and b must be tuned in order to identify the
optimal value. The nl parameter is the coefficient that adjusts the relative sizes of lCi and
lDi , while pi represents the landslide susceptibility prediction, where pi = 1/(1 + e−ŷi ).
The ε parameter is the smoothing coefficient, which we set to 1. Parameters p, ŷ, and y
are n-dimensional vectors, p = [p1, p2, . . . , pn], y = [y1, y2, . . . , yn], and ŷ = [ŷ1, ŷ2, . . . , ŷn].
The first- and second-order gradients of l(y, ŷ) with respect to ŷ are the Jacobi and Hessian
matrices, respectively. From the diagonal elements of these matrices, we can identify the
first-order gradient and its ith term:

∇ŷl(y, ŷ) = [
∂l1
∂ŷ1

,
∂l2
∂ŷ2

, . . . ,
∂ln
∂ŷn

] (11)
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where
∂li
∂ŷi

= yi(pi + a− 1) + api(1− 2yi) +
npi(1−pi)s

t2

s = 2 < p, y > +1− 2yit
t = ∑ pi+∑ yi+1

(12)

In addition, we can identify the second-order gradient and its i-th term:

∇2
ŷ
l(y, ŷ) = [

∂2l1
∂ŷ1∂ŷ1

,
∂2l2

∂ŷ2∂ŷ2
, . . . ,

∂2l1
∂ŷn∂ŷn

] (13)

∂2li
∂ŷi∂ŷi

= pi(1− pi)

{
a(1− 2yi) + yi +

ns[(1− 2pi)t− 2pi(1− pi)]

t3

}
(14)

The results of Equations (12) and (14) are substituted into the gi and hi terms of
Equation (7), respectively, for the t-th iteration of model training.

2.3.6. Class Balancing Method

We explored four class balancing methods: the equal quantity sampling (EQS), inverse
landslide frequency weighting (ILW), loss correction, and non-balance (NB) methods. EQS
creates a class-balanced dataset by combining the landslide samples and an equal number of
non-landslide samples obtained through random under-sampling. The landslide frequency
of the dataset produced using this method is 0.5. In order to ensure that the landslide
frequency in the validation set is realistic (rather than 0.5), the EQS in this study was used
to generate only the training sets, instead of both training and validation sets as in previous
studies. ILW addresses the class imbalance by using the landslide prior probabilities of the
samples to amplify the weight of the landslide samples in the model training process. The
weights of the landslide and non-landslide samples are set to (Nl + Nf)/Nl and (Nl + Nf)/Nf,
respectively, where Nl and Nf are the number of landslide samples and non-landslide
samples in the training set, respectively.

When using the loss correction method, loss functions are created or corrected in
order to improve the model training when datasets are class imbalanced. In this study,
we employed the DCE loss correction (described in Section 2.3.6), which is specifically
applicable to the XGB and LGB. For comparison, we considered a model that does not
include a class balancing method, which we name the non-balance (NB) model.

These four methods for balancing classes were used in the training of the MGCV
method. The four landslide susceptibility algorithms were combined with four class
balancing methods to create 13 landslide susceptibility models. We refer to a given landslide
susceptibility model using nomenclature based on the algorithm and class balancing
method used for that model; for example, XGBNB represents the model combining XGBoost
(the susceptibility algorithm) and NB (the class balancing method).

3. Results
3.1. Model Performance Evaluation

As discussed previously, we used 13 different models to predict the landslide suscep-
tibility of various landslide parts. As is shown in Table 4, for every model, increasing Rd
values correspond to decreasing PRE, REC, F1, JACP, JAC, and Jaccard values. This means
that when landslide parts are reduced in size, the prediction performance of all models
deteriorates. The AUC only decreased by up to 5% (i.e., RFILW) with increasing Rd; this
means that this metric is insensitive to changes in the landslide part.
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Table 4. Model prediction performance of different landslide features for every model.

Model
Rd = 0.0 Rd = 0.1

PRE REC F1 JACP JACN JAC AUC Freq PRE REC F1 JACP JACN JAC AUC Freq

XGBNB 0.699 0.468 0.561 0.390 0.964 0.613 0.974 0.048 0.646 0.354 0.457 0.297 0.968 0.536 0.971 0.038
XGBEQS 0.350 0.930 0.509 0.341 0.911 0.557 0.972 0.048 0.290 0.932 0.442 0.284 0.908 0.508 0.970 0.038
XGBILW 0.366 0.916 0.523 0.354 0.917 0.570 0.972 0.048 0.307 0.916 0.460 0.299 0.916 0.523 0.970 0.038
XGBDCE 0.520 0.771 0.621 0.451 0.954 0.655 0.973 0.048 0.464 0.727 0.566 0.395 0.957 0.615 0.971 0.038
LGBNB 0.639 0.429 0.512 0.344 0.960 0.575 0.968 0.048 0.594 0.290 0.389 0.242 0.965 0.483 0.966 0.038
LGBEQS 0.320 0.942 0.477 0.313 0.897 0.530 0.971 0.048 0.266 0.945 0.415 0.262 0.895 0.484 0.969 0.038
LGBILW 0.322 0.941 0.480 0.316 0.898 0.532 0.971 0.048 0.268 0.944 0.418 0.264 0.897 0.486 0.969 0.038
LGBDCE 0.471 0.797 0.592 0.421 0.946 0.631 0.970 0.048 0.419 0.760 0.540 0.370 0.949 0.592 0.968 0.038

