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Abstract: Methods using remote sensing associated with artificial intelligence to forecast corn yield
at the management zone level can help farmers understand the spatial variability of yield before
harvesting. Here, spectral bands, topographic wetness index, and topographic position index were
integrated to predict corn yield at the management zone using machine learning approaches (e.g.,
extremely randomized trees, gradient boosting machine, XGBoost algorithms, and stacked ensemble
models). We tested four approaches: only spectral bands, spectral bands + topographic position
index, spectral bands + topographic wetness index, and spectral bands + topographic position index
+ topographic wetness index. We also explored two approaches for model calibration: the whole-field
approach and the site-specific model at the management zone level. The model’s performance was
evaluated in terms of accuracy (mean absolute error) and tendency (estimated mean error). The
results showed that it is possible to predict corn yield with reasonable accuracy using spectral crop
information associated with the topographic wetness index and topographic position index during
the flowering growth stage. Site-specific models increase the accuracy and reduce the tendency of
corn yield forecasting on management zones with high, low, and intermediate yields.

Keywords: digital agriculture; predictive models; auto-machine learning; Zea mays L.; site-specific model

1. Introduction

Forecasting crop yield at the field level is essential for farmers to understand their
economic returns [1] and to make better management decisions regarding soil and plant
management [2]. Forecasting yield is a complex task because yield changes both spatially
and temporarily [3]. These changes can be caused by spatial variability in the soil physical
and chemical properties [4], agricultural management [5], irrigation, fertilizer management,
and topography [6].

Topography is a first-order control of spatial variation in hydrological conditions [7]
and affects the spatial distribution of soil moisture, groundwater flow [8], and available
water for plants [9]. These hydrological processes associated with terrain attributes directly
affect crop yield [10]. One method for describing spatial soil moisture patterns is via the
calculation of topographical indices [11,12]. Different topographical indices have been
proposed, such as the topographic position index (TPI) and the topographic wetness index
(TWI) [13]. TWI describes the water accumulation phenomenon based on the landscape
position [14,15] and is correlated with crop yield [15,16]. TPI is a local elevation index
that evaluates the difference between a central point and the average elevation within
a specified region [17]. Thus, TWI and TPI can be important features for describing the
hydrological process in crop yield forecasting.
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Crop yield forecasting can be performed using different approaches; one of the most
common approaches is remote sensing. Remote sensing provides nondestructive informa-
tion on plants at a low cost and reasonable temporal resolution [18–20]. The three main
models used in remote sensing are radiation use efficiency, crop growth, and empirical [5].
Radiation use efficiency models estimate crop yield based on gross primary productivity
or net primary productivity derived from remote sensing data [21]. Crop growth models
simulate crop growth and yield based on indices derived from remote sensors [22,23].
Empirical models are based on the relationship between remote sensing indices and crop
yield [5]. Empirical models assume that the vigor of the plant, detected by the remote
sensor, is directly related to the yield [1]. These empirical models have spatial and temporal
constraints for application in another field or season [24,25]. Research to advance the
spatial and temporal constraints of empirical models have focused on predicting yield in
productivity zones [26] and integrating empirical models with crop modeling [27].

An alternative method for creating agricultural models based on remote sensing is
using machine learning (ML) algorithms [28,29]. ML is more flexible than traditional
models because it makes no assumptions in the underlying function [30]. Among the ML
algorithms, random forest and support vector machine algorithms have been successful
with remote sensing data used to forecast crop yield because they are not affected by
collinearity and non-normal distribution of the variables and can handle overfitting [3],
which are common characteristics of spectral bands in satellite images. ML methods are
a flexible approach for utilizing many inputs using remote sensing data to forecast crop
yield [31]. ML was applied with efficacy to predict corn yield, as described in Table 1.

Table 1. Related works describing the algorithm, features, and model level used to predict corn yield.

ML Algorithm Features Reference Model Level

Deep neural network NDVI, EVI, and temperature [32] Country
Recurrent neural network and convolutional
neural network

MODIS reflectance (MOD091A), Weather
data and soil property data [33] County

Deep neural network Genotype, weather, and soil [34] Hybrid locations
Ordinary least-square considering spatial
correlation NDRE, NDVI, and GDVI [35] Field

Crop yield prediction using ML algorithms can be performed using a variety of predictors.
An agricultural decision system based on machine learning (random forest, gradient boosting
machine, and support vector machine) was proposed by [36] in this study; they merged
different sources of data (climate data, crop production data, and pesticide data) to predict
multi crop yield (potato, beans, coffee, and tea). RF outperformed the other ML models with
a root mean squared error (RMSE) of 0.343 and an R2 of 0.92. The proposed system helps to
predict an annual crop yield at the country level for four crops.

An alternative method to integrate the process-based crop model and ML (random
forest algorithm) was proposed by [37] to reduce uncertainties of global soybean yield
prediction. They suggest that this integration of the GIS-based Environmental Policy
Integrated Climate (GEPIC) process-based model and extreme climate indicators using ML
reduced uncertainty by 28.45–41.83% for the future scenario of 2040–2099. They indicate
that this hybrid model will help policymakers prepare for future agricultural risk and
potential food insecurity under climate change.

Predictive learning models have been proposed by [38] to improve biomass and grain
yield prediction of wheat genotypes in sodic soils. In this study, the authors evaluated
the ability of multispectral, hyperspectral, 3D point cloud, and ML techniques to improve
estimation of genotypic biomass and yield. The ML algorithms used were multitarget
linear regression, support vector machine, Gaussian process, and artificial neural network.
The accuracies of the four models were compared and the neural network model showed
slightly less error than the other models. The predictive errors in this study were R2 = 0.89;
RMSE = 34.8 g/m2 for biomass and R2 = 0.88; and RMSE = 11.8 g/m2 for yield. Additionally,



Remote Sens. 2022, 14, 6171 3 of 24

the authors suggest that the improvement in the estimation of wheat genotypic biomass
and grain yield will assist farmers in identifying cultivars in sodic soil constraints.

