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Abstract: The ISTTWN algorithm overcame the defect of separating the production process of
skeleton points and skeleton lines in tree branch point cloud skeleton extraction and improved
the accuracy of the extracted initial skeletons, but the skeletons need further optimization. In
the existing skeleton optimization, it is difficult to see the stump adjustment, and most of the
bifurcation optimization and skeleton smoothness adopt fitting. Based on the characteristics of the
initial skeletons extracted by the ISTTWN algorithm, this research optimizes the skeleton from four
aspects. An algorithm for the stump adjustment for reconstructing the stump based on the layer and
hierarchical relationship and an algorithm for the bifurcation optimization based on the local branch
point cloud and cosine correlation are proposed, and an existing pruning method and a skeleton
smoothing method are used. The results show that the skeleton optimization method proposed or
used in this research has a high computational efficiency in general and can ultimately retain the
necessary skeleton lines. In a visual analysis, the optimized skeleton is obviously much more natural
and more in line with the actual topology of trees. In the quantitative analysis, the completeness,
accuracy and effectiveness reached 97.82%, 95.72% and 89.47%, respectively. In this study, in addition
to the existing tree parameters extracted by the skeleton or generalized cylinder model, the generated
skeleton is used to extract the branch attributes. The R2 of the deflection angle of the branch tip,
distance from branch tip and branch length are about 0.897, 0.986 and 0.988, respectively, which
illustrates that their models are very good. This research can further expand the application of
the skeleton.

Keywords: skeleton extraction; skeleton optimization; tree skeleton; tree point cloud

1. Introduction

As the shapes of different trees in nature are various, making and visualizing 3D tree
models in the field of Computer Graphics is always a hot research topic and has been
developed for at least half a century. This research has been similarly affecting forestry
in recent years, attempting to find the possibility to replace the method of traditional
forest investigation [1]. The way of combining an advanced surveying and mapping
technique with novel information technology has gradually been widely used and is
steadily developed to improve the visual effect and the reality of 3D tree models. In
addition, in forestry, it can also be used to obtain more accurate existing parameters
from measured single trees or the whole measured standing forest without a manual
measurement, and some novel and meaningful parameters can be further proposed to
describe the form not at the scene, know the actual situation and help make forecasts
and plans [2,3].
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LiDAR technology has been developed for one decade, and it uses lots of spatial
points (these constitute the point cloud) to approximately describe the surface of objects
in the measuring zone. If a LiDAR scanner is used to scan a tree and irrelevant parts in
the tree point cloud are filtered out, a tree point cloud model, one type of tree model, will
be presented. Some parameters that only rely on point information, such as tree heights,
the DBH, the crown width and the clear bole height (CBH), can be obtained directly or
indirectly by this kind of tree model [4]. Apart from that, many parameters cannot be
obtained, such as branch length, branching angle and tree volume [5]. This is because this
type of tree model is unorganized and has noise. In addition, it also has a disadvantage of
huge storage. Therefore, it usually plays a role in the input or source data of other types
of tree models. The generalized cylinder model is one of the commonly used types and
it uses cylinders or truncated cones to fit the tree branch point cloud. The axes of these
cylinders or truncated cones correspond to the lines on the tree skeleton. It can be asserted
that the visual effect of one tree model and the accuracy of the subsequent extraction of the
parameters highly depend on the effect of the skeleton extraction. After a branch model
is produced, the models of the leaves will be virtually added by a certain algorithm [6].
With the model of trees, many studies not only extracting tree parameters can be carried
out. For example, Huang et al. [7] tried to retrieve aerodynamic parameters in rubber tree
forests by modeling trees with TLS point clouds.

The existing algorithms for extracting the skeleton from a tree branch point cloud
can be divided into three major categories—algorithms based on Voxel Space, algorithms
based on Point Clouds Contraction and algorithms based on a Geometrical Characteristic
(hereinafter referred to as the VS, PCC and GC algorithms, respectively). Shi [8] pointed
out that, in general, GC algorithms are next to PCC algorithms in computational efficiency
but are the best or equally excellent among the three in dealing with small offshoots, the
model topology and overall effects, as well as dealing with adjacent bifurcations and
central deviation. In addition, he concluded that GC algorithms have the relatively best
performance among them. In fact, there is still a frequently used algorithm named the
Space Colonization Algorithm (SCA) [9] that does not belong to any of the categories.
However, as it is hard to control the type of trunk bifurcations [10], the SCA is mainly used
to simulate the small offshoots [11] through the leaf point cloud. Alternatively, it can be
applied to extracting the tree skeleton with sparse points on the part of the branch from the
tree point clouds obtained by ALS scanning [12]. As the Unmanned Aerial Vehicle (UAV)
technique has been widely used with its low cost, high resolution and portability [13], there
will be more research using ALS point clouds to extract tree skeletons and model trees [14].
Apart from the SCA, in general, the TLS point clouds are the data source of the mentioned
algorithms for a skeleton extraction.