RFNB 0.751 0.414 0.534 0.364 0.965 0.593 0.969 0.048 0.656 0.274 0.387 0.240 0.967 0.481 0.963 0.038
RFEQS 0.387 0.912 0.543 0.373 0.924 0.587 0.972 0.048 0.320 0.915 0.475 0.311 0.920 0.535 0.969 0.038
RFILW 0.751 0.379 0.504 0.337 0.964 0.570 0.963 0.048 0.652 0.247 0.358 0.218 0.966 0.459 0.957 0.038

LDANB 0.426 0.178 0.251 0.144 0.949 0.369 0.925 0.048 0.367 0.129 0.191 0.106 0.958 0.318 0.922 0.038
LDAEQS 0.194 0.949 0.322 0.192 0.802 0.393 0.936 0.048 0.157 0.950 0.270 0.156 0.798 0.353 0.932 0.038

Model
Rd= 0.3 Rd= 0.5

PRE REC F1 JACP JACN JAC AUC Freq PRE REC F1 JACP JACN JAC AUC Freq

XGBNB 0.631 0.274 0.382 0.236 0.973 0.479 0.971 0.030 0.623 0.198 0.301 0.177 0.980 0.416 0.971 0.022
XGBEQS 0.240 0.931 0.382 0.236 0.907 0.463 0.969 0.030 0.183 0.932 0.305 0.180 0.904 0.404 0.968 0.022
XGBILW 0.260 0.913 0.404 0.253 0.917 0.482 0.970 0.030 0.206 0.906 0.335 0.201 0.919 0.430 0.970 0.022
XGBDCE 0.431 0.677 0.527 0.357 0.963 0.587 0.971 0.030 0.398 0.598 0.478 0.314 0.971 0.552 0.971 0.022
LGBNB 0.480 0.212 0.280 0.163 0.965 0.395 0.960 0.030 0.480 0.140 0.214 0.120 0.977 0.342 0.964 0.022
LGBEQS 0.222 0.945 0.359 0.219 0.896 0.443 0.969 0.030 0.171 0.942 0.289 0.169 0.895 0.389 0.969 0.022
LGBILW 0.225 0.943 0.364 0.222 0.898 0.447 0.969 0.030 0.176 0.939 0.297 0.174 0.899 0.396 0.969 0.022
LGBDCE 0.391 0.709 0.504 0.337 0.957 0.568 0.968 0.030 0.351 0.632 0.452 0.292 0.966 0.531 0.967 0.022

RFNB 0.633 0.218 0.324 0.193 0.973 0.434 0.961 0.030 0.610 0.168 0.263 0.152 0.979 0.385 0.958 0.022
RFEQS 0.263 0.919 0.409 0.257 0.918 0.486 0.969 0.030 0.197 0.925 0.325 0.194 0.913 0.421 0.969 0.022
RFILW 0.624 0.195 0.298 0.175 0.972 0.412 0.953 0.030 0.604 0.153 0.244 0.139 0.979 0.369 0.950 0.022

LDANB 0.354 0.099 0.154 0.084 0.967 0.284 0.921 0.030 0.344 0.064 0.108 0.057 0.977 0.236 0.922 0.022
LDAEQS 0.126 0.949 0.223 0.125 0.796 0.316 0.932 0.030 0.095 0.947 0.173 0.094 0.795 0.274 0.933 0.022

Model
Rd= 0.7 Rd= 0.9

PRE REC F1 JACP JACN JAC AUC Freq PRE REC F1 JACP JACN JAC AUC Freq

XGBNB 0.602 0.117 0.196 0.109 0.986 0.328 0.970 0.014 0.555 0.034 0.064 0.033 0.993 0.181 0.965 0.007
XGBEQS 0.117 0.932 0.208 0.116 0.899 0.323 0.967 0.014 0.055 0.932 0.105 0.055 0.883 0.221 0.960 0.007
XGBILW 0.139 0.898 0.241 0.137 0.919 0.354 0.968 0.014 0.072 0.874 0.133 0.071 0.916 0.255 0.963 0.007
XGBDCE 0.353 0.481 0.407 0.255 0.980 0.500 0.970 0.014 0.266 0.277 0.271 0.157 0.989 0.394 0.965 0.007
LGBNB 0.396 0.120 0.182 0.100 0.985 0.314 0.963 0.014 0.226 0.060 0.093 0.049 0.991 0.218 0.953 0.007
LGBEQS 0.111 0.941 0.199 0.110 0.892 0.314 0.968 0.014 0.054 0.937 0.102 0.054 0.879 0.217 0.962 0.007
LGBILW 0.117 0.935 0.207 0.116 0.898 0.322 0.969 0.014 0.058 0.929 0.109 0.058 0.889 0.227 0.963 0.007
LGBDCE 0.288 0.511 0.366 0.225 0.974 0.466 0.963 0.014 0.230 0.296 0.259 0.149 0.988 0.383 0.959 0.007

