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Abstract: Soil salinization is a widespread environmental hazard and a major abiotic constraint
affecting global food production and threatening food security. Salt-affected cropland is widely
distributed in China, and the problem of salinization in the Hetao Irrigation District (HID) in the Inner
Mongolia Autonomous Region is particularly prominent. The salt-affected soil in Inner Mongolia is
1.75 million hectares, accounting for 14.8% of the total land. Therefore, mapping saline cropland in
the irrigation district of Inner Mongolia could evaluate the impacts of cropland soil salinization on the
environment and food security. This study hypothesized that a reasonably accurate regional map of
salt-affected cropland would result from a ground sampling approach based on PlanetScope images
and the methodology developed by Sentinel multi-sensor images employing the machine learning
algorithm in the cloud computing platform. Thus, a model was developed to create the salt-affected
cropland map of HID in 2021 based on the modified cropland base map, valid saline and non-saline
samples through consistency testing, and various spectral parameters, such as reflectance bands,
published salinity indices, vegetation indices, and texture information. Additionally, multi-sensor
data of Sentinel from dry and wet seasons were used to determine the best solution for mapping
saline cropland. The results imply that combining the Sentinel-1 and Sentinel-2 data could map the
soil salinity in HID during the dry season with reasonable accuracy and close to real time. Then, the
indicators derived from the confusion matrix were used to validate the established model. As a result,
the combined dataset, which included reflectance bands, spectral indices, vertical transmit–vertical
receive (VV) and vertical transmit–horizontal receive (VH) polarization, and texture information,
outperformed the highest overall accuracy at 0.8938, while the F1 scores for saline cropland and
non-saline cropland are 0.8687 and 0.9109, respectively. According to the analyses conducted for this
study, salt-affected cropland can be detected more accurately during the dry season by using just
Sentinel images from March to April. The findings of this study provide a clear explanation of the
efficiency and standardization of salt-affected cropland mapping in arid and semi-arid regions, with
significant potential for applicability outside the current study area.
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1. Introduction

Soil salinization is a matter of concern in agriculture, as the excess salt hinders crop
growth by obstructing the ability to uptake water. In another sense, it causes a loss in
soil fertility and leads to the desertification of cropland [1,2]. According to the estimation
released by the Food and Agriculture Organization (FAO), there are more than 424 million
hectares of topsoil (0–30 cm) and 833 million hectares of subsoil (30–100 cm) are salt-affected
around the globe (8.7% of the planet) [3]. Most of them can be found in naturally arid or
semi-arid environments in Africa, Asia and Latin America [4]. Soils are easily affected by
salt in arid and semi-arid regions where low rainfall and high evapotranspiration lead to
the concentration of salts such as sodium, magnesium and calcium to form saline soils [5–8].
FAO launched the Global Map of Salt-Affected Soils in 2021, although the salt-affected
soil of China has not been included in that. Nonetheless, estimates show that 20 to 50% of
irrigated soils across all continents are too salty, implying that over 1.5 billion people face
significant challenges in meeting rising food demand due to severe cropland salinity and
cropland degradation [9].

Saline cropland is an essential part of reserve cropland in the Inner Mongolia Au-
tonomous Region in China and is an integral part of the cropland restoration program [10].
The salt-affect soil in the Inner Mongolia Autonomous Region is mainly disturbed in the
Xiliao River Plain in the east and Hetao Irrigation District (HID) in the west. The cropland
of HID is dominated by saline soil and accounts for 30.5% of the saline cropland in Inner
Mongolia [10]. In the early stage of the reclamation HID, flood irrigation without drainage
facilities caused the secondary salinization of the field soil. For now, cropland salinization
has gradually evolved into the main factor restricting the sustainable development of agri-
culture in HID. Therefore, the severe salinity cropland is a typical area for the agricultural
management department’s soil rehabilitation program, which has attracted the interest of
many academics [11,12].

The cropland soil salinity in HID is mainly adapted from the irrigation water of the
Yellow River. Only 20% of the initial salt can be discharged through drainage, while 80% of
the salt is kept in the soil of the irrigation area, showing a salinization trend [13]. Soil salinity
will adversely affect plant growth, crop yields, and underground water quality, leading
to soil erosion and land degradation [14]. The hazard of soil salinity is not limited to the
environment but also includes the economy. For example, for the secondary salinization of
the land in the Sultanate of Oman, the direct economic loss from mild to moderate salinity
is about 1604 US dollars per hectare, and the direct economic loss from mild to severe
salinity is as high as 4352 US dollars per hectare [15]. Thus, knowing the spatial distribution
of salt-affected cropland is an urgent need to alleviate the contradiction between humans
and land [16,17], which is also vital for promoting the high-quality development of the
national agricultural economy [18]. At the same time, the eradicate because of dynamic
and accessible restress from salinization after agricultural activities seriously endangers
the sustainable development of agriculture and its productivity, which makes the timely
detection of salt-affected cropland within HID with limited cropland resources particularly
urgent [19–21].

Traditionally, soil salinity was measured by collecting soil samples and analyzing
them in a laboratory to determine their solute concentration or electronic conductivity [22].
However, due to intensive sampling being time-consuming and expensive, the spatial
variability of soil salinity is hardly fully characterized traditionally in a large area. Remote
sensing data and techniques can more effectively provide economic and rapid tools and
methods for mapping soil salinity [23]. Remote sensing data and its analyzing processes
have gradually become the most convenient method of mapping soil salinity since black-
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and-white and color aerial photographs were used to describe salinity-stressed soils in
the 1960s. Multispectral imagery such as Landsat [24], Sentinel [25], IKONOS [26], Quick-
Bird [27] and UAV-Borne [28] are highly suitable for evaluating soil salinity. In the last three
decades of research on monitoring saline soils, multispectral sensors have been mainly
used. In addition, some researchers have emphasized the importance of ground sample
data [29,30].