The reason why GC algorithms can be better in keeping the original appearance of
trees is that the common principle of the GC algorithms is to cluster the branch point
cloud by utilizing the similarity of the local features. According to the chosen feature or
features, different GC algorithms can be divided into three categories—layering by the
similarity of the shortest-path distance from each point to the root point (or layering by the
shortest-path distances), such as Xu et al.’s [15]; layering by heights, such as Gao et al.’s [16];
and layering by spatial orientation and the radius of the branch (or layering by the tree
branching geometry), such as You’s [17] and the TreeQSM [18]. It should be noticed that
algorithms that adopt layering by tree branching geometry integrate one of the other two
categories (where the height’s rising direction is not necessarily along the positive direction
of the z-axis) and introduce extra information obtained from the tree branch point cloud to
distinguish the points, which brings complexity for programming.

The initial outputs, produced by any algorithms for extracting tree skeletons from
branch point clouds, exist inaccurately in many detailed positions and have a poor lo-
cal visual effect. So, the procedure of skeleton optimization (or skeleton refinement) is
imperative. It contains many aspects.
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One, the breakpoint connection. Breakpoints make the skeleton unconnected, and the
reconstructed tree model will form multiple parts. Xu et al. [15] used the existing trend
of the skeleton and angle constraint to ensure the connection between the breakpoint and
the main skeleton. Shi [8] pointed out that the Arterial Snake Model (ASM) proposed by
Li et al. [19] can be used to deal with breakpoints by the fitting, growth merger of the
arterial snakes. Zhou [20] proposed that a Cardinal Spline can be used to interpolate the
vacancy caused by a breakpoint. Sun et al. [21] proposed an algorithm for using the change
in adjacent angles formed by skeleton lines near the breakpoints to decide which skeleton
points should connect to the breakpoint. Zhang et al. [22] defined a part of a regularizer
for penalizing the positions of skeleton points in the different blocks belonging to the two
joints, which is used to fix the breakpoints.

Two, the bifurcation optimization. In the initial skeleton, the lines at the bifurcations
are always sharp and do not go through the center of the local point cloud. He et al. [23]
pointed out that a bifurcation node, its parent node, its child nodes on all sub-branches
and the tangent vectors formed by these nodes can construct a Hermite curve to fit and
interpolate some transition points. Linvy et al. [24] used a Branch-Structure Graph (BSG)
to differentiate different branches and the constructed local generalized cylinder models
to compute an overlap rate between two cylinders in order to recognize which edge
should be removed. He [25] proposed that after a reliable point found by the RANdom
SAmple Consensus (RANSAC) is identified, its subsequent 16 points can use parabola
fitting to estimate the suitable bifurcation point. Wang [26] adopted a rule to find a
suitable connection where the angle between a parent branch and a sub-branch is no
more than 45 degrees. Nouri et al. [27] reused and modified the idea of GC algorithms
layering by axial heights to reconstruct local skeletons at bifurcations. Xu et al. [28] gave an
algorithm for modifying the local skeleton at a bifurcation on the basis of the direction-first
principle and combined with the idea of the shortest path. Fu et al. [29] adopted a way of
refinement that, firstly, executed K-Means Clustering with several chosen initial cluster
centers at a bifurcation, and the corresponding local point set as inputs and clusters can
be obtained; then, similar to the approximation method, the local skeleton points and
lines can be reconstructed by repeatedly excluding recognizable points on branches from
a cluster and recomputing the centroid of the rest points by Cylindrical Prior Constraint
(CPC) optimization.

Three, the skeleton smoothness. The initial skeleton lines in the part of each branch are
unnatural and have excessive changes in their direction. Mei et al. [30] applied a Laplacian-
based contraction which belongs to the PCC algorithms into the skeleton smoothness by
modifying the parameter of controlling the force of a contraction in the matrix equation in
order to enable it to adjust the smoothness. Li et al. [31] provided a simple method of directly
averaging a continuous three points into the new middle one. Chaundhury et al. [32]
pointed out that a B-spline curve can be used to resample each branch part of the tree
skeleton, and they proposed Stochastic Modeling—a modeling technology for controlling
the termination of skeleton smoothness according to the Degree Of Difference (DOD)
between each part of the tree point cloud and the corresponding skeleton. Xu et al. [33]
used a method by introducing 3D coordination differences which are used instead of
directly averaging three points and a coefficient to balance the smoothness result, and after
several rounds of iteration, the skeleton can be obviously more natural in the visual.

In addition, the pruning twigs, filtering isolated skeleton points and merging too close
points are also frequently used according to the requirement of a study [34]. According to
the feature of an algorithm, the skeleton optimization scheme can be selected from above,
or additional methods can be designed. For example, Li et al. [35] designed an overall
translation for the skeletons produced by a similar implement as AdTree.

We proposed an algorithm to extract the branch skeleton from the tree point cloud
in the way of an Incomplete Simulation of Tree Transporting Water and Nutrients, which
was named as the ISTTWN algorithm in short—a new GC algorithm layering by the
shortest-path distances to simulate the transporting process of water and nutrients in a
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tree [36]. Compared to the previous various algorithms for extracting the tree skeleton from
the branch point cloud, this method overcomes the defect that the process of producing
skeleton points is out of sync with the process of connecting skeleton lines. In addition,
when producing a new skeleton point and forming the skeleton line related to it at the same
time, the result showed that the produced initial skeletons have a more accurate topology
and cost a relatively short time. In this research, we will give some methods of skeleton
optimization suitable for the ISTTWN algorithm. All the methods follow the common
principles that any skeleton points obtained by fitting, which does not rely on point cloud
information, will not be produced, and that the existing stable skeleton points cloud will
not be removed. Based on this principle, our contributions in this research are as follows:

(1) We proposed a new aspect of skeleton optimization, which was named as the stump
adjustment, and designed an algorithm for reconstructing the stump based on the
layer and hierarchical relationship.