RFNB 0.598 0.111 0.187 0.103 0.986 0.319 0.952 0.014 0.500 0.035 0.066 0.034 0.993 0.184 0.932 0.007
RFEQS 0.123 0.931 0.217 0.122 0.904 0.331 0.968 0.014 0.056 0.936 0.106 0.056 0.884 0.222 0.963 0.007
RFILW 0.580 0.100 0.170 0.093 0.986 0.303 0.941 0.014 0.495 0.031 0.059 0.030 0.993 0.174 0.916 0.007

LDANB 0.348 0.035 0.064 0.033 0.985 0.181 0.923 0.014 0.340 0.011 0.021 0.011 0.993 0.103 0.916 0.007
LDAEQS 0.062 0.944 0.116 0.061 0.794 0.221 0.934 0.014 0.031 0.936 0.060 0.031 0.787 0.157 0.930 0.007

Freq: landslide frequency. PRE: precision. F1:F1 score. JACP: JaccardP. JACN: JaccardN. JAC: Jaccard.

The evaluation metric scores for each model varied considerably with the class bal-
ancing method, especially at higher values of Rd. We grouped the models according to
their balancing methods and calculated the average values of the evaluation metric scores
(considering different Rd). The EQS (or ILW) method yielded the highest recall (mean recall:
0.92) and the lowest precision (mean precision: 0.21). The NB method produced the highest
precision (0.52) and the lowest recall (0.18). The precision (0.38) and recall (0.60) values for
the DCE loss (XGBDCE and LGBDCE) models were more balanced.

The models, again classified by their class balancing methods, were comprehensively
evaluated based on the F1 and Jaccard metrics. The DCE loss method produced the best
average F1 (0.465) and Jaccard (0.540) scores, while the NB method produced the lowest
average F1 (0.258) and Jaccard (0.365) scores. The EQS and ILW methods produced F1 (0.311
and 0.293) and Jaccard (0.406 and 0.381) scores that fell in between these two extremes. We
conducted statistical analyses on the model results based on their primary algorithms. The
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average F1 scores for the algorithms, from best to worst, are XGB (0.369), LGB (0.337), RF
(0.304), and LDA (0.163) (Table 4).

As mentioned previously, a and b in the XGBDCE and LGBDCE models represent specific
model parameters. Here, we investigate how these values affect the models themselves and
their scoring metrics (Figure 5). As is shown in Figure 5a,e, the highest AUC and F1 scores
occurred when a = 0.2. A value of index a that is too high or too low proves detrimental to
the performance of the model. When b = 0, the DCE loss function reduces into the dice loss
function, resulting in very low F1 and AUC values. When b > 0, the AUC metric remains
largely unchanged (Figure 5f). When b = 1, the DCE loss function reduces into the weighted
cross-entropy loss function, causing a sharp reduction in the F1 score. This suggests that
the model does not perform as well as the DCE loss function does when either the Dice
loss or cross-entropy loss is used separately as an individual loss function. The best AUC
and F1 scores correspond to a b value of 0.05. The LGBDCE model produced F1 and AUC
trends (Figure 5c,d,g,h) that are similar to those in XGBDCE.
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Figure 5. The influence that parameters a and b in the DCE loss function exert on landslide sus-
ceptibility prediction using the (a,b,e,f) XGBDCE and (c,d,g,h) LGBDCE models. As Rd increases,
the part of the landslide that the model seeks to predict is reduced from the entire landslide to the
landslide scarp.

3.2. Landslide Susceptibility Mapping

Using the MGCV method, we used four iterations of each model to generate cross
predictions of landslide susceptibility for our entire study area (Figures 6 and 7). Because
the results produced by the LGB and XGB algorithms are relatively similar, we chose to
highlight the XGB and RF algorithm results in our figures. The statistical summary of the
cells in each model (Figures 6 and 7) are summarized in Table 5.
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increases, the part of the landslide that the model seeks to predict (the black polygon) is reduced
from the entire landslide to the landslide scarp.



Remote Sens. 2022, 14, 5945 17 of 28Remote Sens. 2022, XX, x FOR PEER REVIEW 19 of 30 
 

 

 

Figure 7. Prediction of the susceptibilities of various landslide parts with combinations of the RF 

algorithm with different class balancing methods: (a–c) RFNB, (d–f) RFEQS, (g–i) RFILW. As Rd in-

creases, the part of the landslide that the model seeks to predict (the black polygon) is reduced from 

the entire landslide to the landslide scarp. 

Figure 7. Prediction of the susceptibilities of various landslide parts with combinations of the RF
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increases, the part of the landslide that the model seeks to predict (the black polygon) is reduced
from the entire landslide to the landslide scarp.
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Table 5. Statistical analysis of the number of cells (unit: thousand) in the generated landslide
susceptibility maps for every model.