In practical applications, multispectral sensors also show limitations, as their spectral
resolution and fewer bands affect the quality and quantity of information provided. Many
current studies pointed out this limitation, thus monitoring the salinity using hyperspec-
tral [31] and thermal infrared data [32], even Synthetic Aperture Radar (SAR) data [33] in
the last few years. Nevertheless, the broad acquisition capability of Sentinel data, high
spatial resolution (10 m), and the combination of active and passive remote sensing data
can compensate for the deficiencies of multispectral data widely available for free. Remote
sensing data with meter-level high resolution or sub-meter-level resolution (IKONOS,
QuickBird, WroldView-2, GF series) have also been gradually introduced into salinity
mapping research and have become indispensable data sources. Mapping the salinity
of cropland combining high spatial resolution images and ground sampling data using
machine learning algorithms is mainly carried out at the field scale or farm scale [34].
However, the validity and reliability of such a method need to be assessed in a larger area.

Recent years have seen an increase in nonparametric machine learning techniques, par-
ticularly Random Forest (RF), to calculate soil salinity [35,36]. Since it can manage the high
dimensionality and multicollinearity of remote sensing data with excellent classification
accuracy and insensitivity to overfitting, RF is one of the most extensively used algorithms
in land cover classification. Additionally, it has been stated that RF in the Google Earth
Engine (GEE) platform provides unassailable benefits in the remote sensing classification of
land cover in a large area [37,38]. Some researchers have demonstrated that RF outperforms
other popular nonparametric machine learning algorithms, which can significantly increase
soil salinity mapping accuracy [25,39].

However, many scholars have shown that using remote sensing technology to map
cropland salinity in arid and semi-arid regions is challenging [23,24,40]. It is mainly because
the bare ground and other sparse vegetation are easily confused with saline soil in spectral
reflectance [33,41]. Alternatively, the method based on spectral reflectance may lead to
unreliable results when the soil is moisturizing or the soil salts are not exposed on the
soil surface in crystalline form but mixed with other soil components [42]. In this case,
SAR data, frequently employed in detecting soil salinity, can capture information that is
challenging to acquire using multispectral imagery. Various remote sensing data have
already been used to study saline soil in HID. Nonetheless, the majority of these studies
have focused on single sensors rather than multi-sensor images. Therefore, to comprehend
the main mechanism causing agricultural salinization and degradation, a salt-affected map
using a wide range of remote sensing data must be acquired in almost real time.

To fill this gap, the following questions will be addressed in this study: Is the Plan-
etScope image of April appropriate for sample collection employing the Visual Interpre-
tation strategy? If so, how can the samples’ validity—which includes cropland that is
both saline and non-saline—be estimated? How to quickly and efficiently map salinized
cropland using Sentinel-1 and Sentinel-2 data freely available in GEE? These questions are
unavoidable in multi-sensor data-based mapping of salinized cropland, and addressing
them is the primary goal of the current study.

The specific objectives of this research are to:

1. Create a cropland base map using global land cover data from ESA WorldCover while
masking off roads and irrigation ditches collected from the electronic map of HID;

2. Evaluate the validity of samples, comprising both saline and non-saline cropland,
using the quantile and quantile plots testing method;

3. Create a multi-variable dataset for salt-affected cropland identification using VV +
VH dual polarization, reflectance bands, and vegetation indices;
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4. Determine the best solution for mapping salt-affected cropland in dry and wet sea-
sons using the overall accuracies and indicators from the confusion matrix of vari-
ous datasets.

2. Materials and Methods
2.1. The Study Area

HID is located at the top of the northernmost Bay of the Yellow River and spans a region
situated at 106◦11′35”E–109◦53′52”E and 40◦10′30”–41◦16′43”N. HID comprises five counties
in Bayannur city with a total area of 17,243.23 km2 (Figure 1), with 733,333.33 hectares of
cropland. The crop yield has been stable at more than 5 billion tons for a long time. It
is Asia’s largest artesian irrigation area and one of China’s three largest irrigation areas.
In addition, HID was included in the World Irrigation Engineering Heritage List in 2019.
Spring wheat, corn, vegetables, citrus, and sunflowers are the main crops in HID (see
phenology of main crops in HID in Table S1). Vegetables are grown in a few places after the
spring wheat harvest, while other crops are sown as one-season crops.
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Figure 1. (a) Location of HID with histogram diagram of total evaporation and total precipita-
tion in the last decade (meteorological data were obtained from ERA5_LAND data collection) and
PlanetScope images acquired from 1 to 13 April in 2021 (shown in false color composited-R: NIR
(Near-Infrared) band, G: Green band, B: Blue band). (b) The location of HID in China and the Inner
Mongolia Autonomous Region. (c) Field photographs taken on April 2021, showing the salt on the
soil surface before crops were planted.
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A typical temperate continental climate prevails in the study area. The number
of hours of sunshine per year is 3210.8–3305.8; the total amount of solar radiation is
146–152 kcal per square centimeter; the average yearly temperature is 6.1–7.6 ◦C; the daily
average temperature difference is 13–14 ◦C. Additionally, the average annual evaporation
is 2200 mm, which is nearly twelve times the average annual precipitation of 180 mm.

2.2. Data
2.2.1. Filed Sampling

The sample data for mapping saline cropland are based initially on the ground sur-
vey samples in previous studies. In contrast, the PlanetScope images acquired from
April 2021 were utilized for delineating the reference samples using a visual interpre-
tation strategy in this study, which was mainly because of the controlling measurements
for preventing the COVID-19 epidemic during the critical period for collecting the ground
truth samples. To accurately distinguish salt-affected soil from non-salt-affected soil on the
cropland base map of HID, 1000 saline samples and 1000 non-saline samples were selected,
as shown in Figure 2. High-resolution PlanetScope images were used as a reference to
assess whether the soil was saline or non-saline, and each sample was labeled as either
salinized or non-salinized, following the principle introduced in Figure 1. The study area
is a typical arid irrigation farming area in northern China, with no winter crops grown
throughout the year. This means the cropland surface in the irrigation area is bare outside
from the previous year’s harvest to the sowing of the following year. Therefore, the soil
salinity is in layers 0–10 cm from March to April, which means the salinity of soil is on the
surface and can be distinguished by the naked eye. This phenomenon leads to the surface
reflectance of the saline soil captured by the imagery is also significantly different from that
of the healthy soil.