(2) We proposed an algorithm for bifurcation optimization based on the local branch
point cloud and cosine correlation.

(3) After additionally adopting pruning twigs and Xu et al.’s [33] skeleton smoothness,
we verified the differences between unoptimized skeletons and optimized skeletons
and tested the optimized skeletons to extract some branch attributes and evaluate
the accuracy.

2. Materials and Methods

Figure 1 is the flow chart about all the steps to obtain an optimized skeleton from a
tree branch point cloud.

Figure 1. The overall workflow.

2.1. Source and Preprocessing of Experimental Data
2.1.1. Data Source

We used three tree point clouds. Two of them were randomly chosen from the public
tree point cloud dataset provided by Seidel et al.’s [37] research, including a European Ash
(Fraxinus excelsior) and a European Oak (Quercus robur L.). In addition, the remaining one
was randomly chosen from the preprocessed point clouds of sample plots of American
black poplar (Populus deltoides) scanned by RIEGL VZ-400i Terrestrial LiDAR Scanner (TLS)
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with scanning mode Panorama40. The three tree point clouds are shown in Figure 2. All
point clouds executed the removal of duplicate points.

Figure 2. Tree point clouds.

2.1.2. Separating Leaves and Branches

According to optical properties of LiDAR and considering that TLS is usually placed
on a tripod on the ground, the point cloud of a tall tree scanned by TLS has high resolution
at the trunk and low resolution on the crown. This makes it difficult to form points at
petioles. Therefore, the parts of leaves can relatively be clearly differentiated with the parts
of branches. We adopted a method similar to region growing by choosing an initial point at
the trunk, adding it into the set that represents branches and continuing to expand the set
with all unadded neighbor points of each point in it until there are no more points added
in. At this time, points still not added into the set are all thought of as points on leaves.
This method is implemented by a kd-tree and its radius search to complete separation [38],
where radius parameter r = 10ρ (ρ is the average resolution) and there must be no duplicate
points in the input tree point cloud. This method is suitable for any kind of tree point clouds
as it only uses spatial coordinate information. Certainly, in order to improve accuracy, it is
suggested that trees should be best scanned in leafless seasons. Figure 3 shows three tree
point clouds’ results of separating leaves and branches. In this research, we only used the
branch point clouds.

Figure 3. Separation of leaves and branches.

2.1.3. Computing the Shortest-Path Distances

Graph theory algorithms can be used to deal with point cloud when points in a point
cloud are regarded as vertices and lines between each point and its neighbor points within a
fixed certain range are regarded as edges and the length of each line is regarded as the edge
weight. As points in the branch point cloud are all on branches, such a range should be
chosen appropriately to ensure the graph is connected. In this research, we firstly computed
an initial search radius calculated by equation

ρmax = max
p∈P

min
q∈P−{p}

‖p− q‖2, (1)
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where p and q represent certain spatial points, ρmax is the maximum of all spacing between
the points and their 1-nearest neighbor points in a point cloud. Such initial search radius
is taken as cluster tolerance to cluster the branch point cloud (in the form of set) P using
Euclidean Cluster Extraction (ECE). Then, we constructed a new undirected complete graph
G with cluster indices as vertices, minimum cluster spacing between any two clusters as
edge weights and computed Minimum Spanning Tree (MST) T of graph G. Finally, we set
such range as the longest edge weight in T. This method can save memory for storing huge
amounts of edge information to the maximum extent.

If such a graph could be regarded as an undirected connected graph, we set the shortest-
path distance between a source vertex and all other vertices would be easily obtained by
using algorithms solving the Single-Source Shortest Path (SSSP) problem. Point correspond-
ing to the source vertex is chosen as the lowest one at the stump. The algorithm we used
was the queue optimized Bellman–Ford algorithm.

2.2. Skeleton Extraction

The principle of ISTTWN algorithm can be described as a process that by using the
shortest-path distances and the specified distance that water and nutrients are transported
each turn (or step length), one part of points to produce skeleton points and the rest points
to continue transporting can be decided. In addition, a clustering algorithm (here, use ECE
with eps = ρmax, MinPts = 1) can help distinguish whether there are different offshoots
or not, then the produced skeleton points can connect with the skeleton point in the same
offshoot in previous turn.