Rd = 0.0 Rd = 0.3

Model
Landslide Susceptibility

Freq
Landslide Susceptibility

Freq
0.0–0.2 0.2–0.4 0.4–0.6 0.6–0.8 0.8–1.0 0.0–0.2 0.2–0.4 0.4–0.6 0.6–0.8 0.8–1.0

XGBNB 2037.5 72.4 47.9 33.9 14.5 0.048 2094.2 64.3 32.2 13.3 2.2 0.030
XGBEQS 1821.0 76.9 57.9 65.8 184.8 0.048 1840.1 78.5 57.5 64.8 165.4 0.030
XGBILW 1842.8 73.5 54.0 60.2 175.9 0.048 1874.6 72.0 52.4 57.2 150.1 0.030
XGBDCE 1969.0 58.8 46.7 57.0 74.8 0.048 2027.6 53.1 43.3 46.3 36.0 0.030
LGBNB 2023.4 87.0 53.5 36.3 6.0 0.048 2087.6 74.3 31.1 11.1 2.1 0.030
LGBEQS 1752.6 105.7 72.8 78.7 196.5 0.048 1778.1 104.4 73.4 75.8 174.5 0.030
LGBILW 1752.7 104.9 73.4 78.6 196.6 0.048 1782.2 105.4 72.6 74.4 171.7 0.030
LGBDCE 1929.9 70.5 58.2 74.7 73.0 0.048 1997.8 62.4 53.7 62.3 30.1 0.030
RFNB 2069.3 58.8 37.4 26.3 14.4 0.048 2119.2 50.3 23.6 10.3 2.9 0.030
RFEQS 1834.9 90.7 64.6 71.3 144.8 0.048 1829.5 107.2 71.8 73.4 124.4 0.030
RFILW 2078.9 55.0 35.5 24.9 12.0 0.048 2128.9 44.0 21.5 9.6 2.3 0.030
LDANB 2015.5 121.1 41.6 17.6 10.5 0.048 2099.2 75.4 20.9 8.6 2.3 0.030
LDAEQS 1448.9 181.9 120.7 122.6 332.2 0.048 1466.4 178.0 125.7 127.2 309.0 0.030

Rd= 0.5 Rd= 0.9

Model 0.0–0.2 0.2–0.4 0.4–0.6 0.6–0.8 0.8–1.0 Freq 0.0–0.2 0.2–0.4 0.4–0.6 0.6–0.8 0.8–1.0 Freq

XGBNB 2125.9 52.5 19.5 7.1 1.2 0.022 2193.4 10.7 1.8 0.4 0.0 0.007
XGBEQS 1845.8 81.9 59.3 64.9 154.4 0.022 1800.5 96.0 71.1 78.6 160.1 0.007
XGBILW 1890.5 73.1 52.3 56.6 133.7 0.022 1902.7 78.4 57.8 62.9 104.5 0.007
XGBDCE 2064.4 49.5 36.5 34.0 21.9 0.022 2153.8 28.3 13.1 7.5 3.5 0.007
LGBNB 2125.7 56.6 14.7 5.8 3.6 0.022 2193.4 8.3 1.4 0.8 2.3 0.007
LGBEQS 1784.3 112.6 75.4 74.9 159.1 0.022 1743.0 131.0 89.4 95.2 147.6 0.007
LGBILW 1794.6 109.4 74.3 73.5 154.5 0.022 1779.5 122.0 82.3 91.5 131.0 0.007
LGBDCE 2036.4 57.6 47.1 45.6 19.7 0.022 2141.5 34.9 16.3 9.7 3.9 0.007
RFNB 2142.9 40.4 15.7 6.0 1.4 0.022 2192.4 11.3 2.1 0.4 0.0 0.007
RFEQS 1814.0 120.7 79.3 76.8 115.5 0.022 1696.1 180.2 115.5 103.6 110.9 0.007
RFILW 2150.4 34.8 14.4 5.6 1.1 0.022 2194.1 9.9 1.8 0.4 0.0 0.007
LDANB 2142.7 47.8 11.0 4.4 0.5 0.022 2197.6 7.4 1.3 0.1 0.0 0.007
LDAEQS 1466.6 184.8 129.7 132.6 292.5 0.022 1436.9 210.0 148.3 158.5 252.6 0.007

Freq: landslide frequency.