Moreover, to ensure the accuracy of the artificially delineated saline and non-saline
cropland samples, the number and spatial distribution must be as consistent as possible.
Therefore, after the initial sample data are selected, the validity of the samples needs to
be checked to ensure that the samples can adequately represent the category to which
they belong. In this part, the quantile and quantile plots testing method will be applied to
validate whether the selected saline and non-saline samples obey the normal distribution
(Section 2.4).

2.2.2. Remote Sensing Data Collection

• PlanetScope

PlanetScope, operated by Planet, is a constellation of approximately 130 satellites that
is able to image the entire land surface of the earth every day (a daily collection capacity of
200 million km2/day). PlanetScope images have a resolution of about 3 m per pixel. The
four-band frame imager with a butcher-block filter provides Blue, Green, Red and NIR
bands. The PlanetScope Ortho Scene Level 3B Product has been used for selecting samples
visually since it is an orthorectified, scaled Top of Atmosphere (TOA) Radiance Surface
Reflectance image product suitable for analytic and visual applications.

• Sentinel

The European Space Agency (ESA) was renamed the EU Global Security Monitoring
GMES as the Copernicus program, considering service duplication and discontinuity in
2012. Sentinel satellites are part of the Copernicus program. Sentinel-1 and Sentinel-2 are
two Earth observation satellites currently in service with high-resolution sensors that can
be shared globally.

The Sentinel-1 mission consists of a constellation of two polar-orbiting satellites,
Sentinel-1A and Sentinel-1B, operating day and night to perform C-band synthetic aperture
radar imaging. SAR data with a 10 m resolution are available for 12 days revisit period.
Commonly used Class 1 products include Single-Look Complex (SLC) and Ground Range
Detection (GRD) products. SLC products preserve phase information and process at natural
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pixel spacing; GRD products incorporate detected amplitudes and multi-look to reduce
speckle effects. Currently, only GRD products with Sentinel-1 data are integrated with GEE.
The Sentinel-1 SAR imagery, in the Interferometric Wide (IW) mode, C-band, with dual
polarization VV and VH, was acquired from 1 March 2020, to 31 April 2020, in coincidence
with the field samples’ selection period.
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The Sentinel-2 mission consists of two solar polar-orbiting satellites, Sentinel-2A
(23 June 2015–present) and Sentinel-2B (7 March 2017–present), distributed in a sun-
synchronous orbit, each other into a 180◦ phase. Currently, Sentinel-2 mainly provides
two product data: L1C and L2A. The L1C product is the reflectance data of TOA after
orthorectification and sub-pixel geometric precision correction; the L2A product is the
surface reflectance data product obtained using the Sen2cor tool officially provided by ESA
to perform atmospheric correction on L1C. Data are available across Europe from October
and globally from January 2017. Each Sentinel-2 satellite carries a multi-spectrometer MSI
with 13 bands in the Visible, NIR, Narrow NIR and Short-Wave Infrared (SWIR) spectral
ranges, including three Red Edge bands. Sentinel-2 Leve-1C and Leve-1A data products
have been integrated into GEE (find details in Table A1). Considering that the Leve-1C
product has more extended data availability, the Leve-1C TOA data product of Sentinel-2
has been selected for mapping saline cropland.

2.2.3. Ancillary Data

An initial cropland base map was created using the ESA WorldCover global land
cover data package, which was developed based on the Sentinel-1 and Sentinel-2 at 10 m
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resolution, and it may be accessed at https://viewer.esa-worldcover.org/worldcover,
accessed on 16 October 2022. The cropland category is 40 in the ESA WorldCover global
land cover data.

2.3. Generating the Cropland Base Map

In this section, the roads and irrigation ditches with a resolution of 2.4 m provided
by AutoNavi Electronic Maps will be used to mask out the non-cropland areas within
the fields of HID. Firstly, the GDAL module of Python extracted the roads and irrigation
ditches from the electronic maps and then converted them to the SHP file. Secondly, the
RASTERIO in Python was captured to mask the non-cropland parts from the WorldCover
global cropland cover data.

2.4. Quantile and Quantile Plots Testing

Generally, the same type of ground objects should have the same or similar spectral
reflectance characteristics in the same wavelength range of remote sensing images. The
saline soils in arid regions mainly contain salts such as chlorides, sulfates and carbonates.
Before the first irrigation of spring sowing in the Yellow River irrigation district, the salinity
in the topsoil of 0–10 cm would be at the highest level, and saline elements would cover the
soil surface, whitening the soil surface, as shown in Figure 1c. Spring wheat is the earliest
sowing crop in the study area that cannot be grown in saline soil. Other crops, such as
vegetables, corn and fruit, can be grown in soils with slight to moderate salinity. Sunflower
is the main salt-tolerant crop and can even be planted in severe saline soil. Therefore, the
3 m resolution PlanetScope images obtained in early April (spring wheat grows in the
Emergence Stage and can cover the ground surface) were chosen to collect sample data
additionally to solve the problem that ground truth sample data are difficult to distribute
evenly in a large area (Figure 2b).

It can be assumed that the eigenvalues of the saline and non-saline samples in different
wavelength ranges obey the normal distribution. Conversely, when a specific sample
contains anomalies, its distribution will deviate from the normal distribution. Therefore,
the quantile graphical method (Quantile and Quantile Plot, Q-Q plot) can be used for
sample validity tests for elements inconsistent during sample selection caused by visual
interpretation errors. The Q-Q plot is a graphical technique for determining if two datasets
come from populations with a common distribution. A Q-Q plot is the quantiles of the
first dataset against the quantiles of the second dataset. Thus, the point (x, y) on the graph
represents the quantile of the second dataset (y-coordinate) and the same quantile of the
corresponding first dataset (x-coordinate). Therefore, the Q-Q plot will approximately lie
on the line y = x superior if the two distributions are the same or similar. In this study, the
x-axis was set as the normal data quantiles of the sample’s reflectance value. In contrast,
the y-axis was set as the normal theoretical quantiles to test whether the two categories of
samples obey the normal distribution. The reflectance of the ten bands (B2, B3, B4, B5, B6,
B7, B8, B8A, B11, B12) of the Sentinel-2 images observed from March to April 2021 (reduced
to mean value on Google Earth Engine) are set as examples to illustrate the Q-Q plot (find
the testing results in Section 3.2).