It is obvious that the algorithm is recursive. As recursion is very slow, we tried some
methods to improve it, including using iterative acceleration by interval segmentation and
using multithreading. These improvements indeed decrease the cost of time and memory
usage. However, the cluster object in improved ISTTWN algorithm is different from that in
original ISTTWN algorithm, as the former is all the unexplored points in the whole branch
point cloud, while the latter is just those in a local part. For improved ISTTWN algorithm,
on the positive side, this difference can solve the issue that two too close branches are
erroneously interpreted into one branch in a certain range. The range is a sphere which
radius is equal to the product of step length multiplied by the number of steps in each
interval, in other words, interval length. We wished skeletons could be as detailed as
possible, so we let step length equal to the minimum value ρmax; therefore, in this research,
we would give the method of stump adjustment, so we let the number of steps in each
interval equal to the minimum value 2. On the negative side, it produces some breakpoints.
These breakpoints exist in alternate positions between intervals and influence a small range
of topology, so we gave a simple way of breakpoint connection as follows, where a bin (or a
branch segment) is the point set of a local branch near a skeleton point, and initially, each
skeleton point is centroid of a bin (it should be noted that the plural of “bin” is bin-s, and a
bin means the point set consisting of bin-s of the same layer according to definitions given
by Xu et al. [15]).

1. Because skeleton lines are stored by ordered pairs, they can be regarded as directed
edges in graph theory. Therefore, the indegree and outdegree of vertex corresponding
to each skeleton point can be computed. Apart from the same vertex as the source
vertex, any vertices where indegree is 0 are vertices corresponding to breakpoints.

2. For each breakpoint, use a kd-tree and k-Nearest-Neighbors (k-NN) search to find
3 neighbor points for which corresponding vertices are not on the tree, with the
root being the vertex corresponding to the breakpoint. Compute the number of
intersections between bin of breakpoints and bin of each neighbor point. We regarded
that a neighbor point that the bin of which has the maximum number of intersections
and the number is not equal to 0 should be the same point as the breakpoint. Then,
the two points and their corresponding bin-s are required to be merged. If all numbers
are equal to 0, directly connect the nearest one to the breakpoint.
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This method of breakpoint connection is not optimized, but the following bifurcation
optimization and skeleton smoothness can further optimize the skeleton as well. At last,
although there are usually no circles in the skeleton, the process of breaking circles is
needed in case of potential bad situations. Due to particularity of the produced skeleton, it
can be simply described that in directed graph formed by the skeleton, if a vertex where
indegree is more than 1, only one edge ending at it should be reserved, and such an edge
should have the most comprehensive information branch information.

2.3. Skeleton Optimization
2.3.1. Stump Adjustment

In principle, if a branch is near horizontal and many points on its surface are in the
same section of heights, the skeleton points of the branch produced by GC algorithms
layering by heights will abruptly shift and not distribute according to the growth direction
any more. In addition, there is hardly any tree in which all the segments of the branches
are almost straight up. Unless there is reconstruction, the results caused by the defect can
no longer be further refined even after optimization. Compared with layering by heights,
layering by shortest-path distances can avoid this defect and its result has lower central
deviation in general. However, as the shortest-path graph formed by the branch point is in
the shape that spreads from the source vertex, the closer the distance is, the more radial
the shape can be. Because the source point is on the surface of trunk, the skeleton point
closer to the source point is more offset from the center of the trunk. In addition, when the
step length is smaller, the center deviation here is more obvious. Point cloud at the stump
could be complete or incomplete, not only affected by the process of filtering the ground
points but also by undergrowth vegetation during scanning. If the point cloud at the stump
is incomplete, the stump would not seem to be cut from a plane visually. When the step
length is small, the interval of the branch point cloud near the stump might be clustered
erroneously into more than one cluster and subsequently some unwanted branches would
probably be produced. That is to say, the skeleton has terrible local distortion at the stump.

You [17] proposed a method to process the branch point cloud at the stump in advance
so that a horizontal section can be found, and points below the section in the branch point
cloud should be removed by repeatedly calculating the variance of lines connecting the
centroids of adjacent horizontal layers below a certain height. Essentially, the method does
not solve the problem of center deviation at the stump actually. Other than that, we had
not found any other attempts to solve this problem.

We proposed a method to handle the issue without making any changes to the input
branch point cloud. This method is processed after the initial skeleton is produced, so it
belongs to skeleton optimization, and we named the process of reconstructing the local
skeleton at the stump as stump adjustment. Reconstruction means redoing skeleton extrac-
tion. It contains three problems: which algorithm for skeleton extraction should be used,
which part of the branch point cloud should be chosen as an input and how to replace the
original corresponding part with the reconstruction result.

(1) About the chosen algorithm for skeleton extraction.
The way of layering by heights can work relatively normally when producing the

skeleton close to the ground because there are not too many bifurcations near the ground
in tall trees compared to their crowns. If one input of ISTTWN algorithm is changed from
shortest-path distances into heights, the program will run but keep making the wrong
progress, as Figure 4 shows. Xu et al.’s [15] algorithm, which used MST algorithm to obtain
skeleton lines, can also use the input of heights (similar to Gao’s [16] algorithm) but is
easy to create an incorrect topology as MST only guarantees the minimum sum of weights
rather than the match between topology and the point cloud. Figure 5 shows a wrong
result if Xu et al.’s [15] algorithm is directly used to reconstruct a stump. It is illustrated
that algorithms should consider the existence of some branches with abnormal growth
direction and of some tree species with ground branching characteristics.
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Figure 4. The problem in the skeleton produced by ISTTWN algorithm layering by heights.