The models using either the EQS or ILW class balancing methods included the largest
number of cells in the high susceptibility class. However, the NB method models had
the largest number of cells with a susceptibility of 0.0–0.1 (>92% of the total), indicating
that the landslide susceptibility determined using the NB method is low overall. As the
Rd value increase from 0.0 to 0.9, the high-susceptibility area (0.6–1.0) predicted by the
XGBDCE model changed from the entire landslide area (Figure 6g) to the landslide source
area (Figure 6h) and the landslide scarp (Figure 6i), demonstrating that the XGBDCE model
is able to precisely adjust the spatial distribution of the landslide susceptibility according
to the target landslide part. With the EQS balancing method, when Rd increases from 0.0
to 0.9, the number of cells in the high-susceptibility area (0.6–1.0) only decreases by 10%
(Table 5). Figures 6d–f and 7d–f show that the high-susceptibility areas on the hillside are
much larger than the actual landslide areas; therefore, the EQS method cannot precisely
predict a specific part of the landslides. For the NB method, Figures 6a–c and 7a–c show
that the XGBNB and RFNB models are able to accurately adjust the spatial distribution of the
landslide susceptibility according to the target landslide part. However, in these models,
the susceptibility values within the dense landslide area were low.

We quantified the relationship between the proportion of landslides and the sus-
ceptibility on the landslide susceptibility maps (Figure 8). In the NB-based model, the
proportion of landslides is negatively correlated with landslide susceptibility. However,
in the EQS-based and DCE-based models the proportion of landslides increases with the
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landslide susceptibility, indicating that the landslide proportion in these models is more
reasonable than that in the NB model. The proportion of landslides varies with increasing
Rd. In the NB-based model, the proportion of landslides in the 0.0–0.2 susceptibility class
increased very rapidly (average value of 55%). In the XGBDCE models, only when Rd
reaches 0.9 does the proportion of landslides decrease as the susceptibility value increases.
In the EQS-based models, the proportion of landslides changed relatively little. The above
results indicate that the proportion of landslides in EQS-based and DCE-based models is
more stable than that in NB-based models when the target landslide part changes.
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Figure 8. The relationship between the proportion of landslides and the landslide susceptibility.
From subfigures (a–f), the Rd increases, and the part of the landslide that the model seeks to predict
is reduced from the entire landslide to the landslide scarp. Because some of the plots almost overlap
(XGB-based model versus LGB-based model and EQS-based model versus ILW-based model), for
greater clarity we only show representative model plots.

Our findings on the relationship between the landslide frequency and the susceptibility
on the landslide susceptibility maps are summarized in Figure 9. The landslide frequency
differs significantly amongst the various models. The landslide frequency in the NB-based
models is closest to the reference line (the actual landslide frequency), while that in the
EQS-based models is very low and furthest away from the reference line. The landslide
frequency of the DCE-based models falls in between the above two extremes.

As is shown in Figure 9, the landslide frequency decreased as Rd increased in all of
the models. In the EQS model, the largest landslide frequency reduction occurred in the
0.6–1.0 susceptibility class (on average 6.5 times lower). In this susceptibility class, the
model predicted that many landslide cells were actually non-landslide cells (i.e., false
positives). For the NB-based model, when Rd ≥ 0.7, the landslide frequency in the high-
susceptibility class is even lower than that in the low susceptibility class. The frequency of
landslides in the XGBDCE model decreased by a factor of only 1.5 on average. Therefore,
the model was maximally stable when there were changes to the target landslide parts.
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Figure 9. The relationship between the landslide frequency and the landslide susceptibility. The
models with the plots closest to the reference lines have predicted susceptibility values that are close
to the actual landslide frequency. (a–f), the Rd increases, and the part of the landslide that the model
seeks to predict is reduced from the entire landslide to the landslide scarp. Because some of the plots
almost overlap (XGB-based model versus LGB-based model and EQS-based model versus ILW-based
model), for clarity we show only representative model plots.

3.3. The Analysis of Landslide Influencing Factors

Next, we explored how various landslide influencing factors affect the prediction of
different landslide parts in these models. We quantified the influence exerted by each factor
using the reduction of the loss function in the XGB-based model (Figure 10). The rank,
Mean, and STD of the landslide influencing factors vary greatly depending on the model
(Figure 10). Because the XGBDCE model generated the most accurate predictions, we focus
on the results for this model here. According to the ranked mean of the landslide influencing
factors (Figure 10c), the PGA, curvatureSTD, angleFS, angleFH, precipitation, distancefocus,
and lithology are the primary factors controlling landslide occurrence. It is worth noting
that earthquakes and rainfall events are factors that can trigger landslides. As shown
in Figure 11a, there is a significant positive correlation between the PGA and landslide
frequency. However, contradicting known patterns, more precipitation corresponds to a
lower landslide frequency, that is, the maximum landslide frequency (0.07) was observed
in the low rainfall (5–17 mm) area (Figure 11f). Clearly, the landslides in this study area
were more heavily influenced by ground motion than by the amount of rainfall.

