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Abstract: Since the middle of the 20th century, the peak snowpack in the Upper Rio Grande (URG)
basin of United States has been decreasing. Warming influences snowpack characteristics such as
snow cover, snow depth, and Snow Water Equivalent (SWE), which can affect runoff quantity and
timing in snowmelt runoff-dominated river systems of the URG basin. The purpose of this research
is to investigate which variables are most important in predicting naturalized streamflow and to
explore variables’ relative importance for streamflow dynamics. We use long term remote sensing
data for hydrologic analysis and deploy R algorithm for data processing and synthesizing. The data is
analyzed on a monthly and baseflow/runoff basis for nineteen sub-watersheds in the URG. Variable
importance and influence on naturalized streamflow is identified using linear standard regression
with multi-model inference based on the second-order Akaike information criterion (AICc) coupled
with the intercept only model. Five predictor variables: temperature, precipitation, soil moisture,
sublimation, and SWE are identified in order of relative importance for streamflow prediction. The
most influential variables for streamflow prediction vary temporally between baseflow and runoff
conditions and spatially by watershed and mountain range. Despite the importance of temperature
on streamflow, it is not consistently the most important factor in streamflow prediction across time
and space. The dominance of precipitation over streamflow is more obvious during baseflow. The
impact of precipitation, SWE, sublimation, and minimum temperature on streamflow is evident
during the runoff season, but the results vary for different sub-watersheds. The association between
sublimation and streamflow is positive in the runoff season, which may relate to temperature and
requires further research. This research sheds light on the primary drivers and their spatial and
temporal variability on streamflow generation. This work is critical for predicting how warming
temperatures will impact water supplies serving society and ecosystems in a changing climate.

Keywords: snowmelt runoff; second-order Akaike information criterion (AICc); streamflow dynam-
ics; remotely sensed data; Upper Rio Grande

1. Introduction

The Rio Grande is deemed one of the most threatened rivers of the Western United
States [1] and observed snowpack in the Upper Rio Grande (URG) basin is not producing
the expected runoff per unit of snowpack volume [2]. Various sources have already cited
drying of the URG [3,4]. The Rio Grande River is the main source of irrigation and municipal
water within the URG basin [5]. It supplies drinking water to more than 6 million people
and irrigation water to 2 million acres of land [6].

The purpose of this study is to examine which mechanisms are most influential on
streamflow dynamics in sub-watersheds of the URG basin. Increasing temperatures and
decreasing snowpack from heightened snow albedo are deemed as the main drivers reduc-
ing streamflow. Regional climate change in the Southwestern US will likely continue [7]
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to affect streamflow dynamics, highlighting the need to better understand streamflow
variables’ influences in the region.

Understanding which variables control streamflow and when they are important is
essential for accurately predicting streamflow. Rather than prediction, this study determines
the relative importance of variables known to influence naturalized streamflow dynamics.
We expect their relative importance to vary temporally and spatially between watersheds.

This study explores the following research questions: (1) which are the most influential
variables for streamflow dynamics? (2) What is the rank of each candidate variable as
relative importance? Finally, (3) how does this relative importance change over the year for
different watersheds? Using multiple linear regression models, we employed multimodal
inference (MMI) based on the second-order Akaike Information Criterion (AICc) and
computed model-averaged estimates to answer these questions.

Previous studies explore various established approaches to evaluate variable influence
in estimating runoff [2,5,8–18]; however, very few of these studies have addressed the dy-
namic nature of the influences from a statistical approach. Consequently, there is relatively
little information available about the variability of variable influence on streamflow at a
catchment scale, but it is also critical to understand the dynamics of parameters’ influence
on runoff when focusing on improving prediction accuracy. Many studies overlook this
part while selecting models or assessing performances. We found no study exclusively
dedicated to exploring catchment-based variable importance. Thus, the novelty of this
article is that it first advanced this investigation as an inquiry into variable importance,
ranked them, and analyzed the dynamics of influences on streamflow in the study area.
Exploring the region-specific watershed parameters, the article produced a large amount of
hydrologic information that can support the forecasting effort by filling out the information
gap in the literature regarding variable importance.

1.1. Estimating Streamflow: The Response Variable

The Upper Rio Grande (URG) basin has been experiencing downward trends in peak
snowpack from 1951 to 2015, but a consequential long-term decline was not observed in the
streamflow record [2]. Streamflow has slightly declined in the snowmelt runoff season from
April–July, but small increases in precipitation offset this trend in streamflow [2]. However,
Lehner at al. (2017) showed a declining trend in the runoff ratio from the 1980s to recent
date [8]. They also explained that very low runoff ratios are more likely to be associated
with above-normal temperatures [8]. This is an indication of further runoff declination
under a continuously warming climate.