Figure 5. The problem in the skeleton produced by Xu et al.’s [15] algorithm layering by heights.

We modified the creation of the graph in Xu et al.’s [15] algorithm according to
hierarchical relationship, which is similar to that which TreeQSM uses but more strict than
it as we also used the bin information to prevent the unreasonable connection among
adjacent layers, and this can satisfy the requirements, as is shown in Algorithm 1.

Algorithm 1 Graph formed according to hierarchical relationship

Input: Skeleton point sequence {qn}|Q|n=1, where |Q| is the size of skeleton point set; Bin

sequence {Bn}|Q|n=1 corresponding to each skeleton point in turn; Layer number sequence

{Ln}|Q|n=1 corresponding to each skeleton point in turn;
Output: Undirected connected graph G′;
1: eps := rmin + ε . rmin is the smallest search radius that can make the graph formed

by point cloud connected, and ε is infinitesimal as the feasible region of radius search
generally does not calculate the boundary

2: Initialize G′, where G′.V = {v1, v2, · · · , v|Q|}
3: for i := 1→| Q | do
4: Find all vertices that the layer number of corresponding skeleton points is Li − 1

and constitute set U
5: foreach vertex vj ∈ U do
6: if minimum cluster interval between Bi and Bj is less than eps then
7: G′.E← G′.E ∪ {(vj, vi)}
8: end if
9: end for

10: end for

There are relatively fewer circles in the created graph, and at this time, the accuracy of
MST algorithm is obviously better. Because the graph is undirected, edges in the graph
need to be oriented to obtain the skeleton.

(2) About the chosen part of the branch point cloud.
In nature, some trees have prop roots and a few of their stumps are especially far from

the ground. In order to cater to these trees, we chose a maximum datum height near breast
height (1.3 m). Certainly there are some small trees, and the maximum datum height is
found near 1.3 m/5 m * tree height when tree height is less than 5 m. In addition, the datum
maximum height should be an integral multiple of the set layer height (when layering by
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heights, step length in the algorithm for skeleton extraction is called as layer height) in
avoidance of the uneven height of each layer. The point cloud below this datum height is
used as the input to reconstruct the local skeleton.

(3) About the replacement method.
Initially, the current datum height is the maximum datum height. When the current

datum height is specified, the direction of local part of branches should be identified.
However, such as willow trees, some branches bend over to the earth and their point
cloud should be filtered out. In the rest trunk point cloud, for ensuring the reconstructed
part can find a common part of the initial skeleton to be connected, the number of bin
within the range of adding a layer height to the current datum height should be the same
as the number of bin within the range of the current datum height minus a layer height.
In addition, a bin in the lower layer should connect to a bin in the higher layer without
repetition. The direction of local skeleton lines across the current datum height should also
be from low to high. If not making all these conditions tenable, the current datum height
will be itself minus a layer height and be retried until it is equal to the lowest height of
point cloud plus layer height. Otherwise, reconstruction will be executed. Remove all the
skeleton points and lines related to them from the initial skeleton lines, and piece it to the
reconstructed local skeleton with the disconnected positions corresponding to each other.

It is obvious that the algorithm for stump adjustment we proposed reconstructs the
stump based on layer and hierarchical relationship. It is worth noting that there are four
major reasons for reconstruction failure, and stump adjustment can work normally by
avoiding them:

(1) The layer height is too large.
(2) The tree species could be shrub.
(3) The point cloud quality is bad.
(4) Ground normalization has not been performed.

2.3.2. Bifurcation Optimization

We proposed an algorithm for bifurcation optimization based on local branch point
cloud and cosine correlation. The principle is based on the characteristics of local branch
point cloud covariance matrix. Let ci be the centroid of bin Si and construct the covari-
ance matrix

Mi =
1
|Si| ∑

p∈Si

(p− ci)(p− ci)
T. (2)

The eigenvector corresponding to the maximum eigenvalue of matrix Mi describes
the growth direction of the local branch [39]. It should be noted that such eigenvector has
ambiguity, in other words, the growth direction may be along the positive or negative
direction of the eigenvector.

Let the growth directions of a branch and one of its offshoots at the bifurcation and
actual direction of local skeleton lines be v, v′, τ, τ′, respectively. The directions of skeleton
lines are completely along the growth directions of the tree if and only if

v = kτ, v′ = k′τ′, (3)

where k 6= 0, k′ 6= 0. That is to say, angle 〈v, τ〉 = 0◦ or 180◦ and angle 〈v′, τ′〉 = 0◦ or 180◦.
Using the formula of the cosine value of the angle between two vectors, another form of
conclusion can be derived as follows:∣∣∣∣ τv

‖τ‖2‖v‖2
· τ′v′

‖τ′‖2‖v′‖2

∣∣∣∣ = 1. (4)
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However, this formula is extremely difficult to hold. So, bifurcation optimization is to
find a relatively best connection, in other words, to solve optimization problem

arg max
τ,τ′

∣∣∣∣ τv
‖τ‖2‖v‖2

· τ′v′

‖τ′‖2‖v′‖2

∣∣∣∣. (5)

This is a method based on cosine similarity.
When the bifurcation node, its parent node and one of its son nodes are, respectively,