2.5. Modeling Strategy

The technical frame of this study is illustrated in Figure 3. First, the reflectance bands
of Sentinel-1 and Sentinel-2 images were selected via spatial resolution to ensure the
generalization and robustness of the models. In this step, bands at 60 m resolution were
dedicated primarily to detecting atmospheric features and therefore are not included in
subsequent research. Thus, indices and texture variables based on spectral reflectance were
created at 10 m resolution. On the other hand, the backscattering signal of the Sentinel-1
VV + VH dual-polarization also participated in the modelling process at 10 m resolution.

https://viewer.esa-worldcover.org/worldcover
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2.5.1. Spectral Salinity Indices

The wide range of wavelengths of the Sentinel-2 data has an excellent capability for
remote sensing monitoring and mapping requirements of soil salinity [25]. Therefore, the
mean values of Sentinel-2 spectral reflectance were included in the combined dataset to
map the saline cropland in HID accurately. Table A1 (Section 2.2.2) lists the bands used in
this study.

Applying spectral indices to investigate cropland salinity is built upon the different
spectral behavior associated with image pixels of the ground object [43]. The salinization
can dramatically change soil surface characteristics, leading to a significant difference from
healthy soil, especially during the best monitoring period before the growing season in the
arid and semi-arid regions with low vegetation cover and more exposed soil.

Moreover, the presence of salinity-tolerant crop coverage on the soil may also be a
marker to reflect the soil salinization, thus allowing indirect mapping of salinity-stressed
cropland [44]. On the other hand, unhealthy vegetation photosynthetic activity resulted
in increased visible reflectance and decreased near-infrared reflectance (NIR) [25]. There-
fore, several vegetation indices (VIs), such as Normalized Vegetation Index (NDVI), Soil-
Adjusted Vegetation Index (SAVI), Optimized Soil Adjusted Vegetation Index (OSAVI) and
Modified Soil-Adjusted Vegetation Index (MSAVI), were used to map soil salinity.

Numerous academics have regarded the VIs performance as appropriate for estimating
soil salinity using remote sensing images [45]. To create a multi-variable model to map
the saline cropland in an arid and semi-arid area, a succession of VIs commonly used for
monitoring soil salinity was proposed in this study. Corresponding to this, other researchers
have created various salinity indices, including the Normalized Difference Salinity Index
(NDSI) and Salinity Index (SI), to identify and map soil salinity. Table A2 provides specific
information. On the other hand, for combinations of two or three wavelengths in remote
sensing images, extensive information can be obtained from the indices determined by
spectral reflectance at the 10 m resolution.
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2.5.2. Gray Level Co-Occurrence Matrix

Texture variables can provide valuable spatial information, reflecting the spatial distri-
bution of the gray levels of remote sensing images and representing the spatial relationship
between image features and the surrounding environment [46]. For instance, soil saliniza-
tion in HID refers to the phenomenon in which the salt in the bottom soil or groundwater
rises to the surface with capillary water. After the water evaporates, the salt accumulates in
the surface layer. Thus, this phenomenon could significantly change the texture features of
the land surface.

The textures are essential for identifying objects or regions of interest, whether in
photographs, aerial photos, or satellite images. GEE provides the Gray Level Co-occurrence
Matrix (GLCM) function to calculate broad applicability textures and can be utilized in
various image classification applications [47–49]. In this study, the 14 GLCM indicators
proposed by Robert et al. [50] and four other indicators proposed by Conners et al. [51]
were used to construct texture variables. The reflectance-based texture variables based
on the B2 with the highest accuracy of the Sentinel-2 images were obtained in GEE for
modeling the mapping strategy for saline cropland in HID.

2.5.3. Classifier and Accuracy Assessment

Random Forest is one of the machine learning algorithms widely used in land cover
classification [52] and has been applied to the remote sensing monitoring research of saline
cropland gradually [53]. Furthermore, the importance evaluation function of the variables
of Random Forest can screen out the variable that contributes the most to classification.
Therefore, it can support further research on soil salinity monitoring.

Random Forest can build a multi-layer decision tree and randomly select subsets and
variables of training samples. The classification accuracy of the Random Forest classifier on
the GEE platform uses the incremental step of 100 trees to reach the highest accuracy with
600 trees. In addition, 70% of random samples are used to train the classifier, and 30% of
random samples are used to validate the accuracy of the saline cropland classification.

Overall Accuracy (OA), Producer Accuracy (PA), and User Accuracy (UA) were used
to evaluate the performance of Random Forest classifiers on the GEE. OA is the ratio
of the total number of correctly classified pixels to the total number of pixels (the total
number of pixels in the ground reference samples). UA corresponds to the probability that
a randomly selected pixel from the map is classified as correct in the ground reference
samples. PA corresponds to the likelihood that the reference sample is correctly classified
on the map. The Kappa coefficient was previously considered an indicator that can be used
for consistency checks and to measure classification effects. However, Foody [54] points out
that the Kappa coefficient is not a measure of accuracy but an agreement beyond chance.
Hence, it is unnecessary and should not be used in typical remote sensing applications.
Therefore, Foody [54] argues that researchers should abandon the Kappa coefficient as a
measure of accuracy instead of per-class accuracy estimation and confusion matrices to
evaluate machine learning classification accuracy. Based on this, the Kappa coefficient is
not used as a criterion for assessing the accuracies in this study.

In addition, to test the robustness of the RF on GEE, the F1 scores (F1 = 2 × UA × PA/
(UA + PA)) of saline cropland and non-saline cropland were also calculated. The F1-score
is the harmonic mean of producer and user accuracies. In studies where the classification
samples are not perfectly balanced, the F1 score is a strong indicator for testing the stability
of classification. The F1 score ranges from 0 to 1, with higher scores indicating better
classification performance.