Different modeling groups use different variables and techniques when estimating
runoff. NRCS uses statistical models that are based on multiple linear regressions, fitting
a mathematical relationship between predictor variables and target variables, expressed
through equations [9]. NRCS uses several predictor variables for the regression model used
to predict seasonal streamflow volume [9,10]. Generally, these predictor variables are Snow
Water Equivalent (SWE), precipitation, and antecedent streamflow [5,10]. Other variables,
such as temperature, groundwater levels, and soil water content, are also considered [5].
Permafrost conditions and snow cover distributions are critical for the ecohydrological
process of watershed, which is substantially connected to the water supply system of
the region. Studying several variables such as soil temperature, active-layer thickness
(alt), vegetation conditions, etc., at a landscape scale, Zhang et al. found that the factors
influencing permafrost thaw spatially and seasonally vary. These parameters are sensitive
to the warming climate and have long-term hydrological and ecological implications [11].
Seasonal and temporal variation, along with the degrading pattern of permafrost, can
influence runoff quantity and timing by influencing water release that contributes to the
runoff pattern of the region.

However, persistent prediction errors were observed for spring and summer runoff
in several watersheds in the Southwestern US [5]. These errors are mostly driven by
decadal precipitation trends and the effect of increasing temperatures [12]. Inclusion of
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seasonal temperature forecasts from the Global Circulation Model (GCM) can sufficiently
reduce forecast errors in the snowmelt-driven streamflow [12]. Likewise, the UA SWE tool
(University of Arizona Snow Water Equivalent tool) provides better accuracy to estimate
SWE because it considers projected temperature and precipitation along with the station-
based snow depth and SWE observed in various sites [13].

The active radar-based sensors can play a significant role in monitoring variables’
variability in influencing the freeze–thaw of snow cover. Radar remote sensing has powerful
applications, such as synthetic aperture radar (SAR), that are adequately able to capture and
monitor the spatial and temporal heterogeneity of the thawing pattern of permafrost [14].
Touzi’s (2006) new scattering vector model allows a polarization basis invariant for the
representation of coherent target scattering, which is promising for wetland assessment and
classification [15]. Microwave radar is considered another reliable tool for monitoring snow
cover variability because it has an ability to address the dielectric properties of snow [16].

The advent of novel techniques in the domain of optical remote sensing (ORS) has
enriched its ability to map snow cover and permafrost conditions; ORS is now capable
of addressing the spatial and temporal variability of snow factors [14]. Theia Snow col-
lection routinely generates some high-resolution maps where snow cover is accurately
detected through Sentinel-2 and Landsat-8 observations. Theia Snow products have been
successfully applied for the evaluation of MODIS snow products; Gascoin (2019) discussed
its potential applications in permafrost distribution modeling, hydrologic modeling, and
spatial modeling of ecosystems in mountain regions [17]. However, as an optical-based
observation system, the Theia Snow collection can’t always adequately define high spatial
variability of snowpack properties, because optical sensors (e.g., MODIS) can’t capture
snow cover below the canopy. Kostsfinov et al., (2019) developed a lidar-based method to
detect snow cover under the canopy by investigating fractional snow cover areas [18].

1.2. The Predictor Variables

This study investigates various watershed factors affecting streamflow dynamics
during runoff in a warming climate. These eight non-mutually exclusive variables include
warming temperature, snow cover, snow depth, snow water equivalent, snow albedo,
precipitation, soil moisture, and sublimation.

Decreases in snowpack in the Southwestern United States (US) are coupled with
significant upward trends in temperature. The entire Southwest has been experiencing
higher than average temperatures (i.e., 2 ◦F warmer than the long-term average in some
areas) [19]. Warming can influence snowpack characteristics such as snow cover, snow
depth, and Snow Water Equivalent (SWE), which can consequently impact runoff quantity
and timing in snowmelt runoff-dominated river systems of the URG basin [20]. Snow cover
is one of the key drivers that influences water supplies in the snowmelt-dominated river
system, and mapping snow cover is thereby critical for understanding the snowmelt runoff
hydrology of the catchment [18]. Snow cover is affected by climate change; however, it also
can affect the climate. Unlike other darker surfaces, the whiteness of snow reflects solar
radiation back to the space, absorbing a small portion (10–20%) of energy [21]. That means,
more snow cover reflects more energy back to the space, cooling the Earth’s surface, while
less snow cover reflects less energy and heat up to the surface, absorbing more energy.
Thus, snow cover influences the heating and cooling system of the Earth’s surface; spatial
distribution of snow cover is quantified by snow depth [22].

SWE is considered one of the critical factors used to enhance the prediction accuracy
of snowmelt runoff and streamflow forecasting [23,24] because the spatial variability
of SWE can largely influence the timing and amount of snowmelt runoff delivery to a
watershed [25]. Taking care of the variability of SWE in a hydrologic model can improve
accuracy in simulating snowmelt runoff dynamics.

Increasing desert dust changes snow albedo by allowing more absorption of solar
radiation, which accelerates snowmelt rates and eventually shortens the duration of snow
cover [26,27]. Changes in snow albedo and increasing temperature can facilitate more
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absorption of latent heat to the snowpack that triggers the rate of sublimation [28], which
eventually causes snowpack reduction [29]. Earlier runoff occurs as a consequence, result-
ing in reduced water supplies post-runoff [26,27,30].