B(x, y, z), A(x1, y1, z1), C(x2, y2, z2) , the target is to find a B to maximize the cosine similar-
ity. In avoidance of abrupt line trend, B should be in a feasible region D, and the problem
can be changed into finding the solution that makes the function

f (x, y, z) =
[v1(x− x1) + v2(y− y1) + v3(z− z1)]

2[v′1(x2 − x) + v′2(y2 − y) + v′3(z2 − z)]2

(v2
1 + v2

2 + v2
3)(v

′2
1 + v′22 + v′23)

[
(x− x1)

2 + (y− y1)
2 + (z− z1)

2
][
(x2 − x)2 + (y2 − y)2 + (z2 − z)2

] (6)

reach the maximum value in the feasible region (x, y, z) ∈ D, where the absolute value
is eliminated by means of square. However, this problem is difficult to solve because the
feasible region is not always in the same shape or can be expressed in the same form,
and when using Lagrange multiplier approach, it is very difficult to invert the parameters
by making all derivative functions obtained after the derivation of different variables equal
to 0. Although the approximate solution of the equation can be found by sampling the
feasible region in a certain way, the position of B is not always fixed. Sometimes, when the
parent node of B, its grandparent node, ..., even a point on lines ending at these points is
B, a better solution can be found. With the change in B, if the shape of the feasible region
maintains a single form of expression, it is likely to produce an overfitting phenomenon,
that is, to find a point that maximizes the value of the equation but has abrupt connections.

In ISTTWN algorithm, a skeleton point is the centroid of a bin. The number of bin-s
ECE clusters points into is decided by whether the points can be clearly divided. This
feature illustrates that the line between a bifurcation node and its parent node basically
goes through the center of the local branch and the production of the bifurcation point is
always late. So, we adopted a method to find the relatively most suitable bifurcation point
among test points on the broken lines of the local parent branch instead of reconstructing
these lines. Figure 6 shows the complete process.

Figure 6. Bifurcation optimization.

Here are two problems that need to be further discussed.
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(1) How are bin-s of three continuous skeleton points divided into two bin-s and then
substituted into the equation?

Similarly, let the three skeleton points be A, B, C. Construct plane Π whose normal
vector is

−→
AC and passes through point B. Use plane Π to divide the point cloud constituted

by bin-s of A, B, C into two bin-s.
(2) What is the bin of a broken point?
The bin of a broken point can derive from bin-s of points on both ends of the original

line, and the range should be within the range of plus or minus one step length along the
direction of the original skeleton line in avoidance of unceasingly accumulating bin-s when
encountering too many continuous bifurcations.

2.3.3. Pruning Twigs

As MinPts is set to 1, there are too many small twigs in the skeleton affected by noise
points. The following two types of branches are regarded as twigs to be pruned:

(1) If the end point is located in a branch at the top of the tree and the number of its bin
is less than the newly specified minimum cluster size, remove the skeleton line connected
with the current end point and remove the end point and its bin;

(2) If the skeleton lines that represent one branch at the end of the tree top are less than
the specified minimum number of skeleton lines of the branch, the branch shall be removed.

If a branch meets the conditions of (1) and (2) at the same time, it shall be processed
according to (2). In this research, the minimum cluster size and the minimum number of
skeleton lines of the branch are 4 and 2, respectively.

2.3.4. Skeleton Smoothness

We adopted the method proposed by Xu et al. [33] to smooth the skeleton. For each
node p(2) not at both ends of a branch, find its parent node p(1) and its unique son node
p(3), and after the k-th iteration,

p(k)
(2) =

λ

2
p(k−1)
(1) + (1− λ)p(k−1)

(2) +
λ

2
p(k−1)
(3) , (7)

where the nodes are points in the initial skeleton when k = 0, λ is a coefficient to balance
the smoothness result. In this research, the maximum k was set as 5 and λ was set as 0.1.

3. Results
3.1. Computational Performance

We tested each part when each experimental material was used as an input to obtain
the final optimized skeleton. The basic information about the three tree point clouds,
parameters or outputs is shown in Table 1. The running time of each part and the change in
the skeleton lines are shown in Figure 7. The number of the identified branches is shown in
Table 2.

Table 1. Basic information.

Tree Species
Size of

Original Tree
Point Cloud

Number of
Duplicate

Points
ρ

Size of
Branch/Leaf
Point Cloud

ρmax of Branch
Point Cloud

Number of
Edges in

Constructed
Undirected

Graph

European ash 97,895 0 0.016659 m 94,021/3874 0.166197 m 14,582,170

European oak 836,636 4 0.005627 m 819,556/17,076 0.056221 m 164,547,719

American black
poplar 565,698 288,680 0.011883 m 274,688/2330 0.118744 m 70,006,006
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Figure 7. The running time of each part and the change in skeleton lines.