New technologies involving remote and proximal sensing and geospatial analyses
supported by the global position system have led farmers to identify and analyze the
temporal and spatial variability of crop fields, thereby optimizing resources [39,40]. With
knowledge of field variability, subregions with broad similarity can be delineated into
management zones (MZs) which differ in agricultural practices [41]. A model based on a
specific MZ might have better accuracy than a model developed for an entire field, because
the MZ concept is trained and validated using data from a region where the spatial variability
is lower than that of the entire field. Earlier remote sensing methods for crop yield prediction
were focused mostly on the integration of different types of data: crop, weather, pesticide,
chemical, 3D point cloud, multispectral, and hyperspectral data. Relatively few studies have
been conducted to develop a method capable of predicting corn yield at the management
zone level while integrating remote sensing and topographic indices.

Following this rationale, an ML algorithm based on spectral and topographical features
using data from known MZs was used to determine whether it is possible to achieve more
accurate predictions than that from a model developed using data from an entire field. To
answer this hypothesis, experiments were conducted to predict crop yield at the MZ level
using ML algorithms associated with remote sensing and topographical data.

In this research, we identified that zone-based models outperformed whole-field-based
models in cases where fields have a high degree of variability in terms of yield and terrain
attributes. The main contributions of this paper are as follows: (1) topographical indices
increase the accuracy of corn yield forecasting when associated with spectral bands as
features of ML models; and (2) auto-ML using the stacked ensemble algorithm can be used
to forecast corn yield before harvesting by using combined data from different seasons.
Our results provide a precise application of incorporating topographic indices into crop
yield prediction models to strengthen model prediction. Evaluation of the ensemble model
performance for corn yield prediction and testing and identifying a potential method to
integrate topographic features and remote sensing imagery for within-field corn yield
prediction were performed.

The rest of this paper is organized as follows. Section 2 presents the material and
methods used in this research in which we present the study area and satellite imagery
and describe the data processing and model training and test. Section 3 presents the
experimental results. Section 4 presents the discussion. Finally, in Section 5, we conclude
this work and present some future research directions.

2. Materials and Methods
2.1. Study Area

The study was conducted in a commercial cornfield in Lawrence County, Town Creek,
Alabama (latitude 34◦72′N; longitude 87◦39′W), to evaluate the potential of using machine
learning models associated with high-resolution satellite data and topographical indices to
predict corn yield during the 2018–2019 growing seasons. The predominant soil type in the
study field is Decatur silty clay loam with 2–10% slope variation, and the elevation varies
between 169 and 180 m. The field was irrigated using a Reinke© center pivot irrigation
system of 623 m length over 125 ha (Figure 1). A description of the sowing, tasseling, and
harvest dates for 2018 and 2019 is shown in Table 2.
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Figure 1. Study field in Lawrence County, Alabama, US.

Table 2. Description of the operating dates and growth stage of the corn for the years 2018 and 2019.

Year

2018 2019

Sowing 10 April 27 March
Tasseling 23 June 9 June
Harvest 3 September 29 August

Corn hybrid Dekalb® DKC 66-97 Dekalb® DKC 66-97
Row spacing 0.76 m 0.76 m

Plant population 84,000 pl/ha−1 84,000 pl/ha−1

pl/ha−1, plants per hectare.

The historic average precipitation for the season (April to August) was 520 mm. The
total precipitation was above the historic average for 2018 (640 mm) and 2019 (590 mm). In
July 2018 and May, June, and August 2019, the precipitation distribution was below the
historic average (Figure 2).
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Figure 2. Total precipitation (average from 1999–2019, 2018, and 2019) during the growing seasons. A
Vantage Pro 2 Plus weather station (model 6163, Davis Instruments, Hayward, CA, USA) located
close to the field was used to record the precipitation data. Adapted from [42].
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Three MZs were delineated by using information about elevation, slope, and soil
texture, and by normalizing yield maps over ten years (Figure 3). This information was
used as input into the Management Zone Analyst (MZA) software. This software was
used to evaluate the number of homogeneous zones and MZ delineation [43]. We used the
unsupervised algorithm fuzzy c-means to divide the field into three cluster classes. After
the division, the MZs were adjusted based on known field variability of the farmer and
researchers. A description of the soil texture of each MZ is presented in Table 3. A deeper
understanding on how the MZs were delineated can be found in [42].
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crosses the study area.

Table 3. Soil proprieties of the study field.

Management
Zone Soil Type Sand% Silt% Clay%

MZ1 1 Silty clay 13.07 40.13 46.80
MZ2 2 Clay loam 23.20 45.47 31.33
MZ3 3 Clay loam 34.40 31.60 34.00

1 Management zone one, 2 management zone two, 3 management zone three.

2.2. Satellite Imagery

The bottom of the atmosphere reflectance Ortho Scene product was acquired from
PlanetScope, Planet Labs, Inc., San Francisco, CA, USA [44]. Cloud Planet Scope satellite
data provide 3 m spatial resolution images. The data were collected during the critical
period for corn yield determination, approximately 20 days before and 20 days after
flowering [2,45,46]. One image within this window was chosen for each season (31 May
2019 and 16 June 2018). The PlanetScope satellite data had four spectral bands: blue
(455–515 nm), green (500–590 nm), red (590–670 nm), and near-infrared (NIR, 780–860 nm)
in a 16-bit GeoTiff format.
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We chose the images based on cloud cover and date availability. In the present study,
spectral bands with 0% cloud cover over the study area were used to calibrate and validate
the models.

2.3. Data Processing and Building the Dataset
2.3.1. Yield Data

We developed an approach to correct and select quality yield monitor data (from the
combine) and satellite data. The yield data were submitted to a filter process to remove
global and local outliers. First, yield values equal to 0 were excluded. Second, to remove
edge effects and end-of-field yield monitor errors we placed a 30 m buffer distance from the
edges (default value). Finally, outlier yield values were those out of the mean ± 3 standard
deviation (SD) range. Other filter procedures such as flow and moisture delay, maximum
and minimum yield, velocity, and start and end pass delays were performed using Yield
Editor. [43] These parameters are specific for each combine and field, so we do not present
them in this research. In large fields, farmers generally harvest using more than one
combine. In our study area, the field was harvested using three combines (C1, C2, and
C3), and we developed a method to correct the data. First, we collected data to represent
the spatial variability of the yield and the MZ. All data were collected in parallel passes in
which all three combines harvested side by side. To achieve the best quality, we applied
statistical control process techniques. This method has been applied previously to evaluate
the mechanical harvest process [47–49]. The quality of the combines was evaluated using
Shewhart’s individual-moving range control charts, in which the central lines correspond
to the mean of the calculated values, and the upper and lower control limits (UCL and
LCL, respectively) were calculated based on the SDs using the following equations. UCL
and LCL are thresholds to determine if a given point is out of the control limits, indicating
special causes affecting the analyzed process.

