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Abstract: Historically, geoscience has been a prominent domain for applications of computer vision
and pattern recognition. The numerous challenges associated with geoscience-related imaging data,
which include poor imaging quality, noise, missing values, lack of precise boundaries defining
various geoscience objects and processes, as well as non-stationarity in space and/or time, provide
an ideal test bed for advanced computer vision techniques. On the other hand, the developments
in pattern recognition, especially with the rapid evolution of powerful graphical processing units
(GPUs) and the subsequent deep learning breakthrough, enable valuable computational tools, which
can aid geoscientists in important problems, such as land cover mapping, target detection, pattern
mining in imaging data, boundary extraction and change detection. In this landscape, classical
computer vision approaches, such as active contours, superpixels, or descriptor-guided classification,
provide alternatives that remain relevant when domain expert labelling of large sample collections is
often not feasible. This issue persists, despite efforts for the standardization of geoscience datasets,
such as Microsoft’s effort for AI on Earth, or Google Earth. This work covers developments in
applications of computer vision and pattern recognition on geoscience-related imaging data, fol-
lowing both pre-deep learning and post-deep learning paradigms. Various imaging modalities are
addressed, including: multispectral images, hyperspectral images (HSIs), synthetic aperture radar
(SAR) images, point clouds obtained from light detection and ranging (LiDAR) sensors or digital
elevation models (DEMs).

Keywords: geoscience; computer vision; pattern recognition; deep learning; LiDAR; multispectral
imaging; hyperspectral imaging; SAR imaging; land cover mapping; target detection; change detection

1. Introduction

The advent of various 2D/3D imaging technologies in the area of RS (remote sensing)
raises multiple challenges for computational tools capable of assisting domain experts, such
as earth scientists, on conducting land cover surveys, as well as in the study of a diverse
range of phenomena. The growing availability of large amounts of imaging data in the
form of 2D images (aerial, satellite, etc.), point clouds, hyperspectral images (HSIs), as well
as in the form of image time-series, sets the stage for the design of various deep learning
(DL)-based strategies, as well as of standard descriptor-based computer vision approaches.

Geoscience-related imaging data usually appear in the form of: (1) RS images acquired
by satellites, (2) images derived by measurements from in situ sensors in the sea, land, or
air, and (3) simulated images generated using physics-based or machine-learning models.
Space research organizations, including the national aeronautics and space administration
(NASA) and European space agency (ESA), provide a large, ever increasing, amount of RS
data in the context of geoscience [1]. Earth-observing satellites monitor various geoscience-
related parameters, such as surface temperature, humidity, optical reflectance and the
chemical content of the atmosphere. These parameters are recorded at fine spatial scales
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and regular time intervals for long periods, as is the case with the Landsat archives [2]. RS
data can also be collected using imaging sensors on flying devices, such as unmanned aerial
vehicles (UAVs) or aircrafts [3]. Such imaging sensors are RGB cameras, multispectral and
hyperspectral sensors, thermal cameras, light detection and ranging (LiDAR) sensors and
radars [4]. These data commonly comprise samples of geo-registered images over single
time points or time-series of images associated with single spatial locations [1].

There are projects dedicated to the standardization of geoscience datasets [5], as is
the case with Microsoft’s AI for Earth. [6]. Google Earth engine [7] is a widely utilized
cloud-based platform for planetary-scale geospatial analysis using Google’s infrastructure.
Google Earth features several modes of interaction: the Code Editor (Figure 1) is a web-
based integrated development environment (IDE) for writing and running scripts, the
Explorer is a lightweight web app for exploring Google’s data catalog and running simple
analyses, whereas the client libraries provide Python and JavaScript wrappers around
a web application programming interface (API). Recently, Google introduced Dynamic
World [8], which leverages advances in large-scale cloud computing, DL, high-performance
open-source software frameworks, such as TensorFlow, as well as increased access to
satellite image collections through platforms, including Google Earth engine, in order to
create global land cover maps at a spatial resolution of less than 10m and near real-time.
Figure 2 presents an example land cover map of a part of Europe obtained by Google’s
Dynamic World.
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Figure 2. An example land cover map of a part of Europe received by the Google’s Dynamic World. 
The utilized classes are nine: water, trees, grass, flooded vegetation, crops, shrub and scrub, built, 
bare, snow and ice (https://dynamicworld.app/explore/ (accessed on 26 November 2022)). 

In terms of modalities, imaging data are acquired in the form of 2D images, multidi-
mensional images or point-clouds. Consumer-level cameras have been adopted since the 
late 1990s for applications such as digital elevation models (DEMs) and RS of vegetation. 
Many of these aerial images are being used to produce topographic data by means of 
modern structure-from-motion (SfM) algorithms [9]. Satellite missions such as Sentinel, 
Venus, or Landsat data continuity mission (LDCM) provide time-series of high-resolution 
optical data. Hyperspectral imaging is a powerful RS technology, enabling the study of 
chemical and physical properties of scene materials. It provides multi-dimensional images 
capturing the reflected or emitted electromagnetic energy from a scene, over hundreds of 
narrow, contiguous spectral bands, from visible to infrared wavelengths [10,11]. These 
spectral bands represent different materials and form mixed pixels, which are the basic 
element of HSIs. The use of point clouds has promising perspectives in different fields of 
geosciences, for supporting high-resolution geological or geomorphological mapping, for 
studying the evolution of active processes, as well as for monitoring various kinds of nat-
ural hazards. Airborne LiDAR is a laser profiling and scanning technique for bathymetric 
and topographic applications, which emerged in mid-1990s. With the aid of direct geo-
referencing, the laser scanning equipment installed in a UAV or aircraft collects a cloud 
of laser range measurements of the 3D coordinates of the area under inspection. In con-
trast to 2D planimetric data, the explicit LiDAR data point cloud describes the 3D topo-
graphic profile of a surface [12]. Figure 3 presents example images of various modalities, 
widely employed in geoscience-related applications. 

Figure 2. An example land cover map of a part of Europe received by the Google’s Dynamic World.
The utilized classes are nine: water, trees, grass, flooded vegetation, crops, shrub and scrub, built,
bare, snow and ice (https://dynamicworld.app/explore/ (accessed on 26 November 2022)).

In terms of modalities, imaging data are acquired in the form of 2D images, multidi-
mensional images or point-clouds. Consumer-level cameras have been adopted since the
late 1990s for applications such as digital elevation models (DEMs) and RS of vegetation.
Many of these aerial images are being used to produce topographic data by means of
modern structure-from-motion (SfM) algorithms [9]. Satellite missions such as Sentinel,
Venus, or Landsat data continuity mission (LDCM) provide time-series of high-resolution
optical data. Hyperspectral imaging is a powerful RS technology, enabling the study of
chemical and physical properties of scene materials. It provides multi-dimensional images
capturing the reflected or emitted electromagnetic energy from a scene, over hundreds
of narrow, contiguous spectral bands, from visible to infrared wavelengths [10,11]. These
spectral bands represent different materials and form mixed pixels, which are the basic
element of HSIs. The use of point clouds has promising perspectives in different fields
of geosciences, for supporting high-resolution geological or geomorphological mapping,
for studying the evolution of active processes, as well as for monitoring various kinds of
natural hazards. Airborne LiDAR is a laser profiling and scanning technique for bathy-
metric and topographic applications, which emerged in mid-1990s. With the aid of direct
geo-referencing, the laser scanning equipment installed in a UAV or aircraft collects a cloud
of laser range measurements of the 3D coordinates of the area under inspection. In contrast
to 2D planimetric data, the explicit LiDAR data point cloud describes the 3D topographic
profile of a surface [12]. Figure 3 presents example images of various modalities, widely
employed in geoscience-related applications.

https://dynamicworld.app/explore/
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Figure 3. Example data widely-used in geoscience-related applications: (a) the composite HSI image 
of Pavia University, northern Italy, acquired by the ROSIS sensor, (b) SAR image from the Yellow 
River dataset, acquired in June 2008, (c) image of Lake Tahoe acquired by Landsat 8 operational 
land imager (OLI), (d) National Elevation Data map of Australia DEM.  
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imager (OLI), (d) National Elevation Data map of Australia DEM.

Historically, the progress of RS imaging has been closely associated with computer
vision and pattern recognition. Several geoscience-related problems, including land cover
mapping, target detection and boundary extraction, pose challenges for traditional image
analysis tasks, such as image clustering, classification and segmentation. Descriptors (i.e.,
handcrafted feature vectors) such as local binary patterns (LBP) [13], wavelet vectors [14]
and morphological profiles [15] have been applied for the classification of optical images
and HSIs [16]. Spin images [17], point feature histograms (PFH) [18] and signatures of
histogram of orientation (SHOT) [19] are descriptors that have been employed for point
clouds. The standard approach for image clustering or classification is to provide 2D,
3D or multidimensional descriptors as inputs to classical clustering algorithms, such
as k-means and fuzzy-c-means, or to classifiers such as decision trees (DTs), random
forests (RFs), support vector machines (SVMs) and multi linear perceptrons (MLPs) (see
Section 2). A problem with this approach is that descriptor parameterization depends
on expert knowledge, limiting their applicability in difficult scenarios, featuring subtle
inter-class or large intra-class variations [20]. Later, visual dictionaries, the so-called bag
of visual words (BoVW) [21,22], incorporated the statistics associated with each problem
at hand [23]. In the context of semantic segmentation, numerous approaches, including
active contours [24], Markov random fields (MRFs) [25] and superpixels [26], have been
combined with descriptors or BoVW and to be applied on 2D RS images or HSIs.

Despite some successful results of descriptor-based approaches, the geoscience com-
munity has been slow in adopting computer vision tools, partially due to limitations in the
actual representation capability of descriptors or BoVW. The rapid evolution of powerful
GPUs and the availability of large datasets aided extraordinary advances in DL-based com-
puter vision, starting from the performance breakthrough of AlexNet in ILSVRC 2012 [27].
This new paradigm reinvigorated the interest of geoscientists. Numerous works are regu-
larly published for the analysis of RS images with deep neural networks. Convolutional
neural networks (CNNs) [28] and derivative architectures, such as VGG [29], ResNet [30]
and Inception [31], play a prominent role in this direction. Another DL branch in RS con-
sists of applications of recurrent neural networks (RNNs) [32], including long short-term
memory (LSTM) networks [33], on time-series of images. Regularly, the training of these
methods requires large amounts of data, preferably labelled. Labelling is costly in terms of
time and domain expert resources. A remedy for the lack of a sufficient amount of labelled
data, which is often adopted in machine learning, is provided by data augmentation: real
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samples are transformed (e.g., by translation or rotation) to generate additional synthetic
samples. Another related approach is to generate synthetic samples following a learn-
ing process on a labelled dataset. In this case, variational autoencoders (VAEs) [34] and
generative adversarial networks (GANs) [35] are the most widely adopted methods.

A number of survey articles covering computational approaches in RS has appeared
in the literature in the last couple of years. A part of these surveys [11,20] focus on machine
learning applications on a single imaging modality, such as HSIs. Other surveys cover
imaging and non-imaging data [1,36,37]. Overall, most recent surveys [20,38–40] focus
on DL and miss a large amount of related work which is not based on neural networks.
This survey maintains a focus on imaging modalities and geoscience-related applications,
whereas it provides an overview that spans both non-DL-based and DL-based methods.
Accordingly, it fills a gap in recent literature, since no other survey: (1) spans multiple
imaging modalities in geoscience-related applications, (2) bridges non-DL and DL-based
computer vision methods, keeping track of research activity in the former paradigm. This is
particularly important considering that in several cases there is a lack of sufficient data for
training deep neural networks, and classical approaches, such as superpixels or decision
trees (DTs), provide a well-tested alternative. A remark should be added with respect
to earthquakes. Due to the lack of distinctive visual information, this geologic event has
received limited attention from the computer vision community [41]. Some works start from
acoustic signals to derive 2D images to be analyzed. We consider such signal processing
applications beyond the scope of this work.

The rest of this article is organized as follows: in Section 2, we provide an overview
of the core computer vision and pattern recognition approaches, which have been preva-
lent in geoscience-related applications in the last three decades. In Section 3, we present
applications of these approaches for land cover mapping, target detection, mining associ-
ations in geoscience imaging data, boundary extraction, change detection and RS image
pre-processing. In Section 4, we discuss overall trends and aspects of the applications
presented, as well as the main challenges raised, whereas in Section 5 we present the main
conclusions of this work.

2. Computer Vision and Pattern Recognition Approaches

This Section presents prominent computer vision and pattern recognition approaches,
which have been extensively applied in geoscience-related problems. Acknowledging
the fact that DL induced a new era in computer vision, we divide the presentation into
pre-DL and DL-based approaches. As is the case with computer vision in general, DL
is prevalent in the state-of-the-art in most geoscience-related applications. However, for
various reasons we maintain that pre-DL approaches are still relevant. These reasons
include the difficulty in obtaining sufficiently large labelled datasets to train deep neural
networks, the computational efficiency and intuitiveness of some pre-DL approaches, as
well as the appearance of hybrid methods that combine pre-DL approaches with deep
neural networks. Certain approaches, such as SVMs or CNNs, are fundamental and widely
adopted, dictating a more detailed presentation in the text to follow.

2.1. Computer Vision and Pattern Recognition prior Deep Learning

In this Subsection, we present pre-DL-based approaches that are still relevant and
continue to appear frequently in the literature.

2.1.1. Descriptors

The standard approach, which was prevalent in computer vision before the DL break-
through, was to employ descriptors: handcrafted, low-level feature vectors, represent-
ing color or textural information. Widely employed descriptors include gray-level co-
occurrence matrices (GLCMs), introduced in the seminal work of Haralick et al. [42], local
binary patterns (LBPs) [43], Gabor filtering [44], wavelet filters [14], morphological pro-
files [15] and scale-invariant feature transform (SIFT) [45]. Typically, descriptors guide
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segmentation methods such as active contours (see Section 2.1.2) and Markov random fields
(MRFs, see Section 2.1.3) or classifiers such as random forests (RFs, see Section 2.1.6) and
support vector machines (SVMs, see Section 2.1.7). 3D vision employs shape descriptors,
such as spin images [17], 3D shape context [46], point feature histograms (PFHs) [18], signa-
ture of histogram of orientations (SHOT) [19] and view-point feature histogram (VFH) [47].
Beyond the simple approach of directly employing such low-level features, global feature
statistics can be encoded by means of mid-level features: bag of visual words (BoVW) [48]
represent a sample with the frequencies of local visual words. Vectors of locally aggregated
descriptors (VLAD) [49] concatenate the differences of local feature vectors and cluster
center vectors, whereas Fisher vectors (FV) [50] use gaussian mixture models (GMMs) to
encode the statistics of descriptors. Such features have been successfully used in various RS
and geoscience-related applications, such as classification of sea-ice, extraction of built-up
areas and land cover mapping (see Section 3) [51].

2.1.2. Active Contours

Active contours (ACs) [24], are physics-inspired image segmentation models, which
employ iteratively evolving contours guided by energy minimization. The energy func-
tional encompasses terms associated with internal and external ‘forces’. The former terms
depend on contour features (e.g., ‘elasticity’), whereas the latter depend on image-derived
features, either edge-based, such as intensity gradients, or region-based, such as texture.
ACs where initially formulated as parametric curves. Later, Osher and Sethian [52] intro-
duced the level-set formulation, which employs an implicit contour representation and
is capable of handling topological contour changes, such as merging or splitting. Several
AC-based RS applications (see Section 3) have appeared in the literature, especially in the
pre-DL era, motivated by the attractive attributes of some AC variants, including noise
robustness, insensitivity to initialization and intuitiveness [53].

2.1.3. Markov Random Fields

Markov random fields (MRFs) are statistical modeling tools, which are capable of inte-
grating spatial context into image segmentation and classification algorithms [54,55]. MRFs
formulate the maximum a posteriori decision rule as an energy minimization problem [56],
which is graph representable [57] and can be efficiently solved by graph-cuts [58,59]. This
efficiency as well as the accuracy in the results obtained are the reasons that MRFs are
regarded as an effective tool for incorporating spatial information in image segmentation
and classification. In particular, this has been proved in the case of HSIs [59,60]. Another
advantage of MRFs in the context of HSI classification, is that MRFs can be combined
with classifiers, such as support vector machines (SMVs, see Section 2.1.7) under Bayesian
frameworks, and cope with the ‘curse of dimensionality’ (or Hughes phenomenon), which
is attributed to this type of images, due to the large number of correlated spectral bands.

2.1.4. Superpixels

Superpixels are perceptually meaningful groups of pixels, formed on the basis of
similarity with respect to some low-level feature, such as colour or texture [61]. The image
oversegmentation resulting from superpixels have often been used in the context of image
segmentation algorithms as a form of initialization. Unlike pixels, superpixels follow
natural image boundaries, whereas they are robust against noise and artifacts and induce
low computational cost [62]. In addition, superpixels provide an intuitive mechanism to
bypass the need for seed-based initialization, which arises in several image segmentation
pipelines [37]. Superpixels are often based into graphs or gradient ascent [63]. Several
methods have been proposed to generate superpixels [37], such as superpixels lattice [64],
turbopixels [65], quick shift [66] and simple linear iterative clustering (SLIC) [63]. The
advantages of these methods enabled numerous geoscience-related superpixel applications,
mostly for land cover mapping, where superpixels have been combined with SVMs, RFs,
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NNs (including CNNs), in order to provide an initial oversegmentation, as described above
(see Section 3).

2.1.5. Clustering

Clustering is the grouping of a set of data samples in such a way that samples of the
same group are close or similar, in some sense, to one another, whereas they are dissimilar
from samples of other groups [67]. It is primarily a form of unsupervised learning, al-
though semi-supervised or supervised variants have emerged. The concept is quite general
and has been applied in various domains, including medical sciences, engineering and
earth sciences.

The process of clustering can be divided into four stages [68]: (1) feature selection
and/or extraction: feature selection aims to select a subset of the input feature set, whereas
feature extraction refers to algorithms that process the original feature set and create new
features [69], (2) clustering algorithm design or selection: this stage is usually combined
with the adoption of a suitable proximity measure, which quantifies the similarity of
the feature vectors, (3) cluster validation: the validity of the clustering results is tested,
usually employing evaluation standards and criteria, which provide a degree of confidence,
(4) results interpretation: a domain expert interprets the clustering results, aiming to
discover meaningful insights.

A number of taxonomies has been proposed for clustering [70–72]. Hierarchical
clustering [73,74] includes two types of clustering, namely agglomerative and divisive,
which operate inversely and iteratively produce clustering results with decreasing or
increasing number of clusters, respectively. Hard and fuzzy clustering algorithms [75],
assign a feature vector to one or more than one clusters. Genetic clustering uses principles
inspired by natural population genetics [76]. Possibilistic clustering [77] aims to measure
the possibility of a feature vector to belong to a cluster. Density-based clustering [78]
operates with the consideration that the valid clusters are regions with high sample density.
Subspace clustering [79] is performed on subspaces of the original feature space. Some
classical clustering algorithms are k-means [80], fuzzy c-means (FCM) [81], Gustafson-
Kessel [82], density-based spatial clustering of applications with noise (DBSCAN) [83],
mean-shift [84], ordering points to identify the clustering structure (OPTICS) [85], balanced
iterative reducing and clustering using hierarchies (BIRCH) [86], and generalized principal
component analysis (GPCA) [87].

Clustering has been employed in a wide range of geoscience applications. For land
cover mapping, it has been employed for segmentation, which can be posed as a clustering
problem at the pixel level. In addition, some clustering-based methods have been proposed
for spectral band selection in HSIs, aiming to aid a subsequent HSI classification stage, as
well as for target detection and change detection (see Section 3).

2.1.6. Decision Trees and Random Forests

Decision trees (DTs) [88] and random forests (RFs) [89] are supervised learning ap-
proaches, suitable for classification and regression. DTs are aimed to investigate all the
potential solutions of the problem at hand. Each DT is realized as a tree-structure consisting
of two types of nodes: decision and leaf nodes. The former determines the path leading
to a certain solution, whereas the latter are the outcomes. RFs consist of a number of
DTs, which operate as an ensemble. Each of these DTs is trained by a different subset of
the training set. In testing, the same input is provided to all trained DTs and each one
independently results in an output. For classification, the RF classifies each input following
the majority of DT outputs (‘votes’). For regression, the RF output is the average of all
DT outputs. Another supervised learning approach, which utilizes DT ensembles, is the
gradient boosted decision tree (GBDT) [90]: each DT is trained sequentially, as opposed to
RFs, where DTs are trained independently and only the DT outputs are combined to derive
the RF output. The GBDT loss function is minimized via the sequential minimization of the
training loss function of each subsequent DT.
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When considering RS applications in geoscience, DTs and RFs have mostly been
employed for land cover mapping, as well as for pattern mining in geoscience-related
imaging data (see Section 3).

2.1.7. Support Vector Machines

SVMs [91] belong to a type of classifiers which are trained by means of a predefined
optimisation criterion. Supposing two, linearly separable classes, the training objective is
to determine a hyperplane in the feature space, which has the maximum distance from the
nearest samples of both classes. This hyperplane lies in the middle of a ‘stripe’ defined by
these nearest samples, which accounts for no preference to either class. This approach aims
to enhance the generalization capability of the resulting classifier.

The mathematical formulation of SVMs is based on the minimization of a cost function,
under a set of constraints, named Karush–Kuhn–Tucker (KKT) conditions. A typical
treatment for this problem is to minimize the corresponding Lagrange function, which is
defined by embedding the KKT conditions in the main cost function. The solution of the
optimisation problem dictates that the direction of the optimum hyperplane is determined
as a linear combination of a subset of feature vectors of training samples, named support
vectors. Support vectors are the nearest feature vectors to the hyperplane determined.

The generalization of this algorithm to the non-linearly separable case is based on
the mapping of the input data space to a Hilbert space with higher dimensionality. The
mathematical formulation in the new space is similar to the one in the linear case and
is based on the inner products of the feature vectors. The inner products are realized as
kernels and the matrix comprising the kernel values computed on each potential pair of
feature vectors is called kernel matrix. Typical kernels utilized within the SVM context
are the polynomials, the radial basis functions (RBFs) and the hyperbolic tangents. Unlike
the linearly separable case, the optimisation result is a non-linear discriminating surface.
Finally, generalizations of the multiclass problem include one-against-all, one-against-one
and error correcting coding [92].

As evident in the text to follow, SVMs have been the pre-DL classifiers of choice for
most types of RS applications: land cover mapping, target detection, pattern mining and
change detection (see Section 3).

2.1.8. Linear and Logistic Regression

Linear regression is a supervised approach to estimate the relationship between two
variables by fitting a linear equation to the observed data. The training of a linear regression
model is essentially parameter estimation of a linear system of equations. These parameters
are estimated by adopting the least squares (LS) criterion, i.e., minimizing the sum of error
squares, which are defined by the squared differences between the actual labels of the
training data and their linear approximation. The solution is derived by the multiplication
of the linear system’s pseudoinverse matrix with the vector containing the actual labels of
the training data.

In the context of the Bayesian framework, the assignment of a feature vector to a class
is based on the maximization of the posterior probabilities P(ωi|x), i = 1, 2, . . . , M, where
ωi is the class i, x is a feature vector and M is the total number of classes. The logarithm of
the ratio of these probabilities is modeled as a linear function of x, by means of the logistic
regression (LR) approach [93]. Model parameters are usually estimated by means of the
maximum likelihood (ML), exploiting the feature vectors of the training set. The derived
log-likelihood function is maximized using an optimisation algorithm, such as gradient
descent or Newton’s algorithm [94]. In the case of M = 2, the LR model is called binary,
whereas in the case of M > 2, it is called multinomial.

Beyond obvious applications for a classifier, such as land cover mapping, target
detection and change detection, LR has often been employed for trend analysis, pre-
diction, susceptibility mapping and pattern mining in geoscience-related imaging data
(see Section 3).
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2.1.9. Artificial Neural Networks

An artificial neural network (ANN) is an interconnected assembly of simple processing
elements, called neurons or perceptrons [95], which have a functionality loosely based on
the animal neuron [96]. Each neuron receives as input the values of the components of a
feature vector, a set of weight values, called synaptic weights or synapses and a constant
value named bias. The neuron alters these values by: (1) deriving the inner product of the
feature vector and the weight vector. The former is augmented with the constant value
1, whereas the latter is augmented with the bias, (2) computing the value of a nonlinear
function, called activation function, on the resulting inner product.