Figure 10c shows that certain factors, such as PGA, curvatureSTD, angleFS, angleFH,
precipitation, and distancefocus, have relatively low-ranking standard deviations. Addi-
tionally, because there is no comparative change in the landslide frequency for a given
factor (Figure 11) for increasing values of Rd, we infer that these factors are not sensitive
to changes in the parts of the landslide. Conversely, the ranked standard deviations of
factors such as slopeMAX, distanceSR, distanceridge, elevation ratio, and stream power index
(SPI) are significantly larger (Figure 10c). The relationships between these factors and
landslide frequencies vary for the different parts of the landslide. For higher values of Rd,
the landslide frequency increases with the elevation ratio and decreases with the SPI and
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distanceridge metrics (Figure 11i,k,l). Therefore, the source areas of the landslides are most
likely to be found on the upper slopes of the hills, closer to the ridges. The opposite trend
is observed for smaller values of Rd (Figure 11).
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Figure 10. The ranking of the importance of different landslide influencing factors using the
(a) XGBNB, (b) XGBEQS, (c) XGBDCE, and (d) XGBILW models. Different Rd (0.0–0.9) values cor-
respond to predictions of different landslide parts in the models when landslide influencing factors
are ranked by importance. Mean and STD refer to the mean and standard deviation, respectively, of
the ranking of each landslide factor’s importance for all Rd values. Lower rankings represent more
significant factor contributions. EL = elevation, diff = difference, and DIR = direction.
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Figure 11. The frequencies of the various parts of the landslide with respect to the landslide influ-
encing factors (subfigures (a–l)). In Subfigure (h), Un (unknown lithology), Mm (marine mudstone),
Sm (siliceous mudstone), Mc (marine conglomerate), Ss (Sandstone), and Qd (Quaternary deposits)
denote the lithology.
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The mechanism of the earthquake-induced landslides in this study area was analyzed
based on the main landslide influencing factors, as follows. The type of the soil and rock
determines the strength of the slope. The landslide frequency of siliceous mudstone and
marine conglomerate is significantly higher than that of other lithologies (Figure 11h),
mainly because these two lithologies have low strength and weak regoliths. The slip
surfaces of most landslides in the study area are shallow and nearly planar; therefore,
the slip surface should mainly follow the interface of the bedrock and the overburden or
interface between different layers in the overburden (mostly composed of the residual
soil, unweathered volcanic ash, weathered pyroclastic soil, and pumice [50]). These weak
interfaces are low in yield acceleration, and are more likely to deform under the seismic load.
Precipitation plays a key role in landslide occurrence (Figure 10c). Prolonged rainfall before
the earthquake (the cumulative precipitation in August and September was 200–300 mm)
increased the water content of the soil and rock, softening them.

The seismic factors are the most important landslide influencing factors (Figure 10c).
Under strong ground motion, the pore pressure of the soil increased rapidly (most of the
soils in the study area are fine grained with impeded drainage), leading to a significant
decrease in the undrained shear strength (and the yield acceleration) of the soil [51], with
soil layers even being liquefied. Each time the ground acceleration exceeded the yield
acceleration, the slope mass slid along the aforementioned weak interfaces. In the process,
the joints and cracks of the slope propagated, and the deformation modulus and the
strength of the slope decreased [52,53]. When the permanent displacement of the slope
reaches a certain threshold (with higher PGA values associated with larger permanent
displacement [54]), landslides are very likely to occur. Most landslides in the study area
initiated and slid along the valley channel for a relatively long distance. The slip surfaces
on the slope are smooth, without residual sliding mass [39]. These phenomena indicate
that the water content of the sliding mass was relatively high.

4. Discussion
4.1. The Applicability of the Automatic Extraction Method

We devised an automatic extraction method to efficiently identify and extract the
various landslide parts (Figure 4). This extraction method only requires DEM data and
the polygonal landslide inventory. Using our technique, an ordinary computer can extract
360,000 landslide parts in 6 s. This automatic method is applicable to both the new landslide
inventories and older landslide inventories that are missing data or are use low quality
data. In contrast, manual extraction methods require experienced specialists, high-quality
imagery, and DEMs. For large study areas, it may take months to prepare the data using
manual extraction methods. While automatic landslide extraction methods that are based
on relative elevation ratios (Rd) are empirical, their precision is sufficient for regional
landslide studies, in which the resolution is usually >10 m. Within this resolution, landslides
are represented by a small number of cells. Even when more precisely determining the
boundaries of each part of the landslides using manual methods and then extracting these
parts, the extraction results for most of the landslides change only slightly. Due to the
inherent subjectivity and additional constraints present in the manual extraction method,
automatic extraction methods should always match the accuracy of manual extraction
methods at the regional scale.

4.2. Comparison and Prospect of Landslide Learning Algorithms

We mainly measured landslide susceptibility model performance using F1 score
instead of the commonly used AUC of the ROC, as the number of landslide and non-
landslide samples in our dataset was extremely imbalanced. In such cases, the F1 score is
far more stringent than the AUC of the ROC. Therefore, in this study the F1 score is far less
than the AUC of the ROC (Table 4), which is greater than 0.9 (indicates an excellent model
performance) [55] for all of the models.
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In order to enhance the standards of landslide susceptibility evaluation, the landslide
susceptibility algorithm should meet multiple criteria. Compared with more traditional
methods, the XGB and LGB algorithms all enable the user to adjust the loss functions
based on the specific application. In this study, we devise the XGBDCE and LGBDCE models,
which are based on DCE loss algorithm, to address the extreme class imbalance that is
inherent in landslide susceptibility modeling. On average, the F1 values of these models
are 59% (XGBDCE) and 49% (LGBDCE) higher than that of the RFEQS (the optimum RF
model). In terms of the computational efficiency, we experimented with RF and ANN
as well. The computational costs of the RF and ANN algorithms are 66 and 114 times
higher, respectively, than that of the XGB and LGB models. An increasing demand for
large datasets is anticipated in the future. For example, it is necessary to analyze landslide
susceptibility using rapidly updated data (i.e., meteorological data) or high-resolution
data at larger regional scales. Because the XGB and LGB algorithms are more accurate
in prediction and more efficient in computation, they have wide applicability in future
landslide susceptibility assessment.