Reduced snowfall and simultaneously increased rainfall are a plausible cause of
snowpack reduction, later affecting estimated runoff volume [2]. Soil moisture is also
considered an important factor for streamflow dynamics, contributing moisture from
snowmelt runoff and precipitation [31]. Lapp et al. (2005) anticipated that increased
sublimation due to the upward trend in temperature and lower snow albedo from increased
dust are the contributing factors to snowpack reduction, affecting runoff volume in the
URG basin [28,29].

2. Materials and Methods
2.1. Study Area

The Upper Rio Grande basin (Figure 1A) is located on the border of Southern Col-
orado and Northern New Mexico, USA. Nineteen sub-watersheds are distributed among
3 mountain groups: The Southern San Juan, The Central Sangre De Cristo, and The South-
ern Sangre De Cristo. In the following Figure 1, the ESRI’s ‘USA Detail Streams’ layer [32]
was used to show the detailed rivers and streams. The Rio Grande flows from its source,
the San Juan Mountains, and runs towards lower elevation to the southeast (Figure 1B).
Many watersheds of the basin are intermittent by nature, and the flow varies accordingly
(Appendix B). Del Norte, Rio Chama, and Conejos watersheds have the higher streamflow
volume recorded through the year; all these three watersheds are located in the Southern
San Juan mountain range.
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Figure 1. (A) Study Region: The study watersheds and streamlines, (B) Elevation Map: The URG basin.

The nineteen sub-watersheds are delineated using existing USGS gauging stations
and digital Elevation Models (DEM) (Table 1). To comprehensively analyze watershed
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variables, all the components’ underlying data must be acquired. We could acquire com-
plete information from the sources cited (Table 2) to adequately analyze the selected
19 watersheds. Elevation data are extracted using ArcGIS 10.0 [33]; DEMs are downloaded
from the National Elevation Dataset [34], produced and distributed by the USGS [35].

Table 1. Nineteen sub-watersheds in the URG basin and their associated USGS gauging station
number, basin area, and elevation range.

USGS
Gauging Station Basin Area (sq-km) Elevation

Range (m.a.s.l)

Alamosa 08236000 274 2624–4036

Conejos 08246500 729 2524–4005

Costilla Creek 08255500 566 2409–3941

Culebra 08250000 649 2428–4265

Del Norte 08220000 3396 2436–4222

Embudo Creek 08279000 828 1787–3912

La Jara 08238000 266 2464–3632

Los Pinos 08248000 395 2454–3716

Red River below Fish
Hatchery near Questa 08266820 290 2276–3988

Rio Chama below el
Vado dam 08285500 1222 2159–3886

Rio Hondo 08267500 96 2349–3992

Rio Lucero 08271000 43 2472–3976

Rio Pueblo de Taos 08269000 150 2262–3892

Saguache Creek 08227000 1340 2448–4229

San Antonio-Ortiz 08247500 298 2437–3327

Santa Cruz 08291000 239 1974–3972

Santa Fe River 08316000 47 2368–3757

Trinchera 08240500 137 2601–4113

Ute Creek 08242500 104 2459–4351

Table 2. Variables used in the study and their respective data format and sources.

Variables Type of Data Unit Source/Organization

Snow-water
Equivalent (SWE) Raster: monthly mean Kg/m2

Goddard Earth Sciences Data and Information
Services Center, or GES DISC—National

Aeronautics and Space Administration (NASA) [36]

Snow cover Raster: monthly mean Fraction
Moderate Resolution Imaging Spectroradiometer

(MODIS)—National Aeronautics and Space
Administration (NASA) [37]

Temperature Raster: monthly mean
and minimum Celsius (◦C) Parameter-elevation Regression on

Independent Slopes Model (PRISM) [38]

Precipitation Raster: monthly mean mm Parameter-elevation Regression on
Independent Slopes Model (PRISM) [38]

Sublimation Raster: monthly Watt/m2
Goddard Earth Sciences Data and Information

Services Center, or GES DISC—National Aeronautics
and Space Administration (NASA) [39,40]

Naturalized
Streamflow Hydrograph Monthly Volume Ac-ft Natural Resources Conservation Service (NRCS) [41]
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Table 2. Cont.