The basic model of a neuron is employed on several complicated ANN architectures.
A basic taxonomy of these architectures [97] separates ANNs as: (1) feed-forward net-
works [98], including single-layer perceptrons, multilayer perceptrons (MLPs) and radial
basis functions (RBFs), (2) RNNs [32] (see also Section 2.2.2), including competitive net-
works, self-organizing maps (SOMs) [99] and Hopfield networks [100]. Each of these
architectures is defined by its neuron interconnections, the type of activation functions,
the number of neuron layers, the existence or not of feedback loops between neuron of
different layers, etc. Each ANN is trained to determine all synaptic weights and bias values
that minimize a predefined cost function of network output.

ANNs have been employed as tools for various pattern recognition tasks, including
clustering, classification, regression and prediction. The development of ANNs, spans
decades of research, from the work of McCulloch and Pitts [101] to DL, presented in the
following sections. In the context of RS, pre-DL NN-based applications were less than the
SVM-based ones, which could be attributed to the comparative advantages of the latter,
mostly related to generalization capability. Still, shallow MLPs can be found in the text to
follow, mostly dated prior to 2012 (AlexNet breakthrough—see Section 3).

2.2. Deep Learning-Based Computer Vision and Pattern Recognition

In this Subsection, we present deep neural network architectures that have been
successfully applied on geoscience-related problems.

2.2.1. Convolutional Neural Networks

CNNs [102] are used for image analysis in a wide range of applications and domains,
such as bioinformatics, robotics and geosciences. One of the main reasons for their success
is their effective image representations, which is attributed to their capability in preserving
spatial information while reducing input dimensionality. This capability is based on two
mathematical operations, convolution and pooling.

2D convolution operates as a feature extractor. A filter represented as a 2D array is
sliding over potentially overlapping, equally sized, regions of the input image. In each
sliding iteration, the dot product between the filter array and the image region array
is registered as an element of the output array, which has smaller dimensions than the
input array. Each element of the filter array corresponds to a different ‘neuron’, which is
accompanied by an added bias term, followed by a nonlinear activation function, such as
rectified linear unit (ReLU) and sigmoid. The resulting array is also called feature map.
The elements of each filter constitute weights to be learned and different weight values
result in different extracted features maps. Each such sequence of operations constitutes a
convolutional layer.

Pooling is essentially an instrument for dimensionality reduction and, similarly to
convolution, is performed on image regions. The two most common pooling operations are
max pooling and average pooling. The former maintains the maximum value of each region,
whereas the latter maintains the average value of each region. Apart from dimensionality
reduction, pooling also enables translational invariance, which is a key attribute for image
understanding. These operations constitute the pooling layer.

In CNNs, there are potentially multiple convolutional layers, followed by nonlinear
activations and pooling layers, providing a sequence of image abstractions. Early layers
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are associated with low-level image information (very often edges or ridges), whereas later
layers tend to represent semantic information, associated with the task at hand. This first
part of a CNN is devoted to feature learning. The second part of a CNN uses the extracted
features to accomplish a specific task, such as classification and segmentation. For this, the
last feature map is ‘flattened’, i.e., is converted to a 1D vector. Thus, spatial proximity is no
longer maintained. This 1D vector is the input to a series of fully connected layers. In the
case of image classification, the fully connected layers end with a 1D vector comprising the
probabilities of each class.

Another CNN-based architecture is YOLO (you only look once) [103]. YOLO is a
single-shot detector, which determines bounding boxes and class probabilities directly from
full images. In Section 3.2, a number of YOLO-based target detection applications in the
context of RS are reviewed.

2.2.2. Recurrent Neural Networks

RNNs [102] have been proposed much earlier than the DL era to handle time-series
data by means of sequences of state and hidden state variables. Each state or hidden state
variable depends on previous states and hidden states. Multiple layers of hidden states
can be used in deeper architectures, aiming to capture underlying dynamics. Despite some
successful applications on various domains, early variants of RNNs often fail to capture
long-term dependencies due to the vanishing gradient effect [104]. A first solution to
cope with this issue is provided by alternatives to stochastic gradient descent [104,105]. A
second solution involves the design of a sophisticated activation function, which consists
of an affine transformation and a simple element-wise nonlinearity obtained by gating
units. The earliest such method employed a recurrent unit, called long short-term memory
(LSTM) [33]. Later, the gated re-current unit (GRU) was proposed [104]. In the last decade,
deep LSTMs or GRUs have been successfully applied in tasks that require capturing long-
term dependencies, such as speech recognition [106], natural language processing [107]
and driving behaviour classification [108]. In a similar fashion, RNNs have been applied
to time-series of RS data (see Section 3). Starting from the observation that the temporal
variability of a sequential signal is similar to the spectral variability of a hyperspectral pixel,
the same idea has been applied to HSIs for image classification.

A DL-based alternative for processing sequential data is provided by Transformers.
Transformers originate from natural language processing but have also attracted the interest
of computer vision community [109]. Transformers are deep neural networks mainly based
on the self-attention mechanism [110]. Unlike RNNs, Transformers process the entire input
at once. Recently, Transformer-based architectures have been used in RS, mainly for target
detection [111]. Related applications are reviewed in Section 3.2.

2.2.3. Deep Generative Models and GANs

Deep generative models (DGMs) aim to generate synthetic data by means of sampling
from probability distribution functions (PDFs), which are learned from available datasets.
A standard approach for DGM learning is to maximize the log-likelihood or a lower
bound of the log-likelihood of the PDF [112]. Generative adversarial networks (GANs) [35]
are prominent members of the DGM family and follow a different learning approach,
based on a minmax game between two competing neural networks: the generator and the
discriminator. The generator starts from a latent variable space, associated with a prior
PDF. This PDF is sampled and projected to the data space. The discriminator aims to
correctly classify synthetic data, as well as real data, whereas the generator aims to generate
synthetic data as realistically as possible and deceive the discriminator. Accordingly, GAN
optimisation ends up as a minmax game between the generator and the discriminator.
Popular GAN variants include [113–115].

One limitation of the original GAN formulation is that it cannot provide any control
mechanism over the output of the generator. Conditional generative adversarial networks
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(cGANs) [116] are capable of conditioning both the generator and the discriminator and
can be used for image-to-image translation.

3. Geoscience-Related Applications of Computer Vision and Pattern Recognition

In this Section, we present the most important types of geoscience-related applications
of computer vision and pattern recognition. By far, the most frequently addressed appli-
cation is land cover mapping, mostly on HSIs. Still, there are other types of applications,
which include target/object detection, pattern mining in geoscience imaging data, shoreline
boundary extraction (or extraction of other types of boundaries) and change detection.
In addition, we dedicate a Subsection to image preprocessing. Although this is not a
geoscience application itself, it involves core computer vision approaches and constitutes a
building block in the context of such applications. Several works are hybrid, combining
different approaches: superpixels with SVMs or CNNs, MRFs with SVMs, descriptors
with deep neural networks, etc. The text in this Section is focused on the core approaches
and the algorithmic elements introduced by each method. Information on datasets is
provided in the discussion Section. For each application type, the works are presented
following the order of the associated core approaches in Section 2. Within each paragraph
associated with a distinct pair ‘type of application/core approach’, the works are pre-
sented mostly following chronological order, with some exceptions dictated by the need for
logical cohesiveness.

3.1. Land Cover Mapping

Most of the approaches presented in Section 2 have been applied for land cover
mapping, i.e., assignment of each pixel of an HSI or other imaging modality to a certain
class. This is essentially an image segmentation problem, which can be addressed by
standard segmentation approaches, such as active contours or superpixels. It can also be
posed as a clustering or classification problem at the pixel level, which can be addressed by
standard clustering or classification approaches, as well as by deep neural networks. Some
works address the classification of RS images as a whole. Still, such works are relevant
to land cover mapping since an image classification-oriented framework can easily be
modified to classify image patches.

Xia et al. [117] employed a multiscale AC for SAR image segmentation. Their method
is based on the idea of integrating the nonlocal interactions between pairs of patches inside
and outside each region. In addition, they introduce a multiscale strategy to speed up
contour convergence and avoid local minima. Li et al. [118] proposed a semi-automated AC-
based method for landslide inventory mapping (LIM) from bitemporal aerial orthophotos.
Their method consists of two principal stages: thresholding based on change detection (see
Section 3.5) and contour evolution defined by means of level-sets [52].

Tarabalka et al. [54] proposed another method for spectral-spatial classification of
HSIs, combining SVMs and MRFs. First, a probabilistic SVM-based pixelwise classifica-
tion of the HSI is applied. Second, spatial contextual information is used for refining the
classification results obtained by means of MRF-based regularization. Yuan et al. [55]
employed multitask joint sparse representation (MJSR) within the context of a stepwise
MRF framework. The MJSR is aimed to reduce the spectral redundancy and retain nec-
essary correlation in the spectral domain, whereas stepwise optimisation is aimed to
further explore spatial correlation and enhance classification accuracy and robustness.
Golipur et al. [59] integrated hierarchical segmentation with an MRF spatial prior in the
context of the Bayesian framework. They extended statistical region merging to a hierar-
chical segmentation approach and extracted a multilevel fuzzy ‘border/no-border’ map,
which is used to derive weighting coefficients. The latter are used to adjust the spatial prior
of an MRF-based multilevel logistic model. Their method is aimed to address a common
issue of MRF-based segmentation, i.e., over-smoothing.

Fang et al. [119] proposed a hybrid method for HSI classification, combining super-
pixels and SVMs. Their method starts with superpixel-based HSI oversegmentation and
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separately employs three kernels utilizing both spectral and spatial information, within and
between superpixels. The three kernels are combined and classified by an SVM. The same
research group proposed another hybrid method for HSI classification, combining super-
pixels with dictionary-based representation [120]. Pixels within each superpixel are jointly
represented by a set of common atoms from a dictionary via joint sparse regularization.
The recovered sparse coefficients are utilized to determine the class label of each superpixel.
Instead of directly using a large number of sampled pixels as dictionary atoms, k-singular
value decomposition (k-SVD) learning is applied to simultaneously train a compact rep-
resentation dictionary, as well as a classifier. Csillik [62] combined SLIC superpixels [63]
with RFs, reducing the amount of time required to segment relatively very high resolution
(VHR) RS images, while maintaining segmentation accuracy that is comparable to the one
obtained by RF-based methods (Figure 4). Shi and Pun [121] used superpixels jointly with
deep neural networks: they applied a 3D superpixel-based sample filling technique to
cope with boundary misclassification, as well as a 3D recurrent convolutional network (3D
RCNN) to further exploit spatial continuity and suppress noise.

1 

 

 

Figure 4. Land cover mapping results obtained by the methods described by Csillik [62] (a) original
WorldView-2 RGB image, (b) pixel-based classification, (c) multiresolution segmentation classifica-
tion, (d–g) SLIC superpixel classification for various superpixel sizes, and (h–k) SLICO superpixel
classification for various superpixel sizes.

Maulik et al. [122] used FCMs for land cover mapping in RS images. Their method is
a variant of the differential evolution algorithm [123], which alters the mutation process,
aiming to solve the optimisation problem more effectively. Qin et al. [124] proposed a
variant of SLIC superpixels [65] for polarimetric SAR (PolSAR) image segmentation. Their
method is aimed to guide the initialization of the cluster centers, associated with the
k-means-derived superpixels in SLIC. Zhang et al. [125] proposed a subspace clustering
method for land cover mapping in HSIs. Their method is based on the consideration
that the pixels of each land cover class belong to a single subspace. In addition, they
incorporated the limitations induced by the principle of the sparsity theory, in order to
reduce data dimensionality. Wang et al. [126] presented a method for crop mapping in RS
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images, using both supervised (RF) and unsupervised (k-means and GMMs) approaches.
Reza et al. [127] proposed a clustering-based segmentation method for the estimation of
rice yield from grain areas, using low altitude RGB aerial images collected by means of a
rotary-wing type UAV. Image foreground and background are separated using graph-cuts.
The extracted RGB image of the foreground is transformed into the Lab color space and
pixels are clustered into regions with k-means, based on color information.

Apart from been directly employed for land cover mapping, some clustering-based
methods have been proposed for spectral band selection in HSIs, which is aimed to aid
the subsequent classification stage. Jia et al. [128] proposed such a spectral band selection
method, named enhanced-fast density-peak-based clustering (E-FDPC). Their method is
an extension of the more general fast density-peak-based clustering (FDPC), presented
in [129] and is adapted on the hyperspectral band selection problem. Another spectral band
selection method has been proposed by Yuan et al. [130], combining both the spectral and
the spatial information of HSIs. Band selection is accomplished with clustering on the input
HSI cube. In the band selection method of Wang et al. [131], the preliminary assumption
is that the clusters of spectral bands consist of contiguous wavelengths. Accordingly,
band selection is equivalent to finding the limits of the successive continuous intervals of
wavelengths. This is achieved by means of a dynamic programming algorithm based on
the maximization of an objective function. Zhai et al. [132] proposed a low-rank subspace
clustering method for band selection in HSIs. Their method transforms the 3D input cube to
a 2D matrix and determines a sparse representation coefficient matrix by the minimization
of an objective function, which involves 3 weighted terms: its nuclear norm, the Frobenius
norm of the noise component of the adopted affine data representation model and an 1D
Laplacian regularizer. The minimization problem is solved using the alternating direction
method of multipliers (ADMMs) [133].

Ham et al. [134] addressed several challenging issues in HSI classification including
the problem of high dimensionality, the presence of multiple, potentially mixed, classes
and the frequently limited quality of ground truth labelling. For these purposes, they
proposed two RF-based classifiers, namely RF binary hierarchical classifier (RF-BHC) and
RF-classification and regression tree (RF-CART). These classifiers are differentiated by the
split criterion of nodes at the corresponding DTs. The best-basis binary hierarchical clas-
sifier (BB-BHC) [135] and random-subspace binary hierarchical classifier (RS-BHC) [136],
are embedded in both classifiers. For the RF-BHC, the goal is to exploit the advantages
of natural class affinity, while improving generalization in HSI classification using lim-
ited training samples. RF-CART is not directly affected by small sample size and po-
tentially provides greater diversity within the forest, but typically produces large trees.
Gislason et al. [137] proposed an RF-based method for land cover mapping, using 4 sources
of data: one spectral (Landsat multispectral scanner, with four data channels) and three
topographic (elevation, slope and aspect data, one channel each). Stumpf et al. [138] pro-
posed a segmentation method for object-oriented mapping of landslides on VHR RS images.
Initially, multi-scale segmentation based on region growing is performed to separate the
various objects in the image. A number of different types of features, i.e., spectral, textural,
geometrical, auxiliary (slope and hillshade) and combinations, is adopted for each object
extracted. An RF classifier is trained to determine the importance of each such feature for
landslides. Due to the rare appearance of the ‘landslide’ class, an iterative process is imple-
mented to balance commission and omission errors of the classifications. Eisavi et al. [139]
proposed an RF-based method for land cover mapping on spectral and thermal data. The
classification results are derived using four combinations of images: spectral, thermal,
combinations of spectral and thermal, and subsets of features extracted from the time-series
of both thermal and spectral.. Peerbhay et al. [140] proposed two RF-based methods for
unsupervised land cover mapping on HSIs. Both methods derive an RF proximity matrix.
Each HSI is divided to subimages and the two proposed classification methods are applied
in each such subimage. In the first method, a reliable measure of outlier score, based on the
RF proximity matrix, is evaluated for each pixel of the subimage. In the second method, the
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eigen-decomposition of the RF proximity matrix is realized and an eigen-weight is assigned
to each pixel of the subimage, according to [141]. In both methods, the resulting pixel
classification is based on the sign of Anselin local Moran’s I statistic [142]. Sun et al. [143]
proposed an ensemble of RF and k-NN classifiers for land cover mapping using spectral and
thermal images. Their experimentation leads to the conclusion that incorporating images
of different thermal bands aid the end classification stage. Kalantar et al. [144] proposed
an RF-based land cover mapping method based on UAV-acquired images. Their method
employs the fuzzy unordered rule induction algorithm for object-based image analysis.
The input images are preprocessed and segmented using a region growing variant. The
segmentation parameters, including scale, shape, and compactness, are determined using
combined feature space optimisation and the plateau objective function. Feature selection
is performed by means of RF optimisation. This method outperforms both SVMs and DTs
in a nine-class dataset acquired by a fixed-wing UAV.

Bazi et al. [145] proposed an SVM-based method for land cover mapping in HSIs, in
which the SVM is parameterized by means of a genetic algorithm. Mantero et al. [146]
addressed the problem of identification of samples drawn from unknown classes in RS
images. The samples of unknown classes are distin-guished from those of known classes,
by means of a maximum a posteriori (MAP)-based classification rule. The estimation of the
prior probabilities and probability distribution functions incorporated in this classification
rule is performed by means of support vector regression. Foody and Mathur [147] proposed
a novel approach to select informative training samples in the context of SVM-based land
cover mapping. They considered that only support vectors affect the actual decision surface.
In the context of the problem of distinguishing between Spring barley and Winter wheat,
this consideration results in incorporating training samples from peat soil. The classification
accuracy obtained is not affected significantly. The same authors [148] extended this
work by using the same test area and an additional (third) crop type: sugar beet, in
order to create alternative sets for SVM training. The same authors [149] proposed an
SVM-based method, which, unlike other relevant methods, such as one-against-one or
one-against-all, is only based on a single trained SVM classifier and the multiclass nature
of the problem is addressed by the objective function adopted. Marconcini et al. [150]
proposed a semi-supervised SVM variant for spectral-spatial classification of HSIs. Their
method comprises three main stages: initialization, iterative semi-supervised learning
and convergence. The final kernel matrix is derived as the weighted sum of two distinct
kernel matrices, one for spectral and one for spatial data. Huang et al. [151] proposed a
method for urban HSI classification using an SVM ensemble, which combines multiple
spectral and spatial features at both pixel and object levels. Initially, principal component
analysis (PCA) [152] is applied to multi/hyperspectral images for spectral feature extraction
and only a small number of the corresponding principal components are maintained.
Additional features extracted are GLCM [42], in order to exploit textural information,
differential morphological profiles, which are defined as the successive differences of
congener morphological profiles [153,154] and urban complexity index [155], which is
based on the 3D Wavelet transform. Finally, three fusion algorithms, named C-voting,
probabilistic fusion (P-fusion) and object-based semantic approach (OBSA), have been
developed to optimally combine the different feature types for the final classification.
Aiming at land cover mapping, Xu et al. [156] proposed a BoVW/SVM-based scheme for
land cover mapping. Pasolli et al. [157] used SVMs in the context of an active learning-
based framework, which combines spatial and spectral information for land cover mapping
in VHR images.

Cheng et al. [158] proposed an LR-based method for feature selection and land
cover mapping on RS Images. They extracted the deviance metric by subtracting the
log-likelihood obtained for each feature and the log-likelihood of the corresponding sat-
urated model. The selected features are used to estimate the parameters of an LR model.
Li et al. [159] proposed another LR-based method for land cover mapping on HSIs. They
adopted the Bayesian framework, employing the MAP criterion to extract the correspond-
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ing a posteriori PDF. The conditional PDFs are estimated by means of the multinomial
regression model. The parameters of the latter are estimated using the MAP criterion once
more. For the conditional PDF of the second MAP criterion, an iterative algorithm, namely
generalized expectation maximization (GEM) [160], is used. The mathematical formulation
of this algorithm is based on the implementation of a block Gauss–Seidel iterative proce-
dure, where the regression parameters of each class are the blocks of the matrices involved.
In parallel, the prior PDF is considered for multilevel logistic MRF, which follows the Gibb’s
distribution, providing spatial information supplied by the images. After substituting these
results to the first MAP criterion, a combinatorial problem arises, which is solved following
a graph-cut-based approach. The same group proposed a similar method for land cover
mapping on HSIs [161]. Compared to [159], the main difference lies in the computation of
the conditional PDFs. Starting from the consideration that the samples of a class lie in the
same subspace, which is linearly independent from the subspaces related to other classes, it
has been proved that the conditional PDFs follow a Gaussian distribution. Following some
additional algebraic manipulations and considerations, it has also been proved that the
problem of approximation of the conditional PDFs can be transformed to a multinomial
logistic regression one.

Bruzzone et al. [162] proposed an MLP-based method for land cover mapping, which
follows a Bayesian framework and uses multi-temporal and multi-source RS images.
Hu et al. [163] investigated the performance of two alternative methods for the estimation of
impervious surfaces: (1) an MLP-based method, and (2) a SOM-based method. Their results
show that the second method is slightly superior for this problem. D’Alimonte et al. [164]
proposed an MLP-based method for phytoplankton determination in optically complex
coastal waters, via estimating the Chla concentration, as well as the absorption of
pigmented matter.

A large body of work addresses land cover mapping applications with the use of
CNN-based architectures. One of the first CNN-based methods for land cover mapping
was proposed by Makantasis et al. [165]. Their method hierarchically constructs high-level
features, employs a CNN to encode spectral and spatial information, and an MLP for the
end classification task. Hu et al. [166] proposed a CNN-based method, which embeds
randomized PCA (R-PCA) in the network. Maggiori et al. [167] proposed a CNN-based
method, adopting a two-stage training process: the first stage uses data from open street
map (OSM), whereas the second stage fine-tunes the network with a few manually labelled
images. Volpi et al. [168] proposed a CNN-based method for dense semantic labelling of
sub-decimeter resolution images. The proposed architecture is called ‘full patch labelling by
learned upsampling’ and consists of downsampling and upsampling blocks. This approach
allows to densely label each pixel at the original resolution. Zhang et al. [169] proposed a
complex-valued CNN (CV-CNN) for PolSAR image classification. Their CNN architecture
is typical, yet every layer is extended to the complex domain, whereas training is performed
with complex backpropagation. Introducing complex values in the network enables the
use of both amplitude and phase information of complex SAR images. Scott et al. [170]
tested CaffeNet [171], GoogleNet [31], and ResNet50 [30] for land cover mapping in high-
resolution RS images. They explored transfer learning with and without fine-tuning, as
well as data augmentation specialized for RS images. Xu et al. [172] proposed a bimodal
land cover mapping method based on a two-branch CNN architecture. The first branch is
a dual-channel CNN extracting spectral-spatial features from an HSI input. The second
branch is a cascade-block CNN extracting features from a LiDAR or a high-resolution
image. Li et al. [173] proposed a strategy for integrating multilayer features of CNNs
for scene classification in RS images. Their strategy requires the synergy of two different
CNN architectures, which both use a pre-trained model as a feature extractor. The first
architecture passes the extracted feature maps into a series of fully connected layers. The
result of each fully connected layer is passed into a dimensionality reduction module, which
combines PCA and spectral regression kernel discriminant analysis (SRKDA) [174]. The
second architecture receives multiscale images generated by means of Gaussian pyramids.
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The feature map of each convolutional layer of the pre-trained model used in the second
architecture is passed into a multiscale variant of the Fisher kernel framework [50]. This
way, each feature map is represented by a Fisher vector. Each Fisher vector is passed
to the dimensionality reduction module, as is the case with the feature maps of the first
architecture. The two reduced feature maps are concatenated and used as input on an SVM.
Cheng et al. [175], combined an autoencoder with a CNN (AECNN) for HSI classification.
They used the autoencoder to enhance the non-linear features of the HSI [176] and reduce
complexity. The enhanced image forms the input to a shallow CNN that consists of two
convolutional layers, each followed by a dropout layer. Chen et al. [177] proposed a
neural architecture search algorithm to enable the automatic design of CNNs for land cover
mapping in HSIs. Cao et al. [178] proposed a CNN-based framework that employs active
learning (AL) for land cover mapping in HSIs. MRFs are used, aiming to smooth class labels.
Wu et al. [179] proposed cross-channel reconstruction network (CCR-Net), a CNN-based
framework for classification of multimodal RS images. CCR-Net is a two-stream CNN, with
both streams composed of the same CNN architecture that operates as a feature extractor.
Each stream is dedicated to a different image modality. CCR-Net fuses the extracted
multimodal features using an encoder-decoder scheme. Their method has been tested on
datasets of LiDAR/SAR pairs of images. Mei et al. [180] proposed a quantization method
for accelerating CNN-based HSI classification. The main idea is to replace the 32-bit single-
precision floating-point numbers that are used for mathematical operations in a typical
CNN, with low-bit integers. This becomes feasible by using two quantization methods:
the first method, named step activation quantification (SAQ), restrains the input to the
convolutional and fully connected layers. The second method, which is adopted from [181],
is used to quantize network weights. Lin et al. [182] proposed an attention-aware pseudo-
3D (AP3D) CNN for HSI classification. Each 3D convolutional layer is decomposed into
three 2D convolutional layers that form a pseudo-3D (P3D) block. Different weights are
assigned to each dimension of the extracted 3D features. In addition, two attention learning
processes are employed for local and global feature learning. Dong et al. [183] proposed
a weighted feature fusion of CNNs and graph attention networks for HSI classification.
Their model consists of two branches: the first branch performs superpixel-level feature
extraction using the graph attention network. SLIC-based superpixels [63] are extracted to
form graph nodes, which are used by an encoder/decoder. The second branch is a CNN
that consists of two pairs of a position attention module (PAM) with a channel attention
module (CAM), as well as of two sets of convolutional layers. The extracted features of
each branch are weighted and fused. Lu et al. [184] proposed an evolving block-based
CNN (EB-CNN) for HSI classification. Their method employs a genetic algorithm (GA) to
optimize the width of each CNN layer, as well as the CNN architecture depth.