UCL = X + 3σ, (1)

X =
(X1 + X2 + X3 . . . .Xn)

N
, (2)

LCL = X− 3σ, (3)

where UCL is the upper control limit, LCL is the lower control limit, X is the overall mean,
Xn is the value of the sample “n”, N is the total sample number, and σ is the standard
deviation. When LCL was negative for I charts, a null value was assigned (LCL = 0).

2.3.2. Topographical Data

One of the main pieces of information to generate the TWI is elevation. To obtain
this information for the study terrain, a global navigation satellite system with real-time
kinematic signal correction was used (John Deere’s Starfire 6000 receiver). This system
provides an accuracy close to 2.5 cm on the horizontal coordinates and 5 cm on the vertical
coordinates. The data obtained from the global navigation satellite system are geo-object
points with X and Y coordinates and elevation. To transform the geo-object points into the
geo-field (digital elevation model), we used kriging interpolation for the elevation attribute
using ArcMap software (version 10.3.1; ESRI, Redlands, CA, USA).

The TWI and TPI (Figure 4) were calculated using Equations (4) and (5), whereas
the catchment area and slope that are required for the TWI equation were obtained using
the interpolated map of elevation in the System for Automated Geoscientific Analyses
(version 2.3.2):

TWI = ln
(

As

tanβ

)
, (4)

TPI = z0 − z , (5)



Remote Sens. 2022, 14, 6171 7 of 24

where As is the specific catchment area (m2m−1), β is the slope angle (degrees), z0 is the
central point, and z is the average elevation around the central point.
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2.3.3. Dataset Extraction and Feature Importance

After correcting the yield data, the data were interpolated using ordinary kriging
(Supplementary Material Table S1) to a raster file with the same spatial resolution as the
satellite images used (3 m resolution, Figure 5). Then, we collected the centroid of each
pixel to build the dataset with the spectral bands, TPI, TWI and interpolated yield. All
pixels were labeled with their respective MZ. To minimize the uncertain transitional areas
between zones and field border, a buffer of 10 m was applied. All procedures related to
this part of the research were performed using the QGIS software.

Remote Sens. 2022, 14, x FOR PEER REVIEW 8 of 26 
 

 

2.3.3. Dataset Extraction and Feature Importance 

After correcting the yield data, the data were interpolated using ordinary kriging 

(Supplementary Material, Table S1) to a raster file with the same spatial resolution as the 

satellite images used (3 m resolution, Figure 5). Then, we collected the centroid of each 

pixel to build the dataset with the spectral bands, TPI, TWI and interpolated yield. All 

pixels were labeled with their respective MZ. To minimize the uncertain transitional areas 

between zones and field border, a buffer of 10 m was applied. All procedures related to 

this part of the research were performed using the QGIS software. 

We used a recursive feature elimination (RFE) method to select features for this 

study, which is a widely applied method and performed well in previous studies [50–52]. 

It was performed in two steps. First, the estimator was applied to determine the im-

portance of each feature. Then, the feature with the lowest importance score was removed, 

and the model performance was evaluated. The built-in feature selection method of ran-

dom forest (RF) was used in this study to derive the importance of each variable in the 

tree decision [53]. We implemented the process 300 times to obtain the feature importance 

in step (1) and determined the features to participate in the final modeling in step (2) [54]. 

(A) 

 

Remote Sens. 2022, 14, x FOR PEER REVIEW 9 of 26 
 

 

(B) 

 

Figure 5. Field variability for yield in 2018 (A) and 2019 (B) seasons. 

2.4. Auto-ML 

The open-source auto-ML library H2O for the Python programming language was 

used to solve the fundamental problem of deciding which ML algorithm to use in our 

experiments (H2O 2020). Extremely randomized trees, gradient boosting machine (GBM), 

XGBoost algorithms, and stacked ensemble models (SE) were tested with grids of hy-

perparameters defined by the auto-ML algorithm. For more details regarding each algo-

rithm and how the auto-ML approach works, the library documentation can be accessed 

[55]. 

The training phase was performed using 5-fold cross-validation of the data. The da-

taset was divided into 80% for training and 20% for validation of the models. After re-

moving the 10 m buffer of the area, the dataset points totaled 106,967 for the 2018 season 

and 91,722 for 2019. The model with the lowest mean absolute error during the validation 

phase was chosen as the best model for each experiment. A total of 50 models were trained 

per experiment, and the best model was chosen to show the results. 

2.5. Model Performance Analysis 

Experiments were developed to define the optimal features of input for the models. 

We tested the following four approaches: only spectral bands, spectral bands + TPI, spec-

tral bands + TWI, and spectral bands + TPI + TWI. We also explored two approaches for 

model calibration: 1. the whole-field approach, which involved calibrating and validating 

a model using data from the entire field, and 2. the MZ model, which involved calibrating 

and validating a model using data from only one MZ. These experiments were developed 

in the following three different temporal scenarios: data from the two seasons together 

(2018 and 2019), only data from 2018, and only data from 2019.  

The accuracy and tendency of the proposed models were evaluated by calculating 

the mean absolute error (MAE) and estimated mean error (EME) according to Equations 

(6) and (7), respectively. 

Figure 5. Field variability for yield in 2018 (A) and 2019 (B) seasons.