4.3. Influence and Applicability of Class Balancing Methods

We explored how landslide susceptibility prediction is affected by different class
balancing methods. While the NB-based models, which did not utilize any class balancing
method, yielded the highest precision, they had the lowest recall ratio (Table 4). Most
of the landslides predicted by these NB models (approximately 76%) are located in the
lowest susceptibility area (0.0–0.2) (Figure 8). As such, we conclude that these NB models
underestimate landslide susceptibility. This underestimation is due to most of the samples
being in the non-landslide class; however, the weights of the landslide and non-landslide
class are the same in the objective function of NB method, and therefore predicting the
samples as the non-landslide class (i.e., with a low landslide susceptibility) is beneficial
to the optimization of the objective function of the NB method. Therefore, the NB model
is suitable for small-scale earthquake events with low landslide frequencies, in which the
underestimation of the landslide susceptibility does not result in serious consequences.
Moreover, the more precise values found in these NB models can accurately predict small
potential landslide areas. However, when landslides are triggered by large earthquakes
(e.g., the Wenchuan earthquake [56] and Nepal earthquake [57]), the NB-based models may
fail to predict most landslides.

The EQS and ILW class balancing methods, on the other hand, have the highest recall
values and the lowest precision values (Table 4). The landslide frequency of the high
landslide susceptibility area (0.8–1.0) in these models is very low. Therefore, we conclude
that these methods result in significant overestimation of the landslide susceptibility. This
overestimation occurs because these techniques involve an inherent amplification of the
landslide frequency or the landslide-class weight in the training dataset. For example,
when using the EQS-based model, the landslide frequency in the training dataset was set
to 0.5, while the landslide frequency of historically strong earthquakes such as the 2018
Hokkaido earthquake (Mw 6.6), the 2008 Wenchuan earthquake (Mw 7.9) [56], and the 2015
Nepal earthquake (Mw 7.8) [57] were only 0.047, 0.12, and 0.01, respectively. Therefore,
we conclude that it is not appropriate to use the EQS and ILW class balancing methods in
models used to predict landslide susceptibility in areas affected by small or medium scale
earthquake events. Due to overestimation, regardless of which part of the landslide is used
to create the model, these models can only predict the overall landslide susceptibility of
entire hillsides, and are unable to predict the susceptibility of smaller landslide features
(Figures 6 and 7).

The prediction performance of the DCE loss-based models is far better than that of
the other class balancing methods (Table 4). In addition, by using a specific weighted F1
score as the optimization objective, the DCE loss method achieves more balanced precision
and recall, thereby solving the problem of overestimating or underestimating the landslide
susceptibility that occurs in other class balancing methods. In order to implement the DCE
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loss function, the user must determine the values of parameters a and b. Although the
maximum number of non-landslide cells is 136 times that of landslide cells (Figure 5), the
optimal weighted ratio of positive to negative is only four. Therefore, the a value does not
need to refer to the prior landslide probability (i.e., 1/136 when Rd = 0.9) of an event. Under
different Rd values, the pattern of the F1 score and AUC curve is consistent (Figure 5).
These trends demonstrate that reasonable values of a and b can be applied to a dataset of
different parts of a landslide as well as a dataset of different frequencies (e.g., earthquake
events of different intensities).

Model performance decreased significantly when shifting the focus from predicting
the susceptibility of an entire landslide to predicting the susceptibility of a specific landslide
feature (Table 4). The main reason for these results is that predicting low-frequency events
(a specific landslide feature) is more difficult than predicting high-frequency events (an
entire landslide). Despite this, studies have found [13,23] landslide susceptibility models
that perform better when focused solely on landslide scarps. These contradictory results
can be explained by the fact that the frequencies of the entire landslide and the land-
slide scarp in these studies [13,58] were both set to 0.5, a value that is dozens of times
larger than the actual landslide frequency. Therefore, for that specific study, it became
easier to predict the susceptibility of landslide scarps and the prediction performance was
significantly overestimated.