3. Results
3.1. Cropland Base Map

The cropland base map without roads and irrigation ditches was generated through the
two steps introduced in Section 2.3. As a result, the boundaries of fields are more prominent,
and the problem of adhesion between field pixels in the study area is eliminated, as shown
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in Figure 4. There are 887,938.39 hectares of cropland in the study area. In addition, the area
calculated from remote sensing results was compared with the data of The Third National
Land Survey of China in 2020; a minimal difference between the modified cropland area
and that of in land survey was found, and the specific data are relevant in Table 1. Therefore,
the cropland base map is reliable and can be a basis for consecutive research.
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Table 1. Cropland area derived from remote sensing data and areas included in The Third National
Land Survey.

Counties Modified Cropland Area (ha) Cropland Area of the Third National Land Survey (ha)

Dengkou 110,074.32 96,931.29
Hanggin Rear Banner 135,266.37 111,651.51

Linhe 184,904.18 157,529.33
Wuyuan 199,808.2 171,927.30

Urad Frond Banner 257,885.32 231,604.35
Total 887,938.39 769,643.78

3.2. Sample Validity Test

The samples’ pixel reflectance means values derived from the ten spectral bands of
Sentinel-2 were acquired during the mapping period in this study (from March to April).
Then, Origin 2018 was used to generate the Q-Q plot diagrams of the values of non-saline
and saline cropland samples, as shown in Figure A1. In addition, the R-square (R2) between
the normal data quantiles and normal theoretical quantiles is a practical approach to
showing the validity of samples. The specific R2 values can be found in Table 2.
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Table 2. R2 values between normal data quantiles and normal theoretical quantiles of samples for the
various bands of the Sentinel-2 image.

Class Non-Saline Cropland Samples Saline Cropland Samples

Band B2 B3 B4 B5 B6 B7 B8 B8A B11 B12 B2 B3 B4 B5 B6 B7 B8 B8A B11 B12
R2 0.93 0.98 0.99 0.99 0.99 0.98 0.99 0.98 0.98 0.98 0.90 0.95 0.98 0.98 0.98 0.98 0.99 0.99 0.96 0.97

It can be found that the samples of either non-saline or saline cropland obey the
normal distribution in the validation results. The scatter points in the Q-Q diagram of the
saline and non-saline cropland before the growing season (from March to April) tend to
fall on the x = y reference line, and the R2 of all sample data is above 0.9. Whereas, the R2

values of both non-saline and saline cropland samples on the B2 appear lowest (0.93 and
0.90, respectively) in all bands. This is because salt-affected soil has a valley of absorption
close to the blue wavelength. Because of this, the reflectance is also lower than at other
wavelengths. The sample points on the other bands in Figure A1 lie on the line x = y except
for the B2 band, demonstrating the linear relationship between the normal data quantiles
and the normal theoretical quantiles. This indicates a high level of sample consistency
between two distributions of sample data on the B3 to B12 (Green to SWIR2) bands.

The results of the sample validity test show that the samples chosen in this study for
two cropland classes before the growing season have adequate consistency and representa-
tiveness to meet the needs of the subsequent research.

3.3. Accuracy Assessment of Saline Cropland Mapping

The other probability of mapping saline cropland in the dry or wet season was tested
in this part. According to observing the total precipitation in the last decade (chart in
Figure 1a), the precipitation peaks in August and September and has been set in the
wet season, while there was less precipitation from March to April and can be set as the
dry season. Therefore, the accuracies of each dataset, including (1) the Sentinel-1 dual-
polarization VV + VH dataset, (2) textures of Sentinel-2 B2 band, (3) Sentinel-2 spectral band
dataset, (4) indices built based on Sentinel-2, and (5) the dataset of combined Sentinel-1
and Sentinel-2 in different time intervals were assessed to present the performance of
the modeling strategies in the dry and wet season. The box plot of validation results are
presented in Figure A2, and the validation indicators are shown in Table A3.

The results showed that the highest accuracy was achieved In the dry season from
March to April, which was significantly higher than other time interval combinations. In
comparison, no significant difference has been observed in the box plot of March, August
and August to September. The result indicates that the two-month data combination in
the dry season is the best solution for mapping saline cropland in HID. Thus, the dataset
combined with March and April generated the salt-affected cropland map. Moreover, to
clarify the best multi-variables with the highest accuracy for saline cropland mapping,
the performances of the variables and their combinations were estimated, respectively, as
shown in Figure 5 and Table A4.

As shown in Figure 5 and Table A4, the B2 band reflectance showed the highest
accuracy (OA = 0.80) in the spectral bands of the Sentinel-2 data, which was followed by the
B3 band. The Red Edge wavelength range is considered sensitive to green plants’ growth
status [55]. Thus, the B5, B6 and B7 bands of Sentinel-2 data showed no obvious advantage
for salt-affected soil mapping at 20 m resolution in this case, as shown in Figure 5. Notably,
the visible band has higher advantages for identifying salt-affected soil than the Infrared
band in the dry season.
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Figure 5. Classification accuracies of each variable and the combined datasets: Sentinel-1 indicates
the mean value of Sentinel-1 dual-PolSAR (VV + VH) bands; Sentinel-2 suggests the combination of
texture and indices derived from reflectance bands of Sentinel-2 and original mean values of spectral
bands. S1_S2 combined indicates the combination of Sentinel-1 and Sentinel-2 datasets.

The VV + VH dual-polarization backscattering signal of Sentinel-1 data did not show
competitive accuracy assessment results, with an overall accuracy of 0.68. The accuracy
of the VH backscattering signal was higher than the VV backscattering signal, reaching
0.67 and 0.58, respectively. In addition, it can be seen in Table A4 that a very slight
improvement (0.0019) has been detected in the assessment results by adding Sentinel-1
SAR data to Sentinel-2 spectral data. In this case, the mapping of salinity-affected crops is
not significantly impacted by the VV + VH dual-polarization backscattering information.
SAR data, however, can also be an essential supplemental data source in overcast and rainy
regions where continuous optical images are challenging to obtain.