Ienco et al. [185] evaluated the ability of an LSTM model to perform land cover map-
ping considering multitemporal spatial data derived from a time-series of satellite images.
They carried out experiments on two different data sets considering both pixel-based and
object-based classifications. Their results show that LSTMs are competitive compared
with state-of-the-art classifiers and may outperform classical approaches in the presence
of under-represented and/or highly mixed classes. Their results also show that the al-
ternative feature representation generated by the LSTM can enhance the performance of
standard classifiers. Mou et al. [186] proposed an RNN-based method for HSI classification,
which analyzes hyperspectral pixels as sequential data and then determines information
categories via network reasoning. Maggiori et al. [187] proposed an RNN-based method,
which learns an iterative process in order to refine the results obtained by CNNs for land
cover mapping on satellite images. Rußwurm et al. [188] proposed an RNN-based method
for land cover mapping of satellite images. They adapted an encoder structure with con-
volutional recurrent layers in order to approximate a phenological model for vegetation
classes based on a temporal sequence of Sentinel 2 images. They visualized internal ac-
tivations over a sequence of cloudy and non-cloudy images and found several recurrent
cells that reduce the input activity for cloudy observations. This indicated that their net-
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work has learned cloud-filtering schemes solely from input data, alleviating the need for
tedious cloud-filtering as a preprocessing step for many earth observation approaches.
Ndikumana et al. [189] and Ho Tong Minh et al. [190] demonstrated that two RNN-based
classifiers outperform three classical methods: k-NN, RF and SVM with respect to classifica-
tion accuracy, when tested for agricultural land cover on Sentinel 1 images.
Hang et al. [191] proposed a cascaded RNN-based method for HSI classification, using
GRUs to explore the redundant and complementary information of HSIs. Their method
mainly consists of two RNN layers. The first layer is used to eliminate redundant in-
formation between adjacent spectral bands, whereas the second one aims to learn the
complementary information from nonadjacent spectral bands. In addition, taking into ac-
count the rich spatial information of HSIs, they extended their method to its spectral–spatial
counterpart by incorporating extra convolutional layers.

3.2. Target Detection

Object detection is important for a wide range of RS and geoscience-related applica-
tions, such as intelligent monitoring, precision agriculture and geographic information
system (GIS) updating. This motivated intensive research for the development of object
detection methods in various imaging modalities, which has been reinvigorated with the
breakthrough of CNN-based architectures.

Lee et al. [192] proposed a clustering-based method for tree detection and tree pa-
rameter estimation in pine managed forests, using airborne LiDAR data. Tree tops are
determined as seed points via an algorithm that compares the heights of each point, and
a region growing method is applied to determine tree boundaries. This region growing
method is a variation of the watershed segmentation algorithm [193] adapted to the raw
LiDAR data. An agglomerative hierarchical clustering algorithm is applied in order to cope
with oversegmentation.

Kim et al. [194] proposed an SVM-based method for human detection and activity
classification on Doppler radar. Their method is tested separately for human detection
and human activity classification. Kim et al. [195] proposed an LR-based method for
sinkhole detection and characterization on LIDAR-derived digital elevation model (DEM)
data. Initially, they employed a data preparation stage using GIS software. Exploiting
this topographic representation, a set of 16 features is extracted. An LR model is used to
determine the existence of sinkholes, prior to the generation of a probabilistic sinkhole
susceptibility map (Figure 5).

Martorella et al. [196] proposed an MLP-based method for automatic target recognition
on fully polarimetric inverse synthetic aperture radar (Pol-ISAR) images. As a first stage,
they apply a technique named Pol-CLEAN to extract the brightest scattering centers. As a
second stage, each extracted scattering center is decomposed with the use of Cameron’s
decomposition [197]. As a third stage, the decomposed scattering centers are 3D feature
vectors, which become the input of the MLP. Tatavat et al. [198] proposed an MLP-based
method for cloud detection on satellite images in various weather conditions. Their method
uses the temperature and the reflectance of the region of interest and employs an MLP with
one hidden layer and the hyperbolic tangent activation function.
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Chen et al. [199] proposed a hybrid deep neural network for vehicle detection in
satellite images. The last convolutional and max pooling layers are divided into multiple
blocks, where each block has a different filter size or max pooling field size, resulting in
multiscale features. Cheng et al. [200] proposed a rotation invariant CNN-based method for
detecting objects in VHR images. They inserted a rotation invariant layer into AlexNet [27]
and optimized a rotation-invariant objective function. Ding et al. [201] proposed a CNN-
based method for target recognition in SAR images, employing data augmentation by
means of translation, speckle noise and pose synthesis. Long et al. [202] proposed a CNN-
based framework for object localization in RS images. Their framework consists of three
stages: region proposal, feature extraction/classification, and object localization. In the first
stage a selective search algorithm [203] is used to propose possible, category-independent
ROIs. The second stage extracts image patches from the proposed ROIs. The patches
extracted are used as inputs to AlexNet [27] and GoogleNet [31]. Both these models are
used and combined. The second stage of the framework is aimed to remove redundant
bounding boxes and combines non-maxima suppression and a method for bounding box
optimisation. Cheng et al. [204] proposed a cascaded end-to-end CNN for road detection
and centerline extraction on VHR RS images. Their method employs two cascaded NNs:
the road detection network and the centerline extraction network. The road detection
network is an autoencoder that performs semantic segmentation between two classes:
road and background. The centerline extraction network is also an autoencoder, which
takes as input the extracted feature maps of the road detection network and produces an
image with the extracted centerline, which is refined by means of a thinning algorithm.
Shao et al. [205] proposed a CNN-based method using multiscale features (MF-CNN) for
cloud detection. Their method can detect and distinguish pixels with cloud, thick cloud or
no cloud. Hsieh et al. [206] proposed an object detection and counting method based on
UAV-acquired data. Their method encompasses layout proposal network (LPN), which
is similar to region proposal networks (RPNs) [207] and uses spatial layout information.
Kellenberger et al. [208] proposed a CNN-based method for detecting mammals in UAV-
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acquired images. Their work addresses class imbalance, intra-class heterogeneity, inter-class
homogeneity and background heterogeneity. Detection performance is further enhanced
by means of curriculum learning [209] and hard negative mining [210]. Zhang et al. [211]
developed a UAV-based object tracking and 3D localization system. Their system uses
TrackletNetTracker (TNT) [212], which is a multi-object tracking method. TNT uses both
spatial and temporal information and allows for the realization of the continuous trajectory
of each detected object across frames. The UAV camera is self-calibrated using a monocular
semi-direct visual odometry algorithm. The 3D localization of the detected objects is
enabled by computed camera parameters, determined by the multi-view stereo (MVS) [213]
method. Zhang et al. [214] proposed a CNN-based anomaly detection framework for
the identification of multivariate geochemical anomalies. Their method adopts pixel-pair
feature (PPF) [215] to augment the available dataset by recombining pixel pairs of each
labelled sample.

Since 2016, several YOLO-based (see Section 2) methods have been proposed for target
detection in geoscience-related applications. Xu and Wu [216] proposed multi-receptive
fields fusion YOLO (MRFF-YOLO), based on the YOLO-v3 variant [217]. Their architecture
encompasses four detection layers, instead of three in the classical YOLO-v3, whereas
the problem of gradient vanishing is addressed by replacing convolutional layers with
dense blocks. The same authors later proposed feature-enhanced YOLO (FE-YOLO) [218],
a YOLO-v3-based single-stage detector, aiming to: (1) improve detection accuracy for
small remote sensing targets, (2) detect densely distributed targets, and (3) realize real-time
performance. Qing et al. [219] proposed RepVGG-YOLO, aiming to address some inherent
difficulties for target detection in RS, such as the complex background, the large differences
in target sizes and the uneven distribution of rotating objects. Their method employs:
(1) RepVGG [220] as the backbone for feature extraction, (2) an improved feature pyramid
network (FPN) and a path aggregation network (PANet) in order to reprocess feature
output, and (3) circular smooth label (CSL) in order to enhance detection accuracy for
objects in various angles. Wang et al. [221] proposed a variant of YOLO-v3 to facilitate the
inspection of the opium poppy illegal cultivation through UAVs. Their method employs
the ResNext module [222] and group convolutions to reduce model parameters, as well as
atrous spatial pyramid pooling (ASPP) [223] to enhance local feature extraction, as well
as to aid the use of contextual information. Jamali et al. [224] introduced a YOLO-v4 [225]
variant for target detection in RS images. They use non-maximum suppression (NMS)
thresholds in order to improve the detection accuracy of overlapping horizontal bounding
boxes, whereas they address the anchor frame allocation problem in YOLO-v4 with two
allocation schemes.

Ke et al. [226] proposed the global context boundary-aware network (GCBANet),
aiming to improve SAR ship instance segmentation. Their network incorporates two blocks:
a global context information modeling block (GCIM-Block) and a boundary-aware box
prediction block (BABP-Block). GCIM-Block is used to capture spatial global long-range
dependencies of ship contextual surroundings, whereas BABP-Block is used to estimate ship
boundaries, improving the cross-scale box prediction. Li et al. [227] combined a CNN and
a multiple-layer Transformer (see Section 2). The Transformer is used to aggregate global
spatial features on multiple scales and model the interactions between pairwise instances.
The pre-trained CNN is used as the backbone for RS image feature extraction, whereas the
attention mechanism is employed for feature reweighting, in order to reduce the differences
between source and target datasets. Xiao et al. [228] combined a shifted window (SWIN)
Transformer-based encoding booster with a U-Net for building detection in RS images.
Their architecture is called SWIN Transformer-based encoding booster U-shaped network
(STEB-UNet). An important characteristic of STEB-UNet is that the features obtained at
different levels by the encoding booster are fused with U-Net features to compensate for
the lack of large-scale semantic extraction in U-Net. Chen et al. [229] proposed a method
combining SWIN Transformer and MAP-Net [230] for building extraction from satellite
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images. Their method uses SWIN Transformer to extract multiscale features and MAP-Net
as a head network to fuse and refine features.

3.3. Pattern Mining in Geoscience Imaging Data

Mining spatiotemporal patterns in multiple scales, to understand physical, chemical
and biological processes, which affect solid Earth, oceans and atmosphere, provide an
obvious opportunity for pattern recognition applications. The availability of large amounts
of data from various imaging modalities, along with other types of data (physical/chemical
measurements, demographic data etc), create application opportunities, more so if we
consider that the multidimensional nature of such patterns often complicates discovery
that is guided by mere observation.

Joseph et al. [231] derived subpixel vegetation–impervious surface–soil (VIS) fractions
from the Landsat ETM+ multispectral bands, and then used the geographically weighted
regression (GWR) model to investigate the variation of population density with VIS vari-
ables and their derivatives. Unlike the ordinary least square (OLS) model, their model
accounts for spatial non-stationarity. The study reveals that three VIS variables are sig-
nificant in explaining population density: the mean values of houses fraction image and
vegetation fraction image, as well as the standard deviation of vegetation fraction image.
Hengl et al. [232] proposed a method for predicting soil properties utilizing information
on agricultural management. For this purpose, they use two prediction models: a linear
regression-kriging model [233,234] and an RF. Stevens et al. [235] proposed an RF-based
semi-automated dasymetric method for gridded population density prediction, which
coevaluates country-specific census data, land cover data and geospatial data. A feature
importance procedure and the final prediction of a country-wide, pixel-level map of log
population densities are implemented via an RF predictor. Georganos et al. [236] developed
an expanded implementation of RFs, namely geographical RFs (GRFs), to be used as a
predictive and exploratory tool to model populations as a function of RS data. The major
goal of GRFs is to exploit the spatial information supplied by RS data, consisting of several
local RFs. These local RFs, which constitute local predictors, operate in an adaptively
determined neighborhood of the training data points. In parallel, a classical RF is trained
using all the available training data, operating as global predictor. The final prediction for
a data point is based on the fusion of the global prediction and the corresponding results of
its nearest local predictor. The population modeling as a function of RS data is achieved by
using the land cover mapping imagery, as well as demographic data associated with the
actual population distribution. The results show that the inclusion of spatial information
can enhance the prediction accuracy provided by a classical RF.

Sun et al. [237] employed an SVM variant, named v-SVM, which is used as a regressor
to estimate Chlorophyll a (Chla) concentration in inland turbid lake waters. The regression
process is based on measurements of lake water quality parameters obtained within a
period of approximately 2 weeks.

Kokaly et al. [238] proposed a method for determining leaf biochemistry by means of
spectroscopic measurements. Two spectral analysis techniques are adopted: continuum-
removal [239] and band-depth normalization. Continuum removal is applied to dry leaf
spectra in order to broad their absorption features. The band depths from the continuum-
removed spectra are normalized, in order to minimize the sensitivity to factors affecting RS
measurements such as atmospheric absorptions. The normalized band depths are used by
a stepwise LR model in order to identify chemistry-correlated wavelengths. Lee et al. [240]
proposed an LR-based method for landslide susceptibility mapping. Their method uses 8
landslide occurrence factors: topographic slope, topographic aspect, topographic curvature,
distance from drainage, lithology, distance from lineament, land use, and vegetation index.
These factors are used in two different ways: (1) a different regression model is created
for each factor, (2) one regression model encompasses all factors. Dardel et al. [241]
proposed an LR-based method for trend analysis in normalized difference vegetation index
(NDVI). Their analysis addresses the desertification of Sahel and is performed on data



Remote Sens. 2022, 14, 6017 21 of 45

of up to 30 years. Du et al. [242] employed LR to investigate the relationship between
the housing vacancy rate (HVR) and the census tract level. They used data acquired by
the Jilin1-03 satellite, which consist of high spatial resolution night-time light images, as
well as digital orthoimages and parcel data. From each modality, a factor is determined,
including human-activities, landuse structure, and physical environment. These factors
are used as explanatory variables in two stepwise multivariate LR models (Figure 6).
Tien Bui et al. [243] combined the evidential belief function (EBF) and LR for predicting flood
susceptibility. Three ensemble variants were investigated, taking into account different
subsets of 10 conditioning factors: altitude, slope angle, plan curvature, topographic
wetness index (TWI), stream power index (SPI), distance from river, rainfall, geology, land
use and NDVI, along with different weighting coefficients.
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D’Alimonte et al. [164] proposed an MLP-based method for phytoplankton determina-
tion in optically complex coastal waters, via estimating the Chla concentration as well as the
absorption of pigmented matter. Corsini et al. [244] proposed an MLP-based method for the
estimation of optically active parameters (OAP) in case II waters on RS data. Specifically,
the OAPs which are estimated are: (1) the chlorophyll and the other pigments contained
in phytoplankton, (2) the non-chlorophyllous particles and (3) the yellow substance (or
dissolved organic matter, DOM). Ozturk et al. [245], employed MLPs and Markov chain
(MC) models for urban growth simulation using satellite images.

Al Najjar et al. [246] explored the ability of GANs to improve the performance of other
machine learning models in the context of landslide susceptibility mapping applications.
At first, 156 slide locations along with 15 conditioning factors were provided as input to
five different machine learning models, which included DTs, RFs and SVMs. Synthetic data
were generated with the use of a GAN, and combined with the original data. The newly
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formed dataset was used by the models, resulting in improved performance for all models,
with the exception of RF.

3.4. Boundary Extraction

Boundary extraction in RS and geoscience-related images is naturally associated with
image segmentation and most frequently addresses coastline extraction. Standard image
segmentation approaches, such as ACs or clustering-based segmentation, along with more
recent CNN-based methods, have been applied in this direction.

Sukcharoenpong et al. [247] proposed a method for coastline extraction, which fuses
HSIs with LiDAR-generated DEMs. Their method reaches an initial solution based on
object spectra and a knowledge-based segmentation scheme. An AC refines this initial
solution at subpixel level. Liu et al. [248] combined edge-based and region-based ACs for
coastline detection in PolSAR images. Modava et al. [249] proposed a multi-stage pipeline
for coastline extraction in high resolution SAR images. In the first stage, they perform
fuzzy clustering with spatial constraints. This is followed by the application of Otsu’s
binarization algorithm [250] and morphological filtering. In the final stage, they refine
the segmentation results by means of a level-set AC. Sun et al. [251] combined ACs and
CNNs for building boundary extraction (Figure 7). They investigated two variants: the first
integrates ACs into the CNN construction process, whereas the second builds footprint
detection with a CNN and uses AC for post processing.

3.5. Change Detection

The increasing amount of SAR image data for Earth observation triggered research for
the computational analysis of time-series of images acquired on the same geographical area.
This can be carried out either with supervised classification (e.g., for producing thematic
maps or maps of land cover transitions) or with unsupervised change detection (e.g., for
generating change detection maps associated with damages caused by natural disasters or
with land cover modifications) [1–5,252].

Bazi et al. [253] formulated unsupervised change-detection in RS images as a seg-
mentation problem. In this context, the discrimination between changed and unchanged
regions in the difference image is achieved by defining an energy functional minimized by
means of a level-set. The difference image is analysed at multiple resolutions to enhance
robustness against noise and initialization.

Gong et al. [254] proposed an MRF-based method for change detection in SAR images.
Their method classifies changed and unchanged regions by means of FCM clustering using
an MRF energy functional. The latter is defined to encompass an extra term modifying pixel
membership. This term is contingent upon different situations and is ultimately established
utilizing the least-square method.
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Zheng et al. [255] applied probabilistic patch-based (PPB) [256] filtering to suppress
speckle noise. The difference image of the given time-series, which consists of two images,
is extracted using absolute difference, as well as absolute logarithmic difference. The first
resulting image is mean-filtered, whereas the second one is median-filtered. The weighted
sum of the two filtered images forms a final image, in which the k-means clustering is
applied to separate pixels in two clusters: ‘changed’ and ‘not changed’. Another clustering-
based method for unsupervised change detection in multitemporal SAR images has been
proposed by Ghosh et al. [257]. A pseudotraining set is created using CVA, in a similar
fashion to the previously mentioned SVM-based method of Bovolo et al. [252]. Aiming to
exploit the spatio-contextual information in the difference image, the gray-level as well
as the mean gray-level of the 8 intermediate neighbors of each pixel, are used as features.
Two fuzzy clustering algorithms, FCM and Gustafson-Kessel, are used to separate pixels
in two clusters: ‘changed’ and ‘not changed’. Two stochastic optimisation techniques, i.e.,
annealing and genetic algorithms, are employed to guide the convergence of the utilized
clustering algorithms. Leichtle et al. [258] proposed a clustering-based change detection
method for buildings in VHR images. They utilized both spectral and textural domains, as
well as RGB and near-infrared (NIR) channels. The final, PCA-derived feature vectors are
clustered by simple k-means.

Bovolo et al. [252] addressed the problem of unsupervised change detection of ge-
ographical areas, using time-series of multispectral RS images of the same area. Their
method comprises three main stages. A pseudotraining set is created in the first stage
by means of change vector analysis (CVA) [259]. Given two images illustrating the same
area at different times, CVA subtracts the spectral feature vectors of these images, and
marks pixels related to the resulting vectors as ‘changed’ or ‘not changed’, comparing
vector magnitudes with a threshold. The latter can be determined by the Bayes decision
rule [252], considering the statistical parameters of vector magnitude distribution. Only
those pixels associated with vector magnitudes far from this threshold are selected for
the pseudotraining set, so as to mitigate ambiguity. In the second stage, a binary SVM is
trained in a semi-supervised fashion, using the pseudotraining set. The third stage aims to
determine the optimal combination of SVM parameters, considering two criteria, which
are based on: (1) the data of the pseudotraining set, and (2) a similarity measure between
all potential solutions.

Khurshid et al. [260] proposed a multinomial LR-based method for segmentation and
change detection, aiming at assessing damages on multi-temporal images, available in
4 different spectral bands. The segmentation algorithm aims to extract the built-up ar-
eas using a series of transformations and a binomial LR model. For damage assessment,
6 change detection techniques are applied 4 times, one for each of the 4 pairs of correspond-
ing spectral bands of the transformed images, before and after a damage. The extracted
feature vectors are used to classify the damages in three classes: high, moderate and low,
by means of a multinomial LR model. Tan et al. [261] introduced an LR-based ensemble
of classifiers for change detection in high-resolution RS images. Spectral, texture, and
morphological features are used to create difference images The ensemble combines the
extreme learning machine (ELM), multinomial logistic regression (MLR), and k-NN classi-
fiers. Molin et al. [262] proposed an LR-based method for change detection in SAR images.
Initially, they subtract a reference image from a monitored one and normalize the resulting
image. They classified pixels as ‘changed’ or ‘not changed’ by means of an LR model.

Pacifici et al. [263] proposed a method for change detection in VHR images, using pulse-
coupled neural networks (PCNNs). Any change is detected by quantifying the similarity
between two PCNN signals, associated with two image instances. Salmon et al. [264]
proposed an MLP-based method for the detection of new human settlements. Their method
uses a sliding window operating as a feature extractor over hyper-temporal, multi-spectral
images. The extracted features are multi-spectral time-series. Roy et al. [265] proposed
an MLP-based change detection method. For this purpose, the difference image (DI) is
produced using CVA and an ensemble of MLPs is used for the classification.
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Zhao et al. [266] developed SiamCRNN, a deep siamese convolutional multilayer RNN
for change detection in multisource VHR images. Their model consists of a deep siamese
CNN (DSCNN), a stack of multiple LSTM units [33], and a series of fully connected layers.
Lyu et al. [267] proposed an LSTM variant to acquire and record the change information of
long-term sequence RS data (Figure 8). In particular, a core memory cell is utilized to learn
the change rule from information on binary changes or multiclass changes. Three gates are
utilized to control the input, output and update of the LSTM model for optimisation. In
addition, the learned rule can be applied to detect changes and transfer the change rule
from one learned image to another. Mou et al. [268] developed an end-to-end trainable
recurrent CNN (ReCNN) for change detection in multispectral imagery. Their architecture
receives two images and each image is passed through three main components. The first
component is a convolutional sub-network that extracts spectral-spatial features. The
second component is a recurrent sub-network that receives the feature maps extracted and
calculates hidden states. The feature maps along with the calculated hidden states of the
first image are the input to a second recurrent sub-network, which analyses the temporal
dependence of the two images. The last component, consists of fully connected layers that
loop through the sequence of the second recurrent sub-network.
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expansion is shown in green, the changed soil region is shown in orange and the changed water areas
are shown in blue.