Remote Sens. 2022, 14, 6171 9 of 24

We used a recursive feature elimination (RFE) method to select features for this study,
which is a widely applied method and performed well in previous studies [50–52]. It was
performed in two steps. First, the estimator was applied to determine the importance
of each feature. Then, the feature with the lowest importance score was removed, and
the model performance was evaluated. The built-in feature selection method of random
forest (RF) was used in this study to derive the importance of each variable in the tree
decision [53]. We implemented the process 300 times to obtain the feature importance in
step (1) and determined the features to participate in the final modeling in step (2) [54].

2.4. Auto-ML

The open-source auto-ML library H2O for the Python programming language was
used to solve the fundamental problem of deciding which ML algorithm to use in our
experiments (H2O 2020). Extremely randomized trees, gradient boosting machine (GBM),
XGBoost algorithms, and stacked ensemble models (SE) were tested with grids of hyperpa-
rameters defined by the auto-ML algorithm. For more details regarding each algorithm
and how the auto-ML approach works, the library documentation can be accessed [55].

The training phase was performed using 5-fold cross-validation of the data. The
dataset was divided into 80% for training and 20% for validation of the models. After
removing the 10 m buffer of the area, the dataset points totaled 106,967 for the 2018 season
and 91,722 for 2019. The model with the lowest mean absolute error during the validation
phase was chosen as the best model for each experiment. A total of 50 models were trained
per experiment, and the best model was chosen to show the results.

2.5. Model Performance Analysis

Experiments were developed to define the optimal features of input for the models.
We tested the following four approaches: only spectral bands, spectral bands + TPI, spectral
bands + TWI, and spectral bands + TPI + TWI. We also explored two approaches for model
calibration: 1. the whole-field approach, which involved calibrating and validating a model
using data from the entire field, and 2. the MZ model, which involved calibrating and
validating a model using data from only one MZ. These experiments were developed in
the following three different temporal scenarios: data from the two seasons together (2018
and 2019), only data from 2018, and only data from 2019.

The accuracy and tendency of the proposed models were evaluated by calculating the
mean absolute error (MAE) and estimated mean error (EME) according to Equations (6)
and (7), respectively.

MAE =
∑n

i=1(Yesti −Yobsi)

n
(6)

EME =
∑N

i=1
(
Yobsi −Y

)
N

(7)

where n is the number of data, Yesti is the value of the variable estimated by the network,
Yobsi is the value of the observed variable, and Y is the mean estimated value.

The relative percentage error was calculated to understand the accuracy achieved by
the addition of topographic components in the models expressed by the following equation.

X =

∣∣∣∣ x1− y
x1

∣∣∣∣ ∗ 100 (8)

where X is the relative percentage error, x1 is the MAE of a model with only spectral bands
as features, and y is the MAE of the chosen model.

Performance analyses were performed using a scatter plot of predicted values as the
dependent variable (y-axis) and observed values as the independent variable (x-axis), and
a line of 1:1 was plotted to determine which model showed values near the line.
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2.6. Theoretical Framework

For better understanding of the global approach used to predict the corn yield, a
theoretical framework was developed to illustrate the steps developed in this research
(Figure 6).

Remote Sens. 2022, 14, x FOR PEER REVIEW 10 of 26 
 

 

𝑀𝐴𝐸 =
∑ (𝑛

𝑖=1 𝑌𝑒𝑠𝑡𝑖−𝑌𝑜𝑏𝑠𝑖)

𝑛
  (6) 

𝐸𝑀𝐸 =  
∑ (𝑌𝑜𝑏𝑠𝑖−𝑌̅)𝑁

𝑖=1

𝑁
  (7) 

where n is the number of data, Yesti is the value of the variable estimated by the network, 

Yobsi is the value of the observed variable, and 𝑌̅ is the mean estimated value.  

The relative percentage error was calculated to understand the accuracy achieved by 

the addition of topographic components in the models expressed by the following equation.  

𝑋 = |
𝑥1−𝑦

𝑥1
| ∗ 100 (8) 

where X is the relative percentage error, x1 is the MAE of a model with only spectral bands 

as features, and y is the MAE of the chosen model.  

Performance analyses were performed using a scatter plot of predicted values as the 

dependent variable (y-axis) and observed values as the independent variable (x-axis), and 

a line of 1:1 was plotted to determine which model showed values near the line.  

2.6. Theoretical Framework 

For better understanding of the global approach used to predict the corn yield, a theoret-

ical framework was developed to illustrate the steps developed in this research (Figure 6). 

 

Figure 6. Theoretical framework to illustrate the approach developed in this research to predict corn 

yield. 

  

Figure 6. Theoretical framework to illustrate the approach developed in this research to predict corn yield.

3. Results

The following sections present the results from the approach to predict corn yield at
the MZ level using spectral bands and topographical indices. Descriptive statistics were
used to characterize the variables during 2018 and 2019. The models were ranked based on
the accuracy metric MAE and then the performance of the best models for each experiment
was analyzed. The best model from each experiment was used to generate the predicted
yield maps to show the spatial variability of the yield.

3.1. Descriptive Statistics of Corn Yield, Spectral Bands, TWI, and TPI

Descriptive statistics of corn yield, spectral bands, and TWI for 2018 and 2019 are shown
in Table 4. Comparing the yield between the years and analyzing each MZ, 2019 (14.19 Mg
ha−1) showed a higher yield than 2018 (13.25 Mg ha−1). A higher mean yield was observed
in MZ1 (13.25 and 14.19 Mg ha−1 for 2018 and 2019, respectively), whereas MZ2 showed the
lowest mean yield (11.37 and 13.05 Mg ha−1 for 2018 and 2019, respectively). MZ3 showed
the minimum and maximum yield in 2018, whereas in 2019 MZ1 showed maximum yield
and MZ2 the minimum. The minimum and maximum yields were found for MZ3 in 2018,
whereas in 2019 the maximum yield was observed in MZ1, and the minimum was in MZ2.
Therefore, MZ1 was the high-yield zone, MZ2 was the low-yield zone, and MZ3 had an
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intermediate yield independent of the year analyzed, showing the temporal stability of the
MZ. MZ2 was the zone with the highest variability in terms of yield with a mean of 14% of
the coefficient of variation (C.V.) when 2018 and 2019 were analyzed.