Each index variable’s OA was greater than 70%, which denotes high accuracy. With an
OA of 0.79, SI had the highest accuracy of any index, which was followed by MSAVI with an
OA of 0.72. The degrees of accuracy for NDVI, SAVI, OSAVI, NDSI, and DVI are equivalent.
These findings suggest that SI is the most appropriate indicator for saline cropland in
salt-affected cropland mapping before the growing season in an arid and semi-arid region.

In this situation, combining Sentinel-1 and Sentinel-2 (S1_S2 combined in Figure 5),
modeling strategies provided the optimal solution for saline cropland mapping, with an
OA of 0.8938.

3.4. The Map of Saline Cropland

The dataset, including the spectrum reflectance, indices, texture information and PolSAR
backscattering signal, produced the highest overall accuracy and F1 score (non-saline cropland
is 0.91 and saline cropland is 0.87). Therefore, the Sentinel-1 and Sentinel-2 combined datasets
were selected for mapping the saline cropland before the growing season in HID. Furthermore,
the cropland in HID was classified into two categories, as aforementioned.

As seen in Figure 6, the amount of non-saline cropland in HID is more than the area of
saline cropland, with 58.30% and 41.70% of cropland, respectively. The stretch between
Wuyuan County to the west bank of Ulansuhai Nur is the largest saline cropland zone in
HID. Additionally, the concentration of saline soil increases with proximity to the Yellow
River Basin. As seen in Figure 6, the cropland is generally dispersed in strips toward the
south and north to the east of Ulansuhai Nur. The majority of the cropland in the north
uses drip irrigation, and some portions are watered by groundwater.
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In contrast, the salinization is relatively high in the area irrigated mainly by the
Yellow River in the south. As a result, there is less salinization than in the southern region.
Numerous studies have shown that flood irrigating with Yellow River water causes soil
salinization in HID. Therefore, the higher salinization is in keeping with the actual situation
in areas irrigated with water from the Yellow River.

4. Discussion
4.1. Indices in Salt-Affected Cropland Mapping

Index variables were important in previous research on salt-affected soil monitoring
and inversion. The analysis based on SI-MSAVI is the most renowned among them and has
been shown to invert soil salinity [56–58] accurately. Likewise, NDVI and DVI, commonly
used to monitor vegetation status, are also widely used in land salinization monitoring
research and are critical indicators [59–61].

A mapping methodology for salinized cropland was developed in this study using
several variables based on two bands (see Table A2 for details). The Red and NIR bands
produce all other indices besides the SI. Figure 7 shows that even though the saline and
non-saline samples have clear absorption valleys in the visible wavelength range, their
reflectance values significantly differ. In comparison, the reflectance value in the NIR
wavelength range is relatively high, but no clear difference has been observed. Near the
two bands of water vapor (945 nm) and cirrus (1375 nm) of the Sentinel-2 image, there are
more wide absorption valleys but practically overlapping curves in the SWIR wavelength
range; however, near the SWIR1 and SWIR2 bands, the difference becomes more evident.
Nevertheless, when employing a single SWIR band for accuracy assessment, the result
does not achieve the high accuracy of the visible band due to the SWIR band’s resolution of
20 m.

Commonly, SI measures the direct relationship between Electrical Conductivity (EC)
and moisture. This ratio shows the salinity concentration in the available water [62]. By
utilizing the more pronounced differences between the two cropland sample types in the
Blue and Red bands, the SI index based on the visible band in this study was the variable
with the highest contribution and achieved higher classification accuracy. However, other
indices have similar classification accuracy since they are both constructed from red and
NIR bands.
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While NDVI and NDSI represent normalized differences between the Red and NIR
bands of the Sentinel-2 image, NDVI is the NIR minus the Red and NDSI is the inverse.
Thus, a positive value of NDVI and a negative value of NDSI at the same pixel are equiv-
alent. However, when NDVI or NDSI are not employed, the overall accuracy of the
salt-affected cropland mapping slightly decreases (the accuracy decreases by 0.0019 when
NDVI is removed, and the accuracy drops by 0.0058 when NDSI is removed). Consequently,
NDVI and NDSI have equal correlation coefficients with the sample data, which means
positive correlation coefficients for NDVI and negative correlation coefficients for NDSI).
Additionally, NDSI was found to be more sensitive for detecting saline cropland in the wet
season with OA at 0.66, which is slightly higher than the accuracy that NDVI can achieve
in the wet season with OA at 0.65.

4.2. Multi-Sensor Data Application in Saline Cropland Mapping

Soil salinization is a severe problem faced by land worldwide, and the affected area
is vast [18]. However, there is no exact standard for monitoring solutions due to different
data sources and statistical methods. Unlike non-salt-affected land and other ground
features, soil salinization has distinct and unique spectral reflectance characteristics and
tends to show higher reflectance on spectral images [40,63–65]. Satellite remote sensing
technology has irreplaceable advantages (near real-time and covering a large area) and
good application prospects for observing soil salinity. Therefore, using multispectral remote
sensing images to monitor the soil-affected cropland in an area with complex land surface
objects is feasible.

On the other hand, microwave remote sensing has been widely used in the inversion
of surface soil moisture and salinity for a long time [66,67]. Since the C-band polarization
radar data of the Sentinel-1 satellite was introduced into civilian use, some breakthroughs
have been made in soil moisture inversion research at the beginning [68,69]. However,
the salinity change in the soil surface will affect the soil dielectric properties and thus will
change the microwave emissivity of the land surface. Therefore, in addition to considering
the impact of soil moisture alone, soil salinity has to be considered in areas with severe
soil salinization [70–72]. As a result, the study of monitoring soil salinity using microwave
remote sensing data has gradually attracted extensive attention [73,74].