Table 2. The change in the identified branches

Tree Species ISTTWN Stump
Adjustment

Bifurcation
Optimization Pruning Twigs Skeleton

Smoothness

European ash 244 138 183 67 67
European oak 1036 518 674 257 257

American black
poplar 705 508 731 268 268

The result shows that the processing time is positively proportional to the size of the
point cloud in general. As the branch point cloud of the European oak has a relatively sky-
high cloud density, the quantity of the points near the earth is quite a lot and it burdens the
process of the stump adjustment, which leads to a sudden increase in the time requirement.
The time in extracting the other two point clouds is almost the same as the following
optimizing process. In addition, the reason why the skeleton lines decrease significantly
after the bifurcation optimization is that the algorithm designed for combining broken lines
in Figure 6h also combines two normal skeleton lines with a too small included angle in
order to retain the necessary topology. The great changes in the number of branches after
the stump adjustment will be explained after the visualization in the following section.

3.2. Visual Analysis

The skeletons before optimization and after optimization are shown in Figure 8. Three
details were selected on the skeleton of each experimental material. In addition, the skeleton
and point cloud are superimposed at these detailed positions to visually check the matching
degree between them.

It can be seen from Figure 8 that before the optimization, the distortion of the initial
skeletons at the stump is large. The center deviation is almost unavoidable when the
skeletons are fine enough, and sometimes unreasonable branches exist, which causes
severe topological errors. After the optimization, the unreasonable branches are eliminated
successfully, and the corresponding skeleton points are judged as to whether they are
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removed or retained according to the connection relation. However, the center deviation
seems to decrease more or less. It should be illustrated that there is a certain inclination
in the point cloud of the European oak; therefore, the result after the stump adjustment is
relatively worse than the others visually, while such a result indeed reaches the best in the
vertical direction. However, like the point cloud of the American black poplar, the points at
the trunk with a near vertical distribution and completely no group part can be processed
very well and have a good visual effect.

Figure 8. Comparison of skeletons before optimization and after optimization.

At bifurcations, although skeletons before the optimization are corresponding to the
approximate growth direction, the lines do not go through the center of the bin-s, which
bring a stiff felling. The optimized skeletons in the same place are obviously close to
the center.

The process of pruning twigs and skeleton smoothness can make skeletons tidier, more
beautiful and more natural on the condition that the skeleton lines match the bin-s.
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In all, after the optimization in the four aspects we proposed or used, the visual effect
of the skeleton is improved, and the errors in the initial skeletons are corrected, which
means that the usability of the skeleton is enhanced.

3.3. Application

As the process of obtaining and modifying skeletons follows a basic rule that the
fitting is completely unused, these skeletons can be regarded as the true portrayal of the
topological structure of trees. Therefore, some parameters about branches of a tree can be
extracted. In this research, we computed the branching angle [40] (or bifurcation angle [41],
BA), the deflection angle of the branch tip [42] θ which relates to the size of the branch
angle [43] Θ formed with the vertical direction of the trunk, the distance from the branch tip
(or Branch Chord Length [44], BCL) and the branch length (BL) of each first-order branch.
Figure 9 gives intuitive definitions of the relevant concepts.

Figure 9. Some attributes of a branch.

We used evaluation indexes, including the Root Mean Squared Error RMSE, Mean
Absolute Error MAE, Mean Absolute Percentage Error MAPE and coefficient of determi-
nation (R-squared) R2, to evaluate the accuracy. The following is the definition formula of
each index:

RMSE =

√
1
n

n

∑
i=1

(xi − x̂i)2, (8)

MAE =
1
n

n

∑
i=1
|xi − x̂i|, (9)

MAPE =
100%

n

n

∑
i=1

∣∣∣∣ xi − x̂i
xi

∣∣∣∣, (10)

R2 = 1−

n
∑

i=1
(xi − x̂i)

2

n
∑

i=1
(xi − x̄)2

, (11)

where xi is a real measured certain attribute value of the i-th branch, x̂i is a certain attribute
value of the i-th branch obtained by the skeleton and x̄ is the mean value of a certain
attribute value of all the branches.

The scatter plot of each branch attribute is constructed with the real values as the
x-axis and the corresponding values obtained from the skeleton as the y-axis, as shown in
Figure 10.
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Figure 10. The scatter plot of each branch attribute.

Table 3. Accuracy of attribute values of branches.

Evaluation
Indexes BA θ BCL BL

RMSE 0.164641
(9.43323◦)

0.086456
(4.95359◦) 0.203494 m 0.192263 m

MAE 0.124162
(7.11395◦)

0.061605
(3.52970◦) 0.129652 m 0.125959 m

MAPE 13.513% 9.4927% 5.6421% 6.9631%

R2 0.684622 0.896877 0.986168 0.988428

Table 3 shows the accuracy of the attribute values of the branches. Among them, the
BA and θ use the angle system, which are converted to the radian system before calculating
the evaluation indexes.

The R2 of the BA is relatively the lowest, and its MAE is about 7◦. This is because
measuring the BA manually is measuring the inner edge of two branches with a protractor,
while the BA extracted from the skeleton uses almost the centerlines of the local branches.
In addition, the size of the protractor affects the accuracy, while the line lengths of the
skeleton similarly are affected. Therefore, the BA itself is relatively not a strictly defined
quantity. As we used the parameter that makes the skeleton fine enough, the extracted
results would be generally more accurate if the BA could be considered as the included
angle of the centerlines.