Table 4. Descriptive analysis for spectral bands, TWI, and yield for the years 2018 and 2019.

2018 2019

MZ1

mean Std C.V(%) min max mean std C.V(%) min max
Blue 5509 72 1 5172 6189 Blue 499 27 5 410 723
Green 4773 58 1 4554 5398 Green 588 32 5 504 819
Red 3238 85 3 2959 4380 Red 557 52 9 443 909
NIR 11,441 290 3 8590 12,435 NIR 3721 159 4 2983 4210
TWI 6 1 20 2 10 TWI 6 1 18 2 10
TPI −1 1 −158 −5 5 TPI −1 1 −151 −5 5
Yield 13.25 1.28 9 5.31 17.49 Yield 14.19 1.14 8 2.89 19.77

MZ2

Blue 5576 99 2 5231 6904 Blue 529 35 7 382 702
Green 4857 104 2 4567 5897 Green 626 42 7 473 818
Red 3368 168 5 3031 5101 Red 627 79 13 412 981
NIR 11,126 423 4 5476 12,717 NIR 3686 180 5 1962 4277
TWI 4 1 23 2 9 TWI 4 1 23 2 8
TPI 0 2 413 −9 6 TPI 1 2 309 −9 6
Yield 11.37 1.68 15 3.97 17.75 Yield 13.05 1.68 13 2.35 19.44

MZ3

Blue 5513 79 1 5176 6965 Blue 510 26 5 431 696
Green 4784 68 1 4574 6136 Green 604 31 5 507 808
Red 3255 96 3 3005 5453 Red 579 50 9 453 979
NIR 11,366 273 2 9093 12,499 NIR 3715 121 3 3146 4210
TWI 6 1 15 1 9 TWI 6 1 15 1 9
TPI 0 1 −2218 −3 4 TPI 0 1 −2081 −3 4
Yield 13.05 1.14 9 1.41 17.96 Yield 13.99 1.08 8 3.23 19.17

Spectral bands are expressed in reflectance at a scale factor of 10,000. Yield is expressed in Mg ha. TWI and TPI
are dimensionless.

3.2. Feature Importance

The six features were ranked using the RFE strategy described in Section 2.3.3. The
ranking results from the experiment are shown in Supplementary Material Figure S1.
Across 300 experiments, the topographic indices have stable ranking order. We can infer
that TWI and TPI have higher influence in the models than spectral bands, while the red
band showed higher importance among the spectral bands. We can infer from these results
that topographic indices show higher importance for ML modeling than spectral reflectance
in a field with significant topographic variability.

3.3. Auto-ML for Predicting Corn Yield Using TWI, TPI, and Spectral Bands

For the whole-field models, the stacked ensemble model type showed better accuracy
for predicting corn yield in all scenarios, except in 2019, when spectral bands were used as
features in the model. This same pattern was also observed for MZ2. For MZ1 and MZ3,
GBM was more accurate for predicting corn yield when using spectral bands as features in
all scenarios. In contrast, for MZ2 using other features and scenarios, the stacked ensemble
model type was more accurate, except when both years were combined and spectral bands
+ TPI were used as features, in which case the XGBoost model was preferable (Table 5).
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Table 5. Results for training and validation of best models in terms of mean absolute error (MAE,
Mg/ha) using data from 2018, 2019, and both years combined.

2018 2019 All Years

Whole Field

Model Type Training Test Model Type Training Test Model Type Training Test
Bands SE 0.83 0.85 XGBoost 0.78 0.8 SE 0.81 0.84
Bands + TWI SE 0.4 0.73 SE 0.47 0.73 SE 0.64 0.76
Bands + TPI SE 0.44 0.75 SE 0.45 0.73 SE 0.63 0.77
Bands + TPI + TWI SE 0.5 0.65 SE 0.42 0.66 SE 0.57 0.68

MZ1

Bands GBM 0.73 0.76 GBM 0.67 0.69 GBM 0.7 0.74
Bands + TWI SE 0.49 0.64 SE 0.39 0.62 SE 0.36 0.63
Bands + TPI SE 0.19 0.62 SE 0.3 0.62 XGBoost 0.36 0.63
Bands + TPI + TWI SE 0.1 0.47 SE 0.16 0.52 SE 0.19 0.5

MZ2

Bands SE 0.83 0.88 XGBoost 0.91 0.97 SE 0.85 0.92
Bands + TWI SE 0.38 0.75 SE 0.44 0.85 SE 0.45 0.79
Bands + TPI SE 0.4 0.74 SE 0.41 0.85 SE 0.46 0.78
Bands + TPI + TWI SE 0.15 0.59 SE 0.22 0.72 SE 0.45 0.68

MZ3

Bands GBM 0.72 0.73 GBM 0.63 0.64 GBM 0.67 0.68
Bands + TWI XGBoost 0.38 0.64 XGBoost 0.32 0.59 XGBoost 0.31 0.61
Bands + TPI SE 0.25 0.62 XGBoost 0.33 0.59 XGBoost 0.32 0.6
Bands + TPI + TWI SE 0.11 0.48 XGBoost 0.25 0.51 SE 0.19 0.49

SE: stacked ensemble model; GBM: gradient boost machine; TWI: topographic wetness index; TPI: topographic
position index; MZ1, MZ2, and MZ3: high, low, and intermediate yield zones, respectively.

The stacked ensemble models showed better accuracy for predicting corn yield inde-
pendently of the approach of a general model for all areas and specific models for each MZ
when spectral bands + TWI were used as features (Table 5). Using only spectral bands as
features in the models, for MZ1, the GBM algorithm showed better accuracy, whereas for
MZ2, MZ3, and all areas, the stacked ensemble algorithm showed better accuracy (Table 5).
Higher accuracy was achieved using spectral bands + TWI as features, and the highest
accuracy was for the stacked ensemble model in MZ1.