Variables Type of Data Unit Source/Organization

Soil Moisture Raster: monthly Kg/m2 Center for Earth and Environmental Studies,
Texas A & M International University [39]

Snow Depth Raster: monthly Meter (m)
Goddard Earth Sciences Data and Information

Services Center, or GES DISC—National Aeronautics
and Space Administration (NASA) [39,40]

Snow Albedo Raster Monthly %
Goddard Earth Sciences Data and Information

Services Center, or GES DISC—National Aeronautics
and Space Administration (NASA) [39,42]

Stream Layer Feature N/A ESRI—Environmental Systems Research Institute [32]

Basin Boundary Feature N/A USDA Southwest Climate Hub,
Jornada Experimental Range (JER) [43]

2.2. Data Description

Eight predictor variables are considered in this study: temperature, SWE, snow cover,
snow depth, snow albedo, precipitation, soil moisture, and sublimation. We collected
monthly time step predictor and response variable data from various sources (Table 2) for a
39-year period (August 1980 to July 2019) for 19 sub-watersheds of the URG basin.

Data Processing

This study deploys R studio [44] for data processing and statistical analysis. We chose to
use R to clip raster data for its ability to incorporate watershed border cells, a feature which
ArcMap lacks (Figure 2). For each sub-watershed, we disaggregated original monthly raster
cells to 30 × 30 m cells to be clipped to sub-watershed boundaries. Monthly responses for
the sub-watersheds are calculated as the average of the disaggregated pixels; centroids were
within the watershed boundary.
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We used NRCS-adjusted naturalized streamflow data (monthly volume) in the analy-
ses (Appendix A); the naturalized streamflow occasionally has some negative flow values.
The negative values are a result of the naturalization process that NRCS uses for their
streamflow datasets. The basins have significant regulation though reservoir storage or
direct diversion, and NRCS adjusted the volume observed at the stream gage to account
for this regulation when the data are available. Unfortunately, not all extractions accounted
for lack of precision. This can lead to negative values in some cases during very dry
years or low flow months. The streamflow values should be either zero or positive and
these negative values are the error of the system. This error especially occurs in some
cases during a very dry year period or low flow period. Moreover, most of our nineteen
watersheds are intermittent by nature (Appendix A) [45,46]. Therefore, we treated these
negative streamflow values as zero in our analyses.

2.3. AICcmodavg’ Package and Second-Order Akaike Information Criterion (AICc)

The ‘AICcmodavg’ package uses applications for model selection and multimodal
inference (classic model averaging) for various types of models based on different infor-
mation criteria i.e., Akaike information criterion (AIC), second-order AIC (AICc), QAIC,
QAICc, and BIC (Bayesian). It has certain types of goodness-of-fit statistics; the package also
includes features to compute relative variable importance, evidence ratios, and confidence
sets for the top model [47,48].

AICc is particularly suitable for assessing relative variable importance in candidate
models [47,48]. AICc is a modified version of the more well-known AIC that is adjusted for
small sample size (>~30) [49]. Unlike Bayesian Information Criteria (BIC), AICc does not
assume that the “true” model exists in the candidate model set [50]. Following Cade (2015),
this method standardizes the predictor variables and streamflow values prior to performing
regressions [51]. This changes the interpretation of the regression coefficients; for example,
a predictor variable with a standardized regression coefficient of 0.5 implies that an increase
in the variable by one standard deviation would result in an increase in streamflow by
0.5 standard deviations. This enables AICc-weighted model averaging, but interpretations
must be informed by acknowledging the distributional differences over time. For example,
in the Rio Chama sub-watershed, one standard deviation of streamflow in January is
1952-acre feet and increases to 59,117-acre feet in May, while the corresponding standard
deviations of minimum temperature are 2.02 and 0.976 degrees Celsius, respectively.

2.4. Analytical Procedure

Data for each variable are proportioned into the months of the year for each year on
record, so that each variable is categorized by a given month from 1980 to 2020. We first
determined the collinearity of the eight collected variables through Pearson’s correlation
coefficient to retain variables that are not collinear. Five predictor variables are retained for
monthly and annual response analyses. These predictor variables are sublimation, SWE,
soil moisture, minimum temperature, and precipitation.

Next, Pearson’s correlation coefficients are calculated between streamflow and the
retained variables for each month of the year to observe relationship changes over the year.
For the annual responses, we use the operational water year which begins in August and
ends in July of the next year. Linear regression analyses are conducted at monthly and
annual base flow and runoff period temporal scales for each sub-watershed. Base flow is
from August to February and runoff is from March to July.

Rather than developing a different conceptual model for each sub-watershed and
temporal scale, we construct a candidate model set of all possible combinations of the five
variables, yielding 25 − 1 = 31 possible models for each sub-watershed. We then examined
each temporal scale combination for each sub-watershed using AICc-based multimodal
inferences to determine variable importance. In addition to the 31 possible models, we
also include an intercept-only model to account for model uncertainty. After fitting all
models in each model set, we rank them by order of increasing AICc. In cases where the
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intercept-only model is within two AICc units of the best fitting model we conclude that
none of the predictor models naturalized streamflow effectively. When the intercept-only
model is not within two AICc units of the best-fitting model, we use the ‘AICcmodavg’
package to compute AICc-weighted model-averaged estimates of each predictor [36,37].