The method combining the optical and microwave remote sensing data has been dis-
cussed preliminary in this study. However, many studies have shown that the identification
ability of the backscattering coefficient will be significantly enhanced after the polarization
decomposition of radar data. Nevertheless, the importance of radar data in this study is
still minimal, which may be because the eigenvalues after polarization decomposition are
more advantageous for identifying salt on the soil surface than the original backscatter-
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ing coefficient. The GRD data provided in GEE do not have phase information, so it is
impossible to realize GEE’s polarization decomposition. Hence, it is difficult to establish
the eigenvalues after polarization decomposition in a large area to extract saline cropland.

The application of remote sensing to earth observation is an essential means to un-
derstand the earth and study various natural phenomena in the future. Remote sensing
technology is constantly developing, including many commercial satellite programs. As a
result, the earth will be observed without a dead angle. In addition, the data volume will
increase in geometric multiples; managing and using data efficiently and reasonably will
be both a challenge and an opportunity for developing various algorithms and applications
for salt-affected cropland monitoring.

4.3. Strongly Saline Cropland Abandonment in HID

The ESA WorldCover global land cover data did not recognize some fields with severe
salinization as cropland. However, it is a minor error, because these have been abandoned
for many years. On the other hand, a few severely salinized croplands have been planted
late for sunflower seeds because of their salt tolerance [75]. In either case, it points to the
severely salinized cropland in HID under the high potential abandonment stress.

Soil salinization has become an essential topic of global change research. The latest
research shows that global soil salinization will be characterized by regional prominence,
global intensification, and the coexistence of local salinization and intensification. Severely
salinization is one of the most hazardous reasons why cropland is removed from production
and then causes the abandonment globally of 0.3–1.5 million hectares per year [76]. It is
generally recognized that a large proportion of salt-affected soils in irrigated areas occurs
on land inhabited by smallholder farmers. However, salt-affected cropland degradation’s
social and economic dimensions have received little attention compared to its biophysical
aspects [77].

Well-known examples of salt-induced land degradation include the Aral Sea Basin
(Amu-Darya and Syr-Darya River Basins) in Central Asian countries, the Indo-Gangetic
Basin in India, the Indus Basin in Pakistan, the Yellow River Basin in China, the Euphrates
Basin in Syria and Iraq, the Murray-Darling Basin in Australia, and the San Joaquin Valley
in the United States. Severe salinity also reduces paddy yields in many previously produc-
tive land areas; many paddy fields in Jaffna Peninsula, Sri Lanka, have been abandoned
and are currently becoming shrubland [78]. Nevertheless, there has been no comprehensive
study on the contribution of soil salinity to reduced agricultural productivity and the
abandonment of paddy lands in a region. A study based on the analysis of the spatiotem-
poral variation in cropland expansion and loss in Xinjiang over 20 years found that the
abandonment was the primary reason for the loss of cropland, with soil salinization playing
an increasingly major role in the cropland abandonment [79]. Furthermore, Wu et al. [80]
found widespread abandonment of reclaimed land and tillage in Xinjiang. A major rea-
son for this abandonment was soil salinization with as much as 12,680 km2 of cropland
being affected.

There was a strong sense of expansion in the land use pattern of humanity with a
poor understanding of sustainable development in the last few decades in Inner Mongolia.
As a result, the saline bare land in northeast China has been utilized to a certain extent.
However, due to the lack of protective technology, paddy fields’ abandonment and salin-
ization reappearance have also occurred in some areas after the high-intensity utilization of
cropland. The extensive area saline cropland treatment was also implemented in 2022 with
the government’s support since the abandoned cropland is an essential reserve in China.
The efficient utilization of salinized land is vital to ensure national food security, especially
under the current COVID-19 pandemic and the global background of frequent disasters; it
is imminent to utilize the reserve cropland and control the salinity.
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5. Conclusions

In this study, after manual visual selection of samples, creation of a cropland base map
of HID, and sample validity testing, a saline cropland identification model based on multi-
sensor remote sensing data and the multi-variable dataset was built and achieved with
high classification accuracy. One of these, the sample validity test method, was used for the
first time in the saline cropland monitoring study and produced promising experimental
results. The multi-variable dataset based on Sentinel-1 SAR and Sentinel-2 multispectral
images from March to April furthermore exhibits strong performance in the remote sensing
mapping of salt-affected crops. The methodology and results reported in this study may be
advantageous for mapping saline cropland before the growing season in arid and semi-arid
regions. They can therefore be encouraged and utilized in a broader area.
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Appendix A

Table A1. Spectral bands of Sentinel-2 MSI sensor for saline cropland mapping.

Acronym Bands Spatial Resolution/m Central Wavelength/nm

B2 Blue 10 496.6 (S2A)/492.1 (S2B)
B3 Green 10 560 (S2A)/559 (S2B)
B4 Red 10 664.5 (S2A)/665 (S2B)
B5 Red Edge 1 20 703.9 (S2A)/703.8 (S2B)
B6 Red Edge 2 20 740.2 (S2A)/739.1 (S2B)
B7 Red Edge 3 20 782.5 (S2A)/779.7 (S2B)
B8 NIR 10 835.1 (S2A)/833 (S2B)

B8A Narrow NIR 20 864.8 (S2A)/864 (S2B)
B11 SWIR 1 20 1613.7 (S2A)/1610.4 (S2B)
B12 SWIR 2 20 2202.4 (S2A)/2185.7 (S2B)

https://www.mdpi.com/article/10.3390/rs14236010/s1
https://www.mdpi.com/article/10.3390/rs14236010/s1
https://code.earthengine.google.com/148a08017e0f363c8b7414036a630313


Remote Sens. 2022, 14, 6010 17 of 22

Table A2. Information list of reference spectral indices.

Vegetation Index Acronym Formula

Normalized Difference Vegetation Index NDVI Rnir−Rred
Rnir+Rred

Difference Vegetation Index DVI Rnir − Rred
Soil-Adjusted Vegetation Index SAVI (Rnir−Rred)×(1+L)

Rnir+Rred

Optimized Soil Adjusted Vegetation Index OSAVI (1+0.16)×(Rnir−Rred)
Rnir+Rred+0.16

Modified Soil-Adjusted Vegetation Index MSAVI 2∗Rnir+1−
√
(2×Rnir++1)2 −8×(Rnir−Rred)

2
Normalized Difference Salinity Index NDSI Rred−RNIR

Rred+RNIR

Salinity Index SI
√

Rblue × Rred

R means the reflectance of spectral band of Sentinel-2 image, for example Rred indicates the reflectance value of
red band.

Table A3. The accuracies of each dataset in the different time intervals during wet and dry season.

Datasets
Dry Season Wet Season

Mar Mar to Apr Aug Aug to Sep

Sentinel-1 PolSAR 0.6216 0.6815 0.5444 0.5946
Textures of Sentinel-2 Blue band 0.7722 0.7722 0.6583 0.6622

Spectral bands of Sentinel-2 0.8012 0.8764 0.6680 0.7104
Indices built based on Sentinel-2 0.8243 0.8687 0.6680 0.7104

Combined dataset of Sentinel-1 and Sentinel-2 0.8610 0.8938 0.7220 0.7181

Table A4. Classification accuracies of each variable and datasets for saline cropland mapping.

Bands Overall
Accuracy

User Accuracy Producers Accuracy F1 Score

Non-Saline Saline Non-Saline Saline Non-Saline Saline

VV 0.5849 0.6571 0.4729 0.6592 0.4706 0.6582 0.4717
VH 0.6718 0.7400 0.5780 0.7070 0.6176 0.7231 0.5972
savg 0.6313 0.6916 0.5330 0.7070 0.5147 0.6992 0.5237
idm 0.5328 0.6295 0.4208 0.5573 0.4951 0.5912 0.4550
ent 0.5772 0.6537 0.4641 0.6433 0.4755 0.6485 0.4697

dent 0.5830 0.6551 0.4703 0.6592 0.4657 0.6571 0.4680
shade 0.5541 0.6361 0.4366 0.6178 0.4559 0.6268 0.4460
asm 0.6313 0.6977 0.5314 0.6911 0.5392 0.6944 0.5353
corr 0.5000 0.5979 0.3840 0.5350 0.4461 0.5647 0.4127
dvar 0.5290 0.6207 0.4123 0.5732 0.4608 0.5960 0.4352
diss 0.5869 0.6748 0.4784 0.6146 0.5441 0.6433 0.5092

imcorr1 0.5502 0.6311 0.4306 0.6210 0.4412 0.6260 0.4358
imcorr2 0.5425 0.6305 0.4260 0.5924 0.4657 0.6108 0.4450

svar 0.5290 0.6326 0.4213 0.5318 0.5245 0.5779 0.4672
contrast 0.5792 0.6548 0.4663 0.6465 0.4755 0.6506 0.4709

prom 0.5347 0.6308 0.4226 0.5605 0.4951 0.5936 0.4560
var 0.5521 0.6414 0.4386 0.5924 0.4902 0.6159 0.4630

inertia 0.5792 0.6548 0.4663 0.6465 0.4755 0.6506 0.4709
sent 0.5483 0.6325 0.4306 0.6083 0.4559 0.6201 0.4429
B2 0.8012 0.8576 0.7265 0.8057 0.7941 0.8309 0.7588
B3 0.7876 0.8312 0.7238 0.8153 0.7451 0.8232 0.7343
B4 0.7761 0.8214 0.7095 0.8057 0.7304 0.8135 0.7198
B5 0.7317 0.8028 0.6419 0.7389 0.7206 0.7695 0.6790
B6 0.6950 0.7727 0.5991 0.7038 0.6814 0.7367 0.6376
B7 0.6757 0.7704 0.5726 0.6624 0.6961 0.7123 0.6283
B8 0.6834 0.7737 0.5820 0.6752 0.6961 0.7211 0.6339

B8A 0.6467 0.7365 0.5436 0.6497 0.6422 0.6904 0.5888
B11 0.5753 0.6516 0.4615 0.6433 0.4706 0.6474 0.4660
B12 0.6525 0.7147 0.5583 0.7102 0.5637 0.7125 0.5610

NDVI 0.7046 0.7766 0.6123 0.7197 0.6814 0.7471 0.6450
SAVI 0.7046 0.7766 0.6123 0.7197 0.6814 0.7471 0.6450

OSAVI 0.6988 0.7883 0.5984 0.6879 0.7157 0.7347 0.6518
MSAVI 0.7162 0.7831 0.6278 0.7357 0.6863 0.7586 0.6557

SI 0.7915 0.8344 0.7286 0.8185 0.7500 0.8264 0.7391
NDSI 0.7085 0.7860 0.6137 0.7134 0.7010 0.7479 0.6545
DVI 0.7085 0.7672 0.6244 0.7452 0.6520 0.7561 0.6379

Sentinel-1 0.6815 0.7525 0.5874 0.7070 0.6422 0.7291 0.6136
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Table A4. Cont.

Bands Overall
Accuracy

User Accuracy Producers Accuracy F1 Score

Non-Saline Saline Non-Saline Saline Non-Saline Saline

Sentinel-2 0.8919 0.9272 0.8426 0.8917 0.8922 0.9091 0.8667
S1_S2

combined 0.8938 0.9274 0.8465 0.8949 0.8922 0.9109 0.8687
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Figure A1. Q-Q test plots for samples’ consistency of different classes on the mean values of the 
different bands of Sentinel-2 image, which reduced by mean value from March to April 2021. 

Figure A1. Q-Q test plots for samples’ consistency of different classes on the mean values of the
different bands of Sentinel-2 image, which reduced by mean value from March to April 2021.
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Figure A2. Results of the box plot accuracy assessment for several dataset combinations in the dry 
and wet seasons. The dry season in HID is represented by Mar and Mar to Apr on the x-axis, 
whereas the wet season in HID is represented by Aug and Aug to Sep on the x-axis. 
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Figure A2. Results of the box plot accuracy assessment for several dataset combinations in the dry
and wet seasons. The dry season in HID is represented by Mar and Mar to Apr on the x-axis, whereas
the wet season in HID is represented by Aug and Aug to Sep on the x-axis.
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