3.4. Comparison of Models Using Different Features in Three Scenarios in Terms of Accuracy,
Relative Error, and Tendency

Figure 7 shows the results of the accuracy metric (MAE) as reported in Equation (6).
The MAE can distinguish which feature combination was the most accurate for predicting
corn yield. Based on this metric, the models had the lowest accuracy (highest MAE) when
only the spectral bands were used, whereas when the models used spectral bands, TWI,
and TPI as features, the highest accuracy (lowest MAE) for predicting the corn yield for all
scenarios (all years combined and 2018 and 2019 seasons) was obtained. When the models
used TWI or TPI as features, the accuracy was similar in all scenarios. The whole-field
model showed lower accuracy for the feature combinations of spectral bands + TPI, spectral
bands + TWI, and spectral bands + TPI + TWI in all scenarios analyzed as compared to the
MZ1 and MZ3 site-specific models. The MZ2 site-specific model showed a similar accuracy
to that of the whole-field model.
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Figure 7. Accuracy (MAE) of the validation phase for models developed for isolated management
zones and for whole field using several features (spectral bands and topographic indices) in three
scenarios (2018, 2019, and all years combined).

The specific accuracy of the whole-field model was lower in MZ2 compared to MZ1
and MZ3. These models had difficulty predicting corn yield in low-yield zones (Figure 8).
The spectral bands + TPI + TWI features had a higher accuracy than those of the other
combination of features.
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Figure 8. Accuracy (MAE) of the validation phase of the model developed using whole-field data in
three scenarios (2018, 2019, and all years combined); the accuracy is showed in each management
zone. TWI: topographic wetness index; TPI: topographic position index; MZ1, MZ2, and MZ3:
management zones one (high yield), two (low yield), and three (intermedium yield), respectively.

To determine whether the association between topographical indices and spectral
bands could increase the accuracy of the yield forecasting, we calculated the relative error
of the models when only spectral bands were used as features (Figure 9). Analyzing all
scenarios, isolated seasons (2018 and 2019), and combined seasons, including spectral
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bands + TWI + TPI as features, the models obtained a better accuracy, whereas accuracy
was higher for site-specific models (Figure 8). For the scenario of the isolated season and
site-specific models, the models using spectral bands + TWI and spectral bands + TPI
showed a similar increase in accuracy to that of the models using only spectral bands.
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Figure 9. Relative increase in accuracy for models developed for isolated management zones and for
whole field in three scenarios (all years combined, 2018 and 2019 season). B: spectral bands; TWI:
topographic wetness index; TPI: topographic position index; MZ1, MZ2, and MZ3: management
zones one (high yield), two (low yield), and three (intermediate yield), respectively.

To compare the accuracy of the whole-field model and isolated model, we analyzed the
specific accuracy of the best feature combination (spectral bands + TPI + TWI) against the
accuracy of the specific models for each MZ (high, low, and intermediate yields; Figure 10)
for the two scenarios (all years combined and specific season, 2018 and 2019). For all
scenarios analyzed, the specific models showed better accuracy (lower MAE) than the
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whole-field model; however, for better understanding, and not only accuracy, it is enough
to decide if we need site-specific models or a whole-field model.
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Figure 10. Comparison between the accuracy of the whole-field model and specific models for each
management zone in three scenarios (all years combined, 2018 and 2019 season). MZ1, MZ2, and MZ3:
management zones one (high yield), two (low yield) and three (intermediate yield), respectively.

To analyze the tendency of the models, the EME was calculated and compared
in the three scenarios (all years combined, 2018, and 2019) using models with spectral
bands + TWI + TPI as features. All the comparisons were performed using specific models
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compared to the whole-field model, using its tendency in each MZ. The tendency metric
allowed us to understand whether the model was underestimating or overestimating the
yield prediction and to infer which approach had a lower tendency and which MZ occurred.
For all years, the whole-field model underestimated the corn yield (−57 kg ha−1) in MZ2
(low-yield zone). Whereas for MZ1 (33 kg ha−1) and MZ3 (48 kg ha−1) the model overesti-
mated. The MZ1 model (high-yield zone) showed approximately 55% lower tendency than
the whole-field model in MZ1. This value had approximately 77% lower tendency for the
model trained and validated using only the MZ3 data compared to the whole-field model
(Figure 11). Underestimation of MZ2 was observed in the 2018 scenario (−87 kg ha−1),
whereas in 2019 the whole-field model showed an overestimation (57 kg ha−1). The lowest
tendency was observed in 2018 using site-specific models for MZ1 and MZ3, which was
approximately zero. Based on these results, using site-specific models had lower tendency
than using the whole-field model.
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Figure 11. Comparison between the tendency of the whole-field model and specific models for each
management zone in three scenarios (all years combined, 2018 and 2019 season). MZ1, MZ2, and MZ3:
management zones one (high yield), two (low yield), and three (intermediate yield), respectively.

To analyze the performance of the chosen models, the corn yield forecasted by the
resultant model during the validation phase was compared with the observed yield
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(Figures 12–14). The results for the models using combined data and the separate growing
seasons (2018 and 2019) suggested that it was possible to forecast corn yield with reasonable
accuracy using data combining spectral bands + TPI + TWI as features. A general behavior
independent of using data from a specific MZ or the entire field was that the accuracy of
the models was lower when predicting the yield in a low-yield area (MZ2). Building a
model with data from a high-yield zone (MZ1) and using spectral bands, TPI, and TWI as
features was the most accurate for forecasting corn yield (MAE = 0.47).
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Figure 12. Performance analysis of test dataset with the features spectral bands + TPI + TWI in
two approaches of model calibration, (a) whole-field and (b) site-specific models, in the scenario
of all seasons combined. Observation: MAE (mean absolute error) is expressed in Mg ha−1, EME
(estimative mean error) in Kg ha−1, and r is the correlation coefficient.
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Figure 13. Performance analysis of test dataset with the features spectral bands + TPI + TWI in two
approaches of model calibration, (a) whole-field and (b) site-specific models, in the scenario of the
season 2018. Observation: MAE (mean absolute error) is expressed in Mg ha−1, EME (estimative
mean error) in Kg ha−1, and r is the correlation coefficient.