AICc cannot accurately assess model uncertainty when there is multicollinearity
among the predictor variables [51]. To account for this, we also assess bivariate Pearson
correlations between variables in each model set and remove one of the variables in cases
where the correlation was greater than ±0.4, resulting in a smaller number of candidate
variables and therefore a smaller candidate model set. It is necessary to implement a
ranking method to decide which variable to remove in each case where correlation exceeded
the ±0.4 threshold. Since we observed that different rankings changed the results (an
interesting finding on its own), we conclude that limiting the process to a single ranked
set of variables would reveal only a part of the entire picture. Therefore, we repeated
the process for the 5!/(5 − 5)! = 120 permutations of different possible rankings of the
five variables, calculating the AICc-weighted model-averaged estimates for each of the
120 possible orders to accommodate all the possible rankings. We then averaged over the
120 permutations to produce an overall model-averaged estimate. This analytical strategy
has never been documented as an approach to explore variable influence in watersheds.
Following is the procedural flowchart (Figure 3) for the study.
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3. Results

Of the eight initial variables, five noncollinear variables were initially selected, and
then the study investigated how these variables affect normalized streamflow in 19 sub-
watersheds on a monthly and seasonal basis. Our results indicate that several variables are
significantly associated with naturalized streamflow in the Upper Rio Grande basin; how-
ever, the association varies both temporally and spatially. Temperature and precipitation
are the most influential factors affecting naturalized streamflow in the URG sub-watersheds.
The combination of variables impacting streamflow is not consistent, varying over time
and by sub-watershed.

3.1. Predictor and Response Variable Colinearity

The study calculated Pearson’s coefficients of correlation (r) among all the variables for
each sub-watershed (Correlation Table: Supplementary File). Albedo and snow cover were
perfectly correlated. Likewise, snow depth and SWE were perfectly correlated. Among the
eight candidate variables, the results presented that snow cover, snow depth, albedo, and
SWE have a very high degree of correlation with each other (usually >0.80). We should use no
more than one of these four variables; the authors chose to retain SWE and eliminated the
other three variables, which reduced candidate predictor variables to five. All other remaining
variables had lower to moderate (0 ≤ r ≤ 0.59) correlation values [52] for different watersheds.
Temperature tends to be highly correlated with both albedo and snow cover. Thus, five
non-collinear predictor variables—temperature, precipitation, soil moisture, sublimation, and
Snow Water Equivalent (SWE) were selected for further analyses.

3.2. Predictor Variable Ranking Model

We evaluated Pearson’s correlation coefficients between streamflow and five predictor
variables to identify which variables are strongly correlated with monthly streamflow
volumes (Appendix C). The results indicate that soil moisture has the strongest correlation
with streamflow in most sub-watersheds within the URG basin. Precipitation and SWE are
the next most influential variables that have strong correlations with streamflow, though
this relationship varies spatially between sub-watersheds.

We retain important variables for streamflow through AICc-weighted standardized
parameter estimates and model averaging parameter estimates. The equations are gen-
erated through Multiple Linear Regression (MLR). The higher the absolute value of the
standardized regression coefficients, the stronger the effect a predictor has on streamflow.
Figures 4 and 5 illustrate parameter estimates by month with two distinct priority rankings.
The initial priority ranking is: (1) Precipitation (PPT), (2) Soil Moisture, (3) Sublimation,
(4) SWE, (5) Minimum Temperature. The second priority ranking is: (1) Soil Moisture,
(2) Precipitation, (3) Minimum Temperature, (4) SWE, and (5) Sublimation. The rank is
based on the likelihood of the effect; we also change the rank to evaluate the variations in
results for different ranks. If a variable is included in the candidate model sets, it appears
in the plots, if only as a faint line at zero. If there is no bar/line, the predictor is removed
either because it has too many zeros (sublimation and SWE in warmer months), it is highly
correlated with a more prioritized predictor variable, or it is from a month and basin where
the intercept-only model was a top performer. The top row is the top ranked variable; the
second row is the second ranked variable, etc.
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Figure 4. AICc-weighted standardized parameter estimates based on ± 0.4 bivariate correlation cut-off, adjusted for intercept-only model. The priority ranking is:
1. Precipitation, 2. Soil Moisture, 3. Sublimation, 4. SWE, and 5. Minimum Temperature.
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Figure 5. AICc-weighted standardized parameter estimates based on ± 0.4 bivariate correlation cut off, adjusted for intercept-only model. The priority ranking is:
1. Soil Moisture, 2. Precipitation, 3. Minimum Temperature, 4. SWE, and 5. Sublimation.
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Soil moisture is the least important variable for each sub-watershed (Figures 4 and 5).
By prioritizing soil moisture over precipitation, the large positive effect of precipitation
on streamflow from August to November is masked. The magnitude of the precipitation
effect in the initial priority ranking is much larger than the magnitude of soil moisture in
the second ranking, implying that precipitation has a stronger effect on streamflow than
soil moisture does.