While standard models can only be applied to predict the susceptibility of entire
landslides, the XGBDCE and LGBDCE algorithms can be applied to predict the susceptibility
of smaller landslide features. The susceptibilities predicted for an entire landslide by the
XGBDCE and LGBDCE models (Figure 6g) can be applied across large geographic regions.
With regard to predicting a specific part of a landslide, such as the landslide source area
(Figure 6h,i), these prediction results can be combined with a physical-based landslide run-
out model to calculate the landslide deposition area and the kinetic parameters of landslides
in a way that is more precise and consistent with physical laws than the traditional methods
(Figure 12). Because these algorithms are both flexible and accurate, they can be applied
to large-scale regions to increase the precision of landslide hazard or risk assessments. As
shown in Figure 12a,b, we calculated the landslide impact frequency and impact probability
parameters for landslide hazard and risk assessment, respectively. The spatial distribution
of these parameters is in agreement with the observed landslides.

4.4. Limitations

First, the predicted susceptibility of landslide scarps (Rd = 0.9) was not ideal. An
attempt to improve the model performance which involved the addition of 30 landslide
influencing factors related to the microtopographical features and earthquakes was un-
successful. There is a relationship between subpar model performance and the lack of
high-quality data. At a resolution of 30 m, it is difficult to gather high-quality data that ex-
actly describe the characteristics of a landslide scarp. However, data with resolution higher
than 30m were unavailable in this study area. Earthquakes and rainfall have been proven
to be the two most significant factors driving the triggering of landslides (Figure 10c).
However, the available seismic data and rainfall data do not account for the localized
characteristics of the rainfall or earthquakes (i.e., the site effects).

Second, certain factors that can improve the performance of landslide susceptibility
models were not considered in the analysis of the earthquake-induced landslide mech-
anism in Section 3.3. (1) The undrained strength of the overburden and of the interface
between the bedrock and overburden. Most of the landslides in the study area are shallow
translational landslides, and therefore these strength factors are helpful in predicting this
type of landslide. (2) The parameters that reflects the physical properties of the soil and
rock under the rainfall conditions (e.g., degree of saturation, relative density, coefficient of
permeability). The occurrence of earthquake-induced landslides in the study area is related
to the prolonged rainfall before the earthquake. These factors could be considered in the
model to better measure the effect of rainfall. (3) The profile characteristics of the soil and
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rock, such as the type, depth, and sequence. These factors influence the characteristics of
the slip surface of landslides and the site effect of ground motions. However, at present,
data for the above factors in the study area are unavailable. Due to the large spatial vari-
ability of these geotechnical factors [32], it is necessary to carry out a large number of field
investigations and experiments in the future.
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Figure 12. A combination of landslide source area prediction and landslide run-out modelling por-
traying the respective distribution of (a) the landslide impact frequency (expressed as the cumulative
distribution function) and (b) the landslide impact probability. The landslide run-out model uses
r.randomwalk [59], in which the motion is controlled by the landslide angle of reach. The average
angle of reach (25◦) and the probability distribution function used for modeling were calculated
during the statistical analysis of the landslides.

Third, our method is not able to predict landslide occurrence prior to extreme trig-
gering events such as strong earthquakes or storms. The spatial distribution of landslides
largely depends on the intensity of the triggering event (i.e., the intensity or PGA of the
earthquake). However, our method only establishes the relationship between the intensity
of a single event and the occurrence of landslides. As such, this method is not yet suitable
for landslide prediction related to future triggering events of different sizes. In future work,
we intend to use more landslide inventories to thoroughly investigate the relationship
between seismic event intensity and landslides in order to improve the generalization
ability of our models.

5. Conclusions

This paper proposes a landslide susceptibility model which combines the XGB (or
LGB) and the DCE loss function for predicting the susceptibility of a specific part of a
landslide (SSPL). We systematically explored how different susceptibility algorithms (XGB,
LGB, and RF) and class balancing methods (EQS, ILW, NB, and DCE) affect the prediction
of the SSPL. For our study, we prepared six different datasets with 24 landslide influencing
factors and 10,422 samples of a specific part of the landslides from the Hokkaido earthquake
on 6 September 2018, and established samples of realistic landslide frequencies. Our results
demonstrate that XGB and LGB outperform RF and LDA.

The class balancing method heavily influences the predictive performance of different
landslide susceptibility models. The low recall of NB methods results in a tendency to
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underestimate the landslide susceptibility of a given area. NB models are suitable for
low-intensity events (i.e., heavy rainfall and small earthquakes) that can trigger landslides.
The EQS and ILW methods result in low precision values and significant overestimation of
landslide susceptibility. Those two methods should only be applied in large-scale landslide
assessments with low resolutions. Predicting a smaller part of a landslide is more difficult
than predicting an entire landslide, and a model with a reasonable class balancing method
is required. The proposed XGBDCE and LGBDCE models produce more balanced precision
and recall values and predict the SSPL more accurately. When combined with the use of
an automatic extraction algorithm on different parts of the landslide, these models are
applicable for assessing landslide susceptibility, hazard, and risk at various scales and
levels of landslide frequency.

In future research, higher quality data should be collected and applied to further im-
prove the predictive performance of the models by focusing on smaller landslide features. A
second possible improvement is to include more earthquake-induced landslide inventories
and landslide influencing factors in future iterations. Ideally, our model should be able to
evaluate landslide susceptibility either prior to a seismic event or in near real-time after the
earthquake has begun.
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