Our second observation supports the hypothesis that site-specific models using spec-
tral bands, TPI, and TWI as features had different accuracies depending on the MZ used for
the calibration and validation (MAE MZ1 = 0.50, MAE MZ2 = 0.68, and MAE MZ3 = 0.49).
This leads us to infer that for MZs representing low-yield zones (MZ2), the corn yield
forecasting accuracy was compromised due to lower accuracy (higher MAE and EME)
(Figure 12).



Remote Sens. 2022, 14, 6171 19 of 24

Remote Sens. 2022, 14, x FOR PEER REVIEW 20 of 26 
 

 

MZ1 

  

MZ2 

  

MZ3 

  

Figure 13. Performance analysis of test dataset with the features spectral bands + TPI + TWI in two 

approaches of model calibration, (a) whole-field and (b) site-specific models, in the scenario of the 

season 2018. Observation: MAE (mean absolute error) is expressed in Mg ha−1, EME (estimative 

mean error) in Kg ha−1, and r is the correlation coefficient. 

MZ1 

  

MAE = 0.61

EME = 17 

r = 0.75

n = 6894
0

5

10

15

20

0 5 10 15 20

P
re

d
ic

te
d

 Y
ie

ld
 (

M
g

 h
a

−1
)

Observed Yield (Mg ha−1)

(a)

MAE = 0.47

EME = 0

r = 0.86

n = 6699
0

5

10

15

20

0 5 10 15 20

P
re

d
ic

te
d

 Y
ie

ld
 (

M
g

 h
a

−1
)

Observed Yield (Mg ha−1)

(b)

MAE = 0.71

EME = -87

r = 0.84

n = 8609
0

5

10

15

20

0 5 10 15 20

P
re

d
ic

te
d

 Y
ie

ld
 (

M
g

 h
a

−1
)

Obseved Yield (Mg ha−1)

(a)

MAE = 0.59

EME = 26

r = 0.88

n = 8660
0

5

10

15

20

0 5 10 15 20

P
re

d
ic

te
d

 Y
ie

ld
 (

M
g

 h
a

−1
)

Observed Yield (Mg ha−1)

(b)

MAE = 0.62

EME = 78

r = 0.65

n = 5843
0

5

10

15

20

0 5 10 15 20

P
re

d
ic

te
d

 Y
ie

ld
 (

M
g

 h
a

−1
)

Obseved Yield (Mg ha−1)

(a)

MAE = 0.48

EME = 0

r = 0.81

n =5663
0

5

10

15

20

0 5 10 15 20

P
re

d
ic

te
d

 Y
ie

ld
 (

M
g

 h
a

−1
)

Observed Yield (Mg ha−1)

(b)

MAE = 0.59

EME = 34

r = 0.65

n = 5910
0

5

10

15

20

0 5 10 15 20

P
re

d
ic

te
d

 Y
ie

ld
 (

M
g

 h
a

−1
)

Obseved Yield (Mg ha−1)

(a)

MAE = 0.52

EME = 12

r = 0.74

n = 5867
0

5

10

15

20

0 5 10 15 20

P
re

d
ic

te
d

 Y
ie

ld
 (

M
g

 h
a

−1
)

Observed Yield (Mg ha−1)

(b)

Remote Sens. 2022, 14, x FOR PEER REVIEW 21 of 26 
 

 

MZ2 

  

MZ3 

  

Figure 14. Performance analysis of test dataset with the features spectral bands + TPI + TWI in two 

approaches of model calibration, (a) whole-field and (b) site-specific models, in the scenario of the 

season 2019. Observation: MAE (mean absolute error) is expressed in Mg ha−1, EME (estimative 

mean error) in Kg ha−1, and r is the correlation coefficient. 

4. Discussion 

In the present study, a method for developing site-specific models for corn yield 

modeling at the MZ level was proposed, and the results showed that it is possible to pre-

dict corn yield with reasonable accuracy using spectral crop information associated with 

TWI and TPI during the flowering growth stage. Therefore, the association of spectral and 

topographical data can increase the accuracy of crop yield prediction. We demonstrated 

that machine learning could predict the yield pattern at the management zones. We high-

light that to use this framework, it is important to develop management zones to calibrate 

MZ models that use spectral bands and topographic indices. We do not recommend the 

cross use of these models, because we developed models using specific yield variability. 

Models should be developed and used for the management zone where they were trained.  

The first and most important outcome from the present study was the possibility to 

predict corn yield using only spectral bands. However, to obtain a more accurate model, 

spectral bands with TPI and TWI, which are surface-related variables, should be used 

(Figure 7). The importance of surface structure (slope) variables on crop yield prediction 

has been shown by [56]. Surface variables explain yield variability components such as 

the spatial patterns of soil, water, and nutrient distribution [57]. The increase in accuracy 

from adding the topographical indices (spectral bands + TPI + TWI as features, Figure 9) 

can be explained by the addition of deterministic variables (equations of the topographical 

indices), which are consistent throughout time. These topographical indices have been 

generated from elevation data derived from yield monitoring, and field elevation remains 

the same unless the farmer modifies the field surface, which is not common. Another fac-

tor that can increase accuracy is topography’s influence on hydrological processes [7]. 

These processes are related to the spatial distribution of groundwater flow and soil mois-

ture [8]. Soil moisture is correlated with TWI [58], reflecting the water availability for crop 

MAE = 0.76

EME = 57

r = 0.73

n = 6937
0

5

10

15

20

0 5 10 15 20

P
re

d
ic

te
d

 Y
ie

ld
 (

M
g

 h
a

−1
)

Obseved Yield (Mg ha−1)

(a)

MAE = 0.72

EME = 12

r = 0.78

n = 6900
0

5

10

15

20

0 5 10 15 20

P
re

d
ic

te
d

 Y
ie

ld
 (

M
g

 h
a

−1
)

Observed Yield (Mg ha−1)

(b)

MAE = 0.58

EME = 19

r = 0.63

n = 5516
0

5

10

15

20

0 5 10 15 20

P
re

d
ic

te
d

 Y
ie

ld
 (

M
g

 h
a

−1
)

Obseved Yield (Mg ha−1)

(a)

MAE = 0.51

EME = 2

r = 0.72

n = 5290
0

5

10

15

20

0 5 10 15 20

P
re

d
ic

te
d

 Y
ie

ld
 (

M
g

 h
a

−1
)

Observed Yield (Mg ha−1)

(b)

Figure 14. Performance analysis of test dataset with the features spectral bands + TPI + TWI in two
approaches of model calibration, (a) whole-field and (b) site-specific models, in the scenario of the
season 2019. Observation: MAE (mean absolute error) is expressed in Mg ha−1, EME (estimative
mean error) in Kg ha−1, and r is the correlation coefficient.

4. Discussion

In the present study, a method for developing site-specific models for corn yield
modeling at the MZ level was proposed, and the results showed that it is possible to
predict corn yield with reasonable accuracy using spectral crop information associated with
TWI and TPI during the flowering growth stage. Therefore, the association of spectral and
topographical data can increase the accuracy of crop yield prediction. We demonstrated that
machine learning could predict the yield pattern at the management zones. We highlight
that to use this framework, it is important to develop management zones to calibrate MZ
models that use spectral bands and topographic indices. We do not recommend the cross
use of these models, because we developed models using specific yield variability. Models
should be developed and used for the management zone where they were trained.
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The first and most important outcome from the present study was the possibility to
predict corn yield using only spectral bands. However, to obtain a more accurate model,
spectral bands with TPI and TWI, which are surface-related variables, should be used
(Figure 7). The importance of surface structure (slope) variables on crop yield prediction
has been shown by [56]. Surface variables explain yield variability components such as
the spatial patterns of soil, water, and nutrient distribution [57]. The increase in accuracy
from adding the topographical indices (spectral bands + TPI + TWI as features, Figure 9)
can be explained by the addition of deterministic variables (equations of the topographical
indices), which are consistent throughout time. These topographical indices have been
generated from elevation data derived from yield monitoring, and field elevation remains
the same unless the farmer modifies the field surface, which is not common. Another factor
that can increase accuracy is topography’s influence on hydrological processes [7]. These
processes are related to the spatial distribution of groundwater flow and soil moisture [8].
Soil moisture is correlated with TWI [58], reflecting the water availability for crop growth
and development [59], and can ultimately affect yield. The TPI is a topography-derived
index that considers the local topography for a given region [60] and is also correlated
with yield [61]. The authors of [56] highlighted the necessity of exploring the inclusion
of microtopography metrics derived from slope data to predict within-field variability
accurately during a growing season, and our approach could be a promising application in
this field.

The second result from our analysis showed the potential for the development of
site-specific models at the MZ level due to a lower tendency (Figure 9) and higher accuracy
(Figure 10). Site-specific crop management in terms of resource use efficiency can be
enhanced by identifying homogenous MZs [62]. Crop management is changing from large-
scale operations to precision agriculture, which requires technologies to forecast yield by
considering within-field variation [2]. Our approach to modeling corn yield could aid with
precision agricultural technologies. These models could predict within-field yield variability,
which can be used to characterize the factors (environmental conditions and management
practices) that contribute to yield variability. The models are also suitable for capturing
critical site-specific factors that drive inter-region or in-field variability. Our results, in terms
of modeling crop yield at the field level, agree with several previous studies [2,3,35,56]
that have successfully developed models to forecast yield at field level. To the best of our
knowledge, no other study has attempted to forecast corn yield associated with TWI, TPI,
spectral bands, and ML algorithms. There is a demand for crop modeling tools that involve
multiple sources of data to improve the prediction accuracy of the crop yield.

From a practical standpoint, farmers, who have yield monitors, already collect high-
quality data during harvest (i.e., yield and elevation); therefore, these available data can
be used to derive TWI and TPI microtopography that, along with high-resolution remote
sensing imagery collected at the time of flowering, can be used for corn yield prediction
prior to harvest. This prediction might allow farmers to determine the spatial within-field
variability of the yield before harvesting and make either adjustments in management
or adjust the corn market price. The predictive yield maps at the MZ level would be
valuable for farmers when planning their MZ land use to achieve their production goals
and determine the harvester settings. Farmers might also use a higher-quality combine to
harvest a high-yield zone. Upscaling this method for larger areas can help the research
community to understand yield variability and the impact of irrigation use and climate.
Areas of higher risk can be identified, and farmers can mitigate yield losses through the
purchase of crop insurance or by leaving some areas of a field out of production. To
scale up the proposed yield prediction method, some processes should be implemented,
for example, algorithmic automation of TPI and TWI generation and management zone
delineation. Transfer learning theory could be applied to improve this method. We could
use country- or county-level models and incorporate the information at the management
zone level for better predictability, since time series of yield monitor data are common in
farms, but these data are not fully used to build prediction models.
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Scaling up the proposed methodology to many regions of the southeast could have
positive socioeconomic and environmental consequences. Corn yield predictions could be
useful in understanding the impact of irrigation and nitrogen management, which could
be useful to support adoption of site-specific irrigation and nitrogen management practices.
Depending on the patterns of corn yield variability, increased access to conservation
programs might be available to farmers, as well as crop insurance. Farmers, overall, could
receive more support from governmental agencies, extension services, and private industry.

5. Conclusions

The present study investigated the potential of using spectral bands of high-resolution
satellite images and topographical indices to create site-specific models using auto-ML
algorithms. Knowing that topographical indices can explain site-specific yield variability is
important for crop yield modeling and for supporting management decisions based on yield
forecasting. As studies within yield forecasting have focused on large-scale approaches, the
present study provides evidence that contributes to crop yield modeling at the MZ level.

Topographical indices increase the accuracy of corn yield forecasting when associated
with spectral bands as features of ML models.

Site-specific models are required to increase the accuracy and reduce the tendency of
corn yield forecasting on MZs with high, low, and intermediate yields. The most important
features for modeling corn yield were spectral bands + TPI + TWI.

Auto-ML using the stacked ensemble algorithm can be used to forecast corn yield
before harvesting by using combined data from different seasons.

Future studies should focus on testing this method using fields with different topo-
graphical characteristics to understand if the topography indices have the same behavior
in the models developed in high and low slope areas.
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