The R2 of the others illustrates that these extracted quantities are basically correspond-
ing to the measured MAPEs, indicating that the models are very good. However, it should
be noticed that the skeleton of an offshoot always includes a short part on its parent off-
shoot, and points at treetops are sporadic, which makes the skeleton points at treetops



Remote Sens. 2022, 14, 6097 16 of 19

probably deviate the distance up to one step length. These potential errors propagate and
cause the RMSE and MAE of the BL to be beyond one step length, and affect the θ and
BCL. So, as the skeleton is good at expressing distances and angles, these quantities can be
extracted well, but they still have room for further improvement.

4. Discussion
4.1. Quantitative Analysis and Comparison

We used the three matrices proposed by Xu et al. [33] to evaluate the skeletons them-
selves quantitatively, including the completeness Ap, correctness Ar and effectiveness Ae.
Ap is equal to the proportion that the union of the local branch point cloud where all
the skeleton points are located covers the whole branch point cloud; Ar is equal to the
proportion of skeleton points inside the space formed by the local branch point cloud; and
Ae is equal to the proportion of skeleton points very close to the center of the local branch
point cloud. It should be noted that the local branch point cloud where the skeleton points
are located no longer uses the foregoing bin-s but is obtained from the surrounding sphere
again. Ap measures how much the skeleton represents the branch point cloud. Ar measures
whether the skeleton conforms to the general trend of the branches. And Ae measures
whether the skeleton nearly passes through the center of the branch on the basis of Ar.
The average results of the three values obtained by the selected trees are compared with
the average results obtained by theirs. The results are shown in Table 4.

Table 4. Quantitative analysis.

Matrix AdTree [45] Xu et al. [33]
This Research

(Before
Optimization)

This Research
(After

Optimization)

Average Ap 81.10% 86.99% 97.84% 97.82%
Average Ar 99.21% 99.49% 95.20% 95.72%
Average Ae 79.26% 36.41% 86.22% 89.47%

It can be seen that due to the good feature that the ISTTWN algorithm makes full
use of the branch point cloud, the requirement of completeness and effectiveness can be
guaranteed in the initial skeletons. However, before the skeleton optimization, the skeleton
bifurcates with hysteresis, so this value is slightly low. After the optimization, the skeleton
lines decrease obviously, and after the combination, part of the skeleton lines become
longer. So, it is normal for Ap to decrease slightly. A higher Ap means that our method is
more complete in the expression of the canopy details. However, due to the sparse canopy
points, it is easy to cause the wrong identification and classification. Ar will be affected
by this factor, resulting in a situation slightly inferior to the other two. When the total
of the skeleton points as the denominator decreases, the augment of Ar and Ae reveals
that the skeleton is going to be finer. Therefore, the results of both the visual analysis and
quantitative analysis show that the skeleton optimization proposed in this study is indeed
effective and necessary, and it can improve the results of the ISTTWN algorithm.

4.2. Prospect

In terms of data source, wind disturbance during scanning and severe occlusion of
the obtained point cloud will cause errors in tree reconstruction [46]. The corresponding
processing technology needs further development.

There are some possible improvements in the complete process of skeletonization.
Firstly, a better and highly compatible algorithm for separating the branches and leaves
should be developed. Secondly, a dynamic method to construct the shortest-path distances
is required as currently the paths constructed by a fixed search radius at different density
positions are not always reasonable. Thirdly, as the previous research described, a more
efficient allocation method of multithreading can further accelerate the execution. Lastly,
research from the aspect of various skeleton optimizations allows for endless topics.
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There was some research about more tree parameters extracted from skeletons or a
subsequent generalized cylinder model, which are meaningful to forestry, for example,
the inclination angle IA [47], azimuth [43] and above-ground biomass [48]. Including the
parameters we discussed before, these concepts need to be more clearly defined mathe-
matically and universally acknowledged when skeleton extraction is used. In addition,
limited to the current extraction of the main trunk skeleton only referring to angles [49],
the results of the branch display at all levels and the parameter extraction of any trees are
not available with complete automation and a more suitable extraction method should be
further explored.

5. Conclusions

In this research, we proposed and used several methods of skeleton optimization based
on the results of the ISTTWN algorithm and the principle of not using fitting. Specifically,
it includes the following aspects.

(1) Different from the existing aspects of skeleton optimization, a stump adjustment is
proposed according to the feature at the stump of the tree skeletons layering by the
shortest-path distances. An algorithm for reconstructing the stump based on the layer
and hierarchical relationship is designed correspondingly.

(2) From the aspect of bifurcation optimization, an algorithm based on the local branch
point cloud and cosine correlation is proposed.

(3) Pruning twigs and Xu et al.’s [33] skeleton smoothness are adopted in the process
of optimization.

With this optimization scheme, the skeletons can be neat, natural and fit with branch
point clouds in the visualization. Optimized skeletons are used to extract some branch
attributes and evaluate the accuracy. Relatively, the deflection angle of the branch tip,
distance from branch tip and branch length can be accurately extracted with strong cor-
relations (R2 = 0.897, R2 = 0.986 and R2 = 0.988, respectively). The availability of the
skeletons has been improved, which reveals that this research can help further explore the
application scope of tree skeletons.
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