Intercept-Only Model

It is useful to identify which month(s) and watershed(s) cannot be effectively mod-
eled by the candidate variables. Figure 6 shows “intercept-only” month and watershed
combinations where the intercept-only model (flat line regression model) is among the
best-fitting models.

Figure 6. “Intercept-only” model for month and watershed combinations.

The intercept-only model is never among the best fitting models for the Santa Fe River,
Embudo, Del Norte, and Chama sub-watersheds. However, for the La Jara sub watershed,
it is the best fitting model for the majority of months of the year, and for the Trinchera, the
intercept-only model is the best fitting for half of the year.
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3.3. Model with 120 Different Orders

Since changing the priority order ranking influences the results, we ran models for
a total of 120 possible orders to accommodate new rankings of the five variables and
averaged the results (Figure 7).
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There are several combinations of months and basins where SWE and sublimation are
omitted because they have too many zeros. Therefore, the permutations of the rankings are
excluded when SWE or sublimation was the top variable. Some parameter estimates are
removed where the intercept-only model is one of the top models. SWE is the most influen-
tial predictor variable, followed by minimum temperature, precipitation, sublimation, and
then soil moisture.

3.4. Interpretation
3.4.1. Interpretation by Predictor Variables

Precipitation—From January to April, the influence of precipitation is highly variable
between watersheds. In May, it becomes positively related to streamflow for most of the
watersheds, but this relationship is diminished in June and July when the influence of
minimum temperature becomes more important. Precipitation has the strongest influence
on streamflow in August, September, and November. This influence is mitigated somewhat
in October (and September for some watersheds) by minimum temperature, likely due
to the onset of freezing conditions. In May, precipitation is positively correlated with
streamflow for most of the watersheds, but this relationship gradually diminishes in June
and July when the influence of minimum temperature is more important. A few anomalies
are identified in the results which are difficult to interpret. For instance, a very strong effect
of precipitation was found from August to November. It is positively correlated in August
and September, becomes negative in some sub-watersheds (Trinchera and Rio Lucero) in
October, and returns to positive in November (Figure 7).

Soil Moisture—The relationship of soil moisture with streamflow is positive for the
entire year but is relatively small compared to other variables.

Sublimation—The effect of sublimation gradually transitions from zero from July
to December. However, there is some variability in effect between watersheds in the
remaining months. In March, sublimation starts to have a negative relationship with
streamflow; however, it becomes positive in some watersheds in May and June. The effect
of sublimation in summer months is separately shown in Appendix B.

SWE—The influence of SWE is uniformly positive but is missing for several watersheds
in many months. Lower elevation may account for this. The influence of SWE in summer
months are illustrated in Appendix B.

Minimum Temperature—Temperature has the most interesting pattern. Warmer
conditions in February and March tend to produce more streamflow, whereas warmer
conditions in June, July, and October produce less streamflow. Its importance in August
and September is mitigated by precipitation at the height of the monsoon.

3.4.2. Interpretation by Mountain Range

Figure 8 illustrates correlations of the predictor variables with streamflow in three
different mountain ranges (Southern San Juan, Central Sangre De Cristo, and Southern
Sangre De Cristo).

Precipitation is positively correlated with streamflow for the entire year for the Central
Sangre De Cristo Mountain range and varies for the other mountain ranges. SWE also
shows variability between the mountain ranges. SWE has no association with streamflow
in the warming period between July and September for the Central Sangre De Cristo and
the Southern Sangre De Cristo. SWE shows some association with streamflow during the
warming period in the Southern San Juan range. This can be attributed to the altitude and
geographic location of the Southern San Juan Mountain range.
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Figure 8. Line plots of monthly correlation of the variables with streamflow.

3.5. Estimation of Parameters by Period

We also calculate annual responses as the mean (soil moisture, minimum temperature),
sum (precipitation, sublimation), and maximum (SWE) of the monthly responses. We
evaluate the responses for runoff and base flow period. The following Table 3 described
the aggregation method against each predictor variable.

Table 3. The data aggregation method for seasonal analysis.

Variable Aggregation Method

Naturalized Streamflow Summation of each month of the season
Snow Water Equivalent (SWE) Monthly Maximum for the season

Soil Moisture Seasonal average
Precipitation Summation of each month of the season
Sublimation Summation of each month of the season

Minimum Temperature Seasonal average

Next, we run Pearson’s correlation with naturalized streamflow (Figure 9).
Figure 9 indicates a strong correlation between soil moisture and naturalized streamflow

in the runoff season. The impact of precipitation on the naturalized streamflow is evident
during base flow conditions. The associations with other variables such as sublimation, SWE,
and minimum temperature vary by sub-watershed in both seasons. The association between
mean minimum temperature and streamflow is negative for all watersheds during runoff
season, whereas it is positive or statistically less during the baseflow period.
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Figure 9. Pearson’s correlation coefficients with naturalized streamflow for subbasins of the Upper
Rio Grande. Outline indicates significance at p = 0.05, color indicates positive or negative correlation,
and shade corresponds with x.

3.5.1. Interpretation by Variables and Watershed

Important variables are further investigated for annual streamflow estimation by
generating regression equations and analyzing the goodness of fit using AICc-weighted
standardized parameter estimates based on a 0.4 bivariate correlation cut off, adjusted for
intercept-only model (taking the overall average). Figure 10 shows the relative influence of
the predictor five variables on streamflow. We reported those variables which have clear
line/bar, and we excluded the zero or faint line.

Similar to monthly estimation, important variables are further investigated for annual
streamflow estimation through generating regression equations and analyzing goodness
of fit (i.e., AICc-weighted standardized parameter estimates based on a 0.4 bivariate cor-
relation cut off, adjusted for intercept only model, taking overall average). The goal of
the “overall average” (Figure 10) was to show the relative importance of the five variables
when explored together on influencing streamflow.
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Figure 10. Overall average of estimation of parameter by period, with AICc-weighted standardized
parameter estimates.

Precipitation is the most influential variable for normalized streamflow. SWE, temper-
ature, and sublimation are also influential for normalized streamflow, especially during
the runoff season, but they exhibit more temporal and spatial variability (Figure 10). The
impact of precipitation on streamflow is consistent in each period for all watersheds across
the basin. This trend is even more evident during the base flow period from August to
February. Mean soil moisture is the least influential variable. It has a correlation coefficient
greater than 0.4 with at least one of the other variables in each period for all watersheds.
Therefore, we discarded this variable from the candidate model set in the periodical anal-
ysis. Mean minimum temperature is negatively correlated with streamflow during the
runoff season. Mean minimum temperature varies for different sub-watersheds during the
base flow period. Higher streamflow is observed with lower minimum temperatures from
March to July for all watersheds. This occurrence might be due to less evapotranspiration
with lower temperatures.

Maximum SWE is an influential variable during the runoff period. The influence of
SWE varies for different watersheds in the baseflow period. Total Sublimation demonstrates
a positive association with total stream flow within most sub-watersheds in the runoff
season. A possible explanation may be that increasing concentrations of dust and dry and
warm weather conditions accelerate sublimation and snowmelt runoff in the watersheds.
Parameters are tabulated (Table 4) using their priority rank (1–4). Rank 1 indicates the
most influential variable. For example, the most influential variable for Rio Chama during
Baseflow is total precipitation. Different colors indicate different mountain ranges: Southern
San Juan (blue), Central Sangre De Cristo (orange), and Southern Sangre De Cristo (green)
in the Table 4.



Remote Sens. 2022, 14, 6076 18 of 25

Table 4. Important Parameters along with their ranks for each of the 19 watersheds.

Important Variables
Rank of the Parameters: Baseflow Period Rank of the Parameters: Runoff Period

Rank1 Rank2 Rank3 Rank4 Rank1 Rank2 Rank3 Rank 4

Rio Chama Total
Precipitation

Mean

Min. Temp.

Total
Sublimation

Maximum
SWE

Total
Sublimation

Mean
Min. Temp.

Total
Precipitation

San Antonio Total
Precipitation

Total
Sublimation

Maximum
SWE

Mean
Min. Temp.

Total
Sublimation

Maximum
SWE

Mean
Min. Temp.

Total
Precipitation

La Jara Total
Precipitation

Mean
Min. Temp.

Total
Sublimation

Total
Sublimation

Maximum
SWE

Mean
Min. Temp.

Total
Precipitation

Los Pinos Total
Precipitation

Mean
Min. Temp. Max. SWE Total

Sublimation
Maximum
SWE

Mean
Min. Temp.

Total
Precipitation

Saguache
Creek

Total
Precipitation Max. SWE Mean

Min. Temp.
Total
Precipitation

Maximum
SWE

Total
Sublimation

Mean
Min. Temp.

Conejos Total
Precipitation

Mean
Min. Temp.

Total
Sublimation

Maximum
SWE

Total
Precipitation

Mean
Min. Temp.

Total
Sublimation

Del Norte Total
Precipitation Max. SWE Total

Sublimation
Mean
Min. Temp.

Maximum
SWE

Total
Precipitation

Mean
Min. Temp.

Alamosa Total
Precipitation

Total
Sublimation

Mean
Min. Temp.

Maximum
SWE

Total
Precipitation

Total
Sublimation

Mean
Min. Temp.

Embudo
Creek

Total
Precipitation

Mean
Min. Temp.

Total
Sublimation

Total
Precipitation

Maximum
SWE

Total
Sublimation

Mean
Min. Temp.

Santa Cruz Total
Precipitation

Total
Sublimation

Maximum
SWE

Total
Precipitation

Mean
Min. Temp.

Santa
Fe River

Total
Precipitation

Total
Sublimation

Maximum
SWE

Total
Precipitation

Mean
Min. Temp.

Rio Pueblo
de_taos No variable Total

Precipitation
Total
Sublimation

Maximum
SWE

Mean
Min. Temp.

Red River Total
Precipitation

Total
Precipitation

Total
Sublimation

Maximum
SWE

Mean
Min. Temp.

Culebra Total
Precipitation

Total
Precipitation

Maximum
SWE

Mean
Min. Temp.

Total
Sublimation

Costilla
Creek

Total
Precipitation

Total
Precipitation

Maximum
SWE

Mean
Min. Temp.

Total
Sublimation

Ute Creek Total
Precipitation

Total
Precipitation

Maximum
SWE

Mean
Min. Temp.

Total
Sublimation

Rio Hondo Total
Precipitation

Maximum
SWE

Total
Precipitation

Total
Sublimation

Mean
Min. Temp.

Trinchera Total
Precipitation

Maximum
SWE

Total
Sublimation

Total
Precipitation

Mean
Min. Temp.

Total
Precipitation

Maximum
SWE

Total
Sublimation

Total
Precipitation

Mean
Min. Temp.

3.5.2. Interpretation by Mountain Range and Season

Stream flow is largely dependent upon precipitation for all mountain groups through-
out the year. During baseflow, precipitation is the most influential variable, with minimal
influence from other variables. Precipitation, SWE, sublimation, and minimum temperature
are all influential on streamflow during the runoff season for all mountain ranges.

SWE, sublimation, and minimum temperature have some influence on streamflow
during baseflow in the Southern San Juan Mountains. This is due in part to the higher
elevation of the mountain range in the northern part of the study area. SWE, sublimation,
and minimum temperature have no influence on streamflow during baseflow in the South-
ern Sangre de Cristo Mountains. The exception is the Rio Lucero sub-watershed which is
located at the highest elevation in the Southern Sangre de Cristo Mountains. Precipitation is
the dominant influence on stream flow in the Central Sangre de Cristo Mountains. SWE and
minimum temperature have minimal to nominal influence on streamflow in the Central
Sangre de Cristo Mountains.
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3.6. Discussion

An exploratory approach was taken in this article; we framed the analysis as an
inquiry into variable influence ranking. Five predictor variables were primarily identified
in order of relative importance as influential for streamflow prediction. The entire study
was conducted from two different temporal angles, i.e., monthly analysis and seasonally
by baseflow/runoff period. We retained important variables for streamflow through AICc-
weighted standardized parameter estimates and model averaging parameter estimates
based on ±0.4 bivariate correlation cut off; the equations were generated through multiple
linear regression (MLR). We accounted for model uncertainty by employing an intercept-
only model in each candidate model set.

The results can be reproduced by integrating future hydrologic data of the study area;
variable influences can be monitored from time to time under regional climate change
scenarios. This methodology can be replicated in other snowmelt-dominated regions for
watershed monitoring and assessment.

4. Conclusions

This study explores the influence of candidate predictor variables on naturalized
streamflow in nineteen sub-watersheds of the URG basin. Our results indicate that the
predictor variables have variable influences on streamflow, including temporally between
months and river periods and spatially between sub-watersheds and mountain ranges.
Despite the importance of temperature on streamflow, it is not consistently the most impor-
tant factor in streamflow prediction across time and space. The dominance of precipitation
over streamflow is more obvious during baseflow. The impact of precipitation, SWE, subli-
mation, and minimum temperature on streamflow is evident during the runoff season, but
the results vary for different sub-watersheds. The association between sublimation and
streamflow is positive in the runoff season, which may relate to temperature and requires
further research.

We explore variables fundamental to streamflow generation, leading to a variety of
local water management implications i.e., modeling, monitoring, etc., in the face of climate
change in the Upper Rio Grande. The research sheds light on the primary drivers and
their spatial and temporal variability on streamflow generation. This research on surface
water hydrology in the URG basin describes various statistics of parameter importance,
identifying the main drivers in variable naturalized streamflow. This work is critical
for predicting how warming temperatures will impact water supplies serving society and
ecosystems in a changing climate. This research holds implications for better understanding
a natural resource critical to the needs of society and a range of ecosystem services.
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Appendix A. Monthly Mean Naturalized Streamflow for Each Sub Basin

We generated naturalized streamflow curves for each sub basin with the same y scale
for each month in the following figure: it not only shows how naturalized stream flow
varies monthly in watersheds but also it gives an idea over the volumetric distribution of
the flow across the basin.
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Appendix B. SWE and Sublimation in Summer Months

Here are two figures of SWE and sublimation that show annual patterns for each
watershed. For reference, there are vertical lines in May and September. The months’ trends
are not the same for each watershed. For example, the Santa Fe River tends to reach zero
by May, while the Del Norte takes another month or two.
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Appendix C. Pearson’s Correlation Coefficients with Naturalized Streamflow
by Month

We calculated correlation coefficients particularly for each month to investigate how
the relationships vary monthly. We estimated important parameters for the streamflow by
separately exploring statistical models for monthly analysis.
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Figure A4. Monthly correlation by sub watersheds of the URG basin.
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