3.6. Image Preprocessing

Image preprocessing, including denoising and enhancement, is a part of most com-
puter vision pipelines. In this Subsection, we present some relatively recent works, dedi-
cated to the preprocessing of geoscience-related images. It is no surprise that CNNs and
GANs are also prevalent in this area.
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Yuan et al. [269] proposed a spectral-spatial deep residual CNN (HSID-CNN) for
HSI denoising. Their architecture consists of a 2D CNN and a 3D CNN, which extract
spatial and joint spectral-spatial features, respectively. Both types of features extracted are
multiscale. A residual learning strategy is introduced to the network to ensure training
stability, as well as reduce degradation [30]. Multilevel feature representation is enabled by
skip connections. Li et al. [270] proposed a random-drop data augmentation method in
order to aid mineral prospectivity mapping. Their method generates Gaussian-distributed
random loci from the entire study area and generates a balanced dataset adopting an
approach combining [271,272] in order to train a custom 12-layer CNN. Molini et al. [273]
proposed Speckle2Void, a self-supervised blind-spot Bayesian framework for SAR image
despeckling. Their framework adopts and improves the blind-spot CNN architecture of
Laine et al. [274]. It consists of four branches, with each one processing four rotated input
image versions and calculating a receptive field in a specific direction. Each receptive field
is shifted, rotated back to its original orientation and concatenated with the other receptive
fields. The concatenated receptive fields are connected to a series of 2D convolutions
to generate inverse gamma parameters for each pixel. Unlike [274], the weights of the
branches are shared in pairs, instead of being shared for all four branches. There are two
variants of Speckle2Void: in the first variant, each branch follows the pattern of a typical
CNN architecture, whereas in the second variant, non-local layers are added and operate
as a dynamic weighted function of the feature vectors.

Liu et al. [275] proposed a pan-sharpening GAN (PSGAN) for RS images. The term
pan-sharpening refers to mapping a high-resolution (HR) panchromatic (PAN) image and
a low-resolution (LR) multispectral image to a HR multispectral image. For this purpose,
they adopt two alternative approaches: the first approach is to feed each image into a
different subnetwork, which extracts hierarchical features. The features extracted are used
as input to an autoencoder-based network. The latter generates the final HR multispectral
image. The second approach provides the two images in stacked form to the generator.
The discriminator is common for both approaches and predicts the probability of each
input being an unprocessed HR multispectral image or a pan-sharpened multispectral
image. Pan et al. [276] proposed a GAN-based method for cloud removal in satellite images,
named spatial attention GAN (SpA-GAN). They introduced a spatial attention mechanism,
which enables the network to focus more on semantically substantial regions, as the clouds.
The generator consists of four spatial attentive blocks, which aid cloud recognition, and
two residual blocks, which aid image reconstruction without the clouds.

4. Discussion

In this Section, we discuss overall trends and aspects of the applications presented, as
well as the main challenges raised. Table 1 summarizes the articles presented in Section 3.
It can be noted that the DL paradigm has recently been prevalent in computer vision
applications in geoscience. However, the successful results obtained by DL-based methods
come with the price of several issues accompanying DL. The most important issue is
the availability of large datasets, more so in the case of supervised learning methods,
which require labelled data. Another issue of DL-based methods comes at the price of
computational cost, especially in the case of training. For CNNs in particular, which is
the most frequently employed DL approach, the bottleneck in terms of processing time
comes from convolution operations. The availability of dedicated hardware, such as
GPUs, is critical. Cloud-based platforms such as Google’s Dynamic World are important
in this sense. Pre-DL methods, such as superpixels, often provide an alternative of low
computational cost. Still, there are differences between pre-DL methods: SVMs demonstrate
better generalization than shallow MLPs. Active contours and superpixels usually provide
an unsupervised framework which works well in certain segmentation settings. As one
could expect, there are several hybrid methods, combining SVMs with MRFs, CNNs with
superpixels, CNNs with RNNs, etc.
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Table 1. Summary of computer vision applications presented in Section 3.

Application Article Core Methodology Data Type Supervision Type DL-Based

Land Cover
Mapping

[117,118] AC MSI: [118]
SAR: [117] Unsupervised No

[57,61] MRF HSI: [55,59] Supervised No

[54,62,119,121,
124,126,173,

183,187]

SVM/MRF: [54]
SVM/Superpixels: [119]

RF/Superpixels: [62]
CNN/Superpixels: [183]

CNN/RNN/Superpixels: [121]
Clustering/Superpixels: [124]

RF/Clustering: [126]
SVM/CNN: [173]
CNN/RNN: [187]

MSI: [62,126,173,187]
HSI: [54,119,121,183]

SAR: [124]

Supervised: [54,62,
119,121,173,183,187]

Unsupervised: [124]

Supervised &
Unsupervised: [126]

No: [54,62,
119,124,126]

Yes: [122,174,
184,188]

[120] Superpixels HIS Supervised No

[122,125,127,
128,130–132] Clustering MSI: [122,127]

HSI: [125,128,130–132] Unsupervised No

[134,137–
140,143,144] RF

MSI: [137–139,143,144]
HSI: [134,140]

Other: [137–139,143]
Supervised No

[145–151,156,157] SVM
MSI: [146,148,149,156,157]

HSI: [145,147,150,151]
Other: [151]

Semisupervised:
[150]

Supervised:
[145–151,156,157]

No

[158,159,161] LR MSI: [158]
HSI: [158,159,161] Supervised No

[162–164] MLP
MSI: [162,163]

SAR: [162]
Other: [164]

Supervised No

[165–
170,172,175,
177–182,184]

CNN

MSI: [168,170,172,181]
HSI:

[165,166,172,175,177–180,182,184]
SAR: [169,179]

LiDAR: [172,179]
Other: [167]

Supervised Yes

[185,186,188–191] RNN
MSI: [185,188]
HSI: [186,191]
SAR: [189,190]

Supervised Yes

Target
Detection

[192] Clustering LiDAR Supervised No

[194] SVM Other Supervised No

[195] LR LiDAR, Other Supervised No

[196,198] MLP SAR: [196]
Other: [198] Supervised No

[199–202,204–
206,208,211,
214,216,218,
219,221,224,

226–229]

CNN

MSI:
[199,200,202,204–206,208,211,214,

216,218,219,221,224,227–229]
SAR: [201,226]

Supervised Yes

Pattern
Mining

[232,235,236] RF Other Supervised No

[237] SVM Other Supervised No

[238,240–243] LR MSI: [242]
Other: [238,240,241,243] Supervised No

[164,244,245] MLP MSI: [245]
Other: [164,244,245] Supervised No

[246] GAN Other Supervised Yes
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Table 1. Cont.

Application Article Core Methodology Data Type Supervision Type DL-Based

Boundary
Extraction

[247,248] AC
HSI: [247]
SAR: [248]

LiDAR: [247]

Supervised:
[247]

Unsupervised: [248]
No

[249,251,254,
266,268]

Multiple:
Clustering/AC: [249]

CNN/AC: [251]
Clustering/MRF: [254]
CNN/RNN: [266,268]

MSI: [251,266,268]
SAR: [249,254]
LiDAR: [251]

Supervised:
[251]

Unsupervised: [249]

No: [249,254]
Yes:

[251,266,268]

Change
Detection

[253] AC MSI Unsupervised No

[255,257,258] Clustering MSI: [263]
SAR: [255,257] Unsupervised No

[252] SVM MSI Semisupervised No

[260–262] LR MSI: [260,261]
SAR: [262] Supervised No

[263–265] MLP MSI Supervised No

[267] RNN MSI Supervised Yes

Image Pre-
processing

[269,270,273] CNN
HSI: [269]
SAR: [273]

Other: [270]
Supervised Yes

[275,276] GAN MSI: [275,276] Supervised Yes

Apart from issues related with the methodologies applied, there are issues with respect
to the quality of geoscience data, including noise, missing parts and the lack of precise
boundaries defining geoscience-related objects and processes. An interesting attribute
of several geoscience phenomena, which rather than being an issue could aid pattern
recognition applications, is the existence of long-range spatial and temporal dependencies.

4.1. Geoscience-Related Imaging Data Availability

Beyond supervised learning, the availability of imaging data is important for properly
evaluating each method. Figure 9 illustrates modality representation in the works presented
in this survey. It can be observed that multispectral images are the most frequently used,
whereas HSIs come second. With respect to the datasets that are regularly employed
there is no uniformly adopted benchmarking set. Different works perform benchmarking
experiments on different subsets of data and direct comparisons are frequently not feasible.
This confusion is extended to dataset naming conventions. Landsat [2] datasets are named
by the satellite. The same holds for SPOT [277], ERS [278], RADARSAT [279], IRS [280],
WorldView [281], QuickBird [282], Pleiades [283]. Still, the Ottawa and Yellow River
datasets comprise RADARSAT images [254]. Other datasets are named by the sensor used,
as is the case with AVIRIS [284], ROSIS [125], HYDICE [151] and AISA Eagle [140]. In a
similar fashion to RADARSAT-derived datasets, the so-called Indian Pines and Salinas
datasets [125] are part of the AVIRIS dataset.

Standardized datasets have appeared in order to promote ways for uniformly adopted
benchmarking, facilitate comparisons of competing methods, as well as reproducibility.
Recently, benchmark datasets, such as SAT-6 [285], DeepGlobe-2018 [286], EuroSAT [287],
BigEarthNet [288], and SEN12MS [289], have been proposed for land cover mapping to
meet the demand of DL methods for large sample data [290]. In parallel, several agencies
produce free land cover products that are mapped and regularly updated to meet the
global demand for land cover data applications. Examples of these products include ESA
global 10 m land cover mapping product [291], Esri global 10 m land cover mapping
product [292], Tsinghua University FROM-GLC10 land cover product [293], and Aerospace
Information Research Institute GlobeLand30 product [294]. There are several benchmarking
platforms [11], including the data and algorithm standard evaluation website [295] of the
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IEEE Geoscience and Remote Sensing Society (IEEE GRSS), the IEEE GRSS annual data
fusion contest [296], and the target detection blind test website of the Rochester Institute of
Technology [297].
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Despite these efforts, in several geoscience-related applications, there is an inherent
difficulty in obtaining large amounts of data. For satellite observations, the number of
samples is often limited, in both spatial and temporal dimensions. In some cases, there
is also a difficulty in obtaining ground truth labels, often associated with the cost of
high-quality measurements of geoscience variables. This cost is high for the analysis of
chemical and physical material properties in HSIs, as well as when low-flying airplanes
or field-based surveys are involved. For very complex systems, in which the exact state
cannot be accurately inferred, ground truth is completely out of reach. In other cases, there
are processes and events, such as cyclones, flash floods and heat waves, which although
occur rarely, they significantly affect Earth’s ecosystem [1].

A promising direction in DL research that addresses data and label scarcity is the
generation of synthetic images by means of GANs. Abady et al. [298] proposed two
GAN-based methods for image generation. The first method, named modified progressive
GAN (proGAN) is used for multispectral satellite image generation. The data used for this
task are multispectral Sentinel-2 image patches from SEN12MS [289]. The dataset contains
images from all four seasons with different meteorological conditions. The spectrum
analysis performed confirms that the generated data manage to retain the relationship
between the bands for every terrain. Although the obtained image quality is lower than
the quality of the original images, it is considered acceptable. The second method of
Abady et al. [298], named no-independent component-for-encoding GAN (NICE-GAN),
is used for generating bare land images from vegetation land images, and vice versa. For
this, they collected multispectral satellite images of vegetation and bare land from ESA
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Copernicus hub [299]. Jiang et al. [300] proposed a GAN-based method, named edge-
enhanced GAN (EEGAN), for super resolution reconstruction of satellite images. Their
network architecture consists of two subnetworks, named ultra-dense subnetwork (UDSN)
and edge-enhancement subnetwork (EESN). The UDSN operates as a feature extractor,
whereas the EESN operates as a contour extractor and enhancer.

Other machine learning approaches, which have been adopted in the context of
geoscience to address data scarcity, are transfer learning, data augmentation, AL and
unsupervised learning. It is tempting to speculate that few-shot learning [301], although
not yet adopted, provides an interesting alternative.

Another issue related to data and label scarcity is the ‘curse of dimensionality’ or
Hughes phenomenon. In the case of HSIs, spectral dimensionality is equal to the total
number of bands and ranges in hundreds [11]. Moreover, in some applications, multiple
extra variables (e.g., measurements obtained from multiple layers in the atmosphere or
groundwater) are employed, contributing to the increase of dimensionality [1]. When
the number of dimensions is linearly increased, the volume of the feature space increases
exponentially and hence a large amount of data is required [91]. This requirement is not
always satisfied due to the data and label scarcity discussed above, leading to overfitting.
This is even more prominent in DL-based methods, whereas the issue is amplified by the
increase of the intra-class variance and decrease of the inter-class variance in high resolution
images, which leads to a decrease of the separability in the spectral domain, particularly
for the spectrally similar classes.

A standard approach to alleviate the effects of Hughes phenomenon is dimension-
ality reduction via feature extraction. This approach is not modality-specific and aims to
transform a high-dimensional feature space into a low-dimensional one, using linear or
non-linear projections, such as PCA, locality preserving projection (LPP), projection pursuit,
or local discriminant embedding [302]. In the case of HSIs, another option is band selection,
which aims to preserve the physical meaning of data by selecting the most relevant and
informative spectral bands. Supervised band selection utilizes the class separability of
labelled training samples. Unsupervised band selection utilizes ranking or clustering. Semi-
supervised band selection employs both labelled and unlabelled samples. Most methods in
the latter category are based either on manifold learning or hypergraph models [302].

As a final remark with respect to the availability data, we may note that standard, non-
learning-based approaches, as those presented in Section 2.1, often provide an alternative
to bypass data scarcity, either as standalone approaches or in the context of hybrid methods
that also employ learning-based components.

4.2. Inherent Issues in Geoscience Imaging Data

Beyond the quantity of available samples and labels, there are several modality-
specific issues in geoscience imaging data. Multispectral images raise difficulties for many
image processing algorithms, due to their high resolution, the requirement for GPU and
multiprocessing or parallel processing and the increasing computing complexity when
the number of frequency bands increases [303]. Another issue related to multispectral
images, as well as to HSIs, is the trade-off between spatial and spectral resolution [304].
The quality of SAR images is degraded by a number of factors [305]. Geometric distortions,
system nonlinear effects, range migrations are inherent issues on SAR images. A special
mention on SAR speckle noise is necessary. Speckle noise is a type of a multiplicative
noise which is generated by the random interference of many elementary reflectors within
one resolution cell [306]. The process of elimination of the speckle noise from an image is
named image despeckling and in the case of SAR images has attracted intensive research
interest [307–311]. LiDAR data are also affected by a number of factors [312], including the
high cost, the difficulty in processing huge LiDAR datasets, the inability to penetrate water
bodies, as the LiDAR system laser beam is absorbed by the water, as well as the difficulty
in classifying ground from non-ground data (for DEM generation).
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The complementarity between modalities has been exploited in order to enhance the
performance in various tasks. The fusion of multispectral, hyperspectral or SAR imagery
with LiDAR data [313–317] as well as various combinations of 2D representations [318–322],
have been extensively investigated. Some review papers which summarize the correspond-
ing works are [323–325]. Another notable technique is pansharpening, which is the fusion
of multispectral and panchromatic images, aiming to exploit the spectral resolution of the
former and the spatial resolution of the latter [326].

Some issues extend beyond specific modalities. Several geoscience datasets, such as
those collected by Earth observing satellites, contain images with noise, often attributed to
atmospheric or surface interference. Imaging quality is also affected by missing values in
cases of temporary sensor failures. Even synthetic data, as those generated with GANs, have
uncertainties associated with the approximations used. Image time-series analysis may be
affected by alterations in imaging equipment, as is satellite switching or the replacement of
a damaged camera [1].

In addition, several geoscience processes are non-stationary in space or time. E.g.,
geographies, vegetation types, rock formations and climatic conditions are non-stationary in
the spatial domain, whereas glaciation, polarity reversals and climate phenomena are non-
stationary in the temporal domain [1]. This non-stationarity undermines the generalization
capability of learning-based approaches.

An issue specific to land cover mapping applications is the lack of precise bound-
aries in geoscience objects and processes. Cyclones, atmospheric rivers and ocean eddies
generally have amorphous boundaries in space and time. Moreover, the form, structure,
and patterns of geoscience objects and processes are very complex. E.g., storms and hur-
ricanes dynamically deform in complex fashion over very short periods of time [1]. This
complexity poses an extra challenge for the development of target detection and image
segmentation methods.

An aspect of geoscience processes, which rather than being an issue could aid pattern
recognition applications, is the existence of long-range spatial and temporal dependencies,
such as teleconnections [327], where two distant regions show strongly coupled activity in
climate variables such as temperature or pressure. Geoscience processes also demonstrate
long-term memory in time. Related examples include the effect of the El Nino southern
oscillation (ENSO) and Atlantic multidecadal oscillation (AMO) on global floods, droughts,
and forest fires [1]. These spatial and temporal dependencies could be taken into account
to constrain the actual solution space of a prediction model.

5. Conclusions

This work provides an overview of computational methods aiding geoscientists in the
analysis of 2D or 3D imaging data, including HSIs, SAR images, point clouds or DEMs.
Naturally, advances in such methods follow the progress in computer vision and pattern
recognition. This progress is defined by classical computer vision and pattern recognition
approaches, such as active contours, superpixels, MRFs, descriptor-guided classification
with RFs, DTs, SVMs or MLPs, as well as by DL approaches: CNNs and CNN-based
architectures, deep RNNs and the generation of synthetic images with GANs. A critical
analysis of related research leads to the following main conclusions:

- There are several widely adopted geoscience datasets. Still, most works involve model
training or benchmarking with ad hoc subsets of these datasets. Aiming to cope
with this issue, there is a number of organized efforts towards the standardization of
geoscience datasets, including Microsoft’s effort for AI on Earth, Google Earth and
various benchmarking platforms [11].

- There are inherent difficulties in obtaining labelled geoscience data. Satellite obser-
vations are often limited, in both spatial and temporal dimensions, whereas ground
truth labelling is often associated with the cost of high-quality measurements. For
very complex systems, in which the exact state cannot be accurately inferred, ground
truth is completely out of reach. In other cases, there are processes and events that
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occur rarely. This labelled data paucity can be partially addressed with standard
data augmentation approaches, as well as with synthetic data generation by means of
GANs. These neural network architectures provide a promising tool for synthetic data
generation. In addition, some machine learning approaches, such as active learning or
few shot learning, aid model training in cases of limited availability of labelled data.
Still, active learning has not been widely adopted, whereas few shot learning has not
been applied at all in geoscience.

- Another issue related to data and label scarcity is the ‘curse of dimensionality’ or
Hughes phenomenon, which ultimately leads to overfitting. This issue is even
more intense in the case of HSIs, due to the large number of correlated spectral
bands. A standard remedy for Hughes phenomenon is dimensionality reduction via
feature extraction.

- DL-based methods, especially CNNs and CNN-based architectures, are prevalent in
recent developments. Still, the successful application of such approaches depends
on labelled data availability. Standard pre-DL computer vision approaches remain
relevant and often provide an alternative to bypass the aforementioned difficulties in
data labelling, either as standalone approaches or in the context of hybrid methods
that also employ learning-based components.

Machine learning methods, including DL-based ones, depend on hyperparameters
and hyperparameter optimisation (HPO) is crucial for successful RS applications. Recently,
Yang and Shami [328] surveyed a diverse range of HPO methods, starting from the ad-
justment of the k parameter in the k-NN classifier, up to HPO of DL models. HPO in
DL is also the focus of other recent surveys [329,330]. A challenge of machine learning
that has recently attracted intensive research is explainability. Deep neural networks may
perform well in various tasks, yet very often in a ‘black-box’ fashion, hindering the un-
derstanding of their decisions and concealing any bias and other shortcomings in model
performance and datasets. There is a need for explainable machine learning methods in
RS multi-label classification tasks towards producing human-interpretable explanations
and improve transparency. Recently, Kakogeorgiou and Karantzalos [331] showed that
Occlusion [332], Grad-CAM [333] and Lime [334] were interpretable and reliable in
RS-related tasks, providing valuable insights for the decisions and performance of
DL-based methods, as well for the composition and shortcomings of benchmark datasets.
However, none of these approaches delivers high-resolution outputs, whereas both Lime
and Occlusion are computationally expensive [331]. Abdollahi and Pradhan [335] pro-
posed an explainable method for Urban vegetation mapping from aerial imagery, whereas
Temenos et al. [336] obtained novel insights in spatial epidemiology utilizing explaibable
AI and RS. A recent survey of Gevaert [337] reviews explainable AI for earth observation,
including societal and regulatory perspectives.

Other recent geoscience-related applications focus on the use of point clouds. Vas-
silakis and Konsolaki [338] combined point cloud data covering an entire cave, which
were acquired by a handheld laser scanner, with UAV-acquired data covering the open-air
surface above the cave. The absolute and exact placement of the point cloud within a geo-
graphic reference frame allow 3D measurements, detailed visualization and quantitative
analysis of the subsurface structures. DL-based methods for point cloud analysis, such as
PointNet [339,340], could advance this field, as is the case with the work of Ding et al. [341],
which employed PointNet for high spatial resolution land cover mapping.

Multimodal approaches provide another promising direction. Hong et al. [342] pro-
posed a multimodal deep learning method for remote sensing (MDL-RS), which combines
two subnetworks: Ex-Net and Fu-Net. Ex-Net operates on different modalities as a feature
extractor and Fu-Net undertakes the fusion task. MDL-RS has been applied on HSI/LiDAR,
as well as on multispectral/SAR data. Audebert et al. [343] investigated the use of CNNs
for semantic labelling of multimodal and multiscale VHR urban RS images. At first, they
considered an architecture that is based on SegNet [344] and accounts of large spatial
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context and high-resolution data. They also used FuseNet [345] for early and late fusion of
multispectral and LiDAR data.

Finally, several works addressing the computational cost of deep architectures are impor-
tant in the context of RS applications [346]. Local connectivity and weight sharing, can reduce
the number of parameters and increase processing speed [347]. Mathieu et al. [348] speedup
CNN training and testing by employing the fast Fourier transform (FFT) in convolution
operations. Jaderberg et al. [349] speedup CNN testing by decomposing layers.

Author Contributions: Conceptualization, M.A.S., C.N.V. and T.K.B.; Data curation, M.A.S., C.N.V.
and T.K.B.; Formal analysis, M.A.S., C.N.V. and T.K.B.; Writing—review & editing, M.A.S., C.N.V.
and T.K.B. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Karpatne, A.; Ebert-Uphoff, I.; Ravela, S.; Babaie, H.A.; Kumar, V. Machine learning for the geosciences: Challenges and

op-portunities. IEEE Tran. Knowl. Dat. Eng. 2019, 31, 1544–1554. [CrossRef]
2. NASA; USGS. Landsat Data Archive. Available online: https://landsat.gsfc.nasa.gov/data/ (accessed on 24 June 2022).
3. Jafarbiglu, H.; Pourreza, A. A comprehensive review of remote sensing platforms, sensors, and applications in nut crops. Comput.

Electron. Agric. 2022, 197, 106844. [CrossRef]
4. Manfreda, S.; McCabe, M.F.; Miller, P.E.; Lucas, R.; Madrigal, V.P.; Mallinis, G.; Ben Dor, E.; Helman, D.; Estes, L.; Ciraolo, G.; et al.

On the Use of Unmanned Aerial Systems for Environmental Monitoring. Remote Sens. 2018, 10, 641. [CrossRef]
5. Peckham, S.D. The CSDMS standard names: Cross-domain naming conventions for describing process models, data sets and

their associated variables. In Proceedings of the International Congress on Environmental Modelling and Software, San Diego,
CA, USA, 15–19 June 2014.

6. Microsoft, AI for Earth. Available online: https://www.microsoft.com/en-us/ai/ai-for-earth (accessed on 24 June 2022).
7. Gorelick, N.; Hancher, M.; Dixon, M.; Ilyushchenko, S.; Thau, D.; Moore, R. Google Earth engine: Planetary-scale geospatial

analysis for everyone. Remote Sens. Env. 2017, 202, 18–27. [CrossRef]
8. Brown, C.F.; Brumby, S.P.; Guzder-Williams, B.; Birch, T.; Hyde, S.B.; Mazzariello, J.; Czerwinski, W.; Pasquarella, V.J.; Haertel, R.;

Ilyushchenko, S.; et al. Dynamic World, near real-time global 10 m land use land cover mapping. Sci. Data 2022, 9, 251. [CrossRef]
9. O’Connor, J.; Smith, M.J.; James, M.R. Cameras and settings for aerial surveys in the geosciences. Prog. Phys. Geogr. Earth Environ.

2017, 41, 325–344. [CrossRef]
10. Eismann, M.T. Hyperspectral Remote Sensing; SPIE Press: Bellingham, WA, USA, 2012.
11. Gewali, U.B.; Monteiro, S.T.; Saber, E. Machine learning based hyperspectral image analysis: A survey. arXiv 2018,

arXiv:1802.08701.
12. Yan, W.Y.; Shaker, A.; El-Ashmawy, N. Urban land cover classification using airborne LiDAR data: A review. Remote Sens. Environ.

2015, 158, 295–310. [CrossRef]
13. Li, W.; Chen, C.; Su, H.; Du, Q. Local Binary Patterns and Extreme Learning Machine for Hyperspectral Imagery Classification.

IEEE Trans. Geosci. Remote Sens. 2015, 53, 3681–3693. [CrossRef]
14. Hsu, P.-H. Feature extraction of hyperspectral images using wavelet and matching pursuit. ISPRS J. Photogramm. Remote Sens.

2007, 62, 78–92. [CrossRef]
15. Dalla Mura, M.; Villa, A.; Benediktsson, J.A.; Chanussot, J.; Bruzzone, L. Classification of hyperspectral images by using ex-tended

morphological attribute profiles and independent component analysis. IEEE Geosci. Remote Sens. Lett. 2010, 8, 542–546. [CrossRef]
16. Azar, S.G.; Meshgini, S.; Rezaii, T.Y.; Beheshti, S. Hyperspectral image classification based on sparse modeling of spectral blocks.

Neurocomputing 2020, 407, 12–23. [CrossRef]
17. Johnson, A.; Hebert, M. Using spin images for efficient object recognition in cluttered 3D scenes. IEEE Trans. Pattern Anal. Mach.

Intell. 1999, 21, 433–449. [CrossRef]
18. Rusu, R.B.; Blodow, N.; Marton, Z.C.; Beetz, M. Aligning point cloud views using persistent feature histograms. In Proceedings of

the IEEE/RSJ International Conference on Intelligent Robots and Systems, Nice, France, 22–26 September 2008; pp. 3384–3391.
19. Tombari, F.; Salti, S.; Stefano, L.D. Unique signatures of histograms for local surface description. In Proceedings of the European

Conference on Computer Vision, Heraklion, Crete, Greece, 5–11 September 2010; pp. 356–369. [CrossRef]
20. Li, S.; Song, W.; Fang, L.; Chen, Y.; Ghamisi, P.; Benediktsson, J.A. Deep Learning for Hyperspectral Image Classification: An

Overview. IEEE Trans. Geosci. Remote Sens. 2019, 57, 6690–6709. [CrossRef]

http://doi.org/10.1109/TKDE.2018.2861006
https://landsat.gsfc.nasa.gov/data/
http://doi.org/10.1016/j.compag.2022.106844
http://doi.org/10.3390/rs10040641
https://www.microsoft.com/en-us/ai/ai-for-earth
http://doi.org/10.1016/j.rse.2017.06.031
http://doi.org/10.1038/s41597-022-01307-4
http://doi.org/10.1177/0309133317703092
http://doi.org/10.1016/j.rse.2014.11.001
http://doi.org/10.1109/TGRS.2014.2381602
http://doi.org/10.1016/j.isprsjprs.2006.12.004
http://doi.org/10.1109/LGRS.2010.2091253
http://doi.org/10.1016/j.neucom.2020.04.138
http://doi.org/10.1109/34.765655
http://doi.org/10.1007/978-3-642-15558-1_26
http://doi.org/10.1109/TGRS.2019.2907932


Remote Sens. 2022, 14, 6017 34 of 45

21. Csurka, G.; Dance, C.; Fan, L.; Willamowski, J.; Bray, C. Visual categorization with bags of keypoints. In Proceedings of the
European Conference on Computer Vision, Prague, Czech Republic, 11–14 May 2004; pp. 1–22.

22. Hu, F.; Xia, G.-S.; Wang, Z.; Huang, X.; Zhang, L.; Sun, H. Unsupervised feature learning via spectral clustering of multidi-
mensional patches for remotely sensed scene classification. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2015, 8, 2015–2030.
[CrossRef]

23. van Gemert, J.C.; Veenman, C.J.; Smeulders, A.W.; Geusebroek, J.-M. Visual Word Ambiguity. IEEE Trans. Pattern Anal. Mach.
Intell. 2010, 32, 1271–1283. [CrossRef]

24. Kass, M.; Witkin, A.; Terzopoulos, D. Snakes: Active contour models. Int. J. Comput. Vis. 1988, 1, 321–331. [CrossRef]
25. Blake, A.; Kohli, P.; Rother, C. Markov Random Fields for Vision and Image Processing; The MIT Press: Cambridge, MA, USA, 2011.
26. Stutz, D.; Hermans, A.; Leibe, B. Superpixels: An evaluation of the state-of-the-art. Comput. Vis. Image Underst. 2018, 166, 1–27.

[CrossRef]
27. Krizhevsky, A.; Sutskever, I.; Hinton, G.E. ImageNet classification with deep convolutional neural networks. In Proceedings of

the International Conference on Neural Information Processing Systems, Lake Tahoe, CA, USA, 3–8 December 2012.
28. Le Cun, Y.; Boser, B.; Denker, J.; Henderson, D.; Howard, R.; Hubbard, W.; Jackel, L. Handwritten digit recognition with a

back-propagation network. In Proceedings of the International Conference on Neural Information Processing Systems, Denver,
CO, USA, 27–30 November 1989.

29. Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition. In Proceedings of the
International Conference on Learning Representations, San Diego, CA, USA, 7–9 May 2015.

30. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016.

31. Szegedy, C.; Liu, W.; Jia, Y.; Sermanet, P.; Reed, S.; Anguelov, D.; Erhan, D.; Vanhoucke, V.; Rabinovich, A. Going deeper
with convolutions. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA,
7–12 June 2015.

32. Schmidhuber, J. Network Architectures, Objective Functions, and Chain Rule; Institut fur Informatik, Technische Universitat Munchen:
Munich, Germany, 1993.

33. Hochreiter, S.; Schmidhuber, J. Long short-term memory. Neur. Comput. 1997, 9, 1735–1780. [CrossRef]
34. Kingma, D.P.; Welling, M. Auto-encoding variational Bayes. In Proceedings of the International Conference on Learning

Representations, Banff, AB, Canada, 14–16 April 2014.
35. Goodfellow, I.; Pouget-Abadie, J.; Mirza, M.; Xu, B.; Warde-Farley, D.; Ozair, S.; Courville, A.; Bengio, Y. Generative Adversarial

Nets. In Proceedings of the International Conference on Neural Information Processing Systems, Montreal, QC, Canada,
8–13 December 2014.

36. Bergen, K.J.; Johnson, P.A.; de Hoop, M.V.; Beroza, G.C. Machine learning for data-driven discovery in solid Earth geoscience.
Science 2019, 363, eaau0323. [CrossRef]

37. Lary, D.J.; Alavi, A.H.; Gandomi, A.H.; Walker, A.L. Machine learning in geosciences and remote sensing. Geosci. Front. 2016, 7,
3–10. [CrossRef]

38. Ioannidou, A.; Chatzilari, E.; Nikolopoulos, S.; Kompatsiaris, I. Deep learning advances in computer vision with 3D data: A
survey. ACM Comp. Surv. 2018, 50, 1–38. [CrossRef]

39. Zhang, L.; Zhang, L.; Du, B. Deep learning for remote sensing data: A technical tutorial on the state of the art. IEEE Geosci. Remote
Sens. Mag. 2016, 4, 22–40. [CrossRef]

40. Zhang, L.; Xia, G.-S.; Wu, T.; Lin, L.; Tai, X.-C. Deep Learning for Remote Sensing Image Understanding. J. Sens. 2016,
2016, 7954154. [CrossRef]

41. Beroza, G.C.; Segou, M.; Mousavi, S.M. Machine learning and earthquake forecasting—Next steps. Nat. Commun. 2021, 12, 4761.
[CrossRef]

42. Haralick, R.M.; Shanmugam, K.; Dinstein, I.H. Textural Features for Image Classification. IEEE Trans. Syst. Man Cybern. 1973,
SMC-3, 610–621. [CrossRef]

43. Ojala, T.; Pietikainen, M.; Maenpaa, T. Multiresolution gray-scale and rotation invariant texture classification with local binary
patterns. IEEE Trans. Pattern Anal. Mach. Intell. 2002, 24, 971–987. [CrossRef]

44. Shen, L.; Jia, S. Three-Dimensional Gabor Wavelets for Pixel-Based Hyperspectral Imagery Classification. IEEE Trans. Geosci.
Remote Sens. 2011, 49, 5039–5046. [CrossRef]

45. Lowe, D.G. Distinctive image features from scale-invariant keypoints. Int. J. Comp. Vis. 2004, 60, 91–110. [CrossRef]
46. Frome, A.; Huber, D.; Kolluri, R.; Bülow, T.; Malik, J. Recognizing Objects in Range Data Using Regional Point Descriptors. In

Proceedings of the 8th European Conference on Computer Vision, Prague, Czech Republic, 11–14 May 2004; pp. 224–237.
47. Rusu, R.B.; Bradski, G.; Thibaux, R.; Hsu, J. Fast 3D recognition and pose using the viewpoint feature histogram. In Proceedings

of the IEEE/RSJ International Conference on Intelligent Robots and Systems, Chicago, IL, USA, 14–18 September 2014.
48. Sivic, J.; Zisserman, A. Video Google: A text retrieval approach to object matching in videos. In Proceedings of the IEEE

International Conference on Computer Vision, Nice, France, 14–18 October 2004.

http://doi.org/10.1109/JSTARS.2015.2444405
http://doi.org/10.1109/TPAMI.2009.132
http://doi.org/10.1007/BF00133570
http://doi.org/10.1016/j.cviu.2017.03.007
http://doi.org/10.1162/neco.1997.9.8.1735
http://doi.org/10.1126/science.aau0323
http://doi.org/10.1016/j.gsf.2015.07.003
http://doi.org/10.1145/3042064
http://doi.org/10.1109/MGRS.2016.2540798
http://doi.org/10.1155/2016/7954154
http://doi.org/10.1038/s41467-021-24952-6
http://doi.org/10.1109/TSMC.1973.4309314
http://doi.org/10.1109/TPAMI.2002.1017623
http://doi.org/10.1109/TGRS.2011.2157166
http://doi.org/10.1023/B:VISI.0000029664.99615.94


Remote Sens. 2022, 14, 6017 35 of 45

49. Jegou, H.; Perronnin, F.; Douze, M.; Sanchez, J.; Perez, P.; Schmid, C. Aggregating Local Image Descriptors into Compact Codes.
IEEE Trans. Pattern Anal. Mach. Intell. 2011, 34, 1704–1716. [CrossRef]

50. Perronnin, F.; Liu, Y.; Sanchez, J.; Poirier, H. Large-scale image retrieval with compressed Fisher vectors. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, San Francisco, CA, USA, 13–18 June 2010.

51. Wu, Q.; An, J. An Active Contour Model Based on Texture Distribution for Extracting Inhomogeneous Insulators From Aerial
Images. IEEE Trans. Geosci. Remote Sens. 2014, 52, 3613–3626. [CrossRef]

52. Osher, S.; Sethian, J.A. Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formula-tions.
J. Comp. Phys. 1988, 79, 12–49. [CrossRef]

53. Chan, T.F.; Vese, L.A. Active contours without edges. IEEE Trans. Image Process. 2001, 10, 266–277. [CrossRef]
54. Tarabalka, Y.; Fauvel, M.; Chanussot, J.; Benediktsson, J.A. SVM- and MRF-based method for accurate classification of hyperspec-

tral images. IEEE Geosci. Remote Sens. Lett. 2010, 7, 736–740. [CrossRef]
55. Yuan, Y.; Lin, J.; Wang, Q. Hyperspectral Image Classification via Multitask Joint Sparse Representation and Stepwise MRF

Optimization. IEEE Trans. Cybern. 2016, 46, 2966–2977. [CrossRef]
56. Solberg, A.; Taxt, T.; Jain, A. A Markov random field model for classification of multisource satellite imagery. IEEE Trans. Geosci.

Remote Sens. 1996, 34, 100–113. [CrossRef]
57. Wang, C.; Komodakis, N.; Paragios, N. Markov Random Field modeling, inference & learning in computer vision & image

understanding: A survey. Comput. Vis. Image Underst. 2013, 117, 1610–1627. [CrossRef]
58. Kolmogorov, V.; Zabin, R. What energy functions can be minimized via graph cuts? IEEE Trans. Pattern Anal. Mach. Intell. 2004,

26, 147–159. [CrossRef]
59. Golipour, M.; Ghassemian, H.; Mirzapour, F. Integrating Hierarchical Segmentation Maps with MRF Prior for Classification of

Hyperspectral Images in a Bayesian Framework. IEEE Trans. Geosci. Remote Sens. 2016, 54, 805–816. [CrossRef]
60. Moser, G.; Serpico, S.B.; Benediktsson, J.A. Land-Cover Mapping by Markov Modeling of Spatial–Contextual Information in

Very-High-Resolution Remote Sensing Images. Proc. IEEE 2013, 101, 631–651. [CrossRef]
61. Neubert, P.; Protzel, P. Superpixel Benchmark and Comparison; Karlsruher Instituts für Technologie (KIT) Scientific Publishing:

Karlsruhe, Germany, 2012.
62. Csillik, O. Fast Segmentation and Classification of Very High Resolution Remote Sensing Data Using SLIC Superpixels. Remote

Sens. 2017, 9, 243. [CrossRef]
63. Achanta, R.; Shaji, A.; Smith, K.; Lucchi, A.; Fua, P.; Süsstrunk, S. SLIC Superpixels Compared to State-of-the-Art Superpixel

Methods. IEEE Trans. Pattern Anal. Mach. Intell. 2012, 34, 2274–2282. [CrossRef] [PubMed]
64. Moore, A.P.; Prince, J.; Warrell, J.; Mohammed, U.; Jones, G. Superpixel lattices. In Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition, Anchorage, AK, USA, 23–28 June 2008.
65. Levinshtein, A.; Stere, A.; Kutulakos, K.N.; Fleet, D.J.; Dickinson, S.J.; Siddiqi, K. TurboPixels: Fast Superpixels Using Geometric

Flows. IEEE Trans. Pattern Anal. Mach. Intell. 2009, 31, 2290–2297. [CrossRef] [PubMed]
66. Vedaldi, A.; Soatto, S. Quick shift and kernel methods for mode seeking. In Proceedings of the European Conference on Computer

Vision, Marseille, France, 12–18 October 2008.
67. Webb, A.R.; Copsey, K.D. Statistical Pattern Recognition, 3rd ed.; Wiley: Hoboken, NJ, USA, 2011.
68. Xu, R.; Wunsch, D. Survey of clustering algorithms. IEEE Trans. Neur. Net. 2005, 16, 645–678. [CrossRef]
69. Jain, A.K.; Duin, R.P.W.; Mao, J. Statistical pattern recognition: A review. IEEE Trans. Pattern Anal. Mach. Intell. 2000, 22, 4–37.

[CrossRef]
70. Jain, A.K.; Murty, M.N.; Flynn, P.J. Data clustering: A review. ACM Comp. Surv. 1999, 31, 264–323. [CrossRef]
71. Madhulatha, T.S. An Overview on Clustering Methods. IOSR J. Eng. 2012, 2, 719–725. [CrossRef]
72. Fahad, A.; Alshatri, N.; Tari, Z.; Alamri, A.; Khalil, I.; Zomaya, A.Y.; Foufou, S.; Bouras, A. A Survey of Clustering Algorithms for

Big Data: Taxonomy and Empirical Analysis. IEEE Trans. Emerg. Top. Comput. 2014, 2, 267–279. [CrossRef]
73. Murtagh, F.; Contreras, P. Algorithms for hierarchical clustering: An overview. WIREs Data Min. Knowl. Discov. 2012, 2, 86–97.

[CrossRef]
74. Murtagh, F.; Contreras, P. Algorithms for hierarchical clustering: An overview, II. WIREs Data Min. Knowl. Discov. 2017, 7, e1219.

[CrossRef]
75. Baraldi, A.; Blonda, P. A survey of fuzzy clustering algorithms for pattern recognition. I. IEEE Trans. Sys. Man Cybern. Part B

(Cybern.) 1999, 29, 778–785. [CrossRef]
76. Chiou, Y.-C.; Lan, L.W. Genetic clustering algorithms. Eur. J. Oper. Res. 2001, 135, 413–427. [CrossRef]
77. Yang, M.-S.; Wu, K.-L. Unsupervised possibilistic clustering. Pattern Recognit. 2006, 39, 5–21. [CrossRef]
78. Kriegel, H.-P.; Kröger, P.; Sander, J.; Zimek, A. Density-based clustering. WIREs Dat. Min. Knowl. Disc. 2011, 1, 231–240. [CrossRef]
79. Vidal, R. Subspace Clustering. IEEE Sig. Proc. Mag. 2011, 28, 52–68. [CrossRef]
80. Lloyd, S.P. Least squares quantization in PCM. IEEE Trans. Inf. Theory 1982, 28, 129–137. [CrossRef]

http://doi.org/10.1109/TPAMI.2011.235
http://doi.org/10.1109/TGRS.2013.2274101
http://doi.org/10.1016/0021-9991(88)90002-2
http://doi.org/10.1109/83.902291
http://doi.org/10.1109/LGRS.2010.2047711
http://doi.org/10.1109/TCYB.2015.2484324
http://doi.org/10.1109/36.481897
http://doi.org/10.1016/j.cviu.2013.07.004
http://doi.org/10.1109/TPAMI.2004.1262177
http://doi.org/10.1109/TGRS.2015.2466657
http://doi.org/10.1109/JPROC.2012.2211551
http://doi.org/10.3390/rs9030243
http://doi.org/10.1109/TPAMI.2012.120
http://www.ncbi.nlm.nih.gov/pubmed/22641706
http://doi.org/10.1109/TPAMI.2009.96
http://www.ncbi.nlm.nih.gov/pubmed/19834148
http://doi.org/10.1109/TNN.2005.845141
http://doi.org/10.1109/34.824819
http://doi.org/10.1145/331499.331504
http://doi.org/10.9790/3021-0204719725
http://doi.org/10.1109/TETC.2014.2330519
http://doi.org/10.1002/widm.53
http://doi.org/10.1002/widm.1219
http://doi.org/10.1109/3477.809032
http://doi.org/10.1016/S0377-2217(00)00320-9
http://doi.org/10.1016/j.patcog.2005.07.005
http://doi.org/10.1002/widm.30
http://doi.org/10.1109/MSP.2010.939739
http://doi.org/10.1109/TIT.1982.1056489


Remote Sens. 2022, 14, 6017 36 of 45

81. Dunn, J.C. A Fuzzy Relative of the ISODATA Process and Its Use in Detecting Compact Well-Separated Clusters. J. Cybern. 1973,
3, 32–57. [CrossRef]

82. Gustafson, D.E.; Kessel, W.C. Fuzzy clustering with a fuzzy covariance matrix. In Proceedings of the IEEE Conference on Decision
and Control including the 17th Symposium on Adaptive Processes, San Diego, CA, USA, 10–12 January 1979.

83. Ester, M.; Kriegel, H.-P.; Sander, J.; Xu, X. A density-based algorithm for discovering clusters in large spatial databases with noise.
In Proceedings of the Second International Conference on Knowledge Discovery and Data Mining (KDD’96), Portland, Oregon,
2–4 August 1996.

84. Fukunaga, K.; Hostetler, L. The estimation of the gradient of a density function, with applications in pattern recognition. IEEE
Trans. Inf. Theory 1975, 21, 32–40. [CrossRef]

85. Ankerst, M.; Breunig, M.M.; Kriegel, H.-P.; Sander, J. OPTICS: Ordering points to identify the clustering structure. SIGMOD Rec.
1999, 28, 49–60. [CrossRef]

86. Zhang, T.; Ramakrishnan, R.; Livny, M. BIRCH: An efficient data clustering method for very large databases. In Proceedings of
the 1996 ACM SIGMOD international conference on Management of Data—SIGMOD’96, Montreal, QC, Canada, 4–6 June 1996.

87. Vidal, R.; Ma, Y.; Sastry, S. Generalized principal component analysis (GPCA). IEEE Trans. Pattern Anal. Mach. Intell. 2005, 27,
1945–1959. [CrossRef]

88. Quinlan, J.R. Induction of decision trees. Mach. Learn. 1986, 1, 81–106. [CrossRef]
89. Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [CrossRef]
90. Friedan, J.H. Stochastic gradient boosting. Comput. Stat. Data Anal. 2002, 38, 367–378. [CrossRef]
91. Theodoridis, S.; Koutroumbas, K. Pattern Recognition, 4th ed.; Academic Press, Inc.: Cambridge, MA, USA, 2008.
92. Dietterich, T.G.; Bakiri, G. Solving multi-class learning problems via error-correcting output codes. J. Art. Intell. Res. 1995, 2,

263–286.
93. Theodoridis, S. Machine Learning, a Bayesian and Optimization Perspective; Academic Press: New York, NY, USA, 2015.
94. Chong, E.K.P.; Zak, S.H. An Introduction to Optimization; Wiley: New York, NY, USA, 2001.
95. Hassoun, M.H.; Intrator, N.; McKay, S.; Christian, W. Fundamentals of Artificial Neural Networks. Comput. Phys. 1995, 10, 137.

[CrossRef]
96. Gurney, K. An Introduction to Neural Networks; Taylor & Francis, Inc.: Florence, KY, USA, 1997.
97. Jain, A.; Mao, J.; Mohiuddin, K. Artificial neural networks: A tutorial. Computer 1996, 29, 31–44. [CrossRef]
98. Svozil, D.; Kvasnicka, V.; Pospichal, J. Introduction to multi-layer feed-forward neural networks. Chemom. Intell. Lab. Syst. 1997,

39, 43–62. [CrossRef]
99. Kohonen, T. Self-Organizing Maps, 3rd ed.; Springer: Berlin/Heidelberg, Germany, 2001.
100. Hopfield, J.J. Neural networks and physical systems with emergent collective computational abilities. Proc. Natl. Acad. Sci. USA

1982, 79, 2554–2558. [CrossRef]
101. Mcculloch, W.S.; Pitts, W.H. A logical calculus of the ideas immanent in nervous activity. Bull. Math. Biophys. 1943, 5, 115–133.

[CrossRef]
102. LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444. [CrossRef]
103. Redmon, J.; Divvala, S.; Girshick, R.; Farhadi, A. You only look once: Unified, real-time object detection. In Proceedings of the

IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 26 June–1 July 2016.
104. Chung, J.; Cho, C.G.K.; Bengio, Y. Empirical evaluation of gated recurrent neural networks on sequence modeling. arXiv 2014,

arXiv:1412.3555.
105. Cho, K.; van Merrienboer, B.; Bahdanau, D.; Bengio, Y. On the properties of neural machine translation: Encoder–decoder

approaches. In Proceedings of the Workshop on Syntax, Semantics and Structure in Statistical Translation, Doha, Qatar, 25
October 2014.

106. Graves, A.; Mohamed, A.; Hinton, G. Speech recognition with deep recurrent neural networks. In Proceedings of the IEEE
International Conference on Acoustics, Speech and Signal Processing, Vancouver, BC, Canada, 26–31 May 2013.

107. Bahdanau, D.; Cho, K.; Bengio, Y. Neural machine translation by jointly learning to align and translate. arXiv 2016, arXiv:1409.0473.
108. Savelonas, M.; Vernikos, I.; Mantzekis, D.; Spyrou, E.; Tsakiri, A.; Karkanis, S. Hybrid Representation of Sensor Data for the

Classification of Driving Behaviour. Appl. Sci. 2021, 11, 8574. [CrossRef]
109. Khan, S.; Naseer, M.; Hayat, M.; Zamir, S.W.; Khan, F.S.; Shah, M. Transformers in Vision: A Survey. ACM Comput. Surv. 2022, 54,

1–41. [CrossRef]
110. Han, K.; Wang, Y.; Chen, H.; Chen, X.; Guo, J.; Liu, Z.; Tang, Y.; Xiao, A.; Xu, C.; Xu, Y.; et al. A Survey on Vision Transformer.

IEEE Trans. Pattern Anal. Mach. Intell. 2022, 1. [CrossRef]
111. Aleissaee, A.A.; Kumar, A.; Anwer, R.M.; Khan, S.; Cholakkal, H.; Xia, G.-S.; Khan, F.S. Transformers in remote sensing: A survey.

arXiv 2022, arXiv:2209.01206.
112. Metz, L.; Poole, B.; Pfau, D.; Sohl-Dickstein, J. Unrolled generative adversarial networks. arXiv 2016, arXiv:1611.02163.

http://doi.org/10.1080/01969727308546046
http://doi.org/10.1109/TIT.1975.1055330
http://doi.org/10.1145/304181.304187
http://doi.org/10.1109/TPAMI.2005.244
http://doi.org/10.1007/BF00116251
http://doi.org/10.1023/A:1010933404324
http://doi.org/10.1016/S0167-9473(01)00065-2
http://doi.org/10.1063/1.4822376
http://doi.org/10.1109/2.485891
http://doi.org/10.1016/S0169-7439(97)00061-0
http://doi.org/10.1073/pnas.79.8.2554
http://doi.org/10.1007/BF02478259
http://doi.org/10.1038/nature14539
http://doi.org/10.3390/app11188574
http://doi.org/10.1145/3505244
http://doi.org/10.1109/TPAMI.2022.3152247


Remote Sens. 2022, 14, 6017 37 of 45

113. Arjovsky, M.; Chintala, S.; Bottou, L. Wasserstein GAN. arXiv 2017, arXiv:1701.07875.
114. Chen, X.; Duan, Y.; Houthooft, R.; Schulman, J.; Sutskever, I.; Abbeel, P. InfoGAN: Interpretable representation learning by

information maximizing generative adversarial nets. In Proceedings of the Advances in Neural Information Processing Systems,
Long Beach, CA, USA, 4–9 December 2017.

115. Karras, T.; Aila, T.; Laine, S.; Lehtinen, J. Progressive growing of GANs for improved quality, stability, and variation. arXiv 2017,
arXiv:1710.10196.

116. Isola, P.; Zhu, J.; Zhou, T.; Efros, A.A. Image-to-image translation with conditional adversarial networks. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017.

117. Xia, G.-S.; Liu, G.; Yang, W.; Zhang, L. Meaningful object segmentation from SAR images via a multiscale nonlocal active contour
model. IEEE Trans. Geosci. Remote Sens. 2016, 54, 1860–1873. [CrossRef]

118. Li, Z.; Shi, W.; Myint, S.W.; Lu, P.; Wang, Q. Semi-automated landslide inventory mapping from bitemporal aerial photographs
using change detection and level set method. Remote Sens. Env. 2016, 175, 215–230. [CrossRef]

119. Fang, L.; Li, S.; Duan, W.; Ren, J.; Benediktsson, J.A. Classification of hyperspectral images by exploiting spectral–spatial
in-formation of superpixel via multiple kernels. IEEE Trans. Geosci. Remote Sens. 2015, 53, 6663–6674. [CrossRef]

120. Fang, L.; Li, S.; Kang, X.; Benediktsson, J.A. Spectral–Spatial Classification of Hyperspectral Images with a Superpixel-Based
Discriminative Sparse Model. IEEE Trans. Geosci. Remote Sens. 2015, 53, 4186–4201. [CrossRef]

121. Shi, C.; Pun, C.-M. Superpixel-based 3D deep neural networks for hyperspectral image classification. Pattern Recognit. 2018, 74,
600–616. [CrossRef]

122. Maulik, U.; Saha, I. Automatic fuzzy clustering using modified differential evolution for image classification. IEEE Trans. Geosci.
Remote Sens. 2010, 48, 3503–3510. [CrossRef]

123. Storn, R.; Price, K. Differential evolution—A simple and efficient heuristic for global optimization over continuous spaces. J. Glob.
Optim. 1997, 11, 341–359. [CrossRef]

124. Qin, F.; Guo, J.; Lang, F. Superpixel Segmentation for Polarimetric SAR Imagery Using Local Iterative Clustering. IEEE Geosci.
Remote Sens. Lett. 2015, 12, 13–17. [CrossRef]

125. Zhang, H.; Zhai, H.; Zhang, L.; Li, P. Spectral–Spatial Sparse Subspace Clustering for Hyperspectral Remote Sensing Images.
IEEE Trans. Geosci. Remote Sens. 2016, 54, 3672–3684. [CrossRef]

126. Wang, S.; Azzari, G.; Lobell, D.B. Crop type mapping without field-level labels: Random forest transfer and unsupervised
clustering techniques. Remote Sens. Environ. 2019, 222, 303–317. [CrossRef]

127. Reza, N.; Na, I.S.; Baek, S.W.; Lee, K.-H. Rice yield estimation based on K-means clustering with graph-cut segmentation using
low-altitude UAV images. Biosyst. Eng. 2019, 177, 109–121. [CrossRef]

128. Jia, S.; Tang, G.; Zhu, J.; Li, Q. A Novel Ranking-Based Clustering Approach for Hyperspectral Band Selection. IEEE Trans. Geosci.
Remote Sens. 2015, 54, 88–102. [CrossRef]

129. Rodriguez, A.; Laio, A. Clustering by fast search and find of density peaks. Science 2014, 344, 1492–1496. [CrossRef]
130. Yuan, Y.; Lin, J.; Wang, Q. Dual-Clustering-Based Hyperspectral Band Selection by Contextual Analysis. IEEE Trans. Geosci.

Remote Sens. 2016, 54, 1431–1445. [CrossRef]
131. Wang, Q.; Zhang, F.; Li, X. Optimal Clustering Framework for Hyperspectral Band Selection. IEEE Trans. Geosci. Remote Sens.

2018, 56, 5910–5922. [CrossRef]
132. Zhai, H.; Zhang, H.; Zhang, L.; Li, P. Laplacian-regularized low-rank subspace clustering for hyperspectral image band se-lection.

IEEE Trans. Geosci. Remote Sens. 2019, 57, 1723–1740. [CrossRef]
133. Afonso, M.V.; Bioucas-Dias, J.M.; Figueiredo, M.A.T. An Augmented Lagrangian Approach to the Constrained Optimization

Formulation of Imaging Inverse Problems. IEEE Trans. Image Process. 2011, 20, 681–695. [CrossRef]
134. Ham, J.; Chen, Y.; Crawford, M.M.; Ghosh, J. Investigation of the random forest framework for classification of hyperspectral

data. IEEE Trans. Geosci. Remote Sens. 2005, 43, 492–501. [CrossRef]
135. Morgan, J.T.; Henneguelle, A.; Ham, J.; Ghosh, J.; Crawford, M.M. Adaptive feature spaces for land cover classification with

limited ground truth. Int. J. Pattern Recognit. Art. Intell. 2004, 18, 777–799. [CrossRef]
136. Ho, T.K. The random subspace method for constructing decision forests. IEEE Trans. Pattern Anal. Mach. Intell. 1998, 20, 832–844.

[CrossRef]
137. Gislason, P.O.; Benediktsson, J.A.; Sveinsson, J.R. Random Forests for land cover classification. Pattern Recognit. Lett. 2006, 27,

294–300. [CrossRef]
138. Stumpf, A.; Kerle, N. Object-oriented mapping of landslides using Random Forests. Remote Sens. Environ. 2011, 115, 2564–2577.

[CrossRef]
139. Eisavi, V.; Homayouni, S.; Yazdi, A.M.; Alimohammadi, A. Land cover mapping based on random forest classification of

multitemporal spectral and thermal images. Environ. Monit. Assess. 2015, 187, 291. [CrossRef] [PubMed]
140. Peerbhay, K.Y.; Mutanga, O.; Ismail, R. Random Forests Unsupervised Classification: The Detection and Mapping of Solanum

mauritianum Infestations in Plantation Forestry Using Hyperspectral Data. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2015, 8,
3107–3122. [CrossRef]

http://doi.org/10.1109/TGRS.2015.2490078
http://doi.org/10.1016/j.rse.2016.01.003
http://doi.org/10.1109/TGRS.2015.2445767
http://doi.org/10.1109/TGRS.2015.2392755
http://doi.org/10.1016/j.patcog.2017.09.007
http://doi.org/10.1109/TGRS.2010.2047020
http://doi.org/10.1023/A:1008202821328
http://doi.org/10.1109/lgrs.2014.2322960
http://doi.org/10.1109/TGRS.2016.2524557
http://doi.org/10.1016/j.rse.2018.12.026
http://doi.org/10.1016/j.biosystemseng.2018.09.014
http://doi.org/10.1109/TGRS.2015.2450759
http://doi.org/10.1126/science.1242072
http://doi.org/10.1109/TGRS.2015.2480866
http://doi.org/10.1109/TGRS.2018.2828161
http://doi.org/10.1109/TGRS.2018.2868796
http://doi.org/10.1109/TIP.2010.2076294
http://doi.org/10.1109/TGRS.2004.842481
http://doi.org/10.1142/S0218001404003411
http://doi.org/10.1109/34.709601
http://doi.org/10.1016/j.patrec.2005.08.011
http://doi.org/10.1016/j.rse.2011.05.013
http://doi.org/10.1007/s10661-015-4489-3
http://www.ncbi.nlm.nih.gov/pubmed/25910718
http://doi.org/10.1109/JSTARS.2015.2396577


Remote Sens. 2022, 14, 6017 38 of 45

141. Scott, G.L.; Longuet-Higgins, H.C. Feature grouping by relocalisation of eigenvectors of proximity matrix. In Proceedings of the
British Machine Vision Conference, Oxford, UK, September 1990.

142. Anselin, L. The Local Indicators of Spatial Association—LISA. Geogr. Anal. 1995, 27, 93–115. [CrossRef]
143. Sun, L.; Schulz, K. The Improvement of Land Cover Classification by Thermal Remote Sensing. Remote Sens. 2015, 7, 8368–8390.

[CrossRef]
144. Kalantar, B.; Mansor, S.B.; Sameen, M.I.; Pradhan, B.; Shafri, H.Z.M. Drone-based land-cover mapping using a fuzzy unordered

rule induction al-gorithm integrated into object-based image analysis. Int. J. Remote Sens. 2017, 38, 2535–2556. [CrossRef]
145. Bazi, Y.; Melgani, F. Toward an Optimal SVM Classification System for Hyperspectral Remote Sensing Images. IEEE Trans. Geosci.

Remote Sens. 2006, 44, 3374–3385. [CrossRef]
146. Mantero, P.; Moser, G.; Serpico, S.B. Partially Supervised classification of remote sensing images through SVM-based probability

density estimation. IEEE Trans. Geosci. Remote Sens. 2005, 43, 559–570. [CrossRef]
147. Foody, G.M.; Mathur, A. Toward intelligent training of supervised image classifications: Directing training data acquisition for

SVM classification. Remote Sens. Environ. 2004, 93, 107–117. [CrossRef]
148. Foody, G.M.; Mathur, A. The use of small training sets containing mixed pixels for accurate hard image classification: Training on

mixed spectral responses for classification by a SVM. Remote Sens. Environ. 2006, 103, 179–189. [CrossRef]
149. Mathur, A.; Foody, G.M. Multiclass and Binary SVM Classification: Implications for Training and Classification Users. IEEE

Geosci. Remote Sens. Lett. 2008, 5, 241–245. [CrossRef]
150. Marconcini, M.; Camps-Valls, G.; Bruzzone, L. A Composite Semisupervised SVM for Classification of Hyperspectral Images.

IEEE Geosci. Remote Sens. Lett. 2009, 6, 234–238. [CrossRef]
151. Huang, X.; Zhang, L. An SVM Ensemble Approach Combining Spectral, Structural, and Semantic Features for the Classification

of High-Resolution Remotely Sensed Imagery. IEEE Trans. Geosci. Remote Sens. 2013, 51, 257–272. [CrossRef]
152. Abdi, H.; Williams, L.J. Principal component analysis. WIREs Comp. Stat. 2010, 2, 433–459. [CrossRef]
153. Fauvel, M.; Benediktsson, J.A.; Chanussot, J.; Sveinsson, J.R. Spectral and Spatial Classification of Hyperspectral Data Using

SVMs and Morphological Profiles. IEEE Trans. Geosci. Remote Sens. 2008, 46, 3804–3814. [CrossRef]
154. Chini, M.; Pacifici, F.; Emery, W.J. Morphological operators applied to X-band SAR for urban land use classification. In Proceedings

of the IEEE International Geoscience and Remote Sensing Symposium, Cape Town, South Africa, 12–17 July 2009.
155. Yoo, H.Y.; Lee, K.; Kwon, B.-D. Quantitative indices based on 3D discrete wavelet transform for urban complexity estimation

using remotely sensed imagery. Int. J. Remote Sens. 2009, 30, 6219–6239. [CrossRef]
156. Xu, S.; Fang, T.; Li, D.; Wang, S. Object Classification of Aerial Images with Bag-of-Visual Words. IEEE Geosci. Remote Sens. Lett.

2010, 7, 366–370. [CrossRef]
157. Pasolli, E.; Melgani, F.; Tuia, D.; Pacifici, F.; Emery, W.J. SVM Active Learning Approach for Image Classification Using Spatial

Information. IEEE Trans. Geosci. Remote Sens. 2014, 52, 2217–2233. [CrossRef]
158. Cheng, Q.; Varshney, P.K.; Arora, M.K. Logistic Regression for Feature Selection and Soft Classification of Remote Sensing Data.

IEEE Geosci. Remote Sens. Lett. 2006, 3, 491–494. [CrossRef]
159. Li, J.; Bioucas-Dias, J.M.; Plaza, A. Semisupervised Hyperspectral Image Segmentation Using Multinomial Logistic Regression

with Active Learning. IEEE Trans. Geosci. Remote Sens. 2010, 48, 4085–4098. [CrossRef]
160. Dempster, A.P.; Laird, N.M.; Rubin, D.B. Maximum likelihood from incomplete data via the EM algorithm. J. Royal Stat. Soc.

Series B (Methodol.) 1977, 39, 1–38.
161. Li, J.; Bioucas-Dias, J.M.; Plaza, A. Spectral–Spatial Hyperspectral Image Segmentation Using Subspace Multinomial Logistic

Regression and Markov Random Fields. IEEE Trans. Geosci. Remote Sens. 2012, 50, 809–823. [CrossRef]
162. Bruzzone, L.; Prieto, D.F.; Serpico, S.B. A neural-statistical approach to multitemporal and multisource remote-sensing image

classification. IEEE Trans. Geosci. Remote Sens. 1999, 37, 1350–1359. [CrossRef]
163. Hu, X.; Weng, Q. Estimating impervious surfaces from medium spatial resolution imagery using the self-organizing map and

multi-layer perceptron neural networks. Remote Sens. Environ. 2009, 113, 2089–2102. [CrossRef]
164. D’Alimonte, D.; Zibordi, G. Phytoplankton determination in an optically complex coastal region using a multilayer perceptron

neural network. IEEE Trans. Geosci. Remote Sens. 2003, 41, 2861–2868. [CrossRef]
165. Makantasis, K.; Karantzalos, K.; Doulamis, A.; Doulamis, N. Deep supervised learning for hyperspectral data classification

through convolutional neural networks. In Proceedings of the 2015 IEEE International Geoscience and Remote Sensing Sympo-
sium (IGARSS), Milan, Italy, 26–31 July 2015; pp. 4959–4962.

166. Hu, W.; Huang, Y.; Wei, L.; Zhang, F.; Li, H. Deep Convolutional Neural Networks for Hyperspectral Image Classification. J.
Sensors 2015, 2015, 258619. [CrossRef]

167. Maggiori, E.; Tarabalka, Y.; Charpiat, G.; Alliez, P. Convolutional neural networks for large-scale remote-sensing image classifica-
tion. IEEE Trans. Geosci. Remote Sens. 2016, 55, 645–657. [CrossRef]

168. Volpi, M.; Tuia, D. Dense Semantic Labeling of Subdecimeter Resolution Images with Convolutional Neural Networks. IEEE
Trans. Geosci. Remote Sens. 2016, 55, 881–893. [CrossRef]

http://doi.org/10.1111/j.1538-4632.1995.tb00338.x
http://doi.org/10.3390/rs70708368
http://doi.org/10.1080/01431161.2016.1277043
http://doi.org/10.1109/TGRS.2006.880628
http://doi.org/10.1109/TGRS.2004.842022
http://doi.org/10.1016/j.rse.2004.06.017
http://doi.org/10.1016/j.rse.2006.04.001
http://doi.org/10.1109/LGRS.2008.915597
http://doi.org/10.1109/LGRS.2008.2009324
http://doi.org/10.1109/TGRS.2012.2202912
http://doi.org/10.1002/wics.101
http://doi.org/10.1109/TGRS.2008.922034
http://doi.org/10.1080/01431160902842359
http://doi.org/10.1109/lgrs.2009.2035644
http://doi.org/10.1109/TGRS.2013.2258676
http://doi.org/10.1109/LGRS.2006.877949
http://doi.org/10.1109/TGRS.2010.2060550
http://doi.org/10.1109/TGRS.2011.2162649
http://doi.org/10.1109/36.763299
http://doi.org/10.1016/j.rse.2009.05.014
http://doi.org/10.1109/TGRS.2003.817682
http://doi.org/10.1155/2015/258619
http://doi.org/10.1109/TGRS.2016.2612821
http://doi.org/10.1109/TGRS.2016.2616585


Remote Sens. 2022, 14, 6017 39 of 45

169. Zhang, Z.; Wang, H.; Xu, F.; Jin, Y.-Q. Complex-Valued Convolutional Neural Network and Its Application in Polarimetric SAR
Image Classification. IEEE Trans. Geosci. Remote Sens. 2017, 55, 7177–7188. [CrossRef]

170. Scott, G.J.; England, M.R.; Starms, W.A.; Marcum, R.A.; Davis, C.H. Training Deep Convolutional Neural Networks for Land–
Cover Classification of High-Resolution Imagery. IEEE Geosci. Remote Sens. Lett. 2017, 14, 549–553. [CrossRef]

171. Jia, Y.; Shelhamer, E.; Donahue, J.; Karayev, S.; Long, J.; Girshick, R.; Guadarrama, S.; Darrell, T. Caffe: Convolutional architecture
for fast feature embedding. In Proceedings of the 22nd ACM International Conference on Multimedia, Orlando, FL, USA,
3–7 November 2014.

172. Xu, X.; Li, W.; Ran, Q.; Du, Q.; Gao, L.; Zhang, B. Multisource Remote Sensing Data Classification Based on Convolutional Neural
Network. IEEE Trans. Geosci. Remote Sens. 2017, 56, 937–949. [CrossRef]

173. Li, E.; Xia, J.; Du, P.; Lin, C.; Samat, A. Integrating Multilayer Features of Convolutional Neural Networks for Remote Sensing
Scene Classification. IEEE Trans. Geosci. Remote Sens. 2017, 55, 5653–5665. [CrossRef]

174. Cai, D.; He, X.; Han, J. SRDA: An Efficient Algorithm for Large-Scale Discriminant Analysis. IEEE Trans. Knowl. Data Eng. 2007,
20, 1–12. [CrossRef]

175. Cheng, G.; Han, J.; Lu, X. Remote Sensing Image Classification: Benchmark and State of the Art. Proc. IEEE 2017, 105, 1865–1883.
[CrossRef]

176. Chen, Y.; Lin, Z.; Zhao, X.; Wang, G.; Gu, Y. Deep Learning-Based Classification of Hyperspectral Data. IEEE J. Sel. Top. Appl.
Earth Obs. Remote Sens. 2014, 7, 2094–2107. [CrossRef]

177. Chen, Y.; Zhu, K.; Zhu, L.; He, X.; Ghamisi, P.; Benediktsson, J.A. Automatic Design of Convolutional Neural Network for
Hyperspectral Image Classification. IEEE Trans. Geosci. Remote Sens. 2019, 57, 7048–7066. [CrossRef]

178. Cao, X.; Yao, J.; Xu, Z.; Meng, D. Hyperspectral Image Classification with Convolutional Neural Network and Active Learning.
IEEE Trans. Geosci. Remote Sens. 2020, 58, 4604–4616. [CrossRef]

179. Wu, X.; Hong, D.; Chanussot, J. Convolutional Neural Networks for Multimodal Remote Sensing Data Classification. IEEE Trans.
Geosci. Remote Sens. 2021, 60, 5517010. [CrossRef]

180. Mei, S.; Chen, X.; Zhang, Y.; Li, J.; Plaza, A. Accelerating convolutional neural network-based hyperspectral image classifica-tion
by step activation quantization. IEEE Trans. Geosci. Remote Sens. 2021, 60, 5502012.

181. Rastegari, M.; Ordonez, V.; Redmon, J.; Farhadi, A. XNOR-Net: ImageNet classification using binary convolutional neural
networks. In Proceedings of the European Conference on Computer Vision, Amsterdam, The Netherlands, 8–16 October 2016.

182. Lin, J.; Mou, L.; Zhu, X.X.; Ji, X.; Wang, Z.J. Attention-Aware Pseudo-3-D Convolutional Neural Network for Hyperspectral Image
Classification. IEEE Trans. Geosci. Remote Sens. 2021, 59, 7790–7802. [CrossRef]

183. Dong, Y.; Liu, Q.; Du, B.; Zhang, L. Weighted Feature Fusion of Convolutional Neural Network and Graph Attention Network for
Hyperspectral Image Classification. IEEE Trans. Image Process. 2022, 31, 1559–1572. [CrossRef] [PubMed]

184. Lu, Z.; Liang, S.; Yang, Q.; Du, B. Evolving block-based convolutional neural network for hyperspectral image classification. IEEE
Trans. Geosci. Remote Sens. 2022, 60, 5525921. [CrossRef]

185. Ienco, D.; Gaetano, R.; Dupaquier, C.; Maurel, P. Land Cover Classification via Multitemporal Spatial Data by Deep Recurrent
Neural Networks. IEEE Geosci. Remote Sens. Lett. 2017, 14, 1685–1689. [CrossRef]

186. Mou, L.; Ghamisi, P.; Zhu, X.X. Deep Recurrent Neural Networks for Hyperspectral Image Classification. IEEE Trans. Geosci.
Remote Sens. 2017, 55, 3639–3655. [CrossRef]

187. Maggiori, E.; Charpiat, G.; Tarabalka, Y.; Alliez, P. Recurrent Neural Networks to Correct Satellite Image Classification Maps.
IEEE Trans. Geosci. Remote Sens. 2017, 55, 4962–4971. [CrossRef]

188. Rußwurm, M.; Körner, M. Multi-Temporal Land Cover Classification with Sequential Recurrent Encoders. ISPRS Int. J. Geo-Inf.
2018, 7, 129. [CrossRef]

189. Ndikumana, E.; Minh, D.H.T.; Baghdadi, N.; Courault, D.; Hossard, L. Deep Recurrent Neural Network for Agricultural
Classification using multitemporal SAR Sentinel-1 for Camargue, France. Remote Sens. 2018, 10, 1217. [CrossRef]

190. Ho Tong Minh, D.; Lalande, N.; Ndikumana, E.; Osman, F.; Maurel, P. Deep recurrent neural networks for winter vegetation
quality mapping via multitemporal SAR Sen-tinel-1. IEEE Geosci. Remote Sens. Lett. 2018, 15, 464–468. [CrossRef]

191. Hang, R.; Liu, Q.; Hong, D.; Ghamisi, P. Cascaded Recurrent Neural Networks for Hyperspectral Image Classification. IEEE
Trans. Geosci. Remote Sens. 2019, 57, 5384–5394. [CrossRef]

192. Lee, H.; Slatton, K.C.; Roth, B.E.; Cropper, W.P., Jr. Adaptive clustering of airborne LiDAR data to segment individual tree crowns
in managed pine forests. Int. J. Remote Sens. 2010, 31, 117–139. [CrossRef]

193. Beucher, S.; Lantuéjoul, C. Use of watersheds in contour detection. In Proceedings of the International Workshop on Image
Processing: Real-Time Edge and Motion Detection/Estimation, Rennes, France, 17–21 September 1979.

194. Kim, Y.; Ling, H. Human Activity Classification Based on Micro-Doppler Signatures Using a Support Vector Machine. IEEE Trans.
Geosci. Remote Sens. 2009, 47, 1328–1337. [CrossRef]

195. Kim, Y.J.; Nam, B.H.; Youn, H. Sinkhole detection and characterization using LiDAR-derived DEM with logistic regression.
Remote Sens. 2019, 11, 1592. [CrossRef]

http://doi.org/10.1109/TGRS.2017.2743222
http://doi.org/10.1109/LGRS.2017.2657778
http://doi.org/10.1109/TGRS.2017.2756851
http://doi.org/10.1109/TGRS.2017.2711275
http://doi.org/10.1109/tkde.2007.190669
http://doi.org/10.1109/JPROC.2017.2675998
http://doi.org/10.1109/JSTARS.2014.2329330
http://doi.org/10.1109/TGRS.2019.2910603
http://doi.org/10.1109/TGRS.2020.2964627
http://doi.org/10.1109/TGRS.2021.3124913
http://doi.org/10.1109/TGRS.2020.3038212
http://doi.org/10.1109/TIP.2022.3144017
http://www.ncbi.nlm.nih.gov/pubmed/35077363
http://doi.org/10.1109/TGRS.2022.3160513
http://doi.org/10.1109/LGRS.2017.2728698
http://doi.org/10.1109/TGRS.2016.2636241
http://doi.org/10.1109/TGRS.2017.2697453
http://doi.org/10.3390/ijgi7040129
http://doi.org/10.3390/rs10081217
http://doi.org/10.1109/LGRS.2018.2794581
http://doi.org/10.1109/TGRS.2019.2899129
http://doi.org/10.1080/01431160902882561
http://doi.org/10.1109/tgrs.2009.2012849
http://doi.org/10.3390/rs11131592


Remote Sens. 2022, 14, 6017 40 of 45

196. Martorella, M.; Giusti, E.; Capria, A.; Berizzi, F.; Bates, B. Automatic Target Recognition by Means of Polarimetric ISAR Images
and Neural Networks. IEEE Trans. Geosci. Remote Sens. 2009, 47, 3786–3794. [CrossRef]

197. Cameron, W.L.; Rais, H. Conservative polarimetric scatterers and their role in incorrect extensions of the Cameron decomposition.
IEEE Trans. Geosci. Remote Sens. 2006, 44, 3506–3516. [CrossRef]

198. Taravat, A.; Proud, S.; Peronaci, S.; Del Frate, F.; Oppelt, N. Multilayer Perceptron Neural Networks Model for Meteosat Second
Generation SEVIRI Daytime Cloud Masking. Remote Sens. 2015, 7, 1529–1539. [CrossRef]

199. Chen, X.; Xiang, S.; Liu, C.L.; Pan, C.H. Vehicle detection in satellite images by hybrid deep convolutional neural networks. IEEE
Geosci. Remote Sens. Lett. 2014, 11, 1797–1801. [CrossRef]

200. Cheng, G.; Zhou, P.; Han, J. Learning Rotation-Invariant Convolutional Neural Networks for Object Detection in VHR Optical
Remote Sensing Images. IEEE Trans. Geosci. Remote Sens. 2016, 54, 7405–7415. [CrossRef]

201. Ding, J.; Chen, B.; Liu, H.; Huang, M. Convolutional Neural Network with Data Augmentation for SAR Target Recognition. IEEE
Geosci. Remote Sens. Lett. 2016, 13, 364–368. [CrossRef]

202. Long, Y.; Gong, Y.; Xiao, Z.; Liu, Q. Accurate Object Localization in Remote Sensing Images Based on Convolutional Neural
Networks. IEEE Trans. Geosci. Remote Sens. 2017, 55, 2486–2498. [CrossRef]

203. Uijlings, J.R.R.; van de Sande, K.E.A.; Gevers, T.; Smeulders, A.W.M. Selective Search for Object Recognition. Int. J. Comput. Vis.
2013, 104, 154–171. [CrossRef]

204. Cheng, G.; Wang, Y.; Xu, S.; Wang, H.; Xiang, S.; Pan, C. Automatic Road Detection and Centerline Extraction via Cascaded
End-to-End Convolutional Neural Network. IEEE Trans. Geosci. Remote Sens. 2017, 55, 3322–3337. [CrossRef]

205. Shao, Z.; Pan, Y.; Diao, C.; Cai, J. Cloud Detection in Remote Sensing Images Based on Multiscale Features-Convolutional Neural
Network. IEEE Trans. Geosci. Remote Sens. 2019, 57, 4062–4076. [CrossRef]

206. Hsieh, M.R.; Lin, Y.L.; Hsu, W.H. Drone-based object counting by spatially regularized regional proposal network. In Proceedings
of the IEEE International Conference on Computer Vision, Venice, Italy, 22–29 October 2017.

207. Ren, S.; He, K.; Girshick, R.; Sun, J. Faster R-CNN: Towards real-time object detection with region proposal networks. In
Proceedings of the Advances in Neural Information Processing Systems, Montreal, QC, Canada, 7–12 December 2015.

208. Kellenberger, B.; Marcos, D.; Tuia, D. Detecting mammals in UAV images: Best practices to address a substantially imbalanced
dataset with deep learning. Remote Sens. Environ. 2018, 216, 139–153. [CrossRef]

209. Bengio, Y.; Louradour, J.; Collobert, R.; Weston, J. Curriculum learning. In Proceedings of the International Conference on
Machine Learning, New York, NY, USA, 14–18 June 2009.

210. Shrivastava, A.; Gupta, A.; Girshick, R. Training region-based object detectors with online hard example mining. In Proceedings
of the IEEE International Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016.

211. Zhang, H.; Wang, G.; Lei, Z.; Hwang, J.N. Eye in the sky: Drone-based object tracking and 3D localization. In Proceedings of the
ACM International Conference on Multimedia, Nice, France, 21–25 October 2019.

212. Wang, G.; Wang, Y.; Zhang, J.N.; Gu, R.; Hwang, J.N. Exploit the connectivity: Multi-object tracking with TrackletNet. In
Proceedings of the ACM International Conference on Multimedia, Nice, France, 21–25 October 2019.

213. Seitz, S.M.; Curless, B.; Diebel, J.; Scharstein, D.; Szeliski, R. A comparison and evaluation of multi-view stereo reconstruction
algorithms. In Proceedings of the IEEE International Conference on Computer Vision and Pattern Recognition, New York, NY,
USA, 17–22 June 2006.

214. Zhang, C.; Zuo, R.; Xiong, Y. Detection of the multivariate geochemical anomalies associated with mineralization using a deep
convolutional neural network and a pixel-pair feature method. Appl. Geochem. 2021, 130, 104994. [CrossRef]

215. Li, W.; Wu, G.; Zhang, F.; Du, Q. Hyperspectral Image Classification Using Deep Pixel-Pair Features. IEEE Trans. Geosci. Remote
Sens. 2016, 55, 844–853. [CrossRef]

216. Xu, D.; Wu, Y. MRFF-YOLO: A Multi-Receptive Fields Fusion Network for Remote Sensing Target Detection. Remote Sens. 2020,
12, 3118. [CrossRef]

217. Redmon, J.; Farhadi, A. YOLOv3: An incremental improvement. arXiv 2018, arXiv:1804.02767.
218. Xu, D.; Wu, Y. FE-YOLO: A Feature Enhancement Network for Remote Sensing Target Detection. Remote Sens. 2021, 13, 1311.

[CrossRef]
219. Qing, Y.; Liu, W.; Feng, L.; Gao, W. Improved YOLO Network for Free-Angle Remote Sensing Target Detection. Remote Sens. 2021,

13, 2171. [CrossRef]
220. Ding, X.; Zhang, X.; Ma, N.; Han, J.; Ding, G.; Sun, J. RepVGG: Making VGG-style convnets great again. In Proceedings of the

IEEE International Conference on Computer Vision and Pattern Recognition, Nashville, TN, USA, 19–25 June 2021.
221. Wang, C.; Wang, Q.; Wu, H.; Zhao, C.; Teng, G.; Li, J. Low-Altitude Remote Sensing Opium Poppy Image Detection Based on

Modified YOLOv3. Remote Sens. 2021, 13, 2130. [CrossRef]
222. Xie, S.; Girshick, R.; Dollár, P. Aggregated residual transformations for deep neural networks. In Proceedings of the IEEE

Conference on Computer vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017.

http://doi.org/10.1109/TGRS.2009.2025371
http://doi.org/10.1109/TGRS.2006.879115
http://doi.org/10.3390/rs70201529
http://doi.org/10.1109/LGRS.2014.2309695
http://doi.org/10.1109/TGRS.2016.2601622
http://doi.org/10.1109/LGRS.2015.2513754
http://doi.org/10.1109/TGRS.2016.2645610
http://doi.org/10.1007/s11263-013-0620-5
http://doi.org/10.1109/TGRS.2017.2669341
http://doi.org/10.1109/TGRS.2018.2889677
http://doi.org/10.1016/j.rse.2018.06.028
http://doi.org/10.1016/j.apgeochem.2021.104994
http://doi.org/10.1109/TGRS.2016.2616355
http://doi.org/10.3390/rs12193118
http://doi.org/10.3390/rs13071311
http://doi.org/10.3390/rs13112171
http://doi.org/10.3390/rs13112130


Remote Sens. 2022, 14, 6017 41 of 45

223. Chen, L.C.; Papandreou, G.; Kokkinos, I.; Murphy, K.; Yuille, A.L. Semantic image segmentation with deep convolutional nets
and fully connected crfs. arXiv 2014, arXiv:1412.7062.

224. Zakria, Z.; Deng, J.; Kumar, R.; Khokhar, M.S.; Cai, J.; Kumar, J. Multiscale and Direction Target Detecting in Remote Sensing
Images via Modified YOLO-v4. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2022, 15, 1039–1048. [CrossRef]

225. Bochkovskiy, A.; Wang, C.-Y.; Liao, H.-Y.M. YOLOv4: Optimal speed and accuracy of object detection. arXiv 2020,
arXiv:2004.10934.

226. Ke, X.; Zhang, X.; Zhang, T. GCBANet: A Global Context Boundary-Aware Network for SAR Ship Instance Segmentation. Remote
Sens. 2022, 14, 2165. [CrossRef]

227. Li, Q.; Chen, Y.; Zeng, Y. Transformer with Transfer CNN for Remote-Sensing-Image Object Detection. Remote Sens. 2022, 14, 984.
[CrossRef]

228. Xiao, X.; Guo, W.; Chen, R.; Hui, Y.; Wang, J.; Zhao, H. A Swin Transformer-Based Encoding Booster Integrated in U-Shaped
Network for Building Extraction. Remote Sens. 2022, 14, 2611. [CrossRef]

229. Chen, X.; Qiu, C.; Guo, W.; Yu, A.; Tong, X.; Schmitt, M. Multiscale Feature Learning by Transformer for Building Extraction From
Satellite Images. IEEE Geosci. Remote Sens. Lett. 2022, 19, 2503605. [CrossRef]

230. Zhu, Q.; Liao, C.; Hu, H.; Mei, X.; Li, H. MAP-Net: Multiple Attending Path Neural Network for Building Footprint Extraction
From Remote Sensed Imagery. IEEE Trans. Geosci. Remote Sens. 2020, 59, 6169–6181. [CrossRef]

231. Joseph, M.; Wang, L.; Wang, F. Using Landsat Imagery and Census Data for Urban Population Density Modeling in Port-au-Prince,
Haiti. GIScience Remote Sens. 2012, 49, 228–250. [CrossRef]

232. Hengl, T.; Heuvelink, G.B.M.; Kempen, B.; Leenaars, J.G.B.; Walsh, M.G.; Shepherd, K.D.; Sila, A.; MacMillan, R.A.; de Jesus, J.M.;
Tamene, L.; et al. Mapping soil properties of Africa at 250 m resolution: Random forests significantly improve current predictions.
PLoS ONE 2015, 10, e0125814. [CrossRef]

233. Odeh, I.O.A.; McBratney, A.B.; Chittleborough, D.J. Further results on prediction of soil properties from terrain attributes:
Heterotopic cokriging and regression-kriging. Geoderma 1995, 67, 215–226. [CrossRef]

234. Hengl, T.; Heuvelink, G.B.; Rossiter, D.G. About regression-kriging: From equations to case studies. Comput. Geosci. 2007, 33,
1301–1315. [CrossRef]

235. Stevens, F.R.; Gaughan, A.E.; Linard, C.; Tatem, A.J. Disaggregating Census Data for Population Mapping Using Random Forests
with Remotely-Sensed and Ancillary Data. PLoS ONE 2015, 10, e0107042. [CrossRef] [PubMed]

236. Georganos, S.; Grippa, T.; Gadiaga, A.N.; Linard, C.; Lennert, M.; VanHuysse, S.; Mboga, N.; Wolff, E.; Kalogirou, S. Geographical
random forests: A spatial extension of the random forest algorithm to address spatial heterogeneity in remote sensing and
population modelling. Geocarto Int. 2021, 36, 121–136. [CrossRef]

237. Sun, D.; Li, Y.; Wang, Q. A Unified Model for Remotely Estimating Chlorophyll a in Lake Taihu, China, Based on SVM and In Situ
Hyperspectral Data. IEEE Trans. Geosci. Remote Sens. 2009, 47, 2957–2965. [CrossRef]

238. Kokaly, R.F.; Clark, R.N. Spectroscopic determination of leaf biochemistry using band-depth analysis of absorption features and
stepwise multiple linear regression. Remote Sens. Env. 1999, 67, 267–287. [CrossRef]

239. Clark, R.N.; Roush, T.L. Reflectance spectroscopy: Quantitative analysis techniques for remote sensing applications. J. Geophys.
Res. Solid Earth 1984, 89, 6329–6340. [CrossRef]

240. Lee, S. Application of logistic regression model and its validation for landslide susceptibility mapping using GIS and remote
sensing data. Int. J. Remote Sens. 2005, 26, 1477–1491. [CrossRef]

241. Dardel, C.; Kergoat, L.; Hiernaux, P.; Mougin, E.; Grippa, M.; Tucker, C.J. Re-greening Sahel: 30years of remote sensing data and
field observations (Mali, Niger). Remote Sens. Environ. 2014, 140, 350–364. [CrossRef]

242. Du, M.; Wang, L.; Zou, S.; Shi, C. Modeling the Census Tract Level Housing Vacancy Rate with the Jilin1-03 Satellite and Other
Geospatial Data. Remote Sens. 2018, 10, 1920. [CrossRef]

243. Tien Bui, D.; Khosravi, K.; Shahabi, H.; Daggupati, P.; Adamowski, J.F.; Melesse, A.M.; Pham, B.T.; Pourghasemi, H.R.;
Mahmoudi, M.; Bahrami, S.; et al. Flood spatial modeling in northern Iran using remote sensing and gis: A com-parison between
evidential belief functions and its ensemble with a multivariate logistic regression model. Remote Sens. 2019, 11, 1589. [CrossRef]

244. Corsini, G.; Diani, M.; Grasso, R.; De Martino, M.; Mantero, P.; Serpico, S. Radial Basis Function and Multilayer Perceptron
neural networks for sea water optically active parameter estimation in case II waters: A comparison. Int. J. Remote Sens. 2003, 24,
3917–3931. [CrossRef]

245. Ozturk, D. Urban Growth Simulation of Atakum (Samsun, Turkey) Using Cellular Automata-Markov Chain and Multi-Layer
Perceptron-Markov Chain Models. Remote Sens. 2015, 7, 5918–5950. [CrossRef]

246. Al-Najjar, H.A.; Pradhan, B. Spatial landslide susceptibility assessment using machine learning techniques assisted by additional
data created with generative adversarial networks. Geosci. Front. 2021, 12, 625–637. [CrossRef]

247. Sukcharoenpong, A.; Yilmaz, A.; Li, R. An Integrated Active Contour Approach to Shoreline Mapping Using HSI and DEM. IEEE
Trans. Geosci. Remote Sens. 2016, 54, 1586–1597. [CrossRef]

248. Liu, C.; Xiao, Y.; Yang, J. A Coastline Detection Method in Polarimetric SAR Images Mixing the Region-Based and Edge-Based
Active Contour Models. IEEE Trans. Geosci. Remote Sens. 2017, 55, 3735–3747. [CrossRef]

http://doi.org/10.1109/JSTARS.2022.3140776
http://doi.org/10.3390/rs14092165
http://doi.org/10.3390/rs14040984
http://doi.org/10.3390/rs14112611
http://doi.org/10.1109/LGRS.2022.3142279
http://doi.org/10.1109/TGRS.2020.3026051
http://doi.org/10.2747/1548-1603.49.2.228
http://doi.org/10.1371/journal.pone.0125814
http://doi.org/10.1016/0016-7061(95)00007-B
http://doi.org/10.1016/j.cageo.2007.05.001
http://doi.org/10.1371/journal.pone.0107042
http://www.ncbi.nlm.nih.gov/pubmed/25689585
http://doi.org/10.1080/10106049.2019.1595177
http://doi.org/10.1109/tgrs.2009.2014688
http://doi.org/10.1016/S0034-4257(98)00084-4
http://doi.org/10.1029/JB089iB07p06329
http://doi.org/10.1080/01431160412331331012
http://doi.org/10.1016/j.rse.2013.09.011
http://doi.org/10.3390/rs10121920
http://doi.org/10.3390/rs11131589
http://doi.org/10.1080/0143116031000103781
http://doi.org/10.3390/rs70505918
http://doi.org/10.1016/j.gsf.2020.09.002
http://doi.org/10.1109/TGRS.2015.2483641
http://doi.org/10.1109/TGRS.2017.2679112


Remote Sens. 2022, 14, 6017 42 of 45

249. Modava, M.; Akbarizadeh, G. Coastline extraction from SAR images using spatial fuzzy clustering and the active contour method.
Int. J. Remote Sens. 2017, 38, 355–370. [CrossRef]

250. Otsu, N. A threshold selection method from gray-level histograms. IEEE Trans. Syst. Man Cybern. 1979, 9, 62–66. [CrossRef]
251. Sun, Y.; Zhang, X.; Zhao, X.; Xin, Q. Extracting Building Boundaries from High Resolution Optical Images and LiDAR Data by

Integrating the Convolutional Neural Network and the Active Contour Model. Remote Sens. 2018, 10, 1459. [CrossRef]
252. Bovolo, F.; Bruzzone, L.; Marconcini, M. A Novel Approach to Unsupervised Change Detection Based on a Semisupervised SVM

and a Similarity Measure. IEEE Trans. Geosci. Remote Sens. 2008, 46, 2070–2082. [CrossRef]
253. Bazi, Y.; Melgani, F.; Al-Sharari, H.D. Unsupervised Change Detection in Multispectral Remotely Sensed Imagery with Level Set

Methods. IEEE Trans. Geosci. Remote Sens. 2010, 48, 3178–3187. [CrossRef]
254. Gong, M.; Su, L.; Jia, M.; Chen, W. Fuzzy Clustering with a Modified MRF Energy Function for Change Detection in Synthetic

Aperture Radar Images. IEEE Trans. Fuzzy Syst. 2014, 22, 98–109. [CrossRef]
255. Zheng, Y.; Zhang, X.; Hou, B.; Liu, G. Using combined difference image and k-means clustering for SAR image change detection.

IEEE Geosci. Remote Sens. Lett. 2014, 11, 691–695. [CrossRef]
256. Deledalle, C.-A.; Denis, L.; Tupin, F. Iterative Weighted Maximum Likelihood Denoising with Probabilistic Patch-Based Weights.

IEEE Trans. Image Process. 2009, 18, 2661–2672. [CrossRef]
257. Ghosh, A.; Mishra, N.S.; Ghosh, S. Fuzzy clustering algorithms for unsupervised change detection in remote sensing images. Inf.

Sci. 2011, 181, 699–715. [CrossRef]
258. Leichtle, T.; Geiß, C.; Wurm, M.; Lakes, T.; Taubenböck, H. Unsupervised change detection in VHR remote sensing imagery—An

object-based clustering approach in a dynamic urban environment. Int. J. Appl. Earth Obs. Geoinf. 2017, 54, 15–27. [CrossRef]
259. Singh, A. Review Article Digital change detection techniques using remotely-sensed data. Int. J. Remote Sens. 1989, 10, 989–1003.

[CrossRef]
260. Khurshid, H.; Khan, M.F. Segmentation and Classification Using Logistic Regression in Remote Sensing Imagery. IEEE J. Sel. Top.

Appl. Earth Obs. Remote Sens. 2015, 8, 224–232. [CrossRef]
261. Tan, K.; Jin, X.; Plaza, A.; Wang, X.; Xiao, L.; Du, P. Automatic Change Detection in High-Resolution Remote Sensing Images by

Using a Multiple Classifier System and Spectral–Spatial Features. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2016, 9, 3439–3451.
[CrossRef]

262. Molin, R.D.; Rosa, R.A.S.; Bayer, F.M.; Pettersson, M.I.; Machado, R. A change detection algorithm for SAR images based on
logistic regression. In Proceedings of the IEEE International Geoscience and Remote Sensing Symposium, Yokohama, Japan,
28 July–2 August 2019.

263. Pacifici, F.; Del Frate, F. Automatic Change Detection in Very High Resolution Images with Pulse-Coupled Neural Networks.
IEEE Geosci. Remote Sens. Lett. 2009, 7, 58–62. [CrossRef]

264. Salmon, B.P.; Olivier, J.C.; Kleynhans, W.; Wessels, K.J.; Van den Bergh, F.; Steenkamp, K.C. The use of a multilayer perceptron
for detecting new human settlements from a time series of MODIS images. Int. J. Appl. Earth Obs. Geoinf. 2011, 13, 873–883.
[CrossRef]

265. Roy, M.; Routaray, D.; Ghosh, S.; Ghosh, A. Ensemble of Multilayer Perceptrons for Change Detection in Remotely Sensed Images.
IEEE Geosci. Remote Sens. Lett. 2014, 11, 49–53. [CrossRef]

266. Zhao, B.; Zhong, Y.; Xia, G.-S.; Zhang, L. Dirichlet-Derived Multiple Topic Scene Classification Model for High Spatial Resolution
Remote Sensing Imagery. IEEE Trans. Geosci. Remote Sens. 2015, 54, 2108–2123. [CrossRef]

267. Lyu, H.; Lu, H.; Mou, L. Learning a Transferable Change Rule from a Recurrent Neural Network for Land Cover Change
Detection. Remote Sens. 2016, 8, 506. [CrossRef]

268. Mou, L.; Bruzzone, L.; Zhu, X.X. Learning Spectral-Spatial-Temporal Features via a Recurrent Convolutional Neural Network for
Change Detection in Multispectral Imagery. IEEE Trans. Geosci. Remote Sens. 2018, 57, 924–935. [CrossRef]

269. Yuan, Q.; Zhang, Q.; Li, J.; Shen, H.; Zhang, L. Hyperspectral Image Denoising Employing a Spatial–Spectral Deep Residual
Convolutional Neural Network. IEEE Trans. Geosci. Remote Sens. 2018, 57, 1205–1218. [CrossRef]

270. Li, T.; Zuo, R.; Xiong, Y.; Peng, Y. Random-drop data augmentation of deep convolutional neural network for mineral pro-
spectivity mapping. Nat. Res. Res. 2021, 30, 27–38. [CrossRef]

271. Zuo, R.; Wang, Z. Effects of Random Negative Training Samples on Mineral Prospectivity Mapping. Nat. Resour. Res. 2020, 29,
3443–3455. [CrossRef]

272. Nykänen, V.; Lahti, I.; Niiranen, T.; Korhonen, K. Receiver operating characteristics (ROC) as validation tool for prospectivity
models—A magmatic Ni–Cu case study from the Central Lapland Greenstone Belt, Northern Finland. Ore Geol. Rev. 2015, 71,
853–860. [CrossRef]

273. Molini, A.B.; Valsesia, D.; Fracastoro, G.; Magli, E. Speckle2Void: Deep Self-Supervised SAR Despeckling with Blind-Spot
Convolutional Neural Networks. IEEE Trans. Geosci. Remote Sens. 2021, 60, 1–17. [CrossRef]

274. Laine, S.; Karras, T.; Lehtinen, J.; Aila, T. High-quality self-supervised deep image denoising. In Proceedings of the International
Conference on Neural Information Processing Systems, Vancouver, BC, Canada, 8–14 December 2019.

http://doi.org/10.1080/01431161.2016.1266104
http://doi.org/10.1109/TSMC.1979.4310076
http://doi.org/10.3390/rs10091459
http://doi.org/10.1109/TGRS.2008.916643
http://doi.org/10.1109/TGRS.2010.2045506
http://doi.org/10.1109/TFUZZ.2013.2249072
http://doi.org/10.1109/LGRS.2013.2275738
http://doi.org/10.1109/TIP.2009.2029593
http://doi.org/10.1016/j.ins.2010.10.016
http://doi.org/10.1016/j.jag.2016.08.010
http://doi.org/10.1080/01431168908903939
http://doi.org/10.1109/JSTARS.2014.2362769
http://doi.org/10.1109/JSTARS.2016.2541678
http://doi.org/10.1109/LGRS.2009.2021780
http://doi.org/10.1016/j.jag.2011.06.007
http://doi.org/10.1109/LGRS.2013.2245855
http://doi.org/10.1109/TGRS.2015.2496185
http://doi.org/10.3390/rs8060506
http://doi.org/10.1109/TGRS.2018.2863224
http://doi.org/10.1109/TGRS.2018.2865197
http://doi.org/10.1007/s11053-020-09742-z
http://doi.org/10.1007/s11053-020-09668-6
http://doi.org/10.1016/j.oregeorev.2014.09.007
http://doi.org/10.1109/TGRS.2021.3065461


Remote Sens. 2022, 14, 6017 43 of 45

275. Liu, Q.; Zhou, H.; Xu, Q.; Liu, X.; Wang, Y. PSGAN: A Generative Adversarial Network for Remote Sensing Image Pan-Sharpening.
IEEE Trans. Geosci. Remote Sens. 2020, 59, 10227–10242. [CrossRef]

276. Pan, H. Cloud removal for remote sensing imagery via spatial attention generative adversarial network. arXiv 2020,
arXiv:2009.13015.

277. Spot. Available online: https://earth.esa.int/eogateway/missions/spot (accessed on 27 September 2022).
278. ERS. Available online: https://earth.esa.int/eogateway/missions/ers (accessed on 27 September 2022).
279. RADARSAT. Available online: https://earth.esa.int/eogateway/missions/radarsat (accessed on 27 September 2022).
280. IRS. Available online: https://earth.esa.int/eogateway/missions/irs-1d (accessed on 27 September 2022).
281. WorldView. Available online: https://earth.esa.int/eogateway/missions/worldview-3 (accessed on 27 September 2022).
282. QuickBird. Available online: https://earth.esa.int/eogateway/catalog/quickbird-full-archive (accessed on 27 September 2022).
283. Pleiades. Available online: https://earth.esa.int/eogateway/catalog/pleiades-esa-archive (accessed on 27 September 2022).
284. AVIRIS. Available online: https://aviris.jpl.nasa.gov/data/free_data.html (accessed on 27 September 2022).
285. Basu, S.; Ganguly, S.; Mukhopadhyay, S.; DiBiano, R.; Karki, M.; Nemani, R. DeepSat: A learning framework for satellite imagery.

In Proceedings of the SIGSPATIAL International Conference on Advances in Geographic Information Systems, Seattle, DC, USA,
3–6 November 2015.

286. Demir, I.; Koperski, K.; Lindenbaum, D.; Pang, G.; Huang, J.; Basu, S.; Hughes, F.; Tuia, D.; Raskar, R. DeepGlobe 2018: A
challenge to parse the earth through satellite images. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition Workshops, Salt Lake City, UT, USA, 18–22 June 2018.

287. Helber, P.; Bischke, B.; Dengel, A.; Borth, D. EuroSAT: A Novel Dataset and Deep Learning Benchmark for Land Use and Land
Cover Classification. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2019, 12, 2217–2226. [CrossRef]

288. Sumbul, G.; Charfuelan, M.; Demir, B.U.M.; Markl, V. Big Earth Net: A large-scale benchmark archive for remote sensing
image understanding. In Proceedings of the IEEE International Geoscience and Remote Sensing Symposium, Yokohama, Japan,
28 July–2 August 2019.

289. Schmitt, M.; Hughes, L.H.; Qiu, C.; Zhu, X.X. SEN12MS—A curated dataset of georeferenced multi-spectral Sentinel-1/2 im-agery
for deep learning and data fusion. arXiv 2019, arXiv:1906.07789.

290. Xu, G.; Fang, Y.; Deng, M.; Sun, G.; Chen, J. Remote Sensing Mapping of Build-Up Land with Noisy Label via Fault-Tolerant
Learning. Remote Sens. 2022, 14, 2263. [CrossRef]

291. ESA World Cover 10 m 2020 v100. Available online: https://doi.org/10.5281/zenodo.5571936 (accessed on 27 September 2022).
292. Karra, K.; Kontgis, C.; Statman-Weil, Z.; Mazzariello, J.C.; Mathis, M.; Brumby, S.P. Global land use/land cover with Sentinel 2

and deep learning. In Proceedings of the IEEE International Geoscience and Remote Sensing Symposium, Brussels, Belgium,
11–16 July 2021.

293. Gong, P.; Liu, H.; Zhang, M.; Li, C.; Wang, J.; Huang, H.; Clinton, N.; Ji, L.; Li, W.; Bai, Y.; et al. Stable classification with limited
sample: Transferring a 30-m resolution sample set collected in 2015 to mapping 10-m resolution global land cover in 2017. Sci.
Bull. 2019, 64, 370–373. [CrossRef]

294. Jun, C.; Ban, Y.; Li, S. Open access to Earth land-cover map. Nature 2014, 514, 434. [CrossRef]
295. Dell’ Acqua, F.; Iannelli, G.C.; Kerekes, J.; Moser, G.; Pierce, L.; Goldoni, E. The IEEE GRSS data and algorithm standard

evaluation (DASE) website: Incrementally building a standardized assessment for algorithm performance. In Proceedings of the
International Geoscience and Remote Sensing Symposium (IGARSS), Fort Worth, TX, USA, 23–28 July 2017.

296. IEEE GRSS Data Fusion Contest. Available online: https://www.grss-ieee.org/community/technical-committees/2022-ieee-
grss-data-fusion-contest/ (accessed on 5 September 2022).

297. Target Detection Blind Test. Available online: http://dirsapps.cis.rit.edu/blindtest/ (accessed on 5 September 2022).
298. Abady, L.; Barni, M.; Garzelli, A.; Tondi, B. GAN generation of synthetic multispectral satellite images. In Proceedings of the SPIE

11533, Image and Signal Processing for Remote Sensing XXVI, Online, 21–25 September 2020.
299. Copernicus Open Access Hub. Available online: https://scihub.copernicus.eu/dhus/#/home (accessed on 5 September 2022).
300. Jiang, K.; Wang, Z.; Yi, P.; Wang, G.; Lu, T.; Jiang, J. Edge-Enhanced GAN for Remote Sensing Image Superresolution. IEEE Trans.

Geosci. Remote Sens. 2019, 57, 5799–5812. [CrossRef]
301. Wang, Y.; Yao, Q.; Kwok, J.; Ni, L.N. Generalizing from a few examples: A survey on few-shot learning. arXiv 2019,

arXiv:1904.05046. [CrossRef]
302. Sellami, A.; Ben Abbes, A.; Barra, V.; Farah, I.R. Fused 3-D spectral-spatial deep neural networks and spectral clustering for

hyperspectral image classification. Pattern Recognit. Lett. 2020, 138, 594–600. [CrossRef]
303. Thyagharajan, K.K.; Vignesh, T. Soft Computing Techniques for Land Use and Land Cover Monitoring with Multispectral Remote

Sensing Images: A Review. Arch. Comput. Methods Eng. 2019, 26, 275–301. [CrossRef]
304. Kwan, C. Methods and challenges using multispectral and hyperspectral images for practical change detection applications.

Information 2019, 10, 353. [CrossRef]

http://doi.org/10.1109/TGRS.2020.3042974
https://earth.esa.int/eogateway/missions/spot
https://earth.esa.int/eogateway/missions/ers
https://earth.esa.int/eogateway/missions/radarsat
https://earth.esa.int/eogateway/missions/irs-1d
https://earth.esa.int/eogateway/missions/worldview-3
https://earth.esa.int/eogateway/catalog/quickbird-full-archive
https://earth.esa.int/eogateway/catalog/pleiades-esa-archive
https://aviris.jpl.nasa.gov/data/free_data.html
http://doi.org/10.1109/JSTARS.2019.2918242
http://doi.org/10.3390/rs14092263
https://doi.org/10.5281/zenodo.5571936
http://doi.org/10.1016/j.scib.2019.03.002
http://doi.org/10.1038/514434c
https://www.grss-ieee.org/community/technical-committees/2022-ieee-grss-data-fusion-contest/
https://www.grss-ieee.org/community/technical-committees/2022-ieee-grss-data-fusion-contest/
http://dirsapps.cis.rit.edu/blindtest/
https://scihub.copernicus.eu/dhus/#/home
http://doi.org/10.1109/TGRS.2019.2902431
http://doi.org/10.1145/3386252
http://doi.org/10.1016/j.patrec.2020.08.020
http://doi.org/10.1007/s11831-017-9239-y
http://doi.org/10.3390/info10110353


Remote Sens. 2022, 14, 6017 44 of 45

305. Singh, P.; Diwakar, M.; Shankar, A.; Shree, R.; Kumar, M. A Review on SAR Image and its Despeckling. Arch. Comput. Methods
Eng. 2021, 28, 4633–4653. [CrossRef]

306. Liu, S.; Wu, G.; Zhang, X.; Zhang, K.; Wang, P.; Li, Y. SAR despeckling via classification-based nonlocal and local sparse
representation. Neurocomputing 2017, 219, 174–185. [CrossRef]

307. Wang, G.; Bo, F.; Chen, X.; Lu, W.; Hu, S.; Fang, J. A collaborative despeckling method for SAR images based on texture
classification. Remote Sens. 2022, 14, 1465. [CrossRef]

308. Choi, H.; Jeong, J. Speckle Noise Reduction Technique for SAR Images Using Statistical Characteristics of Speckle Noise and
Discrete Wavelet Transform. Remote Sens. 2019, 11, 1184. [CrossRef]

309. Dalsasso, E.; Yang, X.; Denis, L.; Tupin, F.; Yang, W. SAR Image Despeckling by Deep Neural Networks: From a Pre-Trained
Model to an End-to-End Training Strategy. Remote Sens. 2020, 12, 2636. [CrossRef]

310. Mullissa, A.G.; Marcos, D.; Tuia, D.; Herold, M.; Reiche, J. DeSpeckNet: Generalizing deep learning-based SAR image despeckling.
IEEE Trans. Geosci. Remote Sens. 2022, 60, 5200315. [CrossRef]

311. Zhao, Y.; Liu, J.G.; Zhang, B.; Hong, W.; Wu, Y.-R. Adaptive Total Variation Regularization Based SAR Image Despeckling and
Despeckling Evaluation Index. IEEE Trans. Geosci. Remote Sens. 2015, 53, 2765–2774. [CrossRef]

312. Muhadi, N.A.; Abdullah, A.F.; Bejo, S.K.; Mahadi, M.R.; Mijic, A. The use of LiDAR-derived DEM in flood applications: A Review.
Remote Sens. 2020, 12, 2308. [CrossRef]

313. Rasti, B.; Ghamisi, P.; Plaza, J.; Plaza, A. Fusion of hyperspectral and LiDAR data using sparse and low-rank component analysis.
IEEE Trans. Geosci. Remote Sens. 2017, 55, 6354–6365. [CrossRef]

314. Zhou, L.; Geng, J.; Jiang, W. Joint classification of hyperspectral and LiDAR data based on position-channel cooperative at-tention
network. Remote Sens. 2022, 14, 3247. [CrossRef]

315. Luo, S.; Wang, C.; Xi, X.; Zeng, H.; Li, D.; Xia, S.; Wang, P. Fusion of airborne discrete-return LiDAR and hyperspectral data for
land cover classification. Remote Sens. 2016, 8, 3. [CrossRef]

316. Millard, K.; Richardson, M. Wetland mapping with LiDAR derivatives, SAR polarimetric decompositions, and LiDAR–SAR
fusion using a random forest classifier. Can. J. Remote Sens. 2013, 39, 290–307. [CrossRef]

317. Pourshamsi, M.; Garcia, M.; Lavalle, M.; Balzter, H. A Machine-Learning Approach to PolInSAR and LiDAR Data Fusion for
Improved Tropical Forest Canopy Height Estimation Using NASA AfriSAR Campaign Data. IEEE J. Sel. Top. Appl. Earth Obs.
Remote Sens. 2018, 11, 3453–3463. [CrossRef]

318. Seo, D.K.; Kim, Y.H.; Eo, Y.D.; Lee, M.H.; Park, W.Y. Fusion of SAR and Multispectral Images Using Random Forest Regression
for Change Detection. ISPRS Int. J. Geo-Inf. 2018, 7, 401. [CrossRef]

319. Zhang, H.; Shen, H.; Yuan, Q.; Guan, X. Multispectral and SAR image fusion based on Laplacian pyramid and sparse representa-
tion. Remote Sens. 2022, 14, 870. [CrossRef]

320. Hu, J.; Hong, D.; Wang, Y.; Zhu, X.X. A Comparative Review of Manifold Learning Techniques for Hyperspectral and Polarimetric
SAR Image Fusion. Remote Sens. 2019, 11, 681. [CrossRef]

321. Palsson, F.; Sveinsson, J.R.; Ulfarsson, M.O. Multispectral and Hyperspectral Image Fusion Using a 3-D-Convolutional Neural
Network. IEEE Geosci. Remote Sens. Lett. 2017, 14, 639–643. [CrossRef]

322. Sun, W.; Ren, K.; Meng, X.; Xiao, C.; Yang, G.; Peng, J. A Band Divide-and-Conquer Multispectral and Hyperspectral Image
Fusion Method. IEEE Trans. Geosci. Remote Sens. 2022, 60, 1–13. [CrossRef]

323. Ghamisi, P.; Rasti, B.; Yokoya, N.; Wang, Q.M.; Hofle, B.; Bruzzone, L.; Bovolo, F.; Chi, M.M.; Anders, K.; Gloaguen, R.; et al.
Multisource and multitemporal data fusion in remote sensing a comprehensive review of the state of the art. IEEE Geosci. Remote
Sens. Mag. 2019, 7, 6–39. [CrossRef]

324. Dalla Mura, M.; Prasad, S.; Pacifici, F.; Gamba, P.; Chanussot, J.; Benediktsson, J.A. Challenges and opportunities of multi-modality
and data fusion in remote sensing. Proc. IEEE 2015, 103, 1585–1601. [CrossRef]

325. Kahraman, S.; Bacher, R. A comprehensive review of hyperspectral data fusion with LiDAR and SAR data. Ann. Rev. Contr. 2021,
51, 236–253. [CrossRef]

326. Vivone, G.; Alparone, L.; Chanussot, J.; Mura, M.D.; Garzelli, A.; Licciardi, G.A.; Restaino, R.; Wald, L. A Critical Comparison
Among Pansharpening Algorithms. IEEE Trans. Geosci. Remote Sens. 2015, 53, 2565–2586. [CrossRef]

327. Kawale, J.; Liess, S.; Kumar, A.; Steinbach, M.; Snyder, P.; Kumar, V.; Ganguly, A.R.; Samatova, N.F.; Semazzi, F. A graph-based
approach to find teleconnections in climate data. Stat. Anal. Data Min. ASA Data Sci. J. 2013, 6, 158–179. [CrossRef]

328. Yang, L.; Shami, A. On hyperparameter optimization of machine learning algorithms: Theory and practice. Neurocomputing 2020,
415, 295–316. [CrossRef]

329. Yu, T.; Zhu, H. Hyper-parameter optimization: A review of algorithms and applications. arXiv 2020, arXiv:2003.05689.
330. Hernández, A.M.; Nieuwenhuyse, I.V.; Rojas-Gonzalez, S. A survey on multi-objective hyperparameter optimization algo-rithms

for machine learning. arXiv 2021, arXiv:2111.13755.
331. Kakogeorgiou, I.; Karantzalos, K. Evaluating explainable artificial intelligence methods for multi-label deep learning classification

tasks in remote sensing. Int. J. Appl. Earth Obs. Geoinf. 2021, 103, 102520. [CrossRef]

http://doi.org/10.1007/s11831-021-09548-z
http://doi.org/10.1016/j.neucom.2016.09.028
http://doi.org/10.3390/rs14061465
http://doi.org/10.3390/rs11101184
http://doi.org/10.3390/rs12162636
http://doi.org/10.1109/TGRS.2020.3042694
http://doi.org/10.1109/TGRS.2014.2364525
http://doi.org/10.3390/rs12142308
http://doi.org/10.1109/TGRS.2017.2726901
http://doi.org/10.3390/rs14143247
http://doi.org/10.3390/rs8010003
http://doi.org/10.5589/m13-038
http://doi.org/10.1109/JSTARS.2018.2868119
http://doi.org/10.3390/ijgi7100401
http://doi.org/10.3390/rs14040870
http://doi.org/10.3390/rs11060681
http://doi.org/10.1109/LGRS.2017.2668299
http://doi.org/10.1109/TGRS.2020.3046321
http://doi.org/10.1109/MGRS.2018.2890023
http://doi.org/10.1109/JPROC.2015.2462751
http://doi.org/10.1016/j.arcontrol.2021.03.003
http://doi.org/10.1109/TGRS.2014.2361734
http://doi.org/10.1002/sam.11181
http://doi.org/10.1016/j.neucom.2020.07.061
http://doi.org/10.1016/j.jag.2021.102520


Remote Sens. 2022, 14, 6017 45 of 45

332. Zeiler, M.D.; Fergus, R. Visualizing and understanding convolutional networks. In Proceedings of the European Conference of
Computer Vision, Zurich, Switzerland, 5–12 September 2014.

333. Selvaraju, R.R.; Cogswell, M.; Das, A.; Vedantam, R.; Parikh, D.; Batra, D. Grad-CAM: Visual explanations from deep networks
via gradient-based localization. In Proceedings of the IEEE International Conference on Computer Vision (ICCV), Venice, Italy,
22–29 October 2017.

334. Ribeiro, M.T.; Singh, S.; Guestrin, C. “Why Should I Trust You?”: Explaining the Predictions of Any Classifier; Association for
Computing Machinery: New York, NY, USA, 2016.

335. Abdollahi, A.; Pradhan, B. Urban Vegetation Mapping from Aerial Imagery Using Explainable AI (XAI). Sensors 2021, 21, 4738.
[CrossRef]

336. Temenos, A.; Tzortzis, I.N.; Kaselimi, M.; Rallis, I.; Doulamis, A.; Doulamis, N. Novel Insights in Spatial Epidemiology Utilizing
Explainable AI (XAI) and Remote Sensing. Remote Sens. 2022, 14, 3074. [CrossRef]

337. Gevaert, C.M. Explainable AI for earth observation: A review including societal and regulatory perspectives. Int. J. Appl. Earth
Obs. Geoinf. ITC J. 2022, 112, 102869. [CrossRef]

338. Vassilakis, E.; Konsolaki, A. Quantification of cave geomorphological characteristics based on multi source point cloud data
interoperability. Zeitschr. Geomorphol. 2022, 63, 265–277. [CrossRef]

339. Qi, C.R.; Su, H.; Mo, K.; Guibas, L.J. PointNet: Deep learning on point sets for 3D classification and segmentation. In Proceedings
of the IEEE International Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017.

340. Aoki, Y.; Goforth, H.; Srivatsan, R.A.; Lucey, S. PointNetLK: Robust & efficient point cloud registration using PointNet. In Proceed-
ings of the IEEE International Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June 2019.

341. Ding, L.; Cai, Y.; Zhang, J.; Gao, Y.; Wang, J.; Zheng, C.; Lei, L.; Ma, A. PointNet: Learning point representation for high-resolution
remote sensing imagery land-cover classification. In Proceedings of the IEEE International Geoscience and Remote Sensing
Symposium, Brussels, Belgium, 11–16 July 2021.

342. Hong, D.; Gao, L.; Yokoya, N.; Yao, J.; Chanussot, J.; Du, Q.; Zhang, B. More Diverse Means Better: Multimodal Deep Learning
Meets Remote-Sensing Imagery Classification. IEEE Trans. Geosci. Remote Sens. 2020, 59, 4340–4354. [CrossRef]

343. Audebert, N.; Le Saux, B.; Lefèvre, S. Beyond RGB: Very high resolution urban remote sensing with multimodal deep networks.
ISPRS J. Photogramm. Remote Sens. 2018, 140, 20–32. [CrossRef]

344. Badrinarayanan, V.; Kendall, A.; Cipolla, R. SegNet: A deep convolutional encoder-decoder architecture for image segmentation.
IEEE Trans. Pattern Anal. Mach. Intell. 2017, 39, 2481–2495. [CrossRef]

345. Hazirbas, C.; Ma, L.; Domokos, C.; Cremers, D. FuseNet: Incorporating depth into semantic segmentation via fusion-based cnn
architecture. In Proceedings of the Asian Conference on Computer Vision, Taipei, Taiwan, 20–24 November 2016.

346. Zhu, X.X.; Tuia, D.; Mou, L.; Xia, G.-S.; Zhang, L.; Xu, F.; Fraundorfer, F. Deep Learning in Remote Sensing: A Comprehensive
Review and List of Resources. IEEE Geosci. Remote Sens. Mag. 2017, 5, 8–36. [CrossRef]

347. Zhang, Q.; Zhang, M.; Chen, T.; Sun, Z.; Ma, Y.; Yu, B. Recent advances in convolutional neural network acceleration. Neurocom-
puting 2019, 323, 37–51. [CrossRef]

348. Mathieu, M.; Henaff, M.; Le Cun, Y. Fast training of convolutional networks through FFTs. arXiv 2013, arXiv:1312.5851.
349. Jaderberg, M.; Vedaldi, A.; Zisserman, A. Speeding up convolutional neural networks with low rank expansions. arXiv 2014,

arXiv:1405.3866.

http://doi.org/10.3390/s21144738
http://doi.org/10.3390/rs14133074
http://doi.org/10.1016/j.jag.2022.102869
http://doi.org/10.1127/zfg/2021/0708
http://doi.org/10.1109/TGRS.2020.3016820
http://doi.org/10.1016/j.isprsjprs.2017.11.011
http://doi.org/10.1109/TPAMI.2016.2644615
http://doi.org/10.1109/MGRS.2017.2762307
http://doi.org/10.1016/j.neucom.2018.09.038

	Introduction 
	Computer Vision and Pattern Recognition Approaches 
	Computer Vision and Pattern Recognition prior Deep Learning 
	Descriptors 
	Active Contours 
	Markov Random Fields 
	Superpixels 
	Clustering 
	Decision Trees and Random Forests 
	Support Vector Machines 
	Linear and Logistic Regression 
	Artificial Neural Networks 

	Deep Learning-Based Computer Vision and Pattern Recognition 
	Convolutional Neural Networks 
	Recurrent Neural Networks 
	Deep Generative Models and GANs 


	Geoscience-Related Applications of Computer Vision and Pattern Recognition 
	Land Cover Mapping 
	Target Detection 
	Pattern Mining in Geoscience Imaging Data 
	Boundary Extraction 
	Change Detection 
	Image Preprocessing 

	Discussion 
	Geoscience-Related Imaging Data Availability 
	Inherent Issues in Geoscience Imaging Data 

	Conclusions